Меню Рубрики

Анализ у детей на хромосомы

Примерно 1 из 150 детей рождается с хромосомной аномалией. Эти нарушения вызваны ошибками в количестве или структуре хромосом. Многие дети с хромосомными проблемами имеют психические и/или физические врожденные дефекты. Некоторые хромосомные проблемы в конечном итоге приводят к выкидышу или мертворождению.

Хромосомы – это нитевидные структуры, находящиеся в клетках нашего организма и содержащие в себе набор генов. У людей насчитывается около 20 – 25 тыс. генов, которые определяют такие признаки, как цвет глаз и волос, а также отвечают за рост и развитие каждой части тела. У каждого человека в норме 46 хромосом, собранных в 23 хромосомные пары, в которых одна хромосома – унаследованная от матери, а вторая – от отца.

Хромосомные патологии обычно являются результатом ошибки, которая происходит во время созревания сперматозоида или яйцеклетки. Почему происходят эти ошибки, пока не известно.

Яйцеклетки и сперматозоиды в норме содержат по 23 хромосомы. Когда они соединяются, они образуют оплодотворенную яйцеклетку с 46 хромосомами. Но иногда во время (или до) оплодотворения что-то идет не так. Так, например, яйцеклетка или сперматозоид могут неправильно развиться, в результате чего в них могут быть лишние хромосомы, или, наоборот, может не хватать хромосом.

При этом клетки с неправильным числом хромосом присоединяются к нормальной яйцеклетке или сперматозоиду, вследствие чего полученный эмбрион имеет хромосомные отклонения.

Наиболее распространенный тип хромосомной аномалии называется трисомией. Это означает, что у человека вместо двух копий конкретной хромосомы имеется три копии. Например, люди с синдромом Дауна имеют три копии 21-й хромосомы.

В большинстве случаев эмбрион с неправильным числом хромосом не выживает. В таких случаях у женщины происходит выкидыш, как правило, на ранних сроках. Это часто происходит в самом начале беременности, прежде чем женщина может понять, что она беременна. Более чем 50% выкидышей в первом триместре вызваны именно хромосомными патологиями у эмбриона.

Другие ошибки могут возникнуть перед оплодотворением. Они могут привести к изменению структуры одной или нескольких хромосом. У людей со структурными хромосомными отклонениями, как правило, нормальное число хромосом. Тем не менее, небольшие кусочки хромосомы (или вся хромосома) могут быть удалены, скопированы, перевернуты, неуместны или могут обмениваться с частью другой хромосомы. Эти структурные перестройки могут не оказывать никакого влияния на человека, если у него есть все хромосомы, но они просто переставлены. В других случаях такие перестановки могут привести к потере беременности или врожденным дефектам.

Ошибки в делении клеток могут произойти вскоре после оплодотворения. Это может привести к мозаицизму – состоянию, при котором человек имеет клетки с различными генетическими наборами. Например, людям с одной из форм мозаицизма – с синдромом Тернера – не хватает Х-хромосомы в некоторых, но не во всех, клетках.

Хромосомные отклонения можно диагностировать еще до рождения ребенка путем пренатальных исследований, таких как, например, амниоцентез или биопсия хориона, или уже после рождения с помощью анализа крови.

Клетки, полученные в результате этих анализов, выращиваются в лаборатории, а затем их хромосомы исследуются под микроскопом. Лаборатория делает изображение (кариотип) всех хромосом человека, расположенных в порядке от большего к меньшему. Кариотип показывает количество, размер и форму хромосом и помогает врачам выявить любые отклонения.

Современные приказы Минздрава рекомендуют всем беременным женщинам проходить генетические скрининги, в частности и скрининг на синдром Дауна и некоторые другие хромосомные патологии, независимо от возраста женщины.

Первый пренатальный скрининг заключается во взятии на анализ материнской крови в первом триместре беременности (между 10 и 13 неделями беременности), а также в специальном ультразвуковом исследовании задней части шеи ребенка (так называемого воротникового пространства).

Второй пренатальный скрининг проводится во втором триместре беременности и заключается в анализе материнской крови на сроке между 16 и 18 неделями. Этот скрининг позволяет выявить беременности, которые находятся на более высоких рисках по наличию генетических нарушений.

Тем не менее, скрининг-тесты не могут точно диагностировать синдром Дауна или другие хромосомные аномалии. Врачи предлагают женщинам, у которых выявлены аномальные результаты скрининг-тестов, пройти дополнительные исследования – биопсию хориона и амниоцентез, чтобы окончательно диагностировать или исключить эти нарушения.

Первые 22 пары хромосом называются аутосомами или соматическими (неполовыми) хромосомами. Наиболее распространенные нарушения этих хромосом включают в себя:

1. Синдром Дауна (трисомия 21 хромосомы) – одно из наиболее распространенных хромосомных отклонений, диагностируемое примерно у 1 из 800 младенцев. Люди с синдромом Дауна имеют различную степень умственного развития, характерные черты лица и, зачастую, врожденные аномалии в развитии сердца и другие проблемы.

Современные перспективы развития детей с синдромом Дауна намного ярче, чем были раньше. Большинство из них имеют ограниченные интеллектуальные возможности в легкой и умеренной форме. При условии раннего вмешательства и специального образования, многие из таких детей учатся читать и писать и с детства участвуют в различных мероприятиях.

Риск синдрома Дауна и других трисомий увеличивается с возрастом матери. Риск рождения ребенка с синдромом Дауна составляет примерно:

  • 1 из 1300 – если возраст матери 25 лет;
  • 1 из 1000 – если возраст матери 30 лет;
  • 1 из 400 – если возраст матери 35 лет;
  • 1 из 100 – если возраст матери 40 лет;
  • 1 из 35 – если возраст матери 45 лет.

2. Трисомии 13 и 18 хромосом – эти трисомии обычно более серьезные, чем синдром Дауна, но, к счастью, довольно редкие. Примерно 1 из 16000 младенцев рождается с трисомией 13 (синдром Патау), и 1 на 5000 младенцев – с трисомией 18 (синдром Эдвардса). Дети с трисомиями 13 и 18, как правило, страдают тяжелыми отклонениями в умственном развитии и имеют множество врожденных физических дефектов. Большинство таких детей умирает в возрасте до одного года.

Последняя, 23-я пара хромосом – это половые хромосомы, называемые хромосомами X и хромосомами Y. Как правило, женщины имеют две Х-хромосомы, а у мужчины одна Х-хромосома и одна Y-хромосома. Аномалии половых хромосом могут вызвать бесплодие, нарушения роста и проблемы с обучением и поведением.

Наиболее распространенные аномалии половых хромосом включают в себя:

1. Синдром Тернера – это нарушение затрагивает приблизительно 1 из 2500 плодов женского пола. У девочки с синдромом Тернера есть одна нормальная Х-хромосома и полностью или частично отсутствует вторая Х-хромосома. Как правило, такие девочки бесплодны и не подвергаются изменениям нормального полового созревания, если они не будут принимать синтетические половые гормоны.

Затронутые синдромом Тернера девушки очень невысокие, хотя лечение гормоном роста может помочь увеличению роста. Кроме того, у них присутствует целый комплекс проблем со здоровьем, особенно с сердцем и почками. Большинство девочек с синдромом Тернера обладают нормальным интеллектом, хотя и испытывают некоторые трудности в обучении, особенно в математике и пространственном мышлении.

2. Трисомия по Х-хромосоме – примерно у 1 из 1000 женщин имеется дополнительная Х-хромосома. Такие женщины отличаются очень высоким ростом. Они, как правило, не имеют физических врожденных дефектов, у них нормальное половое созревание и они способны к деторождению. У таких женщин нормальный интеллект, но могут быть и серьезные проблемы с учебой.

