Меню Рубрики

Качественный и количественный анализ белка

КАЧЕСТВЕННОЕ И КОЛИЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ БЕЛКА — часть 1

Присутствие белков в пищевых объектах устанавливается с помощью качественных реакций, которые условно разделяют на две группы: а) цветные реакции; б) реакции осаждения.

Среди первой группы различают универсальные реакции (биурето-вая на пептидные связи и нингидриновая на а-аминокислоты) и специфические, обусловленные присутствием в белках остатков определенных аминокислот. Так, ксантопротеиновая реакция свидетельствует о наличии в белках остатков ароматических аминокислот, реакция Паули — гистидина и тирозина, Адамкевича и Вуазене — триптофана, нитропрус -сидная — цистеина, а реакция Сакагучи — аргинина. По результатам специфических реакций ориентировочно можно судить о пищевой ценности белков.

Во второй группе реакций белки осаждают действием солей, органических растворителей, концентрированных кислот, щелочей, ионов тяжелых металлов, температуры и в изоэлектрической точке. Белки в растворенном состоянии крайне неустойчивы, поэтому при добавлении органических растворителей (спирт, ацетон), концентрированных растворов нейтральных солей щелочных металлов и воздействии физических факторов (нагревание, облучение, ультразвук) гидратная оболочка разрушается и они выпадают в осадок.

Так как белковые вещества сырья (муки, крупы, молока, мяса), включая ферменты, часто являются определяющими в обеспечении качества пищевых изделий, то для изучения физико-химических, биохимических и физиологических свойств этих соединений обязательным условием является получение белков в индивидуальном и, по возможности, недена-турированном состоянии. Белки обычно теряют природные (нативные)

свойства (растворимость, гидратацию, ферментативную активность и т.д.), подвергаясь денатурации под влиянием различных факторов. Типичным примером необратимой денатурации белков является выпадение их в осадок под действием ТХУ. Длительный контакт со спиртом также приводит к необратимой денатурации белка. Денатурирующее действие различных факторов на белки можно смягчить, если проводить операции выделения их при температуре не выше +4°С.

Методы выделения и очистки белков. Общая схема операций по выделению белков сводится к измельчению биологического материала (гомогенизации), экстрагированию и собственно выделению, то есть очистке и получению белка в индивидуальном состоянии. При изучении метаболических процессов в живых организмах (в созревшем зерне, плодах, овощах) морфологическая и биохимическая целостность клеток и тканей сохраняется в максимальной степени, тогда как при исследовании состава сырья и готовых пищевых продуктов потеря целостности структуры несущественна. Гомогенизацию объектов следует рассматривать как начальную стадию выделения белков, но способ ее определяется постановкой задачи. Например, анализ ферментов из растительных материалов часто затруднен тем, что при гомогенизации экстрагируется большое количество фенолов, которые взаимодействуют с карбонильными группами пептидных групп при помощи водородных связей и вызывают денатурацию белка и потерю ферментами своей активности. Добавление в экстракт поливинилпирролидона, образующего с фенолами нерастворимые комплексы, предотвращает инактивацию ферментов.

Разрушение клеточной структуры осуществляется тщательным измельчением материала в гомогенизаторах, мельницах, попеременным замораживанием и оттаиванием, применением ультразвуковых высокочастотных колебаний, пресс-методов с использованием высоких давлений и метода «азотной бомбы». В последнем случае клетки насыщаются азотом под давлением, которое затем сбрасывается и клетки разрушаются. Эффективность гомогенизации зависит не только от способа разрушения клеточных структур, но и от вида анализируемого материала. Животные клетки разрушаются относительно легко, особенно в отсутствие сосудистой и соединительной ткани, тогда как растительные и микробные — из-за присутствия клеточных стенок — трудно. В таком случае применяют методы растирания материала с твердыми веществами (песок, абразивный порошок) или обработку клеточных стенок лизоцимом или ферментными препаратами, содержащими целлюлазу, хитиназу и липазу. Гомогенизацию рекомендуется проводить в холодных комнатах или с использованием льда.

Экстракция белков может быть совмещена с гомогенизацией клеток и тканей либо проведена отдельно, если продукт заранее измельчен. Для

определения ферментативной активности белка достаточно одноразовой экстракции, тогда как для количественного определения белковых фракций зерна — трех- или пятикратной. Условия экстрагирования белков (время, гидромодуль, температура и т.д.) подбираются эмпирически, основываясь на методиках ведущих научных школ.

Большинство белков животных тканей хорошо растворимы в 5—10% растворах солей, тогда как для перевода в раствор белков зерновых культур применяют более широкий набор растворителей. Для этого используются буферные системы со значениями pH от кислых до слабощелочных (фосфатные, боратные, цитратные. трис-HCl), органические растворители и неионные детергенты, разрывающие белок-липидные или бе-лок-белковые связи:

Растворители подбираются с учетом разрыва в белках определенных типов связей. Так, уксусная кислота ослабляет ионные связи, сообщая молекулам одноименные положительные заряды, мочевина — водородные и гидрофобные, салицилат натрия и ДЦС-Na — гидрофобные и ионные, а водные растворы спиртов — водородные и гидрофобные взаимодействия. Органические растворители разрывают белок-липидные связи.

При изучении физико-химических свойств белков и их превращений в пищевых системах широко используют методы фракционирования и очистки от небелковых соединений. Они основаны на различиях таких свойств белков, как размер молекул, растворимость, заряд и сродство к специфическим химическим группам.

Осаждение белков из раствора под действием солей щелочных и щелочноземельных металлов называют высаливанием. Для высаливания чаще применяется сульфат аммония, под влиянием которого белки, как правило, сохраняют растворимость и ферментативную активность. Главную роль при высаливании играет не природа солей, а валентность ионов, действие которых оценивается по ионной силе (м):

Глобулины выпадают в осадок при 50% насыщении, альбумины — при 100% насыщении растворов солей, а при ступенчатом фракционирова-нии (20—100% насыщения) выпадают белки и других классов (проламины, глютелины).

В практике выделения и очистки белков используются различные типы хроматографии: адсорбционная, распределительная, ионообменная и хроматография по сродству. Адсорбционная хроматография основана на различиях в полярности белков. В колонке вместе с буферным раствором упаковывают адсорбент, на который в небольшом объеме растворителя наносят исследуемый образец. Компоненты разделяемой смеси адсорбируются, затем элюируются с помощью буферного раствора с увеличивающейся концентрацией или полярностью. Фракции белка собирают с помощью автоматического коллектора фракций.

источник

В состав рабочего места по определению белка в моче входят следующие элементы:

  1. Пробирки химические, агглютинационные.
  2. Набор градуированных пипеток.
  3. Пипетки с узким оттянутым концом.
  4. Спиртовки или газовая горелка.
  5. Черная бумага.
  6. Ледяная уксусная кислота.
  7. Сульфосалициловая кислота.
  8. Концентрированная азотная кислота.
  9. Дистиллированная вода.

Все методики, применяющиеся для качественного определения белка в моче, основаны на свертывании белка. Свертывание белка проявляется выраженным в разной степени помутнением (от опалесценции до большой мутности) или выпадением хлопьев.

