Меню Рубрики

Анализ хлориды в сточных водах

ПНД Ф 14.1:2.96-97 Количественный химический анализ вод. Методика выполнения измерений массовой концентрации хлоридов в пробах природных и очищенных сточных вод аргентометрическим методом

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ
ФЕДЕРАЦИИ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ

Заместитель Председателя Государственного комитета РФ по охране окружающей среды

_______________ А.А. Соловьянов

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
МАССОВОЙ КОНЦЕНТРАЦИИ ХЛОРИДОВ
В ПРОБАХ ПРИРОДНЫХ И ОЧИЩЕННЫХ СТОЧНЫХ ВОД
АРГЕНТОМЕТРИЧЕСКИМ МЕТОДОМ

Методика допущена для целей государственного экологического контроля

МОСКВА 1997 г.
(издание 2004 г.)

Настоящий документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них массовой концентрации хлоридов в диапазоне от 10,0 до 250 мг/дм 3 титриметрическим методом без разбавления и концентрирования пробы.

Если массовая концентрация хлоридов в анализируемой пробе превышает верхнюю границу, то допускается разбавление пробы дистиллированной водой таким образом, чтобы концентрация хлоридов соответствовала регламентированному диапазону.

Определению мешают высокая цветность, мутность, сероводород и сульфиды, сульфиты, тиосульфаты, цианиды, карбонаты (> 100 мг/дм 3 ), фосфаты (> 25 мг/дм 3 ), аммиак (> 5 мг/дм 3 ), а также высокие (> 10 мг/дм 3 ), концентрации металлов — свинца, железа и др.

Устранение мешающих влияний осуществляется в соответствии с п. 10.

Бромиды и иодиды титруются совместно с хлоридами, однако в воде концентрации их, как правило, не превышают 0,5 мг/дм 3 и их влиянием обычно пренебрегают.

Титриметрический метод определения массовой концентрации хлоридов основан на образовании труднорастворимого осадка хлорида серебра при прибавлении раствора нитрата серебра к анализируемой воде. После полного осаждения хлоридов избыток ионов серебра реагирует с индикатором — хроматом-калия — с образованием красновато-оранжевого осадка хромата серебра. Титрование проводят в нейтральной или слабощелочной среде (рН 7 — 10), поскольку в кислой среде не образуется хромат серебра, а в сильнощелочной возможно образование оксида серебра Ag 2 О.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1.

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости, правильности

Показатель точности (границы относительной погрешности при вероятности
Р = 0,95), ±δ, %

Показатель повторяемости (относительн ое среднеквадратическое отклонение повторяемости),
s r, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости),
s R,%

Показатель правильности (границы относительной систематической погрешности при вероятности
Р = 0,95), ± δс, %

Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и ценой наименьшего деления 0,1 мг любого типа

Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и ценой наименьшего деления 10 мг любого типа

СО с аттестованным содержанием хлоридов с погрешностью не более 1 % при Р = 0,95

Цилиндры мерные или мензурки

Плитка электрическая с закрытой спиралью и регулируемой мощностью нагрева

Печь муфельная, обеспечивающая температуру нагрева до 900 °С

Стаканчики для взвешивания (бюксы)

Колбы конические или плоскодонные

Колонка хроматографическая диаметром 1,5 — 2,0 см и длиной 25 — 30 см

Стекло часовое диаметром 5 — 7 см

Прибор вакуумного фильтрования ПВФ-35 или ПВФ-47

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств измерений и вспомогательных устройств с характеристиками не хуже, чем у приведенных в п.п. 4.1 и 4.2.

Азотная кислота концентрированная

Аммиак водный, концентрированный

Хлорид кальция безводный (для эксикатора)

Бумага индикаторная универсальная

Фильтры мембранные Владипор типа МФАС-МА или МФАС-ОС-2 (0,45 мкм)

или фильтры бумажные обеззоленные «синяя лента»

Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

5.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

5.2. Электробезопасность при работе с электроустановками обеспечивается по ГОСТ 12.1.019.

5.3. Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004

5.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой титриметрического метода анализа.

При выполнении измерении в лаборатории должны быть соблюдены следующие условия:

температура окружающего воздуха

не более 80 % при температуре 25 °С;

8.1. Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб».

8.2. Посуду, предназначенную для отбора и хранения проб, промывают раствором азотной кислоты 1:1, а затем дистиллированной водой.

8.3. Пробы воды отбирают в стеклянные бутыли. При фильтровании через любой фильтр первые порции фильтрата отбрасывают.

Объем отбираемой пробы должен быть не менее 300 см 3 для неокрашенных вод и 400 см 3 для окрашенных.

8.4. Пробы не консервируют, хранят при комнатной температуре.

8.5. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

9.1. Приготовление растворов и реактивов

9.1.1. Раствор хлорида натрия, 0,05 моль/дм 3 эквивалента.

Отвешивают 1,4610 г NaCl, предварительно прокаленного при 500 — 600 °С до полного удаления влаги, количественно переносят его в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде, доводят до метки и перемешивают. Раствор устойчив при хранении в плотно закрытой склянке не более 3 мес.

9.1.2. Раствор нитрата серебра, 0,02 моль/дм 3 эквивалента.

3,40 г AgNO 3 растворяют в дистиллированной воде в мерной колбе вместимостью 1 дм 3 , доводят до метки и перемешивают. При наличии мути раствор отстаивают в течение нескольких дней и затем сливают с помощью сифона прозрачную жидкость в склянку из темного стекла для хранения. Срок хранения не более 2 мес.

Точную концентрацию раствора определяют титрованием стандартного раствора хлорида натрия (п. 9.2) не реже 1 раза в месяц.

9.1.3. Раствор нитрата серебра, 0,05 моль/дм 3 эквивалента.

8,49 г AgNО3 растворяют в дистиллированной воде в мерной колбе вместимостью 1 дм 3 , доводят до метки и перемешивают. При наличии мути раствор отстаивают в течение нескольких дней и затем с помощью сифона переливают прозрачную жидкость в склянку из темного стекла для хранения. Срок хранения не более 2 мес.

Точную концентрацию раствора определяют титрованием стандартного раствора хлорида натрия (п. 9.2) не реже 1 раза в месяц.

9.1.4. Раствор нитрата серебра, 10 %.

10 г нитрата серебра AgNО3 растворяют в 90 см 3 дистиллированной воды и прибавляют 1 — 2 капли концентрированной азотной кислоты. При появлении мути раствор отстаивают не менее суток, затем с помощью сифона переливают прозрачную жидкость в склянку из темного стекла для хранения. Срок хранения не более 3 мес.

9.1.5. Раствор хромата калия, 10 %.

50 г К2СrО4 растворяют в 150 см 3 дистиллированной воды, добавляют для удаления хлоридов 10 % раствор AgNО3 до появления слабого красновато-оранжевого осадка, дают отстояться в течение суток и затем фильтруют через фильтр «белая лента». К фильтрату добавляют 300 см 3 дистиллированной виды и перемешивают. Хранят в склянке из темного стекла не более 3 мес.

9.1.6. Раствор азотной кислоты, 0,1 моль/дм 3 .

3,5 см 3 концентрированной азотной кислоты HNO 3 растворяют в 500 см 3 дистиллированной воды. Раствор устойчив при хранении в плотно закрытой склянке в течение 3 мес.

9.1.7. Раствор азотной кислоты, 2 моль/дм 3 .

