Меню Рубрики

Анализ анионов в воде ионная хроматография

Модифицированным вариантом ионообменной хроматографии, применяемым для анализа органических и неорганических ионов, не поглощающих в УФ свете, является ионная хроматография (ИХ). В этом методе ионообменное разделение ионов сочетают с кондуктометрическим детектированием.

Различают два основных варианта ионной хроматографии:

При использовании одноколоночного варианта элюат с колонки непосредственно поступает в кондуктометрический детектор. Детектирование происходит на фоне относительно высокой фоновой электропроводности элюента. Не смотря на то, что в одноколоночном варианте ИХ чувствительность определения (при прочих равных условиях) приблизительно на 1-1.5 порядка ниже, во многих случаях применение данного варианта оправдано. В основном это касается катионов первой группы, в том числе иона аммония, обладающих высокой подвижностью. В качестве элюентов в данном случае применяются миллимолярные растворы сильных кислот. Без применения систем подавления и каких либо дополнительных устройств возможно прямое детектирование этих катионов на уровнях 100-200 ppb, что вполне достаточно для большинства аналитических задач.


Разделение катионов 1-ой группы на колонке Аквилайн С1Р 150×4.6мм, элюент: 4 мМ р-р азотной кислоты, скорость потока 1.5 мл/мин; кондуктометрический детектор без подавления.

Во втором варианте фоновую электропроводность подвижной фазы подавляют пропусканием ее через специальные системы подавления фоновой электропроводности с образованием мало диссоциирующих соединений.

В самом простом варианте система подавления фоновой электропроводности элюента представляет собой подавительную колонку, заполненную ионообменником большой обменной емкости. Процессы, происходящие в катионообменной подавительной колонке, используемой для анализа анионов методом двухколоночной ИХ представлены на рисунке.

В современном оборудовании применение подавительных колонок весьма ограничено из-за двух основных недостатков: необходимости периодической регенерации и наличия больших мертвых объемов, пагубно сказывающихся на всех параметрах разделения. Поэтому, в последнее время все большее распространение приобретают системы капиллярного мембранного подавления фоновой электропроводности. Принцип действия таких систем аналогичен подавительным колонкам, с той лишь разницей, что источником иона для подавления является не смола, а раствор данного иона, находящийся во внешнем пространстве устройства. Внешнее пространство отделено от жидкостного тракта, по которому протекает элюент, полупроницаемой ионоселективной мембраной, представляющей собой модифицированные ионообменными группами фторопласты.

А — анализируемый анион
А1 — анион сильной кислоты во внешнем пространстве
А2 — анион слабой кислоты (элюирующий) подвижной фазы.

Катионы натрия переносятся в регенерирующий раствор, что приводит к резкому снижению электропроводности элюента.

Системы данного типа имеют очень маленький мертвый объем и упрощенную процедуру регенерации. Раствор во внешнем пространстве может меняться периодически (при использовании стандартных элюентов 1 раз в 2-3 недели) или же непрерывно, с использованием дополнительного насоса. В последнем случае можно добиться ощутимого увеличения глубины подавления необходимого при анализе следовых количеств ионов.

Кроме того, существуют системы подавления, использующие помимо мембранных механизмов подавления, приложенное к поверхностям мембран электрическое поле. Такие системы называются автоматическими мембранными электродиализными системами подавления фоновой электропроводности. К их принципиальным особенностям следует отнести возможность работы в замкнутом режиме. Ионы, необходимые для подавления извлекаются из элюата, уже прошедшего стадию подавления и детектирования. Данные системы не требуют регенерации и вообще какого-либо обслуживания. Их объективным недостатком является необходимость применения строго ограниченного спектра элюентов.

Как уже отмечалось выше, при использовании систем подавления возможно резкое увеличение чувствительности анализа. Так при определении следовых количеств неорганических анионов возможно устойчивое детектирование на уровне единиц ppb при прямом (без концентрирования) вводе образца.

Элюенты, предназначенные для двух колоночной системы, должны отвечать двум основным требованиям. Во-первых, они должны вытеснять ионы из разделительной колонки. Во-вторых, они должны вступать в реакции обмена в подавительной системе с образованием слабо диссоциирующих соединений, обладающих низкой проводимостью.

В связи с тем, что в этом методе применяют сильнокислые и сильноосновные элюенты, которые могли бы вызвать значительную коррозию в обычных хроматографических системах, хроматографический тракт в ионных хроматографах изготовляют из химически инертных материалов.

Ионная хроматография имеет обширное практическое приложение. В водоподготовке она позволяет осуществлять контроль качества сырой воды, контролировать работу обессоливающих установок. В контроле воды электростанций она полезна при анализе качества пара, питательной воды, в анализе продувочной воды парогенераторов. В ядерной энергетике ионная хроматография нашла применение в контроле радиоактивных выбросов и в анализе воды первого и второго контуров.

Широкое распространение ионной хроматографии обусловлено рядом ее достоинств:

а) возможность определять большое число неорганических и органических ионов, а также одновременно определять катионы и анионы;

б) высокая чувствительность определения (до 1 ppb без предварительного концентрирования);

в) высокая селективность и экспрессность (можно определять 10 ионов за 10-15 минут, а при градиентном элюировании — 22 иона за 25 мин);

г) малый объем анализируемой пробы (требуется не более 2 мл образца);

д) широкий диапазон определяемых концентраций (от 1 ppb до 1000 ррm без разбавления).

источник

Особым видом ионообменной хроматографии, применяемым для анализа органических и неорганических ионов, не поглощающих в УФ-области, является ионная хроматография. В этом методе ионообменное разделение ионов сочетают с кондукто-метрическим определением их. Поскольку высокочувствительное кондуктометрическое определение возможно только при невысокой фоновой электропроводности потока жидкости, поступающей в детектор, фоновый электролит подвижной фазы предварительно удаляют пропусканием его через ионообменные смолы.

Предложены два основных метода ионной хроматографии.

1. Двухколоночная ионная хроматография, основанная на компенсации (подавлении) электролита, содержащегося в элюенте для разделения смеси ионов на колонке с помощью второй ионообменной колонки, расположенной между детектором и раздели тельной колонкой. Этот метод и был ранее назван ионной хроматографией.

Вещества разделяются на катионообменной колонке 4 по ионообменному механизму, попадают в десорбционную колонку 5 со смолой в ОН-форме, где происходит нейтрализация подвижной фазы и удаление электролита из элюента. Анализируемые вещества выходят из колонки 5 в деионизиванной воде и попадают в кондуктометрическую кювету 6. Сигнал с кондуктометра 7 поступает на самописец 8 или интегратор. На аналогичной установке анализируют анионы. Так как десорбционную колонку приходится часто регенерировать, отношение объемов, пропущенных через колонку 5, к объемам, допущенным через колонку 4, должно быть меньше или равно 1O. Предложений схемы разделения для ионной хроматографии и варианты заполнения разделительной и десорбирующей колонок.