Качественное определение белка в моче может быть проведено одним из следующих способов:

  1. кипячением с 10% раствором уксусной кислоты;
  2. реакцией с 20% раствором сульфосалициловой кислоты;
  3. реакцией с 50% раствором азотной кислоты (проба Геллера);
  4. реакцией с 1% раствором азотной кислоты в насыщенном растворе поваренной соли (видоизмененная проба Геллера по Ларионовой).

Перед качественным определением белка в моче проводят следующую подготовительную работу:
1. Мутную мочу фильтруют через бумажный фильтр. Если получить прозрачный фильтрат не удается, производят повторное фильтрование через тот же фильтр или же смешивают мочу с небольшим количеством инфузорной земли или талька, после чего ее фильтруют.
2. Если моча имеет щелочную реакцию, ее подкисляют 10% раствором уксусной кислоты до слабокислой реакции под контролем лакмусовой или универсальной индикаторной бумажки.
3. При малом содержании солей (светло-желтая или бледно-желтая моча с малым удельным весом) к каждой
пробе добавляют несколько капель насыщенного раствора поваренной соли, так как недостаток солей обусловливает свертывание белка.
4. Степень помутнения наблюдают с помощью черного фона. В качестве фона используют черный картон или черную бумагу, применяемую в фотографии. Учет реакции на черном фоне позволяет выявить малейшую степень помутнения.

В отдельном штативе располагают пронумерованные пробирки. В них производят одну из описанных ниже реакций.

1. Проба кипячением с 10% раствором уксусной кислоты. Для постановки этой пробы необходим 10% раствор уксусной кислоты, который готовят следующим образом: 10 мл ледяной уксусной кислоты помещают в цилиндр и доливают дистиллированной водой до метки 100 мл.

Техника определения белка. В химическую пробирку помещают 10—12 мл отфильтрованной мочи слабокислой реакции. Затем верхнюю часть пробирки с мочой осторожно нагревают до кипения и добавляют в нее 8—10 капель 10% раствора уксусной кислоты. Пробирку с мочой рассматривают на черном фоне в проходящем свете. При наличии белка в моче появляется мутность разной степени (от опалесценции до большой мутности) или выпадают хлопья. Контролем служит нижняя часть пробирки, не подвергавшаяся нагреванию. Этой пробой обнаруживают количество белка, начиная с 0,015%о (%о — promille).

2. Реакция с 20% раствором сульфосалициловой кислоты. 20 % раствор сульфосалициловой кислоты готовят следующим образом: 20 г сульфосалициловой кислоты растворяют в 70-80 мл дистиллированной воды, переводят в цилиндр емкостью 100 мл и доливают дистиллированной водой до метки. Приготовленный реактив хранят в посуде из темного стекла.

Техника определения белка. В две пробирки одинакового диаметра помещают по 2—3 мл отфильтрованной мочи слабокислой реакции, в одну из пробирок к моче прибавляют 3—4 капли 20% раствора сульфосалициловой кислоты, другая пробирка служит контролем. При наличии белка в пробирке с реактивом появляется мутность или выпадают хлопья свернувшегося белка. В контрольной пробирке жидкость остается прозрачной. Сульфосалициловая кислота наряду с белком сыворотки осаждает альбумозы (пептиды), представляющие собой продукт распада белка. С целью уточнения причины помутнения мочи пробирку с мочой подогревают. Мутность, причиной образования которой оказались сывороточные белки, усиливается, мутность же, обусловленная присутствием альбумоз, исчезает. Эта проба имеет ту же чувствительность, что и предыдущая.

3. Реакция с 50 % раствором азотной кислоты (проба Геллера). 50% раствор азотной кислоты готовят следующим образом: к 50 мл азотной кислоты удельного веса 1,2-1,4 приливают 50 мл дистиллированной воды (разведение 1:1).

Техника определения белка. В узкую небольшую пробирку (тина агглютинационной) наливают 1 мл 50% азотной кислоты. В пипетку с узким оттянутым концом набирают 1 мл отфильтрованной исследуемой мочи, наслаивают на реактив и пробирку переводят в вертикальное положение. При наличии белка на границе жидкостей появляется белое кольцо. Время появления кольца, его свойства зависят от количества белка: если белка мало, то кольцо появляется не сразу, поэтому за его появлением следят в течение 2,5-3 минут. Минимальное количество белка, определяемое этим методом, 0,033°/оо. При меньшем содержании белка в моче кольцо не образуется. Учет результатов реакции производят на черном фоне в проходящем свете.

4. Реакция с 1% раствором азотной кислоты на насыщенном растворе поваренной соли — видоизмененная проба Геллера (по Ларионовой). Для проведения пробы используют 1 % раствор азотной кислоты, приготовленный на насыщенном растворе поваренной соли (реактив Ларионовой). 35 г поваренной соли растворяют в 100 мл дистиллированной поды, раствор фильтруют, к 1 мл концентрированной азотной кислоты удельного веса 1,2-1,4 приливают 99 мл приготовленного насыщенного раствора поваренной соли.

Техника определения белка такая же, как и при реакции с 50% раствором азотной кислоты (проба Геллера), но вместо 1 мл 50% раствора азотной кислоты в пробирку наливают 1 мл реактива Ларионовой и на него наслаивают 1 мл мочи. Появление белого кольца на границе жидкостей указывает на наличие белка в исследуемой моче. Проба по Ларионовой так же чувствительна, как и проба Геллера.

5. Колориметрическая (сухая) проба качественного определения белка. Колориметрическая (сухая) проба качественного определения белка в моче основана на воздействии, которое оказывает белок на цвет индикатора в буферном растворе.

Техника определения белка. Кусочек индикаторной бумаги, предназначенный для определения белка погружают в мочу на короткое время. Пробу считают положительной, если бумажка окрашивается в сине-зеленый цвет.

Количественное определение белка в моче основано на том, что при наслаивании мочи, содержащей белок, на 50% раствор азотной кислоты или реактив Ларионовой на границе двух жидкостей образуется белое кольцо, причем если четкое белое кольцо появляется к 3 минутам, то содержание белка равно 0,033%о или 33 мг в 1000 мл мочи. Появление кольца ранее 3 минут свидетельствует о большем содержании белка в моче.
При количественном определении белка в моче выполняют следующие правила:

  1. Количественное определение белка производят только в тех порциях мочи, где он был обнаружен качественно.
  2. Определение производят с тщательно отфильтрованной мочой.
  3. Точно соблюдают технику наслаивания исследуемой мочи на 50% раствор азотной кислоты или реактив Ларионовой в соотношении реактива с мочой (1:1).
  4. Время появления кольца определяют по секундомеру: при окончательном расчете количества белка учитывают время наслаивания мочи на азотную кислоту, которое равно 15 секундам.
  5. Разведение мочи производят исходя из свойства кольца. При этом каждое последующее разведение мочи готовят из предыдущего.
  6. Определение колец производят на черном фоне.

Наиболее распространены два метода количественно¬го определения белка в моче: метод Робертса — Стольникова — Брандберга и метод С. Л. Эрлиха и А. Я. Альтгаузена.