35 см 3 концентрированной азотной кислоты HNО3 растворяют в 215 см 3 дистиллированной воды. Раствор устойчив при хранении в плотно закрытой склянке в течение 3 мес.

9.1.8. Раствор соляной кислоты, 1:3.

100 см 3 концентрированной соляной кислоты НСl добавляют к 300 см 3 дистиллированной воды и перемешивают. Раствор устойчив при хранении в плотно закрытой склянке в течение 3 мес.

9.1.9. Раствор гидроксида натрия, 0,4 %.

2 r NaOH растворяют в 500 см 3 дистиллированной воды.

9.1.10. Раствор гидроксида натрия, 8 %.

40 г гидроксида натрия растворяют в 460 см 3 дистиллированной воды.

Растворы гидроксида натрия устойчивы при хранении в плотно закрытой полиэтиленовой посуде в течение 2 мес.

9.1.11. Суспензия гидроксида алюминия.

Подготовку гидроксида алюминия осуществляют в соответствии с Приложением А .

9.1.12. Активированный уголь.

Подготовку активированного угля осуществляют в соответствии с Приложением А.

Для определения точной концентрации рабочего раствора нитрата серебра с приблизительной концентрацией 0,05 моль/дм 3 эквивалента в коническую колбу вместимостью 250 см 3 помещают пипеткой 10 см 3 стандартного раствора хлорида натрия, добавляют 90 см 3 дистиллированной воды и 1 см 3 раствора хромата калия. Тщательно перемешивают и титруют раствором нитрата серебра с концентрацией 0,05 моль/дм 3 эквивалента до появления красновато-оранжевого осадка. Титрование повторяют 2 — 3 раза и при отсутствии расхождения в объемах раствора AgNO 3 более 0,05 см 3 за результат принимают среднюю величину. Одновременно выполняют холостое определение, используя для титрования 100 см 3 дистиллированной воды.

Для определения точной концентрации рабочего раствора нитрата серебра с приблизительной концентрацией 0,02 моль/дм 3 эквивалента в коническую колбу вместимостью 250 см 3 помещают пипеткой 5 см 3 раствора хлорида натрия, добавляют 95 см 3 дистиллированной воды и 1 см 3 раствора хромата калия. Тщательно перемешивают и титруют раствором нитрата серебра с концентрацией эквивалента 0,02 моль/дм 3 до появления красновато-оранжевого осадка. Титрование повторяют 2 — 3 раза и при отсутствии расхождения в объемах раствора AgNO 3 более 0,05 см 3 за результат принимают среднюю величину. Одновременно выполняют холостое определение, используя для титрования 100 см 3 дистиллированной воды. Точную концентрацию растворов AgNO 3 находят по формуле:

где С1 — концентрация раствора хлорида натрия, моль/дм 3 эквивалента;

С2 — концентрация раствора нитрата серебра, моль/дм 3 эквивалента;

V 1 — объем раствора хлорида натрия, см 3 ;

V 2 — объем раствора нитрата серебра, пошедший на титрование раствора хлорида натрия, см 3 ;

V хол — объем раствора нитрата серебра, пошедший на титрование холостой пробы, см 3 .

Мешающее влияние взвешенных и коллоидных веществ устраняют предварительным фильтрованием пробы. Для удаления окрашенных веществ можно использовать два способа.

Способ 1. Анализируемую воду пропускают через колонку с активированным углем со скоростью 4 — 6 см 3 /мин, при этом первые 30 — 40 см 3 воды, прошедшие через колонку, следует отбросить.

Способ 2. 200 см 3 анализируемой воды помешают в коническую колбу вместимостью 500 см 3 , приливают 6 см 3 суспензии гидроксида алюминия и встряхивают до обесцвечивания жидкости. Дают пробе отстояться несколько минут и фильтруют через бумажный фильтр «белая лента». Первые порции фильтрата отбрасывают.

Для удаления карбонатов отмеренную для анализа пробу подкисляют раствором азотной кислоты 2 моль/дм 3 до рН 2 и нагревают несколько минут. После охлаждения доводят рН пробы до величины 7 — 8, добавляя 8 % раствор NaOH. При этом удаляются также сульфиды и сульфиты.

Аммиак удаляют нагреванием пробы, к которой добавлен 8 % раствор гидроксида натрия до рН > 12. После охлаждения пробу нейтрализуют раствором азотной кислоты 2 моль/дм 3 .

Сульфиды, сульфиты, тиосульфата, цианиды удаляют, прибавляя к отмеренной для анализа слабощелочной пробе 1 см 3 пероксида водорода и перемешивая 1 мин.

11.1. Предварительная оценка содержания хлоридов в воде

Перед выполнением определения хлоридов в пробе воды неизвестного состава проводят качественную оценку их содержания. Для этого к 5 см 3 анализируемой воды добавляют 3 капли 10 % раствора AgNO 3 и перемешивают. О содержании хлоридов судят по интенсивности помутнения пробы. В зависимости от предполагаемого содержания хлоридов выбирают объем пробы, отбираемый для титрования (таблица 2 ).

Качественная оценка содержания хлоридов в воде и рекомендуемый для титрования объем пробы воды

Ориентировочное содержание хлоридов, мг/дм 3

источник

Настоящий документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них массовой концентрации хлоридов в диапазоне от 10,0 до 250 мг/дм 3 титриметрическим методом без разбавления и концентрирования пробы.

Если массовая концентрация хлоридов в анализируемой пробе превышает верхнюю границу, то допускается разбавление пробы дистиллированной водой таким образом, чтобы концентрация хлоридов соответствовала регламентированному диапазону.

Определению мешают высокая цветность, мутность, сероводород и сульфиды, сульфиты, тиосульфаты, цианиды, карбонаты (> 100 мг/дм 3 ), фосфаты (> 25 мг/дм 3 ), аммиак (> 5 мг/дм 3 ), а также высокие (> 10 мг/дм 3 ), концентрации металлов — свинца, железа и др.

Устранение мешающих влияний осуществляется в соответствии с п. 10.

Бромиды и иодиды титруются совместно с хлоридами, однако в воде концентрации их, как правило, не превышают 0,5 мг/дм 3 и их влиянием обычно пренебрегают.

Титриметрический метод определения массовой концентрации хлоридов основан на образовании труднорастворимого осадка хлорида серебра при прибавлении раствора нитрата серебра к анализируемой воде. После полного осаждения хлоридов избыток ионов серебра реагирует с индикатором — хроматом-калия — с образованием красновато-оранжевого осадка хромата серебра. Титрование проводят в нейтральной или слабощелочной среде (рН 7 — 10), поскольку в кислой среде не образуется хромат серебра, а в сильнощелочной возможно образование оксида серебра Ag 2 О.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1.

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости, правильности

Читайте также:  Провести анализ воды в одинцово

Показатель точности (границы относительной погрешности при вероятности
Р = 0,95), ±δ, %

Показатель повторяемости (относительн ое среднеквадратическое отклонение повторяемости),
s r, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости),
s R,%

Показатель правильности (границы относительной систематической погрешности при вероятности
Р = 0,95), ± δс, %

Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и ценой наименьшего деления 0,1 мг любого типа

Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и ценой наименьшего деления 10 мг любого типа

СО с аттестованным содержанием хлоридов с погрешностью не более 1 % при Р = 0,95

Цилиндры мерные или мензурки

Плитка электрическая с закрытой спиралью и регулируемой мощностью нагрева

Печь муфельная, обеспечивающая температуру нагрева до 900 °С

Стаканчики для взвешивания (бюксы)

Колбы конические или плоскодонные

Колонка хроматографическая диаметром 1,5 — 2,0 см и длиной 25 — 30 см

Стекло часовое диаметром 5 — 7 см

Прибор вакуумного фильтрования ПВФ-35 или ПВФ-47

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств измерений и вспомогательных устройств с характеристиками не хуже, чем у приведенных в п.п. 4.1 и 4.2.