Поскольку такие девушки здоровы и имют нормальный внешний вид, их родители часто не знают, что у их дочери есть хромосомные аномалии. Некоторые родители узнают, что у их ребенка подобное отклонение, если матери во время вынашивания беременности был проведен один из инвазивных методов пренатальной диагностики (амниоцентез или хориоцентез).

3. Синдром Клайнфельтера – это нарушение затрагивает приблизительно 1 из 500 – 1000 мальчиков. У мальчиков с синдромом Клайнфельтера есть две (а иногда и больше) Х-хромосомы вместе с одной нормальной Y-хромосомой. Такие мальчики обычно имеют нормальный интеллект, хотя у многих наблюдаются проблемы с учебой. Когда такие мальчики взрослеют, у них отмечается пониженная секреция тестостерона и они оказываются бесплодными.

4. Дисомия по Y-хромосоме (XYY) – примерно 1 из 1000 мужчин рождается с одной или несколькими дополнительными Y-хромосомами. У такихх мужчин нормальное половое созревание и они не бесплодны. Большинство из них имеют нормальный интеллект, хотя могут быть некоторые трудности в обучении, поведении и проблемы с речью и усвоением языков. Как и в случае с трисомией по Х-хромосоме у женщин, многие мужчины и их родители не знают, что у них есть такая аномалия, пока не будет проведена пренатальная диагностика.

Новые методы анализа хромосом позволяют определить крошечные хромосомные патологии, которые не могут быть видны даже под мощным микроскопом. В результате, всё больше родителей узнают, что у их ребенка есть генетическая аномалия.

Некоторые из таких необычных и редких аномалий включают в себя:

  • Делеция – отсутствие небольшого участка хромосомы;
  • Микроделеция — отсутствие очень небольшого количества хромосом, возможно, не хватает только одного гена;
  • Транслокация – часть одной хромосомы присоединяется к другой хромосоме;
  • Инверсия – часть хромосомы пропущена, а порядок генов изменен на обратный;
  • Дублирование (дупликация) – часть хромосомы дублируется, что приводит к образованию дополнительного генетического материала;
  • Кольцевая хромосома – когда на обоих концах хромосомы происходит удаление генетического материала, и новые концы объединяются и образуют кольцо.

Некоторые хромосомные патологии настолько редки, что науке известен только один или несколько случаев. Некоторые аномалии (например, некоторые транслокации и инверсии) могут никак не повлиять на здоровье человека, если отсутствует не генетический материал.

Некоторые необычные расстройства могут быть вызваны небольшими хромосомными делециями. Примерами являются:

  • Синдром кошачьего крика (делеция по 5 хромосоме) – больные дети в младенчестве отличаются криком на высоких тонах, как будто кричит кошка. У них есть существенные проблемы в физическом и интеллектуальном развитии. С таким заболеванием рождается примерно 1 из 20 – 50 тыс. младенцев;
  • Синдром Прадера-Вилли (делеция по 15 хромосоме) – больные дети имеют отклонения в умственном развитии и в обучении, низкий рост и проблемы с поведением. У большинства таких детей развивается экстремальное ожирение. С таким заболеванием рождается примерно 1 из 10 – 25 тыс. младенцев;
  • Синдром Ди Джорджи(делеция по 22 хромосоме или делеция 22q11) – с делецией в определенной части 22 хромосомы рождается примерно 1 из 4000 младенцев. Данная делеция вызывает различные проблемы, которые могут включать в себя пороки сердца, расщелину губы/неба (волчья пасть и заячья губа), нарушения иммунной системы, аномальные черты лица и проблемы в обучении;
  • Синдром Вольфа-Хиршхорна (делеция по 4 хромосоме) – это расстройство характеризуется отклонениями в умственном развитии, пороками сердца, плохим мышечным тонусом, судорогами и другими проблемами. Это заболевание затрагивает примерно 1 из 50000 младенцев.

За исключением людей с синдромом Ди Джорджи, люди с вышеперечисленными синдромами бесплодны. Что касается людей с синдромом Ди Джорджи, то эта патология передается по наследству на 50% с каждой беременностью.

Новые методы анализа хромосом иногда могут точно определить, где отсутствует генетический материал, или где присутствует лишний ген. Если врач точно знает, где находится виновник хромосомной аномалии, он может оценить всю степень его влияния на ребенка и дать примерный прогноз развития этого ребенка в будущем. Часто это помогает родителям принять решение о сохранении беременности и заранее подготовиться к рождению немножко не такого, как все, малыша.

источник

Кариотипирование – метод цитогенетического исследования, который заключается в изучении хромосом человека. В ходе мероприятия специалисты определяют изменения в количественном составе и выявляют нарушения структур хромосом.

Достаточно одноразового проведения подобной процедуры, чтобы определить геном женщины и мужчины, которые состоят в браке. Анализ, то есть кариотипирование позволяет обнаружить несоответствие хромосом супругов. Подобное явление повышает риск рождения ребенка с тяжелыми генетическими патологиями и пороками развития. Также эта процедура позволяет выяснить причину того, почему конкретная семейная пара не может иметь детей.

Кариотип – набор хромосом человека с полным описанием их признаков: размера, количества, формы и т. п. В норме геном каждого человека состоит из 46 хромосом (23 пар).

Из них 44 хромосомы относятся к аутосомным – отвечают за передачу наследственных признаков, таких как строение ушей, цвет волос, острота зрения и пр. Последняя пара относится к ряду половых хромосом. Она определяет кариотип женщины и мужчины – 46ХХ и 46ХУ, соответственно.

Оптимально – сдавать анализы всем супругам на этапе планирования беременности, даже при отсутствии показаний. Многие наследственные патологии могут не проявляться на протяжении нескольких поколений. Проводится кариотипирование с использованием клеток крови. Анализ позволит обнаружить генетическое отклонение и рассчитать риск появления малыша с патологией.

В число обязательных показаний входит:

  • Супруги старше 35 лет;
  • Бесплодие, причина которого не установлена;
  • Безуспешное многократное искусственное оплодотворение (ЭКО);
  • Наследственное заболевание у кого-либо из пары;
  • Гормональный дисбаланс у женщины;
  • Нарушение сперматогенеза неустановленной этиологии;
  • Неблагоприятная экологическая обстановка;
  • Облучающее воздействие, контакты с химикатами;
  • Вредные факторы – курение, наркотики, длительное употребление алкоголя, прием ряда медикаментозных препаратов;
  • Замершие беременности, выкидыши, преждевременные роды в анамнезе;
  • Близкородственный брак;
  • Наличие ребенка с наследственной и врожденной патологией.

Исследование желательно проводить на этапе планирования ребенка, но не исключается возможность его проведения, когда женщина уже беременна, в данном случае необходимо пренатальное кариотипирование. Этот метод позволяет выявить хромосомные патологии уже на первом триместре. Благодаря ему можно обнаружить аномалии и корректировать беременность в дальнейшем.

Обычно этот способ применяется для исключения синдромов Дауна, Эдвардса, Патау, Клайнфельтера, Тернера, полисомии Х хромосомы.

Читайте также:  Оак анализ расшифровка у детей до года

Сейчас исследование можно провести несколькими методами:

  • Неинвазивным, безопасным для плода и будущей матери. В данном случае необходимы показатели УЗИ и выявление специфических маркеров биохимии в крови женщины;
  • Инвазивные – медицинские манипуляции в матке для получения материала (клеток хориона или плаценты, пуповинной крови, околоплодных вод. Процедуры имеют соответственные названия: биопсия хориона, плацентоцентез, кордоцентез, амниоцентез. Большинство специалистов выбирают именно инвазивную методику, так как результаты подобных мероприятий более информативны и точны.

Стоит отметить, что кариотипирование плода инвазивными методами имеет риск (2-3%) развития осложнений (выкидыш, инфицирование, подтекание околоплодных вод, кровотечение).