  1. Метод Робертса-Стольникова-Брандберга. По этому способу количество белка в моче определяют путем разведения ее до тех пор, пока при очередном наслаивании мочи на 50% раствор азотной кислоты или реактив Ларионовой кольцо появится точно к 3 минутам. Расчет количества белка производят, умножая 0,033%о на степень разведения мочи. Полученный результат выражает количество белка в миллиграммах на 1000 мл мочи, т. е. в promille (%о).
  2. Метод С. Л. Эрлиха и А. Я. Альтгаузена. В штатив помещают ряд агглютинационных пробирок, в которые предварительно наливают по 1 мл 50% раствора азотной кислоты или реактива Ларионовой. Исследуемую мочу берут отдельной чистой, сухой пипеткой с узким оттянутым концом и наслаивают на реактив, после чего включают секундомер. За временем появления кольца следят, располагая пробирку на черном фоне. При появлении кольца секундомер выключают.
Читайте также:  Сдать анализ на непереносимость белков молока

При наслаивании мочи в зависимости от количества белка может появиться компактное, широкое или нитевидное кольцо. Компактное, широкое кольцо появляется тотчас же после наслаивания мочи на реактив. Нитевидное кольцо может появиться сразу, до истечения одной минуты, или в промежутке от одной до 4 минут.

При появлении нитевидного кольца в пределах от одной до 4 минут производить разведение мочи не нужно!
Для вычисления количества белка в этом случае достачно использовать предложенную авторами таблицу-план (табл. 1).

Пример 1. При наслаивании мочи на реактив нитевидное кольцо образовалось через 2 минуты. Если бы кольцо образовалось к 3 минутам, то количество белка было было бы равно 0,033%о.

В данном же случае кольцо образовалось раньше. Соответственная поправка, согласно таблице-плану, для времени в 2 минуты равна 1+1/8. Это значит, что белка в данной порции мочи будет в 1+1/8 раза больше, чем 0,033°/оо, т. е. 0,033%о X(1+1/8) = 0,037°/оо.

При появлении нитевидного кольца до 1 минуты, т. е. через 40-60 секунд, производят одно разведение мочи в 1,5 раза (2 части мочи + 1 часть воды), а затем вновь наслаивают разведенную мочу на реактив и регистрируют появление кольца. При расчете результатов учитывают, что моча была разведена в 1,5 раза.

Пример 2. После наслаивания разведенной в 1,5 раза мочи нитевидное кольцо появилось к 2 минутам. Если бы кольцо появилось к 3 минутам, то белка было бы 0,033%. Соответственная поправка согласно таблице-плану, для времени в 2 минуты равна 1+1/8. Белка в моче содержится 0,033%оX1,5X(1+1/8) = 0,056%о.

Если нитевидное кольцо появляется сразу, мочу разводят в 2 раза (1 часть мочи + 1 часть воды). Разведенную мочу вновь наслаивают на реактив и отмечают появление кольца по истечении 1 минуты.

Пример 3. При наслаивании разведенной в 2 раза мочи на реактив нитевидное кольцо появилось через 1 минуту 15 секунд. Тогда количество белка в исследуемой моче по аналогии с прежними расчетами будет равно
0,033%оХ2Х(1+3/8) = 0,091%.
В случае появления широкого кольца мочу разводят в 4 раза (1 часть мочи + 3 части воды).
При последующем наслаивании разведенной мочи нитевидное кольцо может образоваться как до, так и по истечении одной минуты. В таких случаях расчет количества белка производят по аналогии с предыдущими примерами, т. е. 0,033% о умножают на степень разведения и на соответственную поправку.

Пример 1. Кольцо после разведения мочи в 4 раза появилось сразу же. Мочу разводят в 2 раза. После наслаивания мочи, разведенной в 8 раз (4X2), нитевидное кольцо образовалось через 1,5 минуты. В таком случае количество белка равно 0,033%оХ8X1,25 = 0,33%о и т. д.
При появлении компактного кольца мочу разводят в 8 раз (1 часть мочи+ 7 частей воды). При последующем наслаивании разведенной мочи на реактив может образоваться либо компактное, либо широкое, либо нитевидное кольцо.

Пример 2. При наслаивании мочи на азотную кислоту тотчас же образовалось компактное кольцо. Мочу разводят в 8 раз (1 часть мочи + 7 частей воды) и вновь производят ее наслаивание. При этом опять получилось компактное кольцо. Тогда мочу разводят еще в 8 раз (для этого в цилиндр или в пробирку берут 1 часть разведенной мочи и прибавляют к ней 7 частей воды). После очередного наслаивания разведенной мочи нитевидное кольцо образовалось сразу. Мочу разводят в 2 раза (1 часть мочи + 1 часть воды). После очередного наслаивания разведенной мочи нитевидное кольцо образовалось к 2 минутам. Расчет количества белка данной порции мочи производят так: 0,033,%оX8X8X2X(1+1/8) = 4,8%о.

Помимо таблицы-плана, имеется таблица с рассчитанными цифрами белка (табл. 2). Если моча не разведена, то количество белка отыскивают в графе «Цельная неразведенная моча». При разведении мочи в целое число раз (8,4,2) используют табл. 1. При разведении мочи в 1,5 раза используют табл. 2.

В соответствующих графах таблицы наводят время появления кольца и степень разведения мочи.
Цифра, находящаяся в точке пересечения горизонтальной и вертикальной линий, проведенных от этих двух показателей, указывает на количество белка в исследуемой моче (%о).

Возможно, что при положительной качественной пробе на белок кольцо при наслаивании на 50% раствор азотной кислоты не образуется. Это значит, что в моче белка меньше 0,033%о. В таких случаях количество белка в бланке анализа обозначают термином «следы».

Если белок определен количественно, в бланке анализа мочи отмечают содержание белка в promille, например «белок — 0,66%о».

Помимо количественного определения белка в отдельной порции мочи, рассчитывают суточное его количество в граммах. С этой целью собирают суточную мочу, измеряют ее количество и определяют содержание белка в promille. Затем производят расчет. Например, суточное количество мочи равно 1800 мл, белок — 7°/оо. Значит, белка в суточном количестве мочи содержится: 1,8X7 = 12,6 г.

источник

Количественное определение белков. Количество белка можно определять:

  • 1) по содержанию в них азота (для этого белковый препарат сначала подвергают минерализации, а затем определяют содержание азоту по реакции Несслера);
  • 2) биуретовый метод — основан на образовании окрашенных в сине-фиолетовый цвет комплексов между ионами меди и пептидными связями белков;
  • 3) метод Лоури, который основан на способности медных комплексов белков, восстанавливать реактив Фолина;
  • 4) метод Бредфорда, который основан на способности белков связывать красители — бромфеноловый синий, кумасси голубой;
  • 5) на кафедре разработан метод определения белков по их взаимодействию с коллоидным раствором высокодисперсного кремнезема.

Качественное определение белков — используются осадочные пробы с органическими кислотами (трихлоруксусная, сульфосалициловая кислоты), цветные реакции на определенные аминокислоты в составе белка (реакция Фоля, ксантопротеиновая реакции и др).

Минеральные вещества относятся к жизненно необходимым компонентам питания, обеспечивающим развитие и нормальное функциональное

состояние организма. По содержанию в пищевых продуктах их принято условно разделять на две группы: в первую включаются так называемые макроэлементы, содержащиеся в сравнительно больших количествах (кальций, фосфор, магний, калий, сера, хлор и др.), во вторую входят микроэлементы, находящиеся в продуктах в малых количествах (железо, кобальт, марганец, йод, фтор, цинк, стронций и др.). Некоторые исследователи выделяют еще группу ультрамикроэлементов, концентрация которых соответствует гамма-процентам (золото, свинец, ртуть, радий и др.).