Азотная кислота концентрированная

Аммиак водный, концентрированный

Хлорид кальция безводный (для эксикатора)

Бумага индикаторная универсальная

Фильтры мембранные Владипор типа МФАС-МА или МФАС-ОС-2 (0,45 мкм)

или фильтры бумажные обеззоленные «синяя лента»

Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

5.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

5.2. Электробезопасность при работе с электроустановками обеспечивается по ГОСТ 12.1.019.

5.3. Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004

5.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой титриметрического метода анализа.

При выполнении измерении в лаборатории должны быть соблюдены следующие условия:

температура окружающего воздуха

не более 80 % при температуре 25 °С;

8.1. Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб».

8.2. Посуду, предназначенную для отбора и хранения проб, промывают раствором азотной кислоты 1:1, а затем дистиллированной водой.

8.3. Пробы воды отбирают в стеклянные бутыли. При фильтровании через любой фильтр первые порции фильтрата отбрасывают.

Объем отбираемой пробы должен быть не менее 300 см 3 для неокрашенных вод и 400 см 3 для окрашенных.

8.4. Пробы не консервируют, хранят при комнатной температуре.

8.5. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

9.1. Приготовление растворов и реактивов

9.1.1. Раствор хлорида натрия, 0,05 моль/дм 3 эквивалента.

Отвешивают 1,4610 г NaCl, предварительно прокаленного при 500 — 600 °С до полного удаления влаги, количественно переносят его в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде, доводят до метки и перемешивают. Раствор устойчив при хранении в плотно закрытой склянке не более 3 мес.

9.1.2. Раствор нитрата серебра, 0,02 моль/дм 3 эквивалента.

3,40 г AgNO 3 растворяют в дистиллированной воде в мерной колбе вместимостью 1 дм 3 , доводят до метки и перемешивают. При наличии мути раствор отстаивают в течение нескольких дней и затем сливают с помощью сифона прозрачную жидкость в склянку из темного стекла для хранения. Срок хранения не более 2 мес.

Точную концентрацию раствора определяют титрованием стандартного раствора хлорида натрия (п. 9.2) не реже 1 раза в месяц.

9.1.3. Раствор нитрата серебра, 0,05 моль/дм 3 эквивалента.

8,49 г AgNО3 растворяют в дистиллированной воде в мерной колбе вместимостью 1 дм 3 , доводят до метки и перемешивают. При наличии мути раствор отстаивают в течение нескольких дней и затем с помощью сифона переливают прозрачную жидкость в склянку из темного стекла для хранения. Срок хранения не более 2 мес.

Точную концентрацию раствора определяют титрованием стандартного раствора хлорида натрия (п. 9.2) не реже 1 раза в месяц.

9.1.4. Раствор нитрата серебра, 10 %.

10 г нитрата серебра AgNО3 растворяют в 90 см 3 дистиллированной воды и прибавляют 1 — 2 капли концентрированной азотной кислоты. При появлении мути раствор отстаивают не менее суток, затем с помощью сифона переливают прозрачную жидкость в склянку из темного стекла для хранения. Срок хранения не более 3 мес.

9.1.5. Раствор хромата калия, 10 %.

50 г К2СrО4 растворяют в 150 см 3 дистиллированной воды, добавляют для удаления хлоридов 10 % раствор AgNО3 до появления слабого красновато-оранжевого осадка, дают отстояться в течение суток и затем фильтруют через фильтр «белая лента». К фильтрату добавляют 300 см 3 дистиллированной виды и перемешивают. Хранят в склянке из темного стекла не более 3 мес.

9.1.6. Раствор азотной кислоты, 0,1 моль/дм 3 .

3,5 см 3 концентрированной азотной кислоты HNO 3 растворяют в 500 см 3 дистиллированной воды. Раствор устойчив при хранении в плотно закрытой склянке в течение 3 мес.

9.1.7. Раствор азотной кислоты, 2 моль/дм 3 .

35 см 3 концентрированной азотной кислоты HNО3 растворяют в 215 см 3 дистиллированной воды. Раствор устойчив при хранении в плотно закрытой склянке в течение 3 мес.

9.1.8. Раствор соляной кислоты, 1:3.

100 см 3 концентрированной соляной кислоты НСl добавляют к 300 см 3 дистиллированной воды и перемешивают. Раствор устойчив при хранении в плотно закрытой склянке в течение 3 мес.

9.1.9. Раствор гидроксида натрия, 0,4 %.

2 r NaOH растворяют в 500 см 3 дистиллированной воды.

9.1.10. Раствор гидроксида натрия, 8 %.

40 г гидроксида натрия растворяют в 460 см 3 дистиллированной воды.

Растворы гидроксида натрия устойчивы при хранении в плотно закрытой полиэтиленовой посуде в течение 2 мес.

9.1.11. Суспензия гидроксида алюминия.

Подготовку гидроксида алюминия осуществляют в соответствии с Приложением А .

9.1.12. Активированный уголь.

Подготовку активированного угля осуществляют в соответствии с Приложением А.

Для определения точной концентрации рабочего раствора нитрата серебра с приблизительной концентрацией 0,05 моль/дм 3 эквивалента в коническую колбу вместимостью 250 см 3 помещают пипеткой 10 см 3 стандартного раствора хлорида натрия, добавляют 90 см 3 дистиллированной воды и 1 см 3 раствора хромата калия. Тщательно перемешивают и титруют раствором нитрата серебра с концентрацией 0,05 моль/дм 3 эквивалента до появления красновато-оранжевого осадка. Титрование повторяют 2 — 3 раза и при отсутствии расхождения в объемах раствора AgNO 3 более 0,05 см 3 за результат принимают среднюю величину. Одновременно выполняют холостое определение, используя для титрования 100 см 3 дистиллированной воды.

Для определения точной концентрации рабочего раствора нитрата серебра с приблизительной концентрацией 0,02 моль/дм 3 эквивалента в коническую колбу вместимостью 250 см 3 помещают пипеткой 5 см 3 раствора хлорида натрия, добавляют 95 см 3 дистиллированной воды и 1 см 3 раствора хромата калия. Тщательно перемешивают и титруют раствором нитрата серебра с концентрацией эквивалента 0,02 моль/дм 3 до появления красновато-оранжевого осадка. Титрование повторяют 2 — 3 раза и при отсутствии расхождения в объемах раствора AgNO 3 более 0,05 см 3 за результат принимают среднюю величину. Одновременно выполняют холостое определение, используя для титрования 100 см 3 дистиллированной воды. Точную концентрацию растворов AgNO 3 находят по формуле:

где С1 — концентрация раствора хлорида натрия, моль/дм 3 эквивалента;

С2 — концентрация раствора нитрата серебра, моль/дм 3 эквивалента;

V 1 — объем раствора хлорида натрия, см 3 ;

V 2 — объем раствора нитрата серебра, пошедший на титрование раствора хлорида натрия, см 3 ;

V хол — объем раствора нитрата серебра, пошедший на титрование холостой пробы, см 3 .