2. Другим вариантом ионной хроматографии является одноколоночная ионная хроматография, основанная на использовании электролита с невысокой электропроводностью. В этом случае компенсационная колонка отсутствует.

Метод подробно не рассматривается нами, так как имеется ряд неплохих обзоров по ионной хроматографии [17, 18].

Ионнные хроматографы от простых до полностью автоматических выпускают фирмы «Даонекс корпорейшн», «Бекман» (США) и др. В СССР ионные хроматографы серийно выпускаются Джержинским ОКБА. Методом ион-хроматографии определяют неокрашенные анионы и катионы, находящиеся в образце в виде примесей, и микроколичества вредных веществ в воде, воздухе и биологических жидкостях.

Рис. 1. Схема установки для анализа катионов методом ионной хроматографии: 1 — емкость с элюентом; 2 — насос: 3 — ввод пробы; 4 — разделительная колонка; 5 — десорбирующая колонка; 6 — кондуктометрическая кювета; 7 — кондуктометрический детектор; 8 — самописец

Ионообменная хроматография в экспериментальном отношении — один из самых трудных видов ВЭЖХ, так как имеется много параметров, которые необходимо учитывать и контролировать.

Если анализ необходимо вести при рН ниже 2 или выше 7,5, то должна быть применена соответствующая анионная или катионная смола, а в остальных случаях — силикатель с привитой ионообменной смолой.

Для анализа молекул с молекулярной массой до 2000 применяют ионообменники с химически привитой фазой к силикагелю с размером частиц 5-10 мкм, а при препаративном разделении можно применять полимерные пористые сорбенты типа даррум ДА-Х8. При разделении крупных молекул с молекулярной массой 2000 применяют слабоосновный ионит, привитый на крупнопористый силикагель.

Скорость элюента обычно устанавливают 1 мл/мин, температуру 50 °С или комнатную, если контроль температуры неудобен, а рН подбирают так, чтобы компоненты были ионизированы.

Так как в ионообменной хроматографии изотермы не параллельны, необходимо найти оптимальную для каждого частотного разделения температуру, изменяя ее с инкрементом 10 °С. Обычно придерживаются середины найденного интервала оптимальных температур, контролируя ее с точностью 1 °С.

Для создания определенного рН и поддержания на необходимом уровне готовят соответствующий буферный раствор. Если это возможно, то буферный раствор подбирают таким образом, чтобы его функциональная группа была похожа на функциональную группу образца. Так, ацетатный буферный раствор приемлем для анализа карбоновых кислот, фосфатный — для люирования нуклеотидов. Большое значение имеет чистота буферного раствора, так как он не должен детектироваться выбранным детектором, что особенно важно при работе в режиме градиентного элюирования. Чистота буферного раствора зависит от фирм-производителей, и даже разные партии одной фирмы могут различаться по составу. Каждая новая партия буферного раствора тестируется двумя холостыми хроматографическими опытами перед использованием. Второй опыт показывает, существуют ли вещества, отложившиеся в колонке в процессе регенерации или в течение последних стадий предыдущего градиента. Хотя большинство разделений проводят в водных буферных растворах, иногда добавляют органический растворитель (метанол, этанол) в количестве 3-10% для повышения селективности и улучшения растворимости образца. При этом концентрация растворителя не должна быть велика, чтобы не выдать осаждения буферной соли, о чем будет свидетельствовать появление течи в системе и увеличение сопротивления в колонке.

При работе в градиентном режиме желательно, чтобы к концу разделения ионная сила буферного раствора повышалась. Начинают работать с концентрации буферного раствора 0,1 M, так как оптимизация разделения при работе с низкими концентрациями (0,001 М) отнимает много времени. Если при этих условиях вещества не удается удовлетворительно разделить, то дальнейшее улучшение разделения происходит за счет снижения концентрации буферного раствора, изменения рН или температуры шаговым методом, приводящих к повышению значений k’ и увеличению времени удерживания.

Часто в буферный раствор для регулирования силы подвижной фазы добавляют нейтральные соли. Особой популярностью пользуется нитрат натрия, поскольку он не вызывает коррозии аппаратуры. Галогенид-ионы оказывают вредное влияние на нержавеющую сталь, и поэтому их лучше не применять.

Сравнивая сорбенты, предназначенные для ионообменной хроматографии, с сорбентами, применяемыми в других вариантах ВЭЖХ, можно отметить ряд недостатков у первых.

Применяемые в ионообменной хроматографии сорбенты менее эффективны и стабильны, а также менее воспроизводимы, Улучшить эффективность разделения ионогенных соединений можно, повысив температуру до 60 °С, изменив рН, добавив органический растворитель или перейдя от ионообменной хроматографии к работе в режиме ион-парной хроматографии или обращенно-фазной хроматографии с использованием метода подавления ионов.

Повышения стабильности достигают за счет очистки образца, уменьшения температуры и рН, снижения количества органических растворителей. Для рутинного анализа и лучшей воспроизводимости желательно использовать колонки, набитые в лаборатории.

источник

Контроль качества нефтепродуктов включает в себя многочисленные применения для ионной хроматографии, которая позволяет определить неорганически и низкомолекулярные органические анионы и катионы в топливе, смазочных маслах, газопромывочных растворах и попутной воды, являющейся побочным продуктом при добыче сырой нефти. Анализ воды, в том числе с использованием ионной хроматографии, также актуален для экологического анализа нефтехимических производств и добывающих установок.

Анионы и катионы в пластовой воде

В процессе добычи нефти на поверхность выделяется огромное количество пластовой воды. Помимо нефтяных и органических загрязнителей данный тип воды содержит большое количество неорганических катионов (кальций, магний, барий и стронций, а также анионов (карбонаты, бромиды и сульфаты).

Образовывающиеся соли могут вызывать отложение осадка, которое в конечном счете могут заблокировать трубопровод. По этой причине определение неорганический компонентов имеет существенное значение, в том числе и с целью правильного подбора

Анионы в бензино-этанольных смесях

Этанол, произведенный из отходов и возобновляемых растительных источников, может смешиваться с обычным бензином в различных пропорциях.

Загрязняющие вещества, а именно неорганические соли, ухудшают характеристики двигателя, в следствие чего их содержание регулируется различными международными стандартами. В частности методы описывают определение хлорида и сульфата в бензино-этанольных смесях методом ионной хроматографии.

Простое удаление матрицы образца

Для проведения анализа анионов методом ионной хроматографии — мешающая матрица топлива должна быть удалена. Самый эффективный и простой путь для данной задачи: Metrohm-технология инлайд удаления матрицы образцы. В таком анале топливо напрамую вводится в предконцтрирующую колонку высокой емкости. В то время как анионы проходят через колонку, матрица топлива удаляется из колонки промывочным раствором. Затем анионы элюируются на аналитической колонки.

Читайте также:  Анализ двух проб сточной воды

Глицерин в биодизеле

При производстве биодизеля из растительных масел и животных жиров происходит образование свободных или связанных глицеринов (моноглицериды и диглицериды), являющихся побочными продуктами переэтерификации триглицеридов. Недостаточность переэтерификации и/или разделения глицеринов приводят к загрязнению биотовлива, что ускоряет его процесс старения и приводит к отложениям в двигателе, которые способствуют засорению фильтров.

