Меню Рубрики

Анализ магния в сточных водах

Магний. В поверхностные воды магний поступает в основном за счет процессов химического выветривания и растворения доломитов, мергелей и других минералов. Значительные количества магния могут поступать в водные объекты со сточными водами металлургических, силикатных, текстильных и других предприятий.

В речных водах содержание магния обычно колеблется от нескольких единиц до десятков миллиграммов в 1 дм 3 .

Содержание магния в поверхностных водах подвержено заметным колебаниям: как правило, максимальные концентрации наблюдаются в меженный период, минимальные — в период половодья.

ПДКвр ионов Мg 2+ составляет 40 мг/дм 3 .

Для определения содержания магния в незагрязненных по­верхностных и грунтовых природных водах, как и в большинстве речных вод, можно применять расчетный метод по разности ре­зультатов определения общей жесткости и концентрации катиона кальция. Для анализа загрязненных вод на содержание магния необходимо применять прямое определение магния.

Массовую концентрацию катиона магния (Смг) в мг/л оп­ределяют расчетным методом, производя вычисления по формуле:

где СОЖ и СКА – результаты определения общей жесткости (мг-экв/л) и массовой концентрации катиона кальция (мг/л) соответственно; 0,05 – коэффициент пересчета концентрации катиона кальция в миллиграмм-эквивалентную форму; 12,16 – эквивалентная масса магния.

Полученный результат округлите до целых чисел (мг/л).

Карбонаты и гидрокарбонаты. Основным источником гидрокарбонатных и карбонатных ионов в поверхностных водах являются процессы химического выветривания и растворения карбонатных пород типа известняков, мергелей, доломитов, например:

Некоторая часть гидрокарбонатных ионов поступает с атмосферными осадками и грунтовыми водами. Гидрокарбонатные и карбонатные ионы выносятся в водоемы со сточными водами предприятий химической, силикатной, содовой промышленности и т.д.

По мере накопления гидрокарбонатных и особенно карбонатных ионов последние могут выпадать в осадок:

В речных водах содержание гидрокарбонатных и карбонатных ионов колеблется от 30 до 400 мг HCO3 — /дм 3 , в озерах – от 1 до 500 мг HCO3 — /дм 3 , в морской воде – от 100 до 200 мг/дм 3 , в атмосферных осадках – от 30 до 100 мг/дм 3 , в грунтовых водах – от 150 до 300 мг/дм 3 , в подземных водах – от 150