Можно считать установленным участие минеральных веществ наряду с другими компонентами пищи во всех биохимических процессах, протекающих в организме. Доказанным также является факт, что данные вещества обладают выраженной активностью и могут считаться истинными биоэлементами. При этом, находясь в плазме крови и других жидкостях организма, они имеют большое значение в регуляции основных жизненно важных функций. Это прежде всего связано с их влиянием на состояние коллоидов тканей, определяющих степень дисперсности, гидратации и растворимости внутриклеточных и внеклеточных белков. Вместе с тем достаточно высокое и стабильное содержание некоторых макроэлементов способствует поддержанию на неизменном уровне солевого состава крови и осмотического давления, от чего в значительной мере зависит количество воды, удерживаемой в тканях. Так, ионы натрия усиливают способность тканевых белков связывать воду, а ионы калия и кальция уменьшают. В результате избыток поваренной соли будет в конечном итоге затруднять деятельность сердца и почек и отрицательно сказываться на состоянии соответствующих категорий больных. Весьма важную роль играют минеральные вещества для формирования буферных систем организма и поддержания на должном уровне его кислотно-щелочного состояния. При этом преобладание в пищевых продуктах калия, натрия, магния и кальция обусловливает их щелочную ориентацию, а серы, фосфора и хлора — кислотную. При обычном смешанном питании пищевые рационы нередко отличаются большим содержанием кислых веществ, что может приводить к возникновению ацидоза. Установленным является значение микроэлементов для эндокринного аппарата, активности гормонов и ферментативных процессов. Об этом свидетельствует участие йода в деятельности щитовидной железы, влияние меди и кобальта, действие адреналина, цинка и кадмия — инсулина и т. д. Большую физиологическую роль играют минеральные вещества в пластических процессах, в построении и формировании тканей организма, особенно скелета. В этом отношении общеизвестно значение кальция, фосфора, магния, стронция и фтора, причем недостаточное их поступление, вместе с пищей неизбежно приводит к нарушению роста и обызвествления костей.

О биологической активности минеральных компонентов питания свидетельствует существование биогеохимических провинций, т. е. районов, где количество некоторых микроэлементов в почве резко увеличено или понижено, что отражается на составе произрастающих на ней растений, составе воды, молока и мяса животных. Если люди длительное время проживают в таких районах, то это может повлечь за собой развитие своеобразных патологических состояний, например эндемического зоба или флюороза.

При характеристике отдельных микроэлементов необходимо, прежде всего остановиться на физиологической роли кальция, соединения которого существенно влияют на обмен веществ, рост и деятельность клеток, возбудимость нервной системы я сократимость мышц. Особенно важное значение он имеет в формировании костей скелета в качестве одного из основных структурных компонентов. При этом только при определенном соотношении в крови фосфора и кальция отложение последнего в костной ткани протекает нормально. Если же количество данных элементов не сбалансировано, то наблюдается нарушение процессов окостенения, выражающееся в возникновении рахита у детей, остеопороза и других костных изменений у взрослых. Установлено, что оптимальное их соотношение 1:1,5 — 1:2. Ввиду того что в пищевом рационе это соотношение обычно далеко от оптимального, то для нормализации соответствующих процессов необходима регулирующая роль витамина О, способствующего усвоению кальция и задержке его в организме. Необходимо также отметить, что он является весьма трудно усвояемым макроэлементом из-за чрезвычайно малой растворимости в воде. Только воздействие желчных кислот, сопровождаемое образованием комплексных соединений, позволяет перевести кальций в усвояемое состояние. Весьма большое значение для организма имеет содержание в пище фосфатов, так как органические соединения фосфора представляют подлинные аккумуляторы энергии (аденозинтрифосфат, фосфорилкреатинин). Именно эти соединения используются организмом при сокращении мышц и биохимических процессах, протекающих в мозге, печени, почках и других органах. Вместе с тем фосфорная кислота участвует в построении молекул многочисленных ферментов катализаторов распада пищевых веществ, создающих условия для использования потенциальной их энергии. Наконец, фосфор широко представлен в пластических процессах, особенно протекающих в костной системе животного организма.

При характеристике физиологической роли магния следует указать, что он имеет важное значение для нормализации возбудимости нервной системы, обладает антиспазматическими и сосудорасширяющими свойствами и оказывает влияние на снижение уровня холестерина в крови. Отмечено также, что при его недостатке увеличивается содержание кальция в мышцах и стенках артерий. Имеются данные о том, что соли магния угнетают рост злокачественных новообразований и, таким образом, обладают антибластомогенным действием. Наконец, известно, что он участвует в процессах углеводного, фосфорного и кальциевого обмена, причем его избыток отрицательно сказывается на усвоении последнего. Говоря о макроэлементах, входящих в состав пищевых продуктов, необходимо отметить значение калия, натрия, хлора и серы. Первый из них играет важную роль во внутриклеточном обмене, некоторых ферментативных процессах, образовании ацетилхолина и способствует выведению жидкости из организма. Ионы натрия являются в известной мере физиологическими антагонистами калия, и его соединения (бикарбонаты и фосфаты) принимают непосредственное участие в образовании буферных систем, обеспечивающих кислотно-щелочное состояние и постоянство осмотического давления. Что касается хлора, то он в составе хлорида натрия служит одним из регуляторов водного обмена и используется для синтеза соляной кислоты железами желудка. Наконец, сера представляет важный структурный компонент некоторых аминокислот, витаминов и ферментов, а также входит в состав инсулина. Переходя к краткой биологической характеристике микроэлементов, необходимо подчеркнуть, что их содержание в пищевых продуктах растительного и животного происхождения подвержено большим колебаниям, поскольку оно зависит от геохимических особенностей местности. Одним из наиболее ярких примеров в этом отношении является изменение концентрации в почве йода и фтора, служащее причиной возникновения своеобразных эндемических заболеваний. Интересно отметить, что в настоящее время из элементов, входящих в таблицу Менделеева, более 60 уже обнаружены в составе живых организмов. Однако иногда еще очень трудно сказать, какие из этих элементов представляются жизненно необходимыми, а какие случайно попадают из окружающей внешней среды. Тем не менее то, что мы знаем, позволяет прийти к заключению об огромной роли их в нашем организме, о чем впервые высказал предположение выдающийся русский биохимик Т. А. Бунге. К числу наиболее изученных микроэлементов относится железо, основное значение которого заключается в его участии в процессе кроветворения. Кроме того, оно является составной частью протоплазмы и клеточных ядер, входит в состав окислительных ферментов и т. д. Вместе с железом в синтезе гемоглобина и других жедезопорфиринов принимают участие медь и кобальт, последний к тому же воздействует на образование ретикулоцитов и превращение их в зрелые эритроциты.