Для обеспечения должно работы двигателя американским ASTM D 6751 и европейским EN 14214 стандартами введен лимит на максиальной содержание глицерина (свободного и связанного) равный 0,24 и 0,25%, соответственно. Определение свободного и связанного глицерина проводят с использованием метода ионной хроматографии с амперометрическим детектированием, в соответствиии со стандартом ASTM.

Определение глицерина с использованием амперометрического детектирования. Элюент: 100 ммол/л NaOH, 1 мл/мин. Температура колонки: 35°С. Объем образца: 20 мкл. Параметры детектор: золотой рабочий электрод, режим PAD, E1/t1 = + 400мВ/400 мс, E2/t2 = + 750мВ/200 мс, E3/t3 = — 150мВ/400мс, время измерения: 100 мс, диапазон измерения: 5 мкА.

Стандарт Образец Параметр
ГОСТ Р 54277-2010 Этанольное топливо Неорганические хлориды и сульфаты
DIN EN 15492 Этанол в качестве компонента бензиновой смеси Неорганические хлориды и сульфаты
ASTM D7319 Этанольное и бутальное топливо Неорганические хлориды и сульфаты
ASTM D7328 Этанольное топливо Неорганические хлориды и сульфаты
ASTM D 7591 Биодизельные смеси Общей и свободный глицерин
EN 14214 Биодизельные смеси Общей и свободный глицерин
ASTM D7359 Ароматические углеводороды Галогены и сера
UOP 991 Галогены в жидких органических веществах Галогены и сера

Есть вопросы?

Цены на оборудование и расходные материалы Metrohm, а также другую интересующую о нашем оборудовании Вы можете узнать, заполнив форму обратной связи.

Монография: Практическая ионная хроматография

Хотите больше узнать об основах ионной хроматографии и её применении?

источник

ПНД Ф 14.2:4.176-2000
Количественный химический анализ вод. Методика определения содержания анионов (хлорид-, сульфат-, нитрат-, бромид- и йодид-ионов) в природных и питьевых водах методом ионной хроматографии

Купить ПНД Ф 14.2:4.176-2000 — бумажный документ с голограммой и синими печатями. подробнее

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО «ЦНТИ Нормоконтроль».

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Нормативный документ устанавливает методику количественного химического анализа проб воды с целью определения содержания анионов (хлорид-ионов, сульфат-ионов, нитрат-ионов, бромид-ионов и йодид-ионов) методом ионной хроматографии. Методика распространяется на следующие объекты анализа: воды питьевые, в том числе расфасованные в емкости, и природные, в том числе поверхностные и подземные источники водоснабжения.

1 Общие положения и область применения

3 Приписанные характеристики показателей точности измерений

5 Средства измерений, вспомогательное оборудование, лабораторная посуда, реактивы и материалы

5.1 Средства измерений, вспомогательное оборудование, лабораторная посуда

6 Условия безопасного проведения работ

7 Требования к квалификации оператора

8 Условия выполнения измерений

10 Подготовка к выполнению измерений

10.1 Подготовка оборудования

10.2 Подготовка хроматографической колонки

10.3 Приготовление элюента

10.4 Приготовление градуировочных растворов

10.5 Установление градуировочной характеристики

10.6 Контроль стабильности градуировочной характеристики

11.1 Подготовка оборудования

12 Обработка результатов измерений

13 Оформление результатов измерений

14 Оценка приемлемости результатов измерений

15 Контроль точности результатов измерений

Приложение 1. Блок-схема проведения анализа

Приложение 2. Условия подготовки реактивов для приготовления растворов с массовой концентрацией анионов 1000 мг/дм3

Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку:

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ
ФЕДЕРАЦИИ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ

Государственного комитета РФ

по охране окружающей среды

___________ А.А. Соловьянов

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
МАССОВЫХ КОНЦЕНТРАЦИЙ АНИОНОВ (ХЛОРИДОВ,
СУЛЬФАТОВ, НИТРАТОВ, БРОМИДОВ И ЙОДИДОВ)
В ПРИРОДНЫХ И ПИТЬЕВЫХ, ВОДАХ
МЕТОДОМ ИОННОЙ ХРОМАТОГРАФИИ

Методика допущена для целей государственного
экологического контроля

Методика рассмотрена и одобрена Главным управлением аналитического контроля и метрологического обеспечения природоохранной деятельности (ГУАК) и Главным метрологом Госкомэкологии России.

Регистрационный код МВИ по Федеральному реестру ФР.1.31.2001.00338

Разработчик: Аналитический центр контроля качества воды ЗАО «РОСА»

Настоящий документ устанавливает методику определения массовых концентраций анионов — хлоридов, сульфатов, нитратов, бромидов и йодидов в питьевых и природных водах методом ионной хроматографии.

Диапазон измеряемых концентраций приведен в таблице 1.

Блок-схема анализа приведена в Приложении 1.

Диапазоны измеряемых концентраций анионов в питьевых и природных водах

Диапазон определяемых концентраций, мг/дм 3

Диапазон концентраций, требующий разбавления, мг/дм 3

Определению бромидов и йодидов мешают хлориды в концентрации более 200 мг/дм 3 и сульфаты в концентрации более 300 мг/дм 3 . Мешающее влияние можно устранить разбавлением пробы элюентом, но эта процедура приведет к увеличению предела определения указанных анионов в пробе.

Органические соединения в количествах, обычно присутствующих в питьевых и природных водах, не мешают определению анионов.

На результаты анализов не влияет рН пробы в диапазоне от 2 до 9 ед. рН. В случае, если рН пробы выходит за рамки указанного диапазона необходимо довести рН до нужного значения путем разбавления пробы элюентом.

Настоящая методика обеспечивает получение результатов измерений с погрешностями, не превышающими значений, приведенных в таблице 2.

Массовые концентрации анионов определяют методом ионной хроматографии с использованием кондуктометрического детектирования после подавления фоновой электропроводности элюента.

Диапазон измеряемых концентраций, относительные показатели повторяемости, воспроизводимости, правильности и точности методики при доверительной вероятности Р = 0,95

(относительное среднеквадратическое отклонение повторяемости), ± sr, %

(относительное среднеквадратическое отклонение воспроизводимости), ± sR, %

(границы относительной систематической погрешности при вероятности Р = 0,95), ± dc, %

(границы относительной погрешности при вероятности Р = 0,95), ± d, %

— Весы лабораторные общего назначения по ГОСТ 24104 с наибольшим пределом взвешивания 1000 г и ценой деления 0,1 г.

— Весы аналитические по ГОСТ 24104, с наибольшим пределом взвешивания 210 г и ценой деления 0,0001 г.

— Государственные стандартные образцы с аттестованным содержанием хлоридов, бромидов, нитратов, сульфатов и йодидов в диапазоне концентраций от 0,1 до 10 г/дм 3 с погрешностью не более 1 %.