Мешающее влияние взвешенных и коллоидных веществ устраняют предварительным фильтрованием пробы. Для удаления окрашенных веществ можно использовать два способа.

Способ 1. Анализируемую воду пропускают через колонку с активированным углем со скоростью 4 — 6 см 3 /мин, при этом первые 30 — 40 см 3 воды, прошедшие через колонку, следует отбросить.

Способ 2. 200 см 3 анализируемой воды помешают в коническую колбу вместимостью 500 см 3 , приливают 6 см 3 суспензии гидроксида алюминия и встряхивают до обесцвечивания жидкости. Дают пробе отстояться несколько минут и фильтруют через бумажный фильтр «белая лента». Первые порции фильтрата отбрасывают.

Для удаления карбонатов отмеренную для анализа пробу подкисляют раствором азотной кислоты 2 моль/дм 3 до рН 2 и нагревают несколько минут. После охлаждения доводят рН пробы до величины 7 — 8, добавляя 8 % раствор NaOH. При этом удаляются также сульфиды и сульфиты.

Аммиак удаляют нагреванием пробы, к которой добавлен 8 % раствор гидроксида натрия до рН > 12. После охлаждения пробу нейтрализуют раствором азотной кислоты 2 моль/дм 3 .

Сульфиды, сульфиты, тиосульфата, цианиды удаляют, прибавляя к отмеренной для анализа слабощелочной пробе 1 см 3 пероксида водорода и перемешивая 1 мин.

11.1. Предварительная оценка содержания хлоридов в воде

Перед выполнением определения хлоридов в пробе воды неизвестного состава проводят качественную оценку их содержания. Для этого к 5 см 3 анализируемой воды добавляют 3 капли 10 % раствора AgNO 3 и перемешивают. О содержании хлоридов судят по интенсивности помутнения пробы. В зависимости от предполагаемого содержания хлоридов выбирают объем пробы, отбираемый для титрования (таблица 2 ).

Качественная оценка содержания хлоридов в воде и рекомендуемый для титрования объем пробы воды

Ориентировочное содержание хлоридов, мг/дм 3

источник

Содержание хлоридов в исследуемом растворе (рС1—) устанавливают по градуировочному графику.[ . ]

Содержание хлорид-ионов в воде природных водоемов варьирует в широких пределах. В речной и озерных водах, особенно в северных районах нашей страны (см. рис. 3.8), концентрация их невелика. Однако с увеличением минерализации воды абсолютное и относительное количество С1 возрастает;, в морях и большей части соляных озер он является главным анионом; в морской воде хлорид-ионы составляют 87% массы всех анионов. Объясняется это хорошей растворимостью хлоридов кальция, магния, натрия (см. п. 2.4.2.2) и малой растворимостью Са504 и СаС03. Поэтому с увеличением солесодержания в воде такие широко распространенные ионы, как БО и С03 (НСО ), достигая величин произведения растворимости в присутствии ионов Са2+ (см. п. 2.4.4), начинают выделяться в осадок, уступая» место иону С1 .[ . ]

Содержание хлорид-иона можно определять титрованием 0,05 н. раствором А§1 03, но лучше всего потенциометрически относительно серебряного электрода, покрытого хлоридом серебра. Предел обнаружения в зависимости от чувствительности титрования составляет 1—5 млн-1 в 60 л воздуха.[ . ]

Определение хлоридов служит контролем постоянства солевого фона сточной воды, изменяющейся во время очистки в органической части, и для суждения о «согласованности» анализируемых проб. Содержание хлоридов колеблется от 180 до 300 мг/л.[ . ]

Содержание хлоридов — ниже допустимой нормы, поэтому применение сточных вод в сельском хозяйстве при наличии достаточных площадей вполне возможно. Однако предварительно необходимо проверить, нужны ли и в какой степени мероприятия по уменьшению, а в некоторых случаях и уничтожению неприятного запаха.[ . ]

Содержание хлоридов в воде определяет и ее пригодность для питья. Для питьевой воды предельное значение составляет 200 мг/л. Вода с ббльшим содержанием либо солона, либо горька на вкус. Содержание хлоридов в воде также определяет возможность ее использования в сельском хозяйстве, в том числе для парников и оранжерей. В зависимости от вида растений предельная концентрация хлоридов составляет 50—300 мг/л.[ . ]

Хлориды являются составной частью большинства природных вод. Как и сульфаты, они определяют некарбонатную жесткость воды. Содержание хлоридов естественного происхождения имеет большой диапазон колебаний. Однако в воде рек концентрация хлоридов невелика — она не превышает обычно 10 мг/л, поэтому повышенное количество хлор-ионов указывает на загрязнение .источника сточными водами. В воде источников централизованного водоснабжения концентрация хлоридов не должна превышать 350 мг/л.[ . ]

Хлориды являются составной частью большинства природных вод. Большое содержание хлоридов геологического происхождения в поверхностных водах — явление редкое. Поэтому обнаружение большого количества хлоридов является показателем загрязнения воды бытовыми или некоторыми промышленными сточными водами. В промышленных сточных водах содержание хлоридов зависит от характера производства. Постепенное повышение содержания хлоридов в поверхностных водах может служить мерилом загрязнения водоемов сточными водами.[ . ]

Хлориды — главные ионы природных вод, обладают большой миграционной способностью, что объясняется их хорошей растворимостью, слабо выраженной способностью к сорбции на взвешенных веществах и к потреблению водными организмами. Хлориды ухудшают вкусовые качества воды и делают ее малопригодной для питьевого водоснабжения, поэтому контроль содержания хлоридов в воде водоемов имеет важное значение для оценки качества воды. Для рыбохозяйственных водных объектов ПДК хлоридов составляет 300 мг/л.[ . ]

Содержание хлоридов также более или менее постоянно. Изменение массы хлоридов указывает на примесь производственных сточных вод.[ . ]

Хлориды являются преобладающим анионом в высокоминерализованных водах. Концентрация хлоридов в поверхностных водах подвержена сезонным колебаниям, коррелирующим с изменением общей минерализации воды. В незагрязненных речных водах и водах пресных озер содержание хлоридов колеблется от долей миллиграмма до десятков и сотен, в подземных и морских водах — значительно выше.[ . ]

При содержании хлоридов менее 250 мг/л берут 100 мл фильтрованной испытуемой воды. При большем содержании хлоридов берут 10-50 мл. Испытуемую воду наливают в две конические колбы, доводят до 100 мл дистиллированной водой, прибавляют 5 капель раствора К2Сг04. Раствор в одной колбе титруют AgN03, а вторая колба используется для контроля.[ . ]

Читайте также:  Провести анализ воды домашних условиях

Помимо хлоридов кальция и магния в составе солей, растворенных в воде, присутствующей в сырье, находится хлорид натрия, который, как известно, гидролизу не подвергается, но существенно повышает проводимость коррозионной среды и за счет этого повышает ее агрессивность. С другой стороны, он способствует развитию питтинговой коррозии и коррозионному растрескиванию аустенит-ных сталей, так как, так же как хлориды магния и кальция, является поставщиком ионов хлора. Именно этим и объясняются, на наш взгляд, аномально высокие скорости коррозии верхних тарелок колонны, выполненных из стали 12Х18Н10Т в 1997 г., когда участились вынужденные остановки установки, а на завод поступала нефть с высоким содержанием хлоридов и воды. Как показано в отчетах главного технолога завода, всего после нескольких дней эксплуатации колонны в условиях образования аномально высокого содержания НС1 глубина поражения этих элементов достигла 0,5 мм. Таким образом, применявшиеся методы защиты (ингибирование, нейтрализация и использование тарелок из стали 12Х18Н10Т) не смогли привести к должному уровню надежности эксплуатации аппарата. Применение защитного колпака из стали 08Х17Н13М2Т можно считать лишь временной мерой, так как эта сталь, хоть и в меньшей мере, чем 12Х18Н10Т, все-таки подвержена питтинговой коррозии под действием хлоридов, особенно в кислой среде.[ . ]