Поэтому подобные вмешательства проводят строго по показаниям: женщина возрастом больше 35 лет; обнаружены патологии плода при УЗИ; изменился уровень биохимических маркеров крови (ХЧГ, АФП, РРАР); определение пола ребенка при развитии болезни, передающейся потомкам по половому признаку (пр. гемофилия – женщина передает только сыну).

Инвазивную процедуру проводят в условиях стационара с применением УЗИ. По окончании мероприятия женщина должна еще несколько часов находиться в медучреждении. Во избежание негативных последствий ей назначают ряд медикаментозных препаратов.

Для анализа необходимы кровяные клетки. Поэтому исключают влияние разных факторов, осложняющих их рост. В противном случае результаты получатся неинформативными.

Не допускается сдача крови при наличии острых заболеваний или обострении хронических. Примерно за две недели до предполагаемой даты отказываются от приема любых медикаментозных препаратов, в особенности антибиотиков. Употребление алкоголя, а также курение тоже нужно исключить.

Кариотипирование проводится инвитро, то есть в пробирке. Для основы используют клетки крови, которую берут у обоих супругов. Из биологической жидкости отсеивают лимфоциты, находящиеся в фазе деления (митоза). На протяжении 72 часов анализируется их размножение и рост. Для этого клетки дополнительно обрабатывают митогеном, способствующим митозу.

Специалист может наблюдать хромосомы в процессе деления. Но для окончательно результата готовят специальные препараты на стекле. Чтобы лучше рассмотреть их структуру, прибегают к окрашиванию. Полученные результаты сравнивают с нормами цитогенетических схем.

Для исследования понадобится всего 10-15 лимфоцитов. Даже такое незначительное количество клеток крови позволяет выявить несоответствия и, следовательно, наличие наследственного заболевания.

Анализ проводит врач-генетик. В норме результаты должны выглядеть как 46ХХ или 46ХУ, но если выявлена патология, значения изменяются, например, 46ХХ21+ свидетельствует о лишней паре.

Исследование клеток крови позволяет выявить трисомию (третья лишняя хромосома в паре, пр. синдром Дауна), моносомию (отсутствие одной хромосомы), делецию (утрата участка), дупликацию (удвоение какого-либо фрагмента), инверсию (разворот участка), транслокацию (перемещение, рокировка).

К примеру, делеция в У-хромосоме часто становится причиной нарушения сперматогенеза и, соответственно, мужского бесплодия. Также делеция может являться провокатором врожденных заболеваний плода.

Путем инвитро исследования можно выявить:

  • Аномалию в гене муковисцидоза для исключения этой патологии у ребенка;
  • Генные мутации, влияющие на тромбообразование, что провоцирует нарушение кровообращения в мелких сосудах при имплантации или формировании плаценты. Эта патология приводит к выкидышам и бесплодию;
  • Генная мутация У-хромосомы. В этом случае материалом служит сперма донора;
  • Мутации генов, которые отвечают за детоксикацию.

Исследование кариотипа позволяет диагностировать генетическую предрасположенность к различным заболеваниям, например, сахарному диабету, инфаркту, патологиям суставов, гипертонии и пр.

Если врач-генетик обнаружит хромосомную аберрацию или генную мутацию у жены, мужа на этапе планирования ребенка, он объясняет супругам, какова вероятность рождения больного малыша и насколько высоки риски.

К сожалению, генные и хромосомные патологии не поддаются коррекции, поэтому решение полностью зависит от супругов. Они могут воспользоваться донорским материалом (спермой, яйцеклеткой), остаться без детей или рискнуть.

Когда аномалии обнаружены уже во время беременности, в особенности у эмбриона, специалисты предлагают прервать таковую. Настаивать на искусственном аборте врачи не имеют права, но заведомо становится известно, что ребенок родится с неизлечимыми отклонениями.

Если риск развития патологии достаточно низок, состояние корректируется с помощью ряда поливитаминных препаратов. Такое лечение позволяет повысить шансы на успешную беременность и появление здорового ребенка.

источник

Хромосомный анализ (синонимы — кариотипирование, цитогенетическое исследование, анализ кариотипа) — это исследование, которое позволяет оценить количество и структуру хромосом на наличие в них отклонений от нормы.

Хромосомы (от греческого chroma — цвет, soma — тело) — нитеобразные структуры в ядре каждой клетки нашего тела, содержащие всю генетическую информацию. Каждая хромосома — это одна молекула ДНК, которая компактно упакована в несколько раз.

Она содержит в себе тысячи генов и у каждого из них есть свое определенное место. Эти гены ответственны за проявление всех унаследованных от родителей физических характеристик нашего организма и имеют решающее влияние на рост, развитие и функционирование человека.

Геном человека содержит 46 хромосом, присутствующих в виде 23 пар. Парные хромосомы называют гомологичными. Двадцать две пары встречаются у обоих полов (аутосомы), а одна пара (половые хромосомы) присутствует как XY (у мужчин) или XX (у женщин). Все хромосомы отличаются по строению, форме и размеру. Обычно все клетки в организме, у которых есть ядро, будут содержать полный набор одних и тех же 46 хромосом, за исключением репродуктивных клеток (яйцеклеток и сперматозоидов), которые содержат половину набора — 23 хромосомы. Этот половинный набор является генетическим вкладом родителей своему будущему ребенку. При зачатии половинные наборы от каждого родителя объединяются, чтобы сформировать новый набор из 46 хромосом в развивающемся плоде.

Хромосомные аномалии включают как изменение общего количества, так и структурные преобразования хромосом. Хотя наш генетический аппарат устроен так, что большинство ошибок при копировании генома в клетках уничтожается немедленно, иногда случается нерасхождение хромосом при мейозе (и тогда в одну клетку попадает большее количество хромосом, а в другую — меньшее), выпадение генов (делеция) или их случайный переброс с одной хромосомы на другую (транслокация).

Нормой для человеческого организма является наличие 46 хромосом, не больше и не меньше. Все остальное представляет собой изменение общего количества генетического материала и вызывает проблемы со здоровьем и развитием. Для структурных изменений значимость проблем и их тяжесть зависят от того, какие именно перестройки произошли в хромосоме. Тип и степень проблемы могут варьироваться у различных людей, даже если присутствует одинаковая хромосомная аномалия.

Хромосомное кариотипирование исследует хромосомы человека, чтобы определить, их число, форму и выяснить, является ли каждая хромосома нормальной. Это микроскопическое исследование требует времени и опыта специалиста цитогенетика для правильной подготовки материала и интерпретации результатов. Хотя теоретически для проведения анализа могут использоваться любые клетки, на практике его обычно проводят на образцах клеток амниотической жидкости или плаценты для оценки генотипа плода или на лимфоцитах (белые кровяные тельца) из образца крови для тестирования ребенка или взрослого человека. Кроме того, могут быть использованы белые кровяные клетки костного мозга (методом биопсии) для поиска патологий у пациентов с гематологическими или лимфоидными заболеваниями (например, лейкемия, лимфома, миелома, рефрактерная анемия).

Тест состоит из следующих этапов:

  1. Получение образцов клеток человека, культивирование их в обогащенных питательными веществами средах для активизации деления клеток in vitro. Это делается для того, чтобы выбрать конкретное время на этапе роста клеток, когда хромосомы легче всего рассмотреть (стадия метафазы).
  2. Выделение хромосом из ядра клеток, фиксация и обработка специальным красителем.
  3. Получение микрофотографий хромосом.
  4. Из полученных фотографий складывают хромосомную карту, переставляя, как в головоломке, фотоснимки гомологичных хромосом, чтобы сопоставить пары и упорядочить их по размеру, от самых больших до самых маленьких, с номерами от 1 до 22, за которыми следует 23 пара половых хромосом.