Примечание: В случае использования солей натрия и калия для приготовления градуировочных растворов необходимо перед применением их дополнительно высушить. Условия подготовки реактивов для приготовления градуировочных растворов приведены в Приложении 2.

— Иономер универсальный или рН-метр любой марки со стеклянным и вспомогательным электродами.

— Колбы мерные вместимостью 1000, 500, 100, 50 см 3 по ГОСТ 1770.

— Кондуктометр, позволяющий проводить измерение электропроводности проб в диапазоне от 0,1 мкСм/см до 200 мСм/см.

— Пипетки градуированные вместимостью 1, 2, 5, 10, 20, 25 см 3 по ГОСТ 29227.

— Пробирки градуированные вместимостью 25 см 3 по ГОСТ 1770.

— Хроматограф ионный DX-100, DX-120, DX-500 (фирма DIONEX, США) или любой другой, состоящий из следующих элементов:

— колонка аналитическая IonPac AS4A-SC (4´250 мм) с предколонкой IonPac AG4A-SC (4´50 мм), или IonPac AS12A (4´200 мм) с предколонкой IonPac AG12A (4´50 мм) или IonPac AS9-SC (4´250 мм) с предколонкой IonPac AG9-SC (4´50 мм) (производства DIONEX);

— анионный подавитель фоновой электропроводности элюента (супрессор), например ASRS-ULTRA (4 мм);

— детектор кондуктометрический с проточной ячейкой;

— насос с низкой пульсацией, обеспечивающий объёмную скорость подачи в диапазоне 0,5 — 4 см 3 /мин;

— петля-дозатор объемом 0,025 или 0,050 см 3 .

Допускается использование других средств измерения, метрологические характеристики которых не хуже, чем у вышеуказанных.

— Автосамплер для автоматической загрузки образца в петлю-дозатор, например, AS-40 (фирма DIONEX, США).

— Баня ультразвуковая любого типа.

— Виалы полиэтиленовые с фильтрующими крышками.

— Дистиллятор или установка любого типа для получения дистиллированной воды по ГОСТ 6709 или деминерализованной воды степени чистоты 2 по ГОСТ Р 52501.

— Насадки фильтрующие к шприцам с диаметром пор 0,45 мкм, например, марки MILLEX-HA (фирма Millipore), для фильтрования пробы.

— Персональный компьютер с программой для сбора и обработки хроматографических данных.

— Полиэтиленовые емкости или емкости из стекла для хранения проб вместимостью 100 — 500 см 3 .

— Поршень для установки фильтрующих крышек виал.

— Резервуары полиэтиленовые с плотно закрывающимися крышками для элюента и дистиллированной воды.

— Стаканы вместимостью 50 см 3 по ГОСТ 25336.

— Фильтры мембранные диаметром 47,5 мм с диаметром пор 0,45 мкм (ANALYPORE или MILLIPORE) для фильтрования элюента;

— Фильтровальная стеклянная установка для вакуумного фильтрования с колбой вместимостью 1000 см 3 .

— Холодильник бытовой любого типа, обеспечивающий хранение проб и растворов при температуре 2 — 6° С.

— Шприцы одноразовые медицинские вместимостью 10 см 3 .

— Вода дистиллированная по ГОСТ 6709 или деминерализованная по ГОСТ Р 52501 (2-ой степени чистота) с удельной электропроводностью не более 1 мкСм/см.

— Натрий двууглекислый (натрия гидрокарбонат) производства фирмы Merck с содержанием основного вещества не менее 99,5 %.

— Натрий углекислый безводный (натрия карбонат) производства фирмы Merck с содержанием основного вещества не менее 99,95 %.

Допускается использование реактивов более высокой квалификации.

4.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

4.2. При работе с оборудованием необходимо соблюдать правила электробезопасности по ГОСТ 12.1.019.

4.3. Обучение работающих безопасности труда должно быть организовано в соответствии с ГОСТ 12.0.004.

4.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой хроматографического анализа и изучивший правила эксплуатации используемого оборудования.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

относительная влажность воздуха не более 80 % при температуре 25 °С,

Пробы отбирают в полиэтиленовые или стеклянные флаконы. При определении в пробе йодидов и бромидов необходимо защищать пробу от попадания прямых солнечных лучей или отбирать пробу во флакон из темного стекла. Объем отбираемый пробы не менее 0,1 дм 3 .

Отобранную пробу анализируют в течение суток. Если такой возможности нет, то пробу фильтруют через мембранный фильтр с диаметром пор 0,45 мкм. При определении в одной пробе комплекса анионов ее можно хранить после фильтрования не более суток при температуре 2 — 6 °С. При анализе отдельных анионов рекомендованы следующие условия хранения пробы:

бромиды — не более 2 суток при температуре 2 — 6 °С в защищенном от света месте;

йодиды — не более суток при температуре 2 — 6 °С в защищенном от света месте;

нитраты — не более 4 суток при температуре 2 — 6 °С;

сульфаты — не более 7 суток при температуре 2 — 6 °С;

хлориды — не более 30 суток при комнатной температуре.

При отборе проб составляют сопроводительный документ по утвержденной форме, в котором указывают:

— место, время и дата отбора;

— должность, фамилия отбирающего пробу.

Ионный хроматограф и автосамплер готовят к работе в соответствии с соответствующими инструкциями по эксплуатации.

Хроматограф выводят на режим при следующих условиях:

Давление сжатого воздуха в резервуаре с элюентом

При установке новой колонки (аналитической или предколонки) ее предварительно промывают элюентом не менее 2 часов до установления стабильной базовой линии. Перед выполнением серии анализов в качестве первой пробы анализируют деминерализованную воду (холостая проба). Этот ввод позволяет определить готовность системы к анализу.

Элюенты применяют в соответствии с рекомендациями фирмы-изготовителя колонок. В зависимости от типа разделительной колонки готовят соответствующий элюент.

Основной раствор готовят путем растворения в дистиллированной воде 14,280 г NaHCO3 и 19,080 г Na23 в мерной колбе вместимостью 1 дм 3 . Срок хранения раствора 6 месяцев при температуре 2 — 6 °С.

Рабочий раствор элюента готовят путем разведения основного раствора элюента дистиллированной водой в 100 раз. Раствор фильтруют на вакуумной фильтровальной установке через мембранный фильтр (диаметр пор 0,45 мкм) и используют свежеприготовленным.

Основной раствор элюента готовят путем растворения в дистиллированной воде 21,978 г Na23 и 6,301 г NaHCО3 в мерной колбе вместимостью 1 дм 3 . Срок хранения раствора 6 месяцев при температуре 2 — 6 °С.

Рабочий раствор элюента готовят путем разведения основного раствора элюента дистиллированной водой в 100 раз. Раствор фильтруют через мембранный фильтр (диаметр пор 0,45 мкм) и используют свежеприготовленным.