Рио.35. Влияние содержания А1СЦ на величину pH и выход активного хлора в растворах с содержанием хлоридов 0.427 г-ион/л: I — выход активного хлора. 2 — напряжение, 3 — pH исходного электролита, 4 — pH электролита после электролиза.[ . ]

В питьевой воде содержание хлоридов не должно превышать 30—50 мг/л, а содержание сульфатов — 60 мг/л. Однако это не всегда достижимо в некоторых южных маловодных районах нашей страны (Туркмения, Казахстан и др.), где местные водоисточники сильно минерализованы.[ . ]

Изменение . содержания хлоридов в растворах дихлоруксусной

По ГОСТу предельное содержание сульфат-ионов в воде источников централизованного водоснабжения не должно превышать 500 мг/л, но, как правило, в речной воде концентрация сульфатов составляет 100—150 мг/л. Повышенная концентрация сульфатов может свидетельствовать о загрязнении источника сточными водами, в основном производственными. Хлориды являются составной частью большинства природных вод. Содержание хлоридов естественного происхождения имеет большой диапазон колебаний: Однако в воде рек концентрация хлоридов невелика — она превышает обычно 10—30 мг/л, поэтому повышенное количество хлор-ионов указывает на загрязнение источника сточными водами. В воде источников централизованного водоснабжения концентрация хлоридов не должна превышать 350 мг/л. Лимитирование верхнего предела концентраций сульфатов и хлоридов обусловлено тем, что более высокие концентрации этих ионов придают воде солоноватый привкус и могут вызывать нарушение в работе желудочно-кишечного тракта у людей. При некоторых соотношениях сульфатов и хлоридов вода становится агрессивной по отношению к различным типам бетона. Силикаты в растворе определяют лишь в тех природных водах, где их содержание зависит от геологическихусловий и присутствия некоторых организмов. Все эти кислоты при обычных для природных вод значениях pH малорастворимы и образуют в воде коллоидные растворы. Силикаты — нежелательная примесь в воде, питающей котлы, так как дает силикатную накипь на стенках котлов.[ . ]

Ход определения. Вносят в колбу несколько стеклянных бусинок, соединяют ее с обратным холодильником, нагревают содержимое колбы до кипения и кипятят 2 ч. Одновременно проводят холостое определение, взяв для него 25 мл дважды перегнанной (с добавлением перманганата в колбу для кипячения) воды. По охлаждении анализируемый раствор переносят в мерную колбу вместимостью 200 мл, стенки колбы при-, бора обмывают дважды перегнанной водой. Промывную — воду сливают в колбу и доводят той же водой анализируемый раствор до метки. Отобрав аликвотную порцию в 100 мл полученного раствора, переносят ее в стакан вместимостью 400—450 мл, разбавляют дистиллированной водой примерно до 300 мл и нейтрализуют 45%-ным раствором едкого натра: сначала приливают 30 мл этого раствора, потом после перемешивания прибавляют его по каплям до pH = 5—7. Нейтрализованный раствор нагревают до кипения, вносят 0,1 г прокаленной окиси магния и на-; гревают 20 мин при слабом кипении. Дают осадку собраться на дне стакана и фильтруют раствор через плотный фильтр, перенося осадок на фильтр к концу фильтрования. Осадок на фильтре промывают горячей водой до получения бесцветного фильтрата. Воронку с фильтром помещают на маленькую коническую колбу, в фильтре делают отверстие и через него смывают осадок горячей водой в колбу. Затем фильтр обрабатывают 3 мл 2 н. серной кислоты, обмывая ею предварительно стенки стакана. Фильтр и стакан хорошо промывают горячей водой, собирая промывные воды в ту же колбу и кипятят, содержимое колбы до полного растворения осадка. Полученный раствор переносят в мерную колбу вместимостью 100 мл, фильтруя его, если надо, через плотный фильтр. Приливают затем 5 мл 2 н. уксусной кислоты и смесь кипятят 5 мин. Охлаждают полученный ■ окрашенный раствор, разбавляют его дистиллированной водой до метки, перемешивают и измеряют его оптическую плотность при X = 536 нм в кювете с толщиной поглощающего слоя 5 см по отношению к раствору холостого опыта.[ . ]

Образцы для анализа на содержание органических веществ собирали в отмытые гексаном стеклянные бутылки вместимостью около 4 л, снабженные тефлоновыми пробками. Образцы для определения содержания хлоридов и взвешенных веществ отбирали в чистые полиэтиленовые литровые сосуды. Все образцы до анализа или экстрагирования хранили при 4 °С. Анализы и экстракцию взвешенных веществ проводили спустя 36 ч после отбора проб.[ . ]

Высокая растворимость хлоридов объясняет широкое распространение их во всех природных водах. В проточных водоемах содержание хлоридов обычно невелико (20-30мг/л). Незагрязненные грунтовые воды в местах с несолончаковой почвой обычно содержат до 30-50 мг/л хлор-иона. В водах, фильтрующихся через солончаковую почву, в 1 л могут содержаться сотни и даже тысячи миллиграммов хлоридов. Вода, содержащая хлориды в концентрации более 350 мг/л, имеет солоноватый привкус, а при концентрации хлоридов 500-1000 мг/л неблагоприятно влияет на желудочную секрецию. Содержание хлоридов является показателем загрязнения подземных и поверхностных водоисточников и сточных вод. Определение хлоридов ведется по методу Мора.[ . ]

Известно, что при растущем содержании хлоридов и сульфатов в бумаге, при уменьшающемся значении pH увеличивается корродирующее действие бумаги.[ . ]

Предварительные указания. Если содержание хлоридов во взятом объеме воды превышает 25 мг С1, то необходимо добавлять сульфат ртути. При наличии в воде других неорганических восстановителей следует внести поправку на потребление ими кислорода, которую устанавливают в 20 мл исследуемой воды путем ее титрования 0,0Ш раствором перманганата в слабокислой среде на холоде (см. «Определение перманганатной окисляемости»).[ . ]

Метод применяется для определения хлоридов при содержании их, превышающем 2 мг/л без разбавления можно титровать пробы с содержанием хлоридов до 400 мг/л. Точность определения +1—■ 3 мг/л. Для точного определения хлоридов при концентрациях меньше 10 мг/л пробы надо предварительно упаривать. В зависимости от концентрации хлоридов в пробе титруют 0,1 н., 0,05 н. или 0,02 н. раствором нитрата серебра.[ . ]

Наличие в сточных водах большого количества хлоридов отрицательно сказывается на процессе ионитовой очистки сточных вод. Следствием высокой концентрации хлор-ионов ¡в сточных водах являются низкая концентрация некаля в регенерате и большие расходы энергетических средств на его переработку. Содержание хлоридов в сточных водах ведет к снижению емкости поглощения ионита.[ . ]