Каждая хромосома выглядит как полосатая соломинка. Она имеет два плеча, которые различаются по длине (короткое плечо (p) и длинное плечо (q)), перетяжку между плечами, называемую центромерой, и серию светлых и темных горизонтальных полос — активных и неактивных зон хромосомы. Длина плеч и расположение полос помогают определить верхнюю и нижнюю часть хромосомы. Изображения также позволяют ориентировать хромосомы вертикально.

Как только фотокоррекция хромосом завершена, лабораторный специалист оценивает пары хромосом и идентифицирует любые присутствующие аномалии.

Наиболее распространенные хромосомные нарушения, которые могут быть обнаружены при кариотипировании, включают:

  • синдром Дауна (трисомия 21), вызванный дополнительной 21 хромосомой;
  • синдром Эдвардса (трисомия 18), состояние, связанное с тяжелой умственной отсталостью, вызванной дополнительной 18й хромосомой;
  • синдром Патау (трисомия 13), вызванный дополнительной 13й хромосомой;
  • синдром Клайнфелтера, наиболее распространенная аномалия половой хромосомы у мужчин, вызванных дополнительными одной или двумя Х-хромосомами;
  • синдром Тернера, вызванный отсутствием одной Х-хромосомы у женщин;
  • синдром кошачьего крика, вызванный делецией (укорачиванием) короткого плеча 5й хромосомы;
  • хроническая миелогенная лейкемия, классическая транслокация 9-22, которая является диагностикой заболевания.

Что является материалом для анализа:

  • кровь (стандартный забор крови из вены);
  • амниотическая жидкость (амниоцентез производится гинекологом);
  • абортивный материал (для выяснения причин самопроизвольного выкидыша);
  • образцы костного мозга (биопсия).

Кому рекомендуют провести анализ

  1. Беременным женщинам,
    • если один или несколько скрининговых тестов беременной женщины, (например, тест первого триместра на возможное наличие у плода синдрома Дауна или скрининг альфафетопротеина во втором триместре) показали положительный результат;
    • если беременная женщина имеет больший, чем обычно, риск наличия ребенка с дефектом врожденного порока. К сожалению, с возрастом этот показатель увеличивается, поэтому многие врачи считают, что после 35 лет целесообразно проводить хромосомный анализ всем беременным женщинам;
    • если обнаруживаются аномалии развития плода во время ультразвукового исследования.
  2. Семейным парам, планирующим рождение ребенка,
    • если известно о наличии в семье какого-либо наследственного заболевания;
    • если у женщины были предыдущие выкидыши или бесплодие;
    • при близкородственных браках;
    • если хотя бы один из супругов подвергался воздействию мутагенных факторов (радиоактивное излучение, химическое загрязнение, некоторые виды лекарственных препаратов).
  3. Новорожденным и младенцам с врожденными патологиями, включая физические дефекты, умственную отсталость, задержку роста и развития или признаки специфического генетического расстройства.
  4. Пациентам, проходящим лечение от бесплодия или проявляющим признаки генетического расстройства.
  5. Членам семьи для обнаружения специфических хромосомных аномалий, если они были найдены у ребенка или другого члена семьи.
  6. Пациентам, у которых был диагностирован определенный тип лейкемии, лимфомы, рефрактерной анемии или рака, поскольку эти заболевания могут привести к приобретенным изменениям в хромосомах; это исследование может быть выполнено на крови или образце костного мозга.

Предварительная подготовка пациента для проведения исследования не требуется. Обычно исследование достаточно сделать, за исключением случаев выяснения риска зачатия больного ребенка после воздействия мутагенных факторов на родителей, один раз за всю жизнь. Всего одно исследование — и вы владеете исчерпывающей информацией обо всех наследственных факторах, которые могут влиять на здоровье вас и ваших детей!

источник

Подготовка к зачатию ребенка и беременность часто сопровождаются родительскими страхами, связанными с генетическими заболеваниями. Особенно сейчас, когда все больше людей выбирают осознанное родительство и серьезно готовятся к появлению малыша.

Наталья Беглярова, генетик, биохимик, эксперт Центра Молекулярной Диагностики (CMD) ЦНИИ Эпидемиологии Роспотребнадзора, рассказала «Летидору», зачем исследуют хромосомы и чем это помогает будущим маме и папе.

Кариотипирование — относительно новое слово в лексиконе пар, которые готовятся стать родителями. Между тем в Объединенных Арабских Эмиратах процедура входит в перечень обязательных анализов перед вступлением в брак.

Кариотип — это совокупность признаков (число, размеры, форма) полного набора хромосом человека. Нормой считаются 23 пары хромосом, одна из которых определяет пол (ХХ или XY). Хромосомы, содержащие множество генов-участков молекулы ДНК, несут наследственную информацию. Кариотипирование, соответственно, — это исследование хромосомного набора человека.

Кариотип человека неизменен, поэтому исследование может быть выполнено в любом возрасте. Дело в том, что хромосомные изменения проявляются не только в том, что может родиться особенный ребенок. Часто люди даже не подозревают, что являются носителями хромосомных перестроек, а на качестве их жизни это никак не сказывается. Проблемы возникают при планировании семьи.

Проведение кариотипирования показано при бесплодии (до 13% пар, столкнувшихся с этой проблемой, имеют хромосомные аномалии), расстройстве сперматогенеза, невынашивании беременности. А также оно важно в случаях мертворождения, рождения ребенка с врожденными пороками развития (особенно если такое уже было в семье), умственной или физической отсталостью, нарушениями полового развития.

Методом кариотипирования можно выявить структурные и количественные изменения (аберрации). К структурным изменениям относятся потеря участка хромосомы (делеция), удвоение участка хромосомы (дупликация), поворот участка хромосомы на 180° (инверсия) и другие. Количественные подразумевают изменение числа хромосом (дублирование или отсутствие).

Кариотипирование у взрослых — практически безболезненная процедура, не требующая подготовки. Для исследования человек просто сдает венозную кровь. А для лабораторий это сложный, трудоемкий процесс. В ходе исследования специальным реагентом стимулируется деление лейкоцитов. Это требуется из-за того, что пригодные для анализа хромосомы можно увидеть только в определенную фазу деления клетки.

При проведении кариотипирования может быть выявлено такое генетическое заболевание, как синдром Клайнфельтера. Мужчины-носители имеют дополнительную Х-хромосому в своей ДНК (вместо XY выявляется XXY). Это приводит к бесплодию.

К примеру, метод не позволяет выявить микроделецию Y-хромосомы (ее еще называют микроделецией региона AZF). Она связана с тяжелыми нарушениями образования сперматозоидов, их отсутствием (азооспермией) или их низким содержанием в семенной жидкости (олигозооспермией). Проблемы с невынашиванием беременности могут быть связаны с изменениями в генах свертываемости крови или реакцией иммунной системы на эмбрион.

При беременности, особенно если зачатие было проблемным, родителям важно знать прогноз на развитие плода. Генетические нарушения могут всплыть в любой момент. Как при слиянии половых клеток, так и при внешнем воздействии. Например, если эмбрион был подвержен радиоактивному излучению.

Читайте также:  Оам анализ расшифровка у детей

Современная терапия, реабилитационные программы, воспитательные методики и даже изменения в обществе позволяют повысить качество жизни детей с особенностями. Тем не менее будущим родителям стоит заранее знать, что, возможно, им придется столкнуться с некоторыми сложностями. Сегодня синдром Дауна и ряд других аберраций входят в программу обязательного скрининга (выявление групп риска по биохимическому анализу крови и данным УЗИ).

источник

Кариотип — это общность свойств полного состава хромосом (молекул ДНК) клеток организма в период третьей стадии деления (метафазы). Только в этот период хромосомы можно увидеть. Под микроскопом исследуют форму и размер хромосом и подсчитывают их количество.