Приготовление 0,5 моль/дм 3 раствора Na23. Навеску 26,49 г натрия углекислого растворяют в 400 см дистиллированной воды в колбе на 500 см 3 . Объём раствора доводят до метки дистиллированной водой.

Читайте также:  Анализ дистиллированной воды на качество

Приготовление 0,5 моль/дм 3 раствора NaHCО3. Навеску 21,00 г натрия двууглекислого растворяют в 400 см 3 дистиллированной воды в колбе на 500 см 3 . Объём раствора доводят до метки дистиллированной водой.

Рабочий раствор элюента готовят в мерной колбе вместимостью 1 дм 3 путем разведения 5,4 см 3 раствора 0,5 моль/дм 3 NaHCО3 и 0,6 см 3 раствора 0,5 моль/дм 3 NaHCО3 в дистиллированной воде. Объем раствора доводят до метки дистиллированной водой. Раствор фильтруют через мембранный фильтр (диаметр пор 0,45 мкм) и используют свежеприготовленным.

После приготовления основной раствор элюента помещают в ультразвуковую баню на 15 минут.

В качестве основных градуировочных растворов используют государственные стандартные образцы с аттестованным содержанием хлоридов, бромидов, нитратов, сульфатов и йодидов.

Рабочие градуировочные растворы анионов готовят из ГСО путем соответствующего разведения деминерализованной водой. Рабочие градуировочные растворы стабильны в течение 1 месяца при температуре 2 — 6 °С.

Шкалу смешанных градуировочных растворов готовят непосредственно перед использованием. Для этого в пять мерных колб вместимостью 100 см 3 последовательно вносят указанные в таблице 3 количества соответствующих рабочих градуировочных растворов и доводят до метки рабочим раствором элюента.

Приготовление шкалы градуировочных растворов

Номер градуировочного раствора

Концентрация хлоридов в градуировочном растворе, мг/дм 3

Объем рабочего раствора, см 3 /

Концентрация рабочего раствора, мг/дм 3

Концентрация нитратов в градуировочном растворе, мг/дм 3

Объем рабочего раствора, см 3 /

Концентрация рабочего раствора, мг/дм 3

Концентрация сульфатов в градуировочном растворе, мг/дм 3

Объем рабочего раствора, см 3 /

Концентрация рабочего раствора, мг/дм 3

Концентрация бромидов в градуировочном растворе, мг/дм 3

Объем рабочего раствора, см 3 /

Концентрация рабочего раствора, мг/дм 3

Концентрация йодидов в градуировочном растворе, мг/дм 3

Объем рабочего раствора, см 3 /

Концентрация рабочего раствора, мг/дм 3

Сроки хранения смешанных растворов анионов, используемых для проверки стабильности градуировочной характеристики, с концентрациями до 1 мг/дм 3 вкл. — 2 недели при температуре 2 — 6 °С, с концентрациями свыше 1 мг/дм 3 — 1 месяц при температуре 2 — 6 °С.

Примечание. Допускается готовить смешанные градуировочные растворы II, III, IV с концентрациями анионов, отличающимися от указанных в таблице 3, при условии, что концентрации градуировочных растворов равномерно распределены во всем диапазоне градуировки.

Градуировку прибора проводят в условиях, указанных в п. 8.1.

Градуировку осуществляют по 5 градуировочным растворам с проведением 2 параллельных измерений для каждого раствора. Градуировочные характеристики устанавливаются с помощью программы для сбора и обработки хроматографических данных с использованием метода наименьших квадратов.

Градуировка проводится не реже 1 раза в 3 месяца, а также при замене колонок, партии реактивов, после ремонта хроматографа.

Контроль стабильности градуировочной характеристики проводят по одной из точек диапазона измеряемых концентраций по каждому аниону перед проведением серии измерений и через каждые 10 — 15 проб.

Градуировочную характеристику считают стабильной, если измеренное значение концентрации любого из анионов в градуировочном растворе отличается от аттестованного значения не более чем на 0,8d (d — показатель точности, приведенный в табл. 2). Если условие стабильности градуировочной характеристики не выполняется, необходимо выполнить повторное измерение для этого раствора с целью исключения результата измерения, содержащего грубую погрешность. Если градуировочная зависимость нестабильна, выясняют и устраняют причины нестабильности и повторяют контроль с использованием того же или других градуировочных растворов, предусмотренных методикой. При повторном превышении указанного норматива заново проводят градуировку системы.

При проведении контроля стабильности градуировочной характеристики проводят проверку времен удерживания анионов. В случае обнаружения отклонения времени удерживания от ранее установленного более чем на 10 % для любого из анализируемых анионов, проводят корректировку времени удерживания.

Хроматограф и автосамплер выводят на режим в соответствии с инструкциями по эксплуатации.

Перед вводом образца в хроматограф измеряют электропроводность пробы, при необходимости разбавляют рабочим раствором элюента и фильтруют через мембранный фильтр с диаметром пор 0,45 мкм, отбрасывая первую порцию фильтрата (2 — 3 см 3 ).

Для обеспечения пределов определения для бромидов и йодидов, указанных в таблице 1, пробу разбавляют не более чем в 3 раза. В случаях, когда требуется большее разбавление пробы, определение бромидов и йодидов на уровне нижней точки диапазона измеряемых концентраций невозможно.

Предварительно ополоснув виалу подготовленной пробой, осторожно заполняют ее, не допуская образования пузырьков воздуха. Заполненную виалу закрывают фильтрующей крышкой и проверяют на отсутствие в ней пузырьков воздуха легким постукиванием. Заполненные виалы с образцами проб устанавливают в автосамплер и проводят хроматографический анализ в условиях, приведенных в п. 8.1.

На полученной хроматограмме анионы идентифицируют по временам удерживания.

Массовую концентрацию анионов в анализируемой пробе рассчитывают с помощью программы для сбора и обработки хроматографических данных или рассчитывают по формуле в соответствии с установленной градуировочной характеристикой и с учетом разбавления пробы:

X — концентрация определяемого аниона в пробе, мг/дм 3 ;

Сст — концентрация определяемого аниона в градуировочном растворе, мг/дм 3 ;

Sx — площадь пика определяемого аниона в пробе, мВ×с;

Sст — площадь пика определяемого аниона в градуировочном растворе, мВ×с;

V — объем пробы, взятый для анализа, см 3 ;

Vк — объем колбы, в которой проводили разбавление, см 3 .

Результаты измерений в протоколе представляют в виде:

где X — результат измерений, полученный в соответствии с настоящей методикой;

D — абсолютное значение показателя точности методики, D = d×0,01×X, мг/дм 3 , где d — относительное значение показателя точности методики. Значение d приведено в таблице 2.

Результаты измерений заносят в протокол анализа с точностью до:

при содержании аниона менее 0,1 мг/дм 3

12.1. При необходимости проверку приемлемости результатов измерений, полученных в условиях повторяемости (сходимости) осуществляют в соответствии с требованиями раздела 5.2. ГОСТ Р ИСО 5725-6-2002.