При анализе целлюлоз, содержащих значительное количество хлоридов, может образоваться в колбе белый налет. В этом случае высушенный экстракт растворяют в 15 мл горячего спирта, добавляют 30 мл дистиллированной воды и определяют содержание хлоридов путем титрования 0,1 н. раствором AgNOз, используя в качестве индикатора К2СЮ4.[ . ]

При производстве калиевой селитры отходом является рассол с содержанием хлорида натрия 220—250 г/л. С вводом на заводе цеха утилизации хлорида натрия (рис. 1.12) содержание последнего в общем стоке снизилось с 4800 до 1200 мг/л. При этом ежегодно утилизируется свыше 3500 т хлорида натрия, 40 % которого выпускается в виде химической продукции реактивной чистоты.[ . ]

Между тем, расчетами по изменению солесодержания, в частности содержания хлоридов и солей жесткости, подтверждено уменьшение накипеобразования в 8—9 раз, т. е. примерно во столько же раз, как и при стендовых испытаниях.[ . ]

В работе [19] изучено также влияние низкомолекулярного электролита (хлорида натрия) на £-потенциал. При увеличении содержания хлорида натрия до 1,5 г/л и добавлении флокулянта отрицательный £■-потенциал резко уменьшался. При дальнейшем росте содержания хлорида натрия в сточной воде снижение £-потенциала замедлялось, оптимальная доза флокулянта увеличивалась, эффективность очистки ухудшалась. Это обусловлено уменьшением степени диссоциации ионогенных групп флокулянта, свертыванием макромолекул и снижением их суммарного положительного заряда.[ . ]

В ряде производств образуются жидкие и твердые отходы с высокой концентрацией хлорида натрия, а также органических и хлорорганических соединений. При огневой переработке этих отходов может быть получен продукт с высоким содержанием хлорида натрия, пригодный для дальнейшего использования.[ . ]

Биохимическое окисление 2,4-Д происходит с образованием хлор-ионов, причем повышение содержания хлоридов в пробах соответствует тому количеству хлор-ионов- которое содержится в 2,4-Д и высвобождается в процессе окисления.[ . ]

Настоящий стандарт распространяется на питьевую воду и устанавливает методы определения содержания хлоридов (хлор-иона).[ . ]

Основными показателями для характеристики состава очищенных сточных вод являются: остаток нефти или нефтепродуктов в воде (в мг/л), содержание взвешенных веществ по весу, высушенных при температуре 105°С (в мг/л). количество растворенного кислорода (в мг/л), прозрачность (в см), цветность (в град), окраска, содержание хлоридов и сероводорода (в мг/л), окисляемость (в мг02/л), активная реакция pH, биохимическая (ВПК) или химическая (ХПК) потребность в кислороде (в мг02/л). В особых случаях могут представлять интерес определение содержания сульфатов и сульфидов (в мг/л). Дополнительными показателями служат влажность и зольность осадка (в %). Определение влажности осадка должно производиться не реже одного раза в месяц.[ . ]

К настоящему времени качество подземных вод характеризуется следующим образом. В четвертичном горизонте в промышленных зонах увеличилось содержание хлоридов, сульфатов, сухого остатка и нитратов, концентрация последних превышает 50 мг/дм3.[ . ]

Основными проблемами угольных бассейнов являются очистка кислых и минерализованных сточных вод уральских месторождений и сточных вод с повышенным содержанием хлоридов и сульфатов Подмосковного бассейна, ликвидация мелких котельных и рекультивация земель для месторождений Восточной Сибири — очистка шахтных вод и хозяйственно-бытовых вод, рекультивация земель, для месторождений Дальнего Востока — строительство очистных сооружений для шахтных и карьерных вод, содержащих трудноосаждаемую дисперсную взвесь, повышение эффективности действующих сооружений и рекультивация земель.[ . ]

По данным табл.21, необходимую точность дозирования + 10% можно получить при учете двух вариантов работы ионатора: при работе на водах, не требующих добавления сульфата натрия (о содержанием хлоридов менее 10 к оумые анионов), режим приготовления 20 л концентрата — 6 мин электролиза при 3 А;, при работе с добавлением сульфата натрия режим приготовления — 7 мин электролиза при силе тока 3,2-3,4 А.[ . ]

В зависимости от результатов качественного определения отбирают 100 см3 испытуемой воды или меньший ее объем (10—50 см3) и доводят до 100 см3 дистиллированной водой. Без разбавления определяются хлориды в концентрации до 100 мг/дм3. pH титруемой пробы должен быть в пределах 6—10. Если вода имеет цветность выше 30°, пробу обесцвечивают добавлением гидроокиси алюминия. Для этого к 200 см3 пробы добавляют 6 см3 суспензии гидроокиси алюминия, а смесь встряхивают до обесцвечивания жидкости. Затем пробу фильтруют через беззольный фильтр. Первые порции фильтрата отбрасывают. Отмеренный объем воды вносят в две конические колбы и прибавляют по 1 см3 раствора хромовокислого калия. Одну пробу титруют раствором азотнокислого серебра до появления слабого оранжевого оттенка, вторую пробу используют в качестве контрольной пробы. При значительном содержании хлоридов образуется осадок А СЛ, мешающий определению. В этом случае к оттитрованной первой пробе приливают 2—3 капли титрованного раствора ЫаС1 до исчезновения оранжевого оттенка, затем титруют вторую пробу, пользуясь первой, как контрольной пробой.[ . ]

Контроль качества вода в емкости сезонного регулированйя постоянно показывает повышенный уровень минерализации этих вод, который зачастую превышает нормативы на 20-40 % и обусловливается. избыточным содержанием хлорида натрия. Основным источником его в сточных водах является регенерационный раствор, который используется для промывки ионообменных фильтров котельной.[ . ]

Отмеченное незначительное снижение количества гемоглобина у подопытных животных на 4-м месяце опыта по сравнению с контролем является статистически недостоверным. Содержание хлоридов и резервной щелочности в крови, а также хлоридов в моче во все сроки исследования не изменялось.[ . ]

Многие представители самого обширного в семействе рода парнолистник, насчитывающего около 100 видов, являются галофитами. Они населяют солончаки главным образом Азии, Африки и Австралии. Этот кустарник обладает небольшими мясистыми листьями и развивает мощный стержневой корень, который проникает до влажных горизонтов почвы.[ . ]

Известно, что чрезмерная соленость почвы характерна для многих горнорудных районов всего мира. В Германской Демократической Республике это является главным образом результатом добычи меди, сланца, поташа, бурого угля, а также производства соды. Большие количества хлоридов и солей, повышающих жесткость воды, попадают в реки с небольшим или средним расходом, вода которых используется для промышленных целей многими крупными коммерческими предприятиями. Даже после поглощения этих солей рекой (в Эльбе, например, в районе Магдебурга, в течение последних 20 лет среднегодовое содержание хлоридов составляло 77—423 мг/л и 9,9—20,5° общей жесткости) вредные последствия все же остаются значительными, что может быть продемонстрировано на следующих примерах.[ . ]

Читайте также:  Провести анализ воды из скважины

Количественный ионометрический экспресс-метод определения нитратов состоит в извлечении нитратов из материала раствором алюмокалиевых квасцов и последующим измерением нитрат-иона в вытяжке ионоселективным электродом. Метод непригоден для исследования продуктов, в которых содержание хлоридов превышает содержание нитратов более чем в 50 раз. Этот метод может быть использован только для анализа сырья.[ . ]