Что касается марганца, то он, очевидно, является активатором процессов окисления, обладает выраженным липотропным влиянием, а также служит одним из факторов оссификации, определяющих состояние костной ткани. Вместе с тем он обладает стимулирующим влиянием на процессы роста и деятельности эндокринного аппарата. Из других микроэлементов обращает на себя внимание цинк, причем, по мнению ряда исследователей, его роль в организме не менее важна, чем железа. В частности, имеются данные об участии этого элемента в кроветворении, деятельности гипофиза, поджелудочной и половых желез, а также значение его как фактора роста. Наконец, цинк оказывает влияние на содержание витаминов в пищевых продуктах, причем обогащение им почв способствует синтезу растениями аскорбиновой кислоты и тиамина. Все сказанное о роли макро- и микроэлементов делает необходимым нормирование их в питании населения. В этом отношении более или менее точно определена средняя потребность взрослого человека в целом ряде минеральных веществ (табл. 1).

Читайте также:  Принципы и методы анализа белков

Однако принятые в настоящее время официальные рекомендации включают пока соответствующие нормативы только для трех наиболее важных микроэлементов. При этом относительно подробная дифференциация этих нормативов имеется для детей, подростков, беременных и кормящих женщин, взрослых (табл. 2).

К числу минеральных жизненно важных веществ необходимо отнести и воду, недостаток и избыток которой в нашем рационе является вредным для организма. При этом водное голодание наиболее тяжело переносится человеком и оно значительно опаснее, чем пищевое, приводя к летальному исходу уже через несколько суток. Вместе с тем излишнее ее потребление способствует большой нагрузке на сердце, повышает процессы белкового распада и увеличивает жирообразование. Установлено, что суточная потребность в воде определяется условиями внешней среды, характером работы и количеством принятой пищи. Так, водный баланс взрослого человека в среднем определяется следующими величинами: супы 500-600 г, вода питьевая 800-1000 г, содержащаяся в твердых продуктах 700 г и образующаяся в самом организме 300-400 г.

источник

Количественный анализ белков

Для количественного определения белков в биологическом материале или лекарственных препаратах чаще всего употребляются азотометрия, фотоколориметрия, фотонефелометрия и спектрофотометрия.

Азотометрия основана на определении содержания азота белка после минерализации исследуемого образца. Поскольку белки содержат в среднем 16% азота, то найденное количество его умножают на 6,25 (так как 100:16=6,25) и получают содержание белка в пробе. Эти методы (к ним относится классический метод Кьельдаля и его модификации) очень трудоемки и не всегда надежны, так как процентное содержание азота в разных белках колеблется от 14 до 19.

Фотоколориметрическиеметоды основаны на так называемых «цветных» реакциях на функциональные группы белков. Среди них наибольшее применение нашли биуретовая реакция на пептидные группы и реакция Фолина на ароматические радикалы аминокислот (тирозин, триптофан). Биуретовый метод более специфичен, так как пептидные связи имеются только в белках и пептидах. Он широко применяется в клинико-биохимических исследованиях. Метод Лоури, основанный на реакции Фолина, высокочувствительный, но малоспецифичный, поскольку сходную окраску дают свободные ароматические аминокислоты и многие другие соединения, содержащие фенольную группу.

Фотонефелометрические методы определения содержания белка основываются на оценке степени мутности его взвеси в растворах. Эти методы не получили широкого распространения.

Спектрофотометрические методы делятся на прямые и косвенные. Последние представляют собой боле чувствительный и точный вариант фотоколориметрического. После проведения цветной реакции на белки проводят спектрофотометрию окрашенного раствора и по светопоглощению его в монохроматическом свете рассчитывают содержание белка.

Прямой метод состоит в измерении светопоглощения раствора белка в ультрафиолетовой области при 200-220 нм (в этой области абсорбируют пептидные группы белка) и при 280 нм (зона поглощения ароматических радикалов аминокислот, в основном триптофана и тирозина). Эти методы весьма удобны и не требуют предварительного образования окрашенных комплексов. Более специфична спектрофотометрия при 200-220 нм, чем при 280 нм, так как в последнем случае мешает светопоглощение различных низкомолекулярных ароматических соединений, содержащихся в биологическом материале.

Реактивы. Биуретовый реактив * ; хлорид натрия, 0,9%-ный раствор.

Оборудование. Микропипетки и пипетки вместимостью 1 и 5 мл; штатив с пробирками; стеклянные палочки; фотоэлектроколориметр (ФЭК); спектрофотометр (СФ).

Материалы. Сыворотка крови; альбумин, 10%-ный раствор.

а. Биуретовый метод определения содержания белка в сыворотке крови. Метод основан на способности пептидных связей белков и полипептидов образовывать с ионами Cu 2+ в щелочной среде комплексное соединение фиолетового цвета, интенсивность окраски которого пропорциональна содержанию белка в среде.

Ход определения. Для определения содержания белка в сыворотке крови или в других объектах, содержащих белок, необходимо построить калибровочный график. Для этого применяют стандартный белок – кристаллический альбумин сыворотки крови.

Схема разведения альбумина для построения калибровочного графика приведена в таблице:

№ пробирки Стандартный 10%-ный раствор альбумина, мл 0,9%-ный раствор хлорида натрия, мл Концентрация белка, г/л Экстинкция
0,4 0,6
0,6 0,4
0,8 0,2
1,0

Из каждой пробирки с разведенным стандартным раствором альбумина берут по 0,1 мл раствора и добавляют по 5 мл биуретового реактива. Содержимое смешивают встряхиванием.

Через 30 мин измеряют экстинкцию каждой пробы на ФЭКе против контрольного раствора (0,1 мл 0,9%-ного раствора NaCl + 5,0 мл биуретового реактива) в кювете толщиной 1 см, длина волны 540-560 нм (светофильтр зеленый).

По полученным данным строят калибровочную кривую, откладывая по оси ординат значения экстинкции, по оси абсцисс – концентрацию белка.

Берут 2 пробирки – в одну наливают 0,1 мл исследуемой сыворотки, в другую (контрольную) – 0,1 мл раствора хлорида натрия. В обе пробирки добавляют по 5 мл биуретового реактива. Содержимое смешивают встряхиванием.

Через 30 мин измеряют экстинкцию исследуемого раствора на ФЭКе в кювете толщиной 1 см при длине волны 540-560 нм (зеленый светофильтр) против контрольного раствора.

Содержание белка в сыворотке крови находят по калибровочной кривой.

б. Спектрофотометрический метод определения содержания белка в сыворотке крови. Метод основан на светопоглощении при 280 нм ароматических радикалов тирозина, триптофана и в меньшей степени фенилаланина, содержащихся в белке. Однако при данной длине волны поглощают и нуклеиновые кислоты, хотя их максимум абсорбции приходится на 260 нм. Поэтому измерение экстинкции раствора проводят при 260 и 280 нм, чтобы сделать поправку на примесь нуклеиновых кислот и нуклеотидов. Метод неприменим к материалу, где содержание нуклеиновой кислоты превышает 20%.

Ход определения. В пробирку вносят 0,1 мл сыворотки крови и добавляют 9,9 мл раствора хлорида натрия. Содержимое перемешивают стеклянной палочкой.

Измеряют экстинкцию исследуемого раствора против контрольного раствора хлорида натрия на спектрофотометре в кювете толщиной 1 см при двух длинах волн – 260 и 280 нм.

Расчет можно проводить по формуле, эмпирически полученной Калькаром (поэтому можно не прибегать к калибровочному графику):

где х – концентрация белка в растворе, г/л.