За результат измерений Хср принимают среднее арифметическое значение двух параллельных определений Х1 и Х2

для которых выполняется следующее условие:

где r — предел повторяемости, значения которого приведены в таблице 4.

При невыполнении условия (1) могут быть использованы методы проверки приемлемости результатов параллельных определений, и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6.

12.2. При необходимости проверку приемлемости результатов измерений, полученных в условиях воспроизводимости, проводят с учетом требований раздела 5.3 ГОСТ Р ИСО 5725-6-2002. Расхождение между результатами измерений, полученными двумя лабораториями, не должно превышать предела воспроизводимости (R). Значения R приведены в таблице 4.

13.1. Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:

— контроль исполнителем процедуры выполнения измерений (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);

— контроль стабильности результатов измерений (на основе контроля стабильности погрешности и среднеквадратического отклонения повторяемости и внутрилабораторной прецизионности).

13.2. Контроль процедуры выполнения измерений с использованием образцов для контроля.

Анализируют образец для контроля, приготовленный с использованием ГСО. Результат контрольной процедуры Кк рассчитывают по формуле:

С — аттестованное значение аниона в образце для контроля.

Пределы повторяемости и воспроизводимости результатов измерений при доверительной вероятности Р = 0,95

Диапазон измерений, мг/дм 3

(относительное значение допускаемого расхождения между двумя параллельными результатами измерений), r, %

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

источник

Ионная хроматография – это высокоэффективная жидкостная хроматография для разделения катионов и анионов на ионообменниках низкой емкости. Широкое распространение ионной хроматографии обусловлено рядом ее достоинств:

– возможность определять большое число неорганических и органических ионов, а также одновременно определять катионы и анионы;

– высокая чувствительность определения (до 1 нг/мл без предварительного концентрирования;

– высокая селективность и экспрессность;

– малый объем анализируемой пробы (не более 2 мл образца);

– широкий диапазон определяемых концентраций (от 1 нг/мл до

– возможность использования различных детекторов и их комбинаций, что позволяет обеспечить селективность и малое время определения;

– возможность полной автоматизации определения;

– во многих случаях полное отсутствие предварительной пробоподготовки.

Вместе с тем, как и любой аналитический метод, ионная хроматография не лишена недостатков, к которым можно отнести:

– сложность синтеза ионообменников, что значительно затрудняет развитие метода;

– более низкую по сравнению с ВЭЖХ эффективность разделения;

– необходимость высокой коррозионной стойкости

хроматографической системы, особенно при определении катионов.

Метод основан на эквивалентном обмене ионов раствора на ионы неподвижной твердой фазы. Свойствами ионообменников обладает довольно большое число различных природных и синтетических соединений. Наибольшее практическое применение нашли синтетические органические иониты. Большинство этих ионообменников имеет матрицу из сополимера стирола с дивинилбензолом. Этот сополимер легко образуется и обладает достаточно высокой физической и химической устойчивостью в различных условиях. Полимер может быть использован в качестве ионообменника только после введения в матрицу ионогенных групп. Ионогенная группа состоит из двух ионов. Один из них прочно фиксируется за счет ковалентной связи и называется функциональной группой (фиксированным ионом). Ионы противоположенного заряда связываются с фиксированным ионом за счет электростатического

взаимодействия. Они называются противоионами. Эти ионы могут обмениваться на эквивалентное количество ионов того же заряда из раствора. В зависимости от силы сопряженной кислоты (или основания) фиксированного иона ионообменники делятся на сильнокислотные, среднекислотные и слабокислотные (или основные). Классификация ионообменников дана в табл. 18.

Таблица 18. Классификация ионообменников

Выбор неподвижной фазы имеет большое значение при проведении любого хроматографического разделения. Синтез сорбентов для ионной хроматографии затруднен, поскольку к ним предъявляется довольно много требований:

– сорбент должен иметь очень низкую ионообменную емкость мэкв/г). Это связано с использованием кондуктометрического детектирования, при котором необходимы элюенты (растворы кислот, солей, оснований) с концентрацией менее 0,01 М. Для эффективного разделения такими разбавленными элюентами требуются низкоемкостные ионообменные сорбенты;

– диаметр сорбента не должен превышать 50 мкм (обычно он равен мкм). Только в этом случае можно достичь высокой эффективности разделения;

– зерна сорбента должны обладать высокой механической прочностью и устойчивостью к давлению, которое возникает при работе с мелкодисперсной неподвижной фазой;

– сорбент должен обладать высокой химической устойчивостью по отношению к элюирующему раствору. Он должен сохранять

стабильность в широком интервале рН; Этим требованиям удовлетворяют

(пелликулярные) ионообменники, которые состоят из твердого инертного ядра, покрытого тонким слоем ионита. На таких сорбентах быстро устанавливается равновесие, поскольку диффузия в тонкую ионообменную пленку занимает мало времени. В результате ускоряется хроматографический процесс и достигается высокая эффективность разделения. Сорбенты для ионной хроматографии и их основные характеристики приведены в табл. 19.

Разделение катионов происходит на катионообменниках, которые содержат фиксированные группы COO — и катионы в качестве противоиона. Равновесие ионного обмена описывается схемой

Подвижной фазой при разделении катионов чаще всего являются растворы М) соляной, азотной кислот или солей. Разделяемые катионы элюируются с колонки в результате их замещения в фазе ионообменника катионами, содержащимися в подвижной фазе.

Разделение анионов проводится на анионообменниках, которые

Таблица 19. Полимерные ионообменники для ионной хроматографии

содержат фиксированные группы и анионы как противоионы. Равновесие ионного обмена описывается схемой

nR 1 R 3 N + OH + An n- = (R 1 R 3 N + ) n An + nOH —

Наиболее распространенными элюентами при определении анионов являются растворы карбоната, гидрокарбоната или гидроксида натрия. Разделяемые анионы элюируются с колонки анионами, содержащимися в подвижной фазе.

Время и порядок элюирования катионов и анионов зависит от их заряда и размера гидратированного иона. Ионы удерживаются тем сильнее, чем больше их заряд и меньше размер гидратированного иона. Элюирующая способность подвижной фазы возрастает, с увеличением концентрации ионов, содержащихся в ней, и их сродства к ионообменнику, которое зависит от заряда и размера элюирующего иона. При использовании в элюентах солей слабых кислот их элюирующая способность зависит от рН раствора, поскольку при изменении рН изменяется состав раствора.

В ионной хроматографии наиболее часто используют кондуктометрические детекторы, которые измеряют низкочастотную проводимость элюата. Они просты по конструкции, имеют малый рабочий объем (до 0,5 мкл) и широкий линейный диапазон ГГ, который достигает 10 6 . Детектор состоит из проточной ячейки, в которую подается анализируемый раствор, индикатора и системы регистрации кондуктометрического сигнала. Индикатор градуируется в единицах илиКондуктометрическая ячейка представляет собой камеру малого объема, соединенную с двумя электродами, сделанными из платины, золота, нержавеющей стали или другого инертного проводящего материала. Сопротивление ячейки, как правило, измеряют с помощью моста Уитстона. Электропроводность большинства растворов возрастает примерно на 2% при увеличении температуры на 1 0 С, поэтому в кондуктометрических детекторах предусмотрена температурная компенсация.