Имеются сообщения о возникновении гастроэнтеритов небактериального происхождения в Эссене (ФРГ) в 1959 г., которыми страдало около 7% населения (К. Im-hoff, 1970). Причиной было то, что засушливое лето 1959 г. обусловило значительное снижение расхода воды в реке Руре. Это снизило способность реки к разбавлению сточных вод. Содержание хлоридов в воде возросло со 100 до 507 мг/л, нитратов — до 24 мг/л, детергентов — до 1,2 мг/л. Частота повторного использования воды реки составила 0,9, что превышает допустимый предел (Н. Koenig et al„ 1970).[ . ]

Известен и нашел частичное применение в зарубежной практике [68] и метод разбрызгивания ОБР на пахотные земли после предварительной его нейтрализации. Однако использование указанного метода ограничивается типом и системой обработки бурового раствора. Этот метод не приемлем для минерализованных буровых растворов, т е , растворов с высоким содержанием хлоридов и других токсичных солевых компонентов. Но отсутствие в литературе сведений о нейтрализующих агентах не позволяет дать объективную оценку возможностей метода, а также практической и экономической целесообразности его применения.[ . ]

Известны отравляющие вещества самого различного действия, однако, попадая в воду, они ведут себя в основном как общеядовитые. На зараженность воды отравляющими веществами могут указывать некоторые внешние признаки и данные обычных методов контроля, так как наличие ОВ вызывает изменение многих показателей воды, например pH, окисляемости, хлоро-поглощаемости, содержания хлоридов и растворенного кислорода, а также данные биологических и бактериологических исследований. Поэтому все эти показатели в условиях возможного отравления воды ОВ должны определяться и фиксироваться систематически.[ . ]

При солянокислотном травлении стали взаимодействие 20%-ной кислоты с оксидами железа приводит к образованию хлористого и хлорного железа. Выводимый на регенерацию ОТР содержит, %: 5-10 HG1, 17-25 FeCl2, 0,4-0,8 FeClj. В многоступенчатых установках с противотоком обрабатываемого металла и травильного раствора в последнем могут быть получены очень низкая концентрация кислоты и весьма высокое содержание хлоридов железа (до 340 г/л). Продуктами регенерации являются соляная кислота, возвращаемая в травильную ванну, и оксид железа.[ . ]

Основным видом загрязнений является рудная и известняковая пыль. При контакте воды со шламом происходит выщелачивание извести и других компонентов, в результате чего солевой состав сточных вод претерпевает значительные изменения. Исследования показали, что pH воды возрастает с 7,5 до 12-13, щелочность с 1,3-3,6 до 21-22 мг-экв/дм3 в том числе гидратная от нуля до 17 мг-экв/дм3. Возрастает также содержание хлоридов и сульфидов.[ . ]

Загрязнение подземных вод в значительных объемах происходит за счет фильтрата —токсичной жидкости, выделяющейся со свалок твердых бытовых отходов. Только в черте города в Москве по официальным данным насчитывается более 100 свалок, а «полуночных»—вообще никогда не подсчитывалось. Состав фильтрата примерно может быть следующим и почти близким для всех свалок: повышенная до 10— 20 г/л минерализация, высокие содержания хлоридов и сульфатов, множество органических кислот (гуминовая, молочная, уксусная, пи-ровиноградная и др.), так называемые «ураганные» концентрации тяжелых металлов (в том числе и наиболее токсичных, таких, как ртуть), медикаментозные, санитарно-больничные, бактериологические и гель-минтозные загрязнения. Известно, что в теле свалок идут активные процессы брожения и гниения, т. е. разложения органики, конечным продуктом которых являются вода, тёпло, биогаз (диокси!д углерода и метан). Нередки случаи самовозгорания биогаза с негативными экологическими последствиями, так как многие свалки насыщены синтетическими пластмассами, горение которых в низкотемпературном режиме приводит к образованию диоксинов, попадающих в атмосферу, в гидросферу, а далее в трофические сети экосистем.[ . ]

Процесс реализуется в противоточном режиме в реакторе скруб-берного типа при 400°С. Его продуктами являются газ (около 7% HCl, 40 — водяных паров, 0,8-1,0% 02) и оксид железа. Основная масса последнего оседает в растворе, выделяется из него и отгружается потребителю: Газ очищается от остатков Fe203, охлаждается и отправляется в абсорбционную колонну, орошаемую водой из промывочных ванн. Из нижней ее части выводится 16-20%-ная соляная кислота с небольшим, около 2%, содержанием хлоридов железа. Газ после абсорбционной колонны освобождается от остатков хлористого водорода и других примесей в скруббере, орошаемом раствором каустической соды (NaOH), и выбрасывается в дымовую трубу.[ . ]

Воду с сухим остатком до 1000 мг/л называют пресной, свыше 1000 мг/л — минерализованной. Вода, содержащая избыточное количество минеральных солей, непригодна для питья, т.к. имеет соленый или горько-соленый вкус, а ее употребление (в зависимости от состава солей) приводит к различным неблагополучным физиологическим отклонениям в организме. С другой стороны, слабоминерализованная вода с сухим остатком ниже 50-100 мг/л неприятна на вкус, длительное ее употребление может привести также к некоторым неблагоприятным физиологическим сдвигам в организме (уменьшение содержания хлоридов в тканях и др.). Такая вода, как правило, содержит мало фтора и других микроэлементов.[ . ]

Данные, касающиеся окислительно-воостановительного потенциала проб, получены только для весны 1976 г. Исследовали воды скважины 12В; значения окислительно-восстановительного потенциала там изменялись от +100 до +150 мВ (максимум + 170 мВ). Неожиданно наиболее низкие значения ( + 55 и + 65 мВ) были зарегистрированы в скважинах 10 и 4 -соответственно. Вода скважины 7 имела окислительно-восстановительный потенциал +105 мВ. В ручье наблюдалось увеличениеокис-лительно-востановительного потенциала от +90 мВ (измерено выше по течению) до +107 мВ (измерено ниже по течению). За исключением летних и осенних данных анализа рроб из скважины 6А, наблюдается общая тенденция к уменьшению содержания хлоридов с увеличением расстояния от очистной станции [6]. Воды скважины 3 и высачиваний ниже дороги характеризуются высоким содержанием хлоридов, отражая поступления солей с дороги, как отмечалось ранее. Во всех случаях происходило небольшое увеличение содержания хлоридов в ручье Вест Брук из-за высачиваний.[ . ]

источник

Хлориды относятся к главным ионам, содержание которых в речных и озерных водах колеблется от доли миллиграммов до граммов в литре; в морских и подземных водах концентрация хлоридов выше – до перенасыщенных растворов и рассолов.

Основными источниками поступления хлоридов в водные объекты является соленосные отложения, магматические породы, в состав которых входят хлорсодержащие минералы (хлорапатит, содомит и др.), вулканические выбросы, засоленные почвы, из которых они вымываются атмосферными осадками. Гораздо большее количество хлоридов попадает в воду с промышленными и хозяйственными сточными водами.

Хлориды в воде не склонны к образованию ионных пар. Они обладают высокой миграционной способностью, что обусловлено хорошей растворимостью их в воде, слабо выраженные способностью к сорбции взвесями и донными отложениями и практическим отсутствием накопления водными организмами.