Анализ крови на кариотип что это? Это современный метод диагностики крови, обусловленных патологиями в хромосомах. Хромосомы в период метафазы имеют вид плотных палочек, упакованных в небольшом пространстве ядра клетки. Для того, чтобы хромосомы стали видимы, их окрашивают. Видимые под микроскопом хромосомы, фотографируют.

Из нескольких фото набирают схематизированный кариотип — пронумерованный состав хромосомных пар. Запись нормального мужского кариотипа человека выглядит так: 46, XY. Это означает, что у мужчины в норме имеется 46 хромосом или 23 пары. Половые хромосомы имеют X-образную и Y-образную форму.

Кариотип мужчины

Запись женского кариотипа, находящегося в пределах нормы, выглядит так: 46, ХХ. То есть у женщин две Х-образные половые хромосомы. В случае обнаружения генетической аномалии, например третьей лишней 19 хромосомы женщины, то запись выглядит так: 46ХХ19+.

В роддоме у грудничка берут кровь из вены для обязательного анализа на крови на кариотип. При обнаружении неясных патологий, новорожденного направляют на генетическое обследование.

Генетик даёт команду провести анализ крови на кариотип у ребёнка. Кровь берут из вены, подвергают специфической обработке, окрашивают и исследуют под микроскопом.

У новорожденных, чаще всего, встречается синдром Дауна. Вместо 46 хромосом в норме, у ребёнка обнаруживают 47 хромосом. Новорожденные с таким диагнозом спокойны, кричат редко, имеют плоскую переносицу и плоский затылок. Пальцы ног искривлены, рот открыт, уши круглой формы, маленькие.

При синдроме Клайнфельтера у мальчиков обнаруживают от одной до трёх лишних Х-хромосом. Результатом этой аномалии становится торможение полового развития.

Синдром Тернера у девочек характеризуется моносомией и становится причиной торможения полового созревания.

Анализ крови на кариотип у супругов проводят по назначению врача.

Причины, на основании которых врач может предложить обследования и тест:

  • Подозрение на генетическую патологию у ребёнка;
  • Наличие генетических заболеваний у родственников;
  • Бесплодие;
  • Привычные выкидыши в первом триместре беременности;
  • Работа в условиях вредных производств.

Анализ крови на кариотип как сдавать супругам? Муж и жена могут сдавать анализ в разное время по двум методикам. При цитогенетическом исследовании анализируют кровь будущих родителей. Вторая методика предполагает анализ хромосом плода на ранних стадиях беременности.

Спектральное кариотипирование

В лабораторных условиях проводят анализ крови на кариотип подготовка к которому заключается в следующем:

  • За две недели до анализа прекращают курить, употреблять алкоголь и медицинские препараты;
  • При ухудшении самочувствии по причине заболевания, процедуру следует отложить

Анализ крови проводят натощак, утром. Извлекают лимфоциты крови в фазе деления клетки, в течение трёх суток проводят анализ размножения, на основании которого делают вывод о наличии патологий и возможности выкидыша. Для супругов достаточно провести такой анализ один раз в жизни. Если женщина забеременела, а анализы проведены не были, генетический материал отбирается и у родителей и у плода.

Исследование крови проводят в первую треть беременности. Самым безопасным считают неинвазионный метод. Отбирают пробу крови у матери и проводят ультразвуковое исследование — УЗИ. Но, самым точным является инвазионный метод. Генетический материал получают от плода при посредстве вводимых в матку специальных инструментов.

Процедура безболезненна, но требует наблюдения за матерью в течение нескольких часов. Врач обязан уведомить женщину о возможных осложнениях.

Расшифровка анализа крови помогает диагностировать следующие нарушения:

  • Мозаицизм. Наличие в организме клеток, отличающихся по генетическим признакам;
  • Транслокация. Обмен фрагментами между хромосомами.»
  • Делеция. Потеря фрагмента хромосомы;
  • Моносомия. Нет одной из хромосом в паре;
  • Трисомия. Дополнительная хромосома. Например, синдром Дауна.;
  • Инверсия. Один из фрагментов хромосомы развёрнут.

Анализ на кариотип с высокой точностью определяет генетические аномалии развития плода. Расшифровка анализа на кариотип –это дело врача-генетика.

Если врач обнаружил делецию в половой –хромосоме, то у мужчины будет нарушен сперматогенез, а это причина бесплодия.

Кариотипирование делает возможной оценку состояния генов.

Анализ крови на кариотип позволяет обнаружить:

  • Генные реверсии, влияющие на образование тромбов, приводят к нарушению кровообращения в сосудах пуповины. Результатом такой патологии является выкидыш;
  • генное изменение хромосомы Y в сперме донора;
  • реверсии генов, ответственных за детоксикацию. В результате организм теряет способность инактивировать токсины.

Более того, кариотипирование позволяет диагностировать наследственную предрасположенность к таким заболеваниям, как инфаркт миокарда, гипертоническая болезнь, сахарный диабет, суставные патологии и другим.

Некоторые бездетные семейные пары, желающие заиметь ребёнка, были бы не против провести анализ крови на кариотип цена на который их бы устроила. Многие из ведущих медицинских клиник, предлагает выполнить анализ на кариотип по следующим ценам:

Услуга Цена, руб
Анализ на кариотип одного пациента в течение 14 дней 4500
Анализ на кариотип одного пациента в течение 14 дней с фотографией хромосом 5000
Кариотипирование с обнаружением отклонений в течение14 дней 5800
Кариотипирование с обнаружением отклонений с фотографией в течение 14 дней 6300

источник

Один из методов цитогенетического исследования, направленный на изучение хромосом – это кариотипирование. Анализ имеет ряд показаний к проведению, а также несколько видов.

Кариотип представляет собой набор хромосом человека. В нем описаны все особенности генов: размер, количество, форма. В норме геном состоит из 46 хромосом, из них 44 аутосомные, то есть отвечают за наследственные признаки (цвет волос и глаз, форма ушей и другой). Последняя пара – это половые хромосомы, которые определяют кариотип: женщины 46ХХ и мужчины 46ХУ.

В процесс диагностики выявляются любые нарушения генома:

  • Изменения количественного состава.
  • Нарушение структуры.
  • Нарушение качества.

Как правило, кариотипирование проводится новорожденным для определения генетических аномалий. Анализ показан и для супружеских пар, которые планируют беременность. В этом случае исследование позволяет выявить несоответствие генов, что может стать причиной рождения ребенка с наследственными патологиями.

Виды молекулярного кариотипирования:

Назначается для подтверждения различных аномалий и синдромов. Позволяет определить причины потери беременности: замерший плод, выкидыш, прерывание по медицинским показаниям. Определяет этиологию дополнительного набора хромосом при триплоидиях. Анализ выполняется на микроматрицах с 350 тысячами маркеров, сосредоточенных в клинически значимых участках хромосом. Разрешающая способность данного исследования от 1 млн. п.н.

Выявляет нарушения в геноме клинической значимости. Диагностирует микроделеционные синдромы и патологии, связанные с аутосомно-доминантными болезнями. Определяет причины хромосомных аномалий при недифференцированных синдромах у пациентов с аномалиями развития, врожденными пороками, задержкой психомоторного развития, аутизмом.

Позволяет выявить хромосомные аномалии в пренатальной периоде. Методика определяет анеуплоидии, патологические микроделеции у плода. Исследование проводится на микроматрице с 750 тыс. маркеров высокой плотности, которые покрывают все значимые участки генома. Разрешающая способность стандартного анализа на кариотип от 200 тыс. п.н.

Позволяет установить причины хромосомных аномалий при недифференцированных синдромах у детей. Выявляет патогенные делеции, то есть исчезновение участков хромосом и дупликации – дополнительные копии генов. Диагностирует участки с потерей гетерозиготности, причины аутосомно-рецессивных патологий.