Оформление работы. По калибровочной кривой рассчитать содержание белка. Сравнить результаты, полученные биуретовым методом и спектрофотометрическим. Сделать вывод о наличии отклонения концентрации белка в исследуемой сыворотке крови от нормы и о возможных его причинах.

Практическое значение работы. Сыворотка крови содержит смесь белков, различных по физиологическому значению, структуре и физико-химическим свойствам (более 100 различных белков плазмы крови). Нормальное содержание белка в сыворотке крови (нормопротеинемия) составляет 65-85 г/л. Определение общего белка в сыворотке крови находит широкое применение в практической медицине, так как по изменению его нормального содержания можно судить о различных нарушениях в организме. Повышенное содержание белка (гиперпротеинемия) относительно редко: при сгущении крови из-за потери жидкости (длительная рвота, усиленное потоотделение, холера, тяжелые ожоги и т.п.), при некоторых хронических воспалительных процессах вследствие образования антител (ревматизм, полиартрит). Пониженное содержание белка в крови (гипопротеинемия): при недостаточном поступлении белка с пищей (голодание, нарушение проходимости кишечного тракта), при нарушении образования белка в органах (при поражении печени химическими веществами, опухолями, микроорганизмами и т.д.), при потере белка организмом (кровотечения, повышенная проницаемость сосудов, заболевания почек, беременность и т.д.).

В фармацевтической практике количественные методы определения белка необходимы для контроля белковых лекарственных средств (вакцин, сывороток, γ-глобулина, белковых препаратов крови и т.д.).

Дата добавления: 2014-11-06 ; Просмотров: 3309 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Выбор метода определения белка как интегральной части любого исследования, связанного с выделением, очисткой, характеристикой и анализом белка. Основные требования, предъявляемые к методу количественного определения белка. Подготовка белкового образца.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Количественное определение содержания белка

    Аннотация
  • Введение
  • Выбор метода определения белка
  • Калибровочный график (кривая)
  • Метод LOWRY
  • Метод BRADFORD
  • Определение белка с BCA реагентом
  • УФ-метод
  • Подготовка белкового образца
  • Список литературы
  • Приложение

Любой метод, используемый для определения белка в бесклеточных экстрактах, показывает лишь общее содержание белка в образце. Чтобы получить представление о составе белков и их индивидуальных свойствах и функциях, необходимо фракционирование сложных белковых смесей путем их хроматографического или электрофоретического разделения с целью последующего анализа индивидуальных белков. Понятно, что при всех перечисленных ситуациях необходимо определять содержание белка.


Едва ли не основным требованием, предъявляемым к методу количественного определения белка, является возможность использовать выбранный метод в присутствии разнообразных внутриклеточных компонентов и нечувствительность к компонентам буферных смесей, использованных для экстракции белков из клеток. Таким образом, «золотой стандарт» — это метод, характеризующийся специфичностью, чувствительностью, воспроизводимостью, быстротой и простотой проведения, а также отсутствием влияния небелковых компонентов. Сразу оговоримся, что пока не существует какого-то одного метода определения белка, который удовлетворяет всем перечисленным требованиям. У каждого метода есть свои преимущества и недостатки.


В связи с этим наша основная цель состоит в том, чтобы помочь в выборе наиболее приемлемого метода определения белка для конкретного исследования. Очевидно, что знание точной концентрации белка абсолютно необходимо для расчета, например, ферментативной активности. Ошибки в измерении концентрации белка приводят к накоплению общих ошибок в этих расчетах. Более того, в настоящее время все чаще исследователи используют коммерческие наборы для определения содержания белков (киты), что вполне оправдано, поскольку позволяет до определенной степени стандартизировать процедуру. Но пользователи коммерческих китов, к сожалению, не всегда представляют себе лежащие в их основе химические реакции, об этом также целесообразно рассказать.


Будут рассмотрены наиболее часто и широко используемые методы определения белка: метод Lowry с соавт. [1], метод Bradford [2], метод BCA (бицинхониновая кислота, от bicinchoninic ac >определение белок количественный метод


Осаждение ацетоном является самым простым и совместимым с описанными выше методами определения белка. К раствору белка добавляют холодный (-20°С) 100% ацетон до конечной концентрации 80%. После инкубации не менее 1 ч при — 20°С белок осаждают центрифугированием (20 мин, 15 000 g, 4°С). Как правило, этих условий достаточно для осаждения белка, но если содержание белка в исходном растворе низкое, то могут потребоваться более высокие скорости центрифугирования. Затем следует осторожно отобрать надосадочную жидкость. После этого необходимо высушить осадок при комнатной температуре или при — 20°С. Очень важно не пересушить осадок белка, в противном случае могут появиться сложности с растворением осадка в буфере/растворе, совместимом с выбранным методом определения белка. Хотя способ осаждения белка ацетоном прост, могут потребоваться большие объемы ацетона, вследствие чего нужно проводить несколько повторных центрифугирований, что удлиняет процедуру. В этом случае можно осаждать белок трихлоруксусной кислотой (ТХУ).


При осаждении белка ТХУ нужно знать, кислота какой концентрации необходима для осаждения белков, присутствующих в исследуемом образце. Другой очень важный момент, возникающий при использовании ТХУ, — убрать избыток кислоты перед растворением белкового осадка. К белковой пробе добавляют ТХУ до выбранной конечной концентрации, тщательно перемешивают и инкубируют не менее 30 мин во льду. Затем белок осаждают центрифугированием, как описано выше. После удаления надосадочной жидкости осадок белка промывают холодным (-20°С) 80% ацетоном. Для удаления ТХУ потребуется, по крайней мере, 3-4 отмывки. Отмытый от ТХУ осадок белка высушивают при комнатной температуре или при — 20°С, не пересушивая. Затем растворяют осадок в буфере/растворе, совместимом с выбранным методом определения белка.


Кроме ацетона и ТХУ, белок можно осадить смесью хлороформа с метанолом, которые берут в разных соотношениях в зависимости от природы белков, находящихся в исследуемом препарате. При этом образуются две фазы, разделенные белком. После тщательного удаления фаз осадок белка промывают метанолом, затем высушивают и растворяют в выбранном буфере.


Чтобы снизить концентрацию веществ, мешающих использованию выбранного метода определения белка, белковый препарат можно разбавить, но этот прием подходит только для образцов с высокой концентрацией белка.


Также можно избавиться или существенно снизить концентрацию несовместимых веществ путем перевода белков в другой буфер при помощи гель-фильтрация в миниколонках, например, PD-10 или NAC-5 и NAC-10 (GE Health Care) в соответствии с прилагаемыми инструкциям. Гель-фильтрация приведет к разбавлению белкового раствора, который можно концентрировать при помощи специальных концентрирующих фильтров.


Сейчас для определения содержания белка используют коммерческие наборы реактивов. Фирмы «Sigma», «Bio-Rad», «Pierce» и многие другие продают киты, которые давно и успешно применяются. Для тех читателей, которые хотят самостоятельно готовить реагенты, используемые в описанных выше методах, в Приложении приведем их «рецепты», а также соответствующие протоколы (микроформат) для каждого из рассмотренных выше методов определения содержания белка.


Авторы выражают благодарность Российскому фонду фундаментальных исследований за финансовую поддержку (гранты №№ 11-04-01006 и 11-04-01509).

1. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein Measurement with the Folin Phenol Reagent // J. Biol. Chem. 1951. V. 193. P.265-275.

Читайте также:  Слишком много белка в анализах

2. Bradford M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding // Anal. Biochem. 1976. V.72. P.248-254.

3. Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C. Measurement of Protein Using Bicinchoninic Acid // Anal. Biochem. 1985. V.150. P.76-85.

4. Gornall A.G., Bardawill C.S., David M.M. Determination of Serum Proteins by Means of the Biuret Method // J. Biol. Chem. 1949. V.177. P.751-766.

5. Wiechelman K.J., Braun R.D., Fitzpatrick J.D. Investigation of the Bicinchoninic Acid Protein Assay: Identification of the Groups Responsible for Color Formation // Anal. Biochem. 1988. V.175. P.231-237.

6. Layne E. Spectrophotometric and Turbidimetric Methods for Measuring Proteins // Methods Enzymol. 1957. V.3. P.447-455.

7. Fasman G.D. Practical Handbook of Biochemistry and Molecular Biology. Boca Raton: CRC, 1989.601 p.

8. Stoscheck C.M. Quantitation of Protein // Methods Enzymol. 1990. V.182. P.50-68.

Реактив Folin-Ciocalteu.100 г вольфрамата натрия, 25 мг молибдата натрия, 700 мл воды, 50 мл 85% фосфорной кислоты и 100 мл соляной кислоты кипятить 10 ч с обратным холодильником. Добавить 150 г сульфата лития, 50 мл воды и 3-4 капли бромной воды, кипятить в течение 15 мин. После охлаждения разбавить водой до 1 л, профильтровать. Как видно, готовить реактив самим очень трудоемко. Дешевле и надежней купить готовый реактиву фирмы «Sigma» (номер по каталогу F9252).


Реактив Lowry.2% Na2CO3 (раствор 1), 2% K-Na тартрат (или 2% Na цитрат) (раствор 2), 1% CuSO4 (раствор 3). Все эти растворы можно хранить при комнатной температуре. Непосредственно перед определением приготовить рабочий раствор, для чего смешать 98 мл раствора 1, 1 мл раствора 2 и 1 мл раствора 3.


Протокол (время проведения 1.5-2.0 ч). К 100 мкл раствора белка в 0.5 M NaOH добавить 500 мкл свежеприготовленного реактива Lowry, инкубировать 10 мин, затем добавить 100 мкл разбавленного реактива Folin-Ciocalteu (разбавить исходный реактив дистиллированной водой в соотношении 1:


Поскольку при этом реакция никак не останавливается, то следует помнить, что каждые 10 мин оптическая плотность будет увеличиваться. Поэтому необходимо контролировать время, прошедшее до спектрофотометрии.


Реагент: 0.5 мг/мл Кумасси (Coomassie Blue Brilliant) G-250, 25% метанол (этанол) и 42.5% H3PO4. Реагент стабилен в темноте при 4°C. Для приготовления рабочего раствора реагент разбавить в пять раз. Разбавленный рабочий раствор стабилен в течение недели в темноте при 4°C.


Хотя приготовить рабочий раствор не составляет большого труда, но его можно купить у фирмы «Sigma» (номер по каталогу B6916).


Протокол. К 50 мкл раствора белка добавить 450 мкл рабочего раствора, перемешать, инкубировать при комнатной температуре 5 мин, измерить оптическую плотность полученного раствора при 595 нм.


Протокол (время проведения 35-45 мин при инкубации 37°С). К 25 мкл раствора белка добавить 500 мкл рабочего раствора и инкубировать 30 мин при 37°С (или 2 ч при комнатной температуре). Охладить до комнатной температуры и измерить оптическую плотность полученного раствора при 562 нм.

Типовые нарушения белкового обмена. Несоответствие поступления белка потреблению. Нарушение расщепления белка в ЖКТ и содержания белка в плазме крови. Расстройство конечных этапов катаболизма белка и метаболизма аминокислот. Нарушения липидного обмена.

презентация [201,8 K], добавлен 21.10.2014

История открытия и изучения белков. Строение молекулы белка, ее пространственная организация и свойства, роль в строении и жизнеобеспечении клетки. Совокупность реакций биологического синтеза. Всасывание аминокислот. Влияние кортизола на обмен белка.

контрольная работа [471,6 K], добавлен 28.04.2014

Классификация рода «белка». Описание внешнего вида. Хвойно-широколиственные леса как место обитания белок. Фото Аризонской и Японской белки. Численность, размножение, потомство. Ухаживание самца за самкой. Развитие и питание новорожденных бельчат.

презентация [1,4 M], добавлен 14.05.2014

Структура молекулы тайтина. Структура и функции молекул С-белка, Х-белка и Н-белка. Белки семейства тайтина в норме, при адаптации и патологии. Амилоидозы. Современные представления о строении, формировании амилоидных фибрилл. Патологические проявления.

дипломная работа [975,8 K], добавлен 15.12.2008

Определение понятия и описание общих особенностей трансляции как процесса синтеза белка по матрице РНК, осуществляемого в рибосомах. Схематическое представление синтеза рибосом у эукариот. Определение сопряженности транскрипции и трансляции у прокариот.

презентация [2,8 M], добавлен 14.04.2014

Характеристика биосинтеза как процесса образования органических веществ, происходящего в клетках с помощью ферментов и внутриклеточных структур. Участники биосинтеза белка. Синтез РНК с использованием ДНК в качестве матрицы. Роль и значение рибосом.

презентация [2,3 M], добавлен 21.12.2013

Изучение кодирования аминокислотной последовательности белков и описание процесса синтеза белка в рибосомах. Генетический код и синтез рибонуклеиновой кислоты. Построение цепи матричной РНК и синтез протеина. Трансляция, сворачивание и транспорт белков.

реферат [3,5 M], добавлен 11.07.2015

Ген — участок ДНК, в котором содержится информация о первичной структуре одного белка. Последовательность из трех расположенных друг за другом нуклеотидов (триплет). Важные свойства генетического кода. Схема синтеза белка в рибосоме (трансляция).

презентация [354,6 K], добавлен 06.03.2014

Синтез белка Xvent-2 в клетках зародышей с целью дальнейшей дифференцировки стволовых клеток. Выделение клеточных органелл. Реагенты и растворы для изоэлектрического фокусирования. Получение биологического материала. Результаты работы и их обсуждение.

курсовая работа [4,5 M], добавлен 27.06.2015

Белки, или протеины — природные органические соединения, которые обеспечивают жизненные процессы организма. Основатель химии белка. Структура и уровни организации соединения. Физические свойства белка. Денатурация и биуретовая реакция. Функции белков.

презентация [9,4 M], добавлен 27.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.

источник

Нормальные показатели: белок в норме в моче содержится в минимальных количествах, которые не обнаруживаются обычными качественными реакциями. Верхняя граница нормы белка в моче – 0,033 г/л. Если содержание белка выше этого значения, то качественные пробы на белок становятся положительными.