Читайте также:  Анализ фенола в сточных водах

Поскольку в качестве элюентов в ионной хроматографии используют растворы сильных электролитов, для снижения их фоновой электропроводности после разделяющей колонки устанавливают вторую колонку – подавляющую (компенсационную), где элюент преобразуется в воду или раствор, имеющий очень низкую электропроводность, а

разделяемые ионы в сильные электролиты. Такой вариант получил название двухколоночной ионной хроматографии .

Подавление фоновой электропроводности элюента можно проводить также с помощью специальных устройств. Наибольшее распространение приобретают системы капиллярного мембранного подавления фоновой электропроводности. Принцип действия таких систем аналогичен подавляющим колонкам с той лишь разницей, что источником иона для подавления является не смола, а раствор данного иона, находящийся во внешнем пространстве устройства. Существуют системы подавления, использующие помимо мембранных механизмов подавления, приложенное к поверхностям мембран электрическое поле. Такие системы называются мембранными электродиализными системами подавления фоновой электропроводности.

Важным достоинством двухколоночного варианта ионной хроматографии являются низкие пределы обнаружения ионов и линейность градуировочного графика в широком интервале их концентраций. Это дает возможность использовать метод стандартов в количественном анализе без обязательного построения градуировочного графика.

При использовании элюентов с низкой электропроводностью кондуктометрический детектор присоединяют непосредственно к разделяющей колонке. Такой вариант ионной хроматографии получил название одноколоночной ионной хроматографии .

Для сохранения высокой чувствительности определения, которая в двухколоночном варианте достигается благодаря использованию системы подавления, в одноколоночном варианте используют элюенты с низкой электропроводностью, но в то же время с высоким сродством к анионообменнику, что позволяет достичь быстрого и селективного разделения определяемых анионов.

В качестве элюентов в этом варианте применяют ароматические кислоты или их соли, величина рН элюентов изменяется от 3 до 8. В данном случае можно использовать не только кондуктометрический, но и другие детекторы, например, спектрофотометрический, люминесцентный, полярографический. В этом состоит еще одно преимущество одноколоночного варианта. Однако пределы обнаружения ионов в одноколоночном варианте обычно выше, чем в двухколоночном, а линейность градуировочного графика сохраняется в более узком интервале их концентраций.

Ионная хроматография весьма эффективный метод определения ионов, на рис. 25 и 26 показаны примеры разделения сложных смесей катионов и анионов. Ионная хроматография с кондуктометрическим детектором лучший метод определения неорганических анионов. Разделение проводят на ионообменниках низкой емкости (менее 0,1мМ/г) чаще всего Нижняя граница определяемых концентраций составляетнг/л Воспроизводимость по высотам и площадям : S r не более 0,05.

Наиболее часто ионную хроматографию используют для определения:

– анионов неорганических кислот (HCl, HNO 3 , H 2 S, H 3 BO 3 и др.);

источник

Ионная хроматография – это высокоэффективная жидкостная хроматография для разделения катионов и анионов на ионообменниках низкой емкости. Широкое распространение ионной хроматографии обусловлено рядом ее достоинств:

– возможность определять большое число неорганических и органических ионов, а также одновременно определять катионы и анионы;
– высокая чувствительность определения (до 1 нг/мл без предварительного концентрирования;
– высокая селективность и экспрессность;
– малый объем анализируемой пробы (не более 2 мл образца);

– широкий диапазон определяемых концентраций (от 1 нг/мл до 10000 мг/л);
– возможность использования различных детекторов и их комбинаций, что позволяет обеспечить селективность и малое время определения;
– возможность полной автоматизации определения;
– во многих случаях полное отсутствие предварительной пробоподготовки.

Вместе с тем, как и любой аналитический метод, ионная хроматография не лишена недостатков, к которым можно отнести:

– сложность синтеза ионообменников, что значительно затрудняет развитие метода;
– более низкую по сравнению с ВЭЖХ эффективность разделения;
– необходимость высокой коррозионной стойкости хроматографической системы, особенно при определении катионов.

Метод основан на эквивалентном обмене ионов раствора на ионы неподвижной твердой фазы. Свойствами ионообменников обладает довольно большое число различных природных и синтетических соединений. Наибольшее практическое применение нашли синтетические органические иониты. Большинство этих ионообменников имеет матрицу из сополимера стирола с дивинилбензолом. Этот сополимер легко образуется и обладает достаточно высокой физической и химической устойчивостью в различных условиях. Полимер может быть использован в качестве ионообменника только после введения в матрицу ионогенных групп. Ионогенная группа состоит из двух ионов. Один из них прочно фиксируется за счет ковалентной связи и называется функциональной группой (фиксированным ионом). Ионы противоположенного заряда связываются с фиксированным ионом за счет электростатического взаимодействия. Они называются противоионами. Эти ионы могут обмениваться на эквивалентное количество ионов того же заряда из раствора. В зависимости от силы сопряженной кислоты (или основания) фиксированного иона ионообменники делятся на сильнокислотные, среднекислотные и слабокислотные (или основные). Классификация ионообменников дана в табл. 18.

Выбор неподвижной фазы имеет большое значение при проведении любого хроматографического разделения. Синтез сорбентов для ионной хроматографии затруднен, поскольку к ним предъявляется довольно много требований:

– сорбент должен иметь очень низкую ионообменную емкость (0,001-0,1 мэкв/г). Это связано с использованием кондуктометрического детектирования, при котором необходимы элюенты (растворы кислот, солей, оснований) с концентрацией менее 0,01 М. Для эффективного разделения такими разбавленными элюентами требуются низкоемкостные ионообменные сорбенты;

– диаметр сорбента не должен превышать 50 мкм (обычно он равен 5–10 мкм). Только в этом случае можно достичь высокой эффективности разделения;

– зерна сорбента должны обладать высокой механической прочностью и устойчивостью к давлению, которое возникает при работе с мелкодисперсной неподвижной фазой;

– сорбент должен обладать высокой химической устойчивостью по отношению к элюирующему раствору. Он должен сохранять стабильность в широком интервале рН;

Этим требованиям удовлетворяют поверхностно-пористые (пелликулярные) ионообменники, которые состоят из твердого инертного ядра, покрытого тонким слоем ионита. На таких сорбентах быстро устанавливается равновесие, поскольку диффузия в тонкую ионообменную пленку занимает мало времени. В результате ускоряется хроматографический процесс и достигается высокая эффективность разделения. Сорбенты для ионной хроматографии и их основные характеристики приведены в табл. 19.

Разделение катионов происходит на катионообменниках, которые содержат фиксированные группы SO3-, PO3-, COO- и катионы в качестве противоиона. Равновесие ионного обмена описывается схемой

Подвижной фазой при разделении катионов чаще всего являются растворы ((1-5).10-3 М) соляной, азотной кислот или солей. Разделяемые катионы элюируются с колонки в результате их замещения в фазе ионообменника катионами, содержащимися в подвижной фазе.