Расширенный хромосомный микроматричный анализ проводят с помощью микроматрицы высокой плотности, которая содержит более 2,6 млн. отдельных маркеров высокой плотности. Разрешающая способность данного исследования позволяет покрыть весь геном и составляет от 50 тыс. п.н. Благодаря этому все участки генного кода изучаются с предельной точностью, что дает возможность выявить самые мельчайшие структурные нарушения.

Как правило анализ на кариотип проводится по назначению генетика. В зависимости от врачебных показаний может быть назначен один из вышеперечисленных видов. Стандартное исследование стоит дешевле, но назначается крайне редко, поскольку не выявляет многих хромосомных нарушений. Таргетное кариотипирование более дорогостоящий анализ, поэтому назначается при наличии клинических признаков синдромов и других аномалий. Расширенная диагностика является самой дорогостоящей и наиболее информативной, поскольку позволяет полностью изучить все 23 набора хромосом.

Хромосомный микроматричный анализ сдают по назначению врача-генетика. Исследование направлено на изучение генома пациента и выявление любых аномалий в его строении.

Хромосомы – это нити ДНК, их количество и структура имеет свою специфику для каждого вида. В человеческом организме содержится 23 пары хромосом. Одна пара определяет половую принадлежность: у женщин 46ХХ хромосомы, а у мужчин 46ХY. Остальные гены являются аутосомами, то есть неполовыми.

  • Анализ проводится 1 раз, поскольку хромосомный набор не меняется в течение всей жизни.
  • Позволяет установить причины репродуктивных проблем у супругов.
  • Диагностирует множественные пороки развития у детей.
  • Выявляет генетические отклонения.

Кариотип сдают в специализированной медицинской лаборатории или в генетическом центре. Исследование проводит квалифицированный врач. Как правило, анализы готовы в течение 1-2 недель. Полученные результаты расшифровывает генетик.

Процедуру кариотипирования назначают новорожденным младенцам для выявления генетических отклонений и наследственных патологий, а также мужчинам и женщинам на этапе планирования беременности. Также существует ряд других показаний к проведению анализа:

  • Мужское и женское бесплодие неустановленного происхождения.
  • Мужское бесплодие: олигозооспермия тяжелая и необструктивная, тератозооспермия.
  • Самопроизвольное прерывание беременности: выкидыши, замерший плод, преждевременные роды.
  • Первичная аменорея.
  • Случаи ранней смерти новорожденных в анамнезе.
  • Дети с хромосомными аномалиями.
  • Дети с множественными врожденными пороками развития.
  • Возраст родителей более 35 лет.
  • Многократные неудачные попытки искусственного оплодотворения ЭКО.
  • Наследственное заболевание у одного из будущих родителей.
  • Гормональные нарушения у женщин.
  • Сперматогенез неустановленной этиологии.
  • Близкородственные браки.
  • Неблагоприятная экологическая среда проживания.
  • Длительный контакт с химическими веществами, облучение.
  • Вредные привычки: курение, алкоголь, наркотики, медикаментозная зависимость.

Кариотипирование детей проводится в таких случаях:

  • Врожденные пороки развития.
  • Умственная отсталость.
  • Задержка психомоторного развития.
  • Микроаномалии и задержка психо-речевого развития.
  • Половые аномалии.
  • Нарушение или задержка полового развития.
  • Задержка роста.
  • Прогноз здоровья ребенка.

Диагностика рекомендована для всех супругов на этапе планирования беременности. Также анализ может проводить во время беременности, то есть пренатальное хромосомное исследование.

Совокупность признаков полного набора хромосом – это кариотип. Для систематизации хромосомных анализов используется Международная цитогенетическая номенклатура, которая основана на дифференциальном окрашивании генома для детального описания всех участком нитей ДНК.

Исследование позволяет выявить:

  • Трисомия – в паре присутствует третья лишняя хромосома.
  • Моносомия – в паре отсутствует одна хромосома.
  • Инверсия – разворот участка генома.
  • Транслокация – перемещение участков.
  • Делеция – потеря участка.
  • Дупликация – удвоения фрагмента.

Результаты анализа записывают по такой системе:

  1. Общее число хромосом и набор половых 46, XX; 46, XY.
  2. Указываются лишние и недостающие хромосомы, к примеру 47, XY, + 21; 46, XY -18.
  3. Короткое плечо генома обозначают символом – р, а длинное – q.
  4. Транслокация – t, а делеция – del, к примеру 46,XX,del(6)(p12.3)

Готовый анализ на кариотип выглядит следующим образом:

  • 46, XX – норма женщина.
  • 46, XY – норма мужчина.
  • 45, X – синдром Шерешевского-Тернера.
  • 47 XXY – синдром Клайнфельтера.
  • 47, XXX – трисомия по Х-хромосоме.
  • 47, XX (XY), + 21 – синдром Дауна.
  • 47, XY (XX), + 18 – синдром Эдвардса.
  • 47, XX (XY), + 13 – синдром Патау.

Цитогенетическое исследование выявляет различные аномалии в строении нитей ДНК. Также анализ диагностирует предрасположенности ко многим заболеваниям: эндокринные патологии, гипертония, поражения суставов, инфаркт миокарда и другие.

[1], [2], [3], [4], [5], [6], [7], [8]

Для анализа на кариотип используют кровяные клетки, поэтому очень важно правильно подготовиться к диагностике.

Подготовка к хромосомному исследованию начинается за 2 недели до его сдачи и состоит из исключения воздействия на организм таких факторов:

  • Острые и хронические заболевания.
  • Прием лекарственных препаратов.
  • Употребление алкоголя и наркотических веществ, курение.

Для анализа используют венозную кровь 4 мл. Забор крови проводится на голодный желудок.

[9], [10], [11], [12], [13], [14], [15], [16]

Геном человека нельзя увидеть невооруженным глазом, хромосомы видны только под микроскопом на определенных фазах деления клеток. Для определения кариотипа используют одноядерные лейкоциты, фибробласты кожи или клетки костного мозга. Для исследования подходят клетки в метафазе митоза. Биологическую жидкость помещают в пробирку с литием и гепарином. Кровь культивируют в течение 72 часов.

Затем культура обогащается специальными веществами, которые останавливают деление клеток на необходимой для диагностики фазе. Из культуры делают препараты на стеклах, которые подлежат исследованию. Дополнительную информацию о состоянии генома получают с помощью его окраски. Каждая хромосома имеет исчерченность, которая отчетливо видна после окрашивания.

При классическом хромосомном исследовании окраску проводят разными красителями и их смесями. Краситель по-разному связывается с отдельными участками генома, делая окрашивание неравномерным. Благодаря этому образуется комплекс поперечных меток, которые отражают линейную неоднородность хромосомы.

Основные методы окрашивания:

  • Q – дает изображения с высокой детализацией. Данный метод получил название окрашивание по Касперссону акрихин-ипритом с диагностикой под флуоресцентным микроскопом. Применяется для анализа генетического пола, выявления транслокаций между X и Y, Y и аутосомами, а также для скрининга мозаицизма с Y хромосомами.
  • G – модифицированный метод по Романовскому-Гимзе. Имеет более высокую чувствительность в сравнении с Q. Применяется в качестве стандартного метода цитогенетического анализа. Выявляет небольшие аберрации, маркерные хромосомы.
  • R – применяется для выявления гомологичных G и Q негативных участков. Обработку генома проводят акридиновым оранжевым красителем.
  • C – анализирует центромерные области хромосом с конститутивным гетерохроматином и вериабельной дистальной частью Y.
  • T – используется для анализа теломерных областей ДНК нитей.
Читайте также:  О чтении современных детей анализ

Окрашенные и зафиксированные клетки фотографируют под микроскопом. Из полученного набора фотографий формируют нумерованный набор пар аутосом, то есть систематизированный кариотип. Изображение нитей ДНК ориентируют вертикально, нумерация зависит от размера, при этом пара половых хромосом закрывает набор.