Клиническое значение определения:

Появление белка в моче называется протеинурия. Протеинурии могут быть ложными и почечными. Экстраренальные протеинурии могут быть при наличии примесей белкового происхождения из половых органов (вагинитах, уретритах и др.), количество белка при этом незначительно – до 0,01 г/л. Почечные протеинурии могут быть функциональными (при переохлаждении, физических нагрузках, лихорадке) и органическими — при гломерулонефрите, пиелонефрите, нефрите, нефрозах, почечной недостаточности. При почечных протеинуриях содержание белка может быть от 0,033 до 10 – 15 г/л, иногда выше.

Принцип метода: основан на том, что белок под действием неорганических кислот коагулирует (становится видимым). Степень помутнения зависит от количества белка.

Обнаружение белка в моче с 20% сульфосалициловой кислотой.

Реактивы: 20% р-р сульфосалициловой кислоты. Оборудование: темный фон.

1. Требования к моче: моча должна быть кислой (или слабокислой) рН, должна быть прозрачной, для этого мочу центрифугируют. Щелочную мочу подкисляют до слабокислой реакции среды, используя для контроля индикаторную бумагу.

2. В 2 пробирки одинакового диаметра наливают по 2 мл подготовленной мочи. 1 пробирка – контроль, 2 – опыт. В опытную пробирку добавляют 4 капли 20% сульфосалициловой кислоты.

3. Результат отмечают на темном фоне.

4. При наличии белка, моча в опытной пробирке мутнеет.

Качественное определение белка в моче тест – полосками.

Для выявления протеинурий используют различные монотест – полоски: Альбуфан, Альбустикс, Биофан Е и политесты: Трискан, Нонафан и др.

Обнаружение белка в моче по методу Робертса – Стольникова.

Принцип метода: основан на том, что белок под действием неорганических кислот коагулирует (становится видимым). Степень помутнения зависит от количества белка (т.е. кольцевая проба Геллера). При концентрации белка в моче 0,033 г/л к концу 3 минуты после наслаивания мочи появляется тонкое нитевидное белое кольцо.

Реактивы: 50% р-р азотной кислоты или реактив Робертса (98 частей насыщенного раствора поваренной соли и 2 части концентрированной соляной кислоты) или реактив Ларионовой (98 частей насыщенного р-ра поваренной соли и 2 части концентрированной азотной кислоты).

1. Требования к моче: моча должна быть кислой (или слабокислой) рН, должна быть прозрачной, для этого мочу центрифугируют. Щелочную мочу подкисляют до слабокислой реакции среды, используя для контроля индикаторную бумагу.

2. В пробирку наливают 2 мл 50% р-ра азотной кислоты или один из реактивов, затем осторожно по стенке пробирки с помощью пипетки наслаивают такой же объем подготовленной мочи

3. Пробу оставляют на 3 минуты

4. Через 3 минуты отчитывают результат. Результат отмечают на темном фоне в проходящем свете. Если кольцо широкое, компактное, то мочу разводят дистиллированной водой и вновь наслаивают на реактив.

5. Мочу разводят до тех пор, пока через 3 минуты не образуется тонкое нитевидное кольцо.

6. Расчет содержания белка в моче производят по формуле:

С = 0,033г/л х степень разведения.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8101 — | 7770 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Цель занятия. Овладеть некоторыми методами качественного и количественного анализа белков, освоить правила работы с биологическим материалом, научиться производить измерения оптической плотности на фотоэлектроколориметре (ФЭК).

Студент должен
знать: уметь:
-строение и свойства протеиногенных аминокислот; -уровни организации белковой молекулы; -качественные реакции на белки; -методы установления первичной структуры белков; -принцип работы и устройство ФЭК. -писать формулы пептидов заданного состава; -определять количество белка в сыворотке крови биуретовым методом.

Содержание занятия. В ходе занятия студентам предстоит:

-ознакомиться с требованиями кафедры к студентам;

-ознакомиться с правилами работы в биохимической лаборатории;

-ответить на вопросы тест-контроля;

-ответить на вопросы преподавателя и обсудить основные вопросы темы;

— произвести количественное определение содержания белка в сыворотке крови биуретовым методом.

УИРС.Решение ситуационных задач, исследование некоторых особенностей аминокислотного состава яичного, соевого белков и белка соединительной ткани – коллагена.

Методические указания к самоподготовке

При подготовке к занятию повторите раздел из курса биоорганической химии «Структура и свойства аминокислот». Используя лекции и учебник по биохимии, изучите химический состав, строение, уровни организации белковой молекулы, биологические функции белков.

Для успешного усвоения материала и плодотворной работы на лабораторном занятии дома необходимо выполнить следующие задания:

№№ Задание Указания к выполнению задания
1. Сформулируйте, почему будущему врачу необходимо знать структуру, свойства и биологическую роль белков. 1. Вспомните химический состав живых объектов. 2. Опишите функциональное многообразие белков – белки ферменты, белки-рецепторы, транспортные белки, антитела. Приведите примеры белковых гормонов, важнейших сократительных и структурных белков.
2. Изучите уровни организации белковой молекулы. 1. Что такое первичная структура белка (дайте определение)? 2. Напишите структурную формулу трипептида мет-про-илей. 3. Что такое вторичная структура белка, какие ее разновидности вы знаете? Дайте характеристику связи, стабилизирующей вторичную структуру. 4. Нарисуйте схему α–спирали и β–складчатого листа. 5. Что такое супервторичная структура? Какие виды супервторичной структуры вы знаете? 6. Что такое третичная структура? Покажите связи, стабилизирующие третичную структуру. 7. Что такое четвертичная структура? Приведите примеры белков, имеющих четвертичную структуру.
3. Изучите методы исследования первичной структуры белка. 1. Какие методы гидролиза белка Вы знаете? 2. В чем суть хроматографического анализа. Приведите классификацию хроматографических методов. 3. Выпишите методы избирательного гидролиза белков (реагент — тип гидролизуемых связей). 4. Приведите примерную последовательность операций при установлении первичной структуры белка. 5. Продумайте, какое практическое значение для медицины имеют исследование аминокислотного состава и первичной структуры белков.
4. Ознакомьтесь с методами установления вторичной, третичной и четвертичной структуры белка. 1. Перечислите и охарактеризуйте методы, позволяющие изучить вторичную, третичную и четвертичную структуру белка.
5. Изучите, какими методами можно определить количественное содержание белка и аминокислот в биологических объектах. 1. Опишите принцип количественного определения белка по белковому азоту. 2. Сформулируйте принцип количественного определения белка биуретовым методом. 3. Выпишите границы содержания белка в сыворотке крови в физиологичеких условиях и приведите примеры заболеваний, сопровождающихся гипо- и гиперпротеинемией.
6. Вспомните, каков характер зависимости степени поглощения света раствором от интенсивности окраски. 1. Нарисуйте график зависимости степени поглощения от интенсивности окраски. 2. Занесите в тетрадь схему фотоэлектроколориметра, кратко выпишите принцип действия и последовательность операций при работе на этом приборе (из курса биоорганической химии).

Занесите в тетрадь протоколы лабораторных работ, оставляя место для выводов и расчетов.

Графологическая структура

«Качественный анализ – установление структуры белка»

Примеры тестов контроля исходного уровня знаний

Вид 1. Выберите один наиболее правильный ответ:

1.1. Компонент мочи, который не позволяет использовать биуретовый метод для количественного определения белка в моче —

Последнее изменение этой страницы: 2017-01-24; Нарушение авторского права страницы

источник