Разделение анионов проводится на анионообменниках, которые

содержат фиксированные группы -NR3, -NHR2, -NH2R и анионы как противоионы. Равновесие ионного обмена описывается схемой

Наиболее распространенными элюентами при определении анионов являются ((1-5).10-3M) растворы карбоната, гидрокарбоната или гидроксида натрия. Разделяемые анионы элюируются с колонки анионами, содержащимися в подвижной фазе.

Время и порядок элюирования катионов и анионов зависит от их заряда и размера гидратированного иона. Ионы удерживаются тем сильнее, чем больше их заряд и меньше размер гидратированного иона. Элюирующая способность подвижной фазы возрастает, с увеличением
концентрации ионов, содержащихся в ней, и их сродства к ионообменнику, которое зависит от заряда и размера элюирующего иона. При использовании в элюентах солей слабых кислот их элюирующая способность зависит от рН раствора, поскольку при изменении рН изменяется состав раствора.

В ионной хроматографии наиболее часто используют кондуктометрические детекторы, которые измеряют низкочастотную проводимость элюата. Они просты по конструкции, имеют малый рабочий объем (до 0,5 мкл) и широкий линейный диапазон ГГ, который достигает 106. Детектор состоит из проточной ячейки, в которую подается анализируемый раствор, индикатора и системы регистрации кондуктометрического сигнала. Индикатор градуируется в единицах Ом-1 или мкОм-1. Кондуктометрическая ячейка представляет собой камеру малого объема, соединенную с двумя электродами, сделанными из платины, золота, нержавеющей стали или другого инертного проводящего материала. Сопротивление ячейки, как правило, измеряют с помощью моста Уитстона. Электропроводность большинства растворов возрастает примерно на 2% при увеличении температуры на 10С, поэтому в кондуктометрических детекторах предусмотрена температурная
компенсация.

Поскольку в качестве элюентов в ионной хроматографии используют растворы сильных электролитов, для снижения их фоновой электропроводности после разделяющей колонки устанавливают вторую колонку – подавляющую (компенсационную), где элюент преобразуется в
воду или раствор, имеющий очень низкую электропроводность, а разделяемые ионы в сильные электролиты. Такой вариант получил название двухколоночной ионной хроматографии.

Подавление фоновой электропроводности элюента можно проводить также с помощью специальных устройств. Наибольшее распространение приобретают системы капиллярного мембранного
подавления фоновой электропроводности. Принцип действия таких систем аналогичен подавляющим колонкам с той лишь разницей, что источником иона для подавления является не смола, а раствор данного иона, находящийся во внешнем пространстве устройства. Существуют
системы подавления, использующие помимо мембранных механизмов подавления, приложенное к поверхностям мембран электрическое поле. Такие системы называются мембранными электродиализными системами подавления фоновой электропроводности.

Важным достоинством двухколоночного варианта ионной хроматографии являются низкие пределы обнаружения ионов и линейность градуировочного графика в широком интервале их концентраций. Это дает возможность использовать метод стандартов в количественном анализе без обязательного построения градуировочного графика.

При использовании элюентов с низкой электропроводностью кондуктометрический детектор присоединяют непосредственно к разделяющей колонке. Такой вариант ионной хроматографии получил название одноколоночной ионной хроматографии.

Для сохранения высокой чувствительности определения, которая в двухколоночном варианте достигается благодаря использованию системы подавления, в одноколоночном варианте используют элюенты с низкой электропроводностью, но в то же время с высоким сродством к анионообменнику, что позволяет достичь быстрого и селективного разделения определяемых анионов.

В качестве элюентов в этом варианте применяют ароматические кислоты или их соли, величина рН элюентов изменяется от 3 до 8. В данном случае можно использовать не только кондуктометрический, но и другие детекторы, например, спектрофотометрический, люминесцентный, полярографический. В этом состоит еще одно преимущество одноколоночного варианта. Однако пределы обнаружения ионов в одноколоночном варианте обычно выше, чем в двухколоночном, а линейность градуировочного графика сохраняется в более узком интервале их концентраций.

Ионная хроматография весьма эффективный метод определения ионов, на рис. 25 и 26 показаны примеры разделения сложных смесей катионов и анионов. Ионная хроматография с кондуктометрическим детектором лучший метод определения неорганических анионов.
Разделение проводят на ионообменниках низкой емкости (менее 0,1мМ/г) чаще всего поверхностно–модифицированных. Нижняя граница определяемых концентраций составляет 1-10 нг/л Воспроизводимость по высотам и площадям : Sr не более 0,05.

Наиболее часто ионную хроматографию используют для определения:

– анионов неорганических кислот (HCl, HNO3, H2S, H3BO3 и др.);
– моно- и дикарбоновых кислоты;
– щелочных и щелочноземельных металлов;
– анионных комплексов переходных металлов;
– оксоанионов;
– алифатических аминов;
– оксидов азота, серы и фосфора.

Применение для решения экологических задач. Одно из важнейших направлений использования ионной хроматографии – анализ вод. Известно, насколько важно определять компоненты вод разного типа. Среди этих компонентов существенное место занимают неорганические анионы, ионы металлов, ионогенные органические вещества. Ионная хроматография быстро заняла значительное место в ряду аналитических методов, пригодных для определения указанных компонентов. В табл. 20, 21 и на рис. 27, 28 показаны примеры определения ионов в водах.

Для ионохроматографического определения загрязнений в почвах и донных отложениях после их перевода в водную вытяжку используют те же условия, что и в анализе вод. Интересным примером является определение компонентов сложной смеси анионов в городской почве, хроматограмма водной вытяжки такой почвы показана на рис. 29. В городской почве много хлоридов, что является следствием применения противогололедных смесей. Следует отметить, что ионную хроматографию можно использовать и для определения органических ионов, таких как ацетат, формиат, а также алифатических аминов и гидразинов.

В воздухе с помощью ионной хроматографии определяют высокополярные и реакционные соединения. Это, главным образом, агрессивные неорганические газы, альдегиды, амины. Газы поглощают с помощью индивидуальных ловушек и определяют в виде соответствующих анионов. Например, диоксид серы в виде сульфат-иона, диоксид азота – нитрат-иона, хлористый водород – хлорид-иона. Метод определения формальдегида и ацетальдегида основан на их окислении до
формиат- и ацетат-ионов соответственно. Для определения аминов и гидразинов их сорбируют из воздуха на силикагеле и десорбируют водно- метанольным раствором серной кислоты.

Полученный экстракт анализируют, используя сульфокатионообменники и электрохимические детекторы. Высокой чувствительностью к электроактивным соединениям, способным окисляться на стеклоуглеродном электроде, обладает амперометрический детектор. Применение этого детектора позволило повысить чувствительность определения несимметричного диметилгидразина в
водах и почвенных вытяжках.

источник