Препараты крови анализируют под микроскопом по 20-100 метафазных пластинок для выявления количественных и структурных аберраций.

  • Количественные аберрации – это изменение числа генов. Подобное наблюдается при синдроме Дауна, когда имеется лишняя 21 хромосома.
  • Структурные аберрации – это изменение самих хромосом. Это может быть выпадение участка генома, перенос одной части на другую, поворот на 180 градусов и другое.

Техника проведения кариотипирование является трудоемким процессом. Исследование проводят специалисты высокой квалификации. Для диагностики генома одного человека может потребоваться целый рабочий день.

Вступая в брак многие пары сталкиваются с проблемой зачатия. Для решения репродуктивных проблем показан цитогенетический анализ. Кариотипирование супругов позволяет выявить аномалии в строении генома, которые мешают завести детей или нарушают процесс вынашивания. Изменить кариотип невозможно, но благодаря диагностике, можно установить истинные причины бесплодия и прерывания беременности, найти пути их решения.

Хромосомный микроматричный анализ проводится для выявления отклонений структуры строения и числа нитей ДНК, которые могут быть причиной наследственных заболеваний у будущего ребенка или бесплодия супругов. Существуют международные стандарты для проведения анализа у будущих родителей:

  • Хромосомные патологии в роду, в семье.
  • Невынашивание беременности в анамнезе.
  • Возраст беременной старше 35 лет.
  • Длительные мутагенные воздействия на организм.

На сегодняшний день используют такие методы кариотипирования:

  1. Анализ хромосом в клетках крови.

Позволяет выявить случаи бесплодия, когда шанс завести ребенка существенно снижен или полностью отсутствует у одного из супругов. Также обследование определяет риск нестабильности генома. Для лечения отклонений пациентам могут быть назначены антиоксиданты и иммуномодуляторы, которые снижают сбои зачатия.

Для исследования проводят забор венозной крови. Из биологической жидкости выделяют лимфоциты, которые стимулируют в пробирке, обрабатывают специальным веществом, окрашивают и изучают. К примеру, при синдроме Клайнфельтера, который проявляется мужским бесплодием, в кариотипе присутствует лишняя хромосома 47 ХХ. Также могут быть выявлены структурные изменения генома: инверсия, делеция, транслокация.

Определяет хромосомные патологии плода на ранних сроках беременности. Такое исследование необходимо для диагностики генетических заболеваний или пороков развития, которые приводят к внутриутробной гибели плода.

Для проведения исследования могут быть использованы такие методы:

  • Неинвазивные – безопасны для матери и плода. Диагностику проводят с помощью УЗИ ребенка и развернутого биохимического анализа крови женщины.
  • Инвазивные – биопсия хориона, кордоцентез, плацентоцентез, амниоцентез. Для анализа проводят забор клеток плаценты или хориона, околоплодных вод или крови из пуповины. Несмотря на высокую точность диагностики, инвазивные методики имеют повышенный риск осложнений, поэтому проводятся только по строгим врачебным показаниям: выявленные во время УЗИ патологии плода, роженица старше 35 лет, родители с хромосомными аномалиями, изменение биохимических маркеров крови.

Для цитогенетического исследования может быть использована не только кровь, но и эякулят. Данный метод называется Tunel и позволяет определить одну из самых распространенных причин мужского бесплодия при условии нормального кариотипа – фрагментацию ДНК сперматозоидов.

При обнаружении генных мутаций или хромосомных аберраций у одного из супругов, врач рассказывает о возможных рисках и вероятности рождения ребенка с отклонениями. Поскольку генные патологии неизлечимы, то дальнейшее решение супруги принимают самостоятельно: воспользоваться донорским материалом (сперма, яйцеклетка), рискнуть родить или остаться без детей.

Если отклонения в геноме выявлены в процессы вынашивания, причем как у женщины, так и у эмбриона, то врачи рекомендуют прерывать такие беременности. Это связано с повышенным риском рождения малыша с серьезными, а в некоторых случаях и несовместимыми с жизнью отклонениями. Проведением анализов и расшифровкой их результатов занимается врач-генетик.

[17], [18], [19], [20], [21]

Чаще всего кариотипирование проводят по анализу венозной крови с помощью культивирования ее клеток. Но для проведения цитогенетического исследования может быть использован и другой биологический материал:

  • Клетки из околоплодных вод.
  • Плацента.
  • Клетки эмбрионов.
  • Абортивный материал.
  • Костный мозг.

То какой материал будет взят на диагностику, зависит от причины и задачи анализа. Примерный алгоритм исследования крови:

  • Небольшой объем жидкости на 72 часа помещают в питательную среду при температуре 37˚С.
  • Поскольку хромосомы видны на стадии метафазы деления клеток, то в биологическую среду добавляют реактив, который останавливает процесс деления в необходимой фазе.
  • Культуру клеток окрашивают, фиксируют и анализируют под микроскопом.

Анализ крови на кариотип обеспечивает высокоточное обнаружение любых аномалий в строении нитей ДНК: внутрихромосомных и межхромосомных перестроек, изменения порядка расположения фрагментов генома и другое. Основная цель диагностики заключается в выявлении генетических заболеваний.

[22], [23], [24], [25], [26], [27]

Цитогенетическая диагностика, направленная на изучение размера, числа и формы хромосом – это генетическое кариотипирование. Анализ имеет такие показания к проведению:

  • Выявление врожденных дефектов.
  • Риск рождения ребенка с наследственными патологиями.
  • Подозрение на бесплодие.
  • Нарушение спермограммы.
  • Невынашивание беременности.
  • Составление плана лечение некоторых видов опухолевых новообразований.

Также генетический анализ на кариотип входит в список обязательных для супругов, которые планируют заводить детей.

Чаще всего исследование выявляет такие патологии:

  1. Анеуплодия – это изменение числа хромосом как в сторону увеличения, так и уменьшения. Нарушение баланса приводит к выкидышам, рождению младенцев с тяжелыми врожденными патологиями. Мозаичная форма анеуплодии вызывает синдром Дауна, синдром Эдвардса и другие очень часто несовместимые с жизнью заболевания.
  2. Перестройка кариотипа – если изменения сбалансированные, то хромосомный набор не нарушен, а просто по-другому упорядочен. При несбалансированных изменениях есть угроза генных мутаций, что особо опасно для будущих поколений.
  3. Транслокация – это необычная структура нитей ДНК, то есть замещение одного фрагмента генома другим. В большинстве случаев передается по наследству.
  4. Нарушение половой дифференцировки – крайне редкое хромосомное нарушение, которое не всегда проявляется внешними симптомами. Несоответствие фенотипическому полу может выступать одной из причин бесплодия.

Анализ на кариотип выполняют в генетических лабораториях, квалифицированные врачи генетики.

Аберрации – это нарушения в строении хромосом, вызванные их разрывами и перераспределением с потерей или удвоением генетического материала. Кариотипирование с аберрациями – это исследование, направленное на выявление любых изменений в строении генома.

  • Количественные – нарушение числа хромосом.
  • Структурные – нарушение строения генома.
  • Регулярные – определяются в большинстве или во всех клетках организма.
  • Нерегулярные – возникают из-за воздействия на организм различных неблагоприятных факторов (вирусы, излучение, химическое воздействие).

Анализ устанавливает кариотип, его особенности, признаки воздействия различных негативных факторов. Хромосомное исследование с аберрациями проводится в таких случаях:

  • Бесплодие в браке.
  • Самопроизвольные выкидыши.
  • Случаи мертворождения в анамнезе.
  • Ранняя детская смертность.
  • Застывшая беременность.
  • Врожденные пороки развития.
  • Нарушение половой дифференцировки.
  • Подозрения на хромосомные патологии.
  • Задержка умственного, физического развития.
  • Обследование перед ЭКО, ИКСИ и другими репродуктивными процедурами.