Повышенные концентрации хлоридов ухудшают вкусовые качества воды делая её непригодной для питьевого водоснабжения, а так же уменьшает или полностью исключает возможность использования для технических и хозяйственных целей, и орошение сельскохозяйственных территорий. Для водных объектов рыбохозяйственного назначения предельно допустимая концентрация (ПДК) хлоридов – 300 мг/дм 3 , для объектов хозяйственно- питьевого и культурно бытового назначения ПДК – 350 мг/дм 3 .

Хлориды относятся к устойчивым компонентам водной среды; пробы предназначенные для определения хлоридов не консервируют.

Перед выполнением определения хлоридов в пробе воды неизвестного состава следует провести качественную оценку их содержания. Для этого в 5 см 3 анализируемой воды добавляют 3 капли 10% раствора AgNO3 и перемешивают. О содержании хлоридов судят по интенсивности помутнения пробы (таблица 1).

В зависимости от предполагаемого содержания хлоридов выбирают методику анализа и объёма анализируемой пробы (таблица 1).

Качественная оценка содержания хлоридов в воде и рекомендуемый для тестирования объём пробы воды.

Характер помутнения пробы Ориентировочное содержание хлоридов в воде (мг/дм 3 ) Объём анализируемой пробы (см 3 )
Слабая муть 1-10 100
Сильная муть 10-50 100
Плавающие хлопья 50-100 100
Оседающие хлопья 100-250 100
Белый объёмистый осадок 250-800 50
больше 800 £25

Определение основано на образовании трудно растворимого осадка хлорида серебра при прибавлении раствора нитрата серебра к анализируемой воде. После полного осаждения хлоридов избыток ионов серебра реагирует с индикатором- хроматом калия- с образованием красновато- оранжевого осадка хромата серебра. Тестирование проводят в нейтральной или слабо щелочной среде (рН 7-10), поскольку в кислой среде не образуется хромат серебра, а в сильно щелочной возможно образование оксида серебра Ag2 o. Мешающее влияние на определение хлоридов могут оказать: высокая цветность, мутность, сероводород и сульфиды, сульфиты, тиосульфаты, цианиды, карбонаты (более 100 мг/дм 3 ), фосфаты (более 25 мг/дм 3 ), аммиак (более 5 мг/дм 3 ). Точному нахождению точки эквивалентности мешает также высокие (более 10 мг/дм 3 ) концентрации металлов- свинца, железа и др.

Устранить или значительно уменьшить влияние всех мешающих веществ при высоком содержании хлоридов можно путем разбавлением пробы; если же содержание хлоридов невелико ( что маловероятно для загрязненных вод), для устранения мешающего влияния следует применить специальные приемы.

Мутность устраняют фильтрованием пробы, цветность – пропусканием пробы через колонку с активированным углем или сорбцией на гидроксиде алюминия.

Массовую концентрацию хлоридов в анализируемой воде находят по формулам:

где Сх или Схэ – массовая концентрация хлоридов в воде, мг/дм 3 или моль/дм 3 эквивалента соответственно.

V- объем раствора нитрата серебра, израсходованного на тестирование анализируемой пробы, см 3 ;

V хол –объема раствора нитрата серебра израсходованного на тестирование пробы, см 3 .

С – концентрация раствора нитрата серебра, моль/дм 3 эквивалента.

V1 — объем пробы воды, взятой для тестирования, см 3 .

1. При выполнении определений массовой концентрации хлоридов в пробах природных и очищенных сточных вод соблюдают требования безопасности, установленные в «Правилах по технике безопасности при производстве наблюдений и работ на сети Госкомгидромета», А., Гидрометеоиздат, 1983 год, или в «Инструкции по технике безопасности для гидрохимических лабораторий органив по регулированию и охране вод» М., 1975.

2. По степени воздействия на организм вредные вещества, используемые при выполнении определений, относятся к 2, 3, 4 классом опасности по ГОСТ 12.1.007.

3. Содержание используемых вредных веществ в воздухе рабочей зоны не должно превышать предельно допустимых концентраций в соответствии с ГОСТ 12.1.005.

А) вода дистилированная по ГОСТ 6709

Б) хромат калия по ГОСТ 4459, ч. д. а

В) нитрат серебра по ГОСТ 1277, ч. д. а.

А) воронка лабораторная по ГОСТ 25336

Б) колбы мерные не ниже второго класса точность по ГОСТ 1770

В) бюретка не ниже второго класса точности по ГОСТ 20292

Г) пипетка с одной отметкой не ниже 2 класса точность по ГОСТ 20292

Д) пипетка градуированная не ниже второго класса точности по ГОСТ 20292

Е) колбы конические по ГОСТ 25336

Отбор проб производится в соответствии с ГОСТ 171.5.05. Пробы помещают в стеклянную или полиэтиленовую посуду. Перед определением фильтруют через мембранный фильтр 0,45 мкм, очищенной кипячением в дистиллированной воде. Допустимо использование бумажных фильтров «синяя лента». При фильтровании через любой фильтр первые порции фильтрации следует отбросить.

Хлориды являются одним из наиболее устойчивых компонентов, поэтому определение модно проводить после выполнения анализа менее устойчивых соединений. Пробы не консервируют, хранят при комнатной температуре.

1. Раствор хромата калия, 10% 50г K2 CrO4 взвешивают на технических весах, растворяют в 150 см 3 дистилированной воды, добавляют для удаления хлоридов 10% раствор AgNO3 до появления слабого красновато-ораньжевого осадка, дают отстоятся в течении суток и затем фильтруют через фильтр “белая лента”. К фильтрованному раствору добавляют 300 см 3 дистилированной воды и перемешивают. Хранят в склянке из темного стекла 3 мес.

2. Рабочий раствор нитрата серебра с концентрацией эквивалента 0,05 моль/дм 3.

8,49 г AgNO3 растворяют в дистиллированой воде в мерной колбе вместимостью 1 дм 3 , доводят до метки и перемешивают. При наличии мути раствор отстаивают в течении нескольких дней и затем сифонируют прозрачную жидкость. Хранят в склянке из темного стекла.

Точную концентрацию раствора определяют тестированием стандартного раствора хлорида натрия не реже 1 раза в месяц.

Для определения точной концентрации рабочего раствора нитрата серебра с концентрацией 0,05 моль/дм 3 эквивалента в коническую колбу вместимостью 250 см 3 помещают пипеткой 10 см 3 стандартного раствора хлорида натрия, добавляют 90 см 3 дистилированной воды и 1 см 3 раствора хромата калия. Тщательно перемешивают и титруют раствором нитрата серебра с концентрацией эквивалента 0,05 моль/дм 3 до появления красновато-ораньжевого осадка. Титрование повторяют 2-3 раза и при хлориде натрия, добавляют 90 см 3 дистиллированной воды и 1 см 3 раствора хромата калия. Тщательно перемешивают и титруют раствором нитрата серебра с концентрацией эквивалента 0,05 моль/дм 3 до появлениякрасновато-ораньжевого осадка. Титрование повторяют 2-3 раза и при отсутствии расхожденя в объемах растворов AgNO3 более 0,05 см 3 за результат принимают среднюю величину. Одновременно выполняют холостое определение , использую для титрования 100 см 3 дистиллированной воды.

1. Руководящий документ « Методические указания. Аргентометрическое определение хлоридов в водах».

2. А. П. Крешков «Основы аналитической химии»

источник