В отличие от классического кариотипирование, данный анализ занимает больше времени на проведение и стоит дороже.

Согласно медицинской статистике, врожденные патологии занимают весомое значение среди причин смертности детей раннего возраста. Для своевременного выявления генетических аномалий и наследственных заболеваний, ребенку проводят анализ на кариотип.

  • Чаще всего у детей диагностируют трисомию – синдром Дауна. Данная патология встречается у 1 из 750 малышей и проявляется различного рода отклонениями как в физическом, так и интеллектуальном развитии.
  • На втором месте по распространенности синдром Клайнфельтера. Он проявляется задержкой полового развития в подростковом возрасте и возникает у 1 из 600 новорожденных мужского пола.
  • Еще одна генетическая патология, диагностируемая у 1 из 2500 детей женского пола – это синдром Шерешевского-Тернера. В детском возрасте данное заболевание дает о себе знать повышенной пигментацией кожных покровов, отечностью стоп, кистей рук и голеней. В период полового созревания наблюдается отсутствие менструации, волосяного покрова подмышками и на лобке, также не развиты молочные железы,

Кариотипирование необходимо не только для малышей с видимыми отклонениями, так как это позволяет заподозрить генетические проблемы и начать их коррекцию. Анализ сдают в медико-генетическом центре. В зависимости от возраста ребенка, кровь может быть взята с пятки или с вены. При необходимости генетик может потребовать сдать анализ на кариотип и родителей.

Неонатальный скрининг – это первый анализ, который выполняют новорожденным. Исследование проводят в родительном доме на 3-4 день жизни, для недоношенных малышей на 7 день. Раннее кариотипирование позволяет выявить генетические отклонения и нарушения структуры ДНК до появления видимых патологических симптомов.

Для проведения ранней диагностики используют кровь из пятка младенца. Цитогенетическое исследование направлено на выявление таких распространенных среди малышей патологий, как:

  • Фенилкетонурия – наследственное заболевание, характеризуется снижением активности или отсутствием фермента, расщепляющего аминокислоту фенилаланин. При прогрессировании приводит к нарушениям в работе головного мозга и умственной отсталости.
  • Муковисцидоз – поражает железы, которые вырабатывают секреты, пищеварительные соки, пот, слюну, слизь. Вызывает нарушения в работе легких и органов ЖКТ. Болезнь передается по наследству.
  • Врожденный гипотиреоз – поражение щитовидной железы с недостаточной выработкой ее гормонов. Приводит к задержке физического и умственного развития.
  • Адреногенитальный синдром – патологическое состояние при котором кора надпочечников продуцирует недостаточное количество гормонов. Из-за этого нарушается развитие половых органов.
  • Галактезимия – патология при которой нарушается трансформация галактозы в глюкозу. Лечение состоит из отказа от молочных продуктов. Без своевременной диагностики может стать причиной слепоты и смерти.

Если по результатам анализа на кариотип у новорожденного выявлены какие-либо отклонения или аномалии, то проводится комплекс дополнительных исследований для уточнения диагноза. Такая ранняя диагностика позволят своевременно выявить любые проблемы в детском организме и начать их лечение.

[28], [29], [30], [31], [32], [33], [34]

Длительность хромосомного исследования занимает от 10 до 21 дня. То, когда будут готовы результаты зависит от вида анализа, то есть с аберрациями или классическое кариотипирование.

Готовый анализ на кариотип содержит такую информацию:

  • Количество хромосом.
  • Есть ли изменения в структуре хромосом.
  • Есть ли нарушения в упорядоченности генома.

Расшифровкой результатов и их интерпретацией занимается генетик. Если выявлены какие-либо аномалии, то врач дает медицинские рекомендации для дальнейшей диагностики или указания относительно лечения.

Нормальные кариотипы для человека – это 46, ХХ или 46, ХY. Как правило их изменение происходит на ранних этапах развития организма:

  • Чаще всего нарушение возникает в период гаметогенеза (предзародышевое развитие), когда родительские половые клетки продуцируют кариотип зиготы. Дальнейшее развитие такой зиготы приводит к тому, что все клетки эмбриона содержат аномальный геном.
  • Нарушение может возникать на ранних стадиях деления зиготы. В этом случае эмбрион содержит несколько клеточных клонов с различными кариотипами. То есть развивается мозаицизм – множественность кариотипов всего организма и его органов

Изменения генома проявляются различными патологиями и пороками. Рассмотрим распространенные аномалии кариотипа:

  • 47,XXY; 48,XXXY – синдром Клайнфельтера, полисомия по X-хромосоме у мужчин.
  • 45X0; 45X0/46XX; 45,X/46,XY; 46,X iso (Xq) – синдром Шерешевского-Тернера, моносомия по X хромосоме, мозаицизм.
  • 47,ХХX; 48,ХХХХ; 49,ХХХХХ – полисомии по X хромосоме, трисомия.
  • 47,ХХ,+18; 47,ХY,+18 – синдром Эдвардса, трисомия по 18 хромосоме.
  • 46,XX, 5р- – синдром кошачьего крика, делеция короткого плеча 5 пары генома.
  • 47,ХХ,+21; 47,ХY,+21 – болезнь Дауна, трисомия по 21 хромосоме.
  • 47,ХХ,+13; 47,ХY,+13 – синдром Патау, трисомия по 13 хромосоме.

Цитогенетическое исследование направлено на определение состояния нитей ДНК, выявление дефектов и аномалий. Любые отклонения от нормальных показателей являются поводом для комплексного обследования организма.

[35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46]

Для расшифровки кариотипа применяют метод секвенирования. Данная методика была разработана в 1970 году и основана на определении последовательности аминокислот в ДНК. Аппараты для секвенирования используют интерактивные циклические ферментативные реакции с дальнейшей обработкой и сопоставлением полученных результатов.

Основные функции секвенаторов:

  • Первичное полное исследование неизвестных геномов, экзомов, транскриптомов.
  • Кариотипирование.
  • Палеогенетика.
  • Метагеномика и микробное разнообразие.
  • Ресеквенирование и картирование.
  • Анализ метилирования ДНК.
  • Анализ транскриптомов.

На первом этапе аппарат создает библиотеку случайных последовательностей нитей ДНК. Затем создает ампликоны с помощью ПЦР, которые используются в качестве образцов. На заключительном этапе происходит определение первичной структуры всех фрагментов.

Секвенаторы последнего поколения полностью автоматизированы и широко применяются при проведении геномного анализа, сводя к минимуму получение ошибочных результатов из-за человеческого фактора.

Интерпретацией результатов цитогенетического исследования занимается генетик. Как правило, анализ готов через 1-2 недели и может выглядеть таким образом:

  • 46XX(XY), сгруппированы в 22 пары и 1 пара половых. Геном имеет нормальный размер и структуру. Аномалий не выявлено.
  • Геном нарушен, выявлено более/менее чем 46 хромосом. Формы и размеры одной/нескольких хромосом ненормальны. Пары генома нарушены/неправильно сгруппированы.

Что касается патологических отклонений в кариотипе, то выделяют такие распространенные нарушения:

  • Трисомия – лишняя соматическая хромосома. Синдром Дауна, синдром Эдвардса.
  • Моносомия – утрата одной хромосомы.
  • Делеция – отсутствие участка генома. -46, хх, 5p- синдром кошачьего крика.
  • Транслокация – перемещение одного участка генома на другой.
  • Дупликация – удвоение фрагмента.
  • Инверсия – поворот фрагмента хромосомы.

На основании результатов анализа на кариотип врач делает вывод о состоянии генотипа и степени генетического риска. При малейших изменениях в структуре нитей ДНК назначается комплекс дополнительных исследований. Выявленные аберрации могут ничем не проявляться, но повышают риск рождения малышей с генетическими отклонениями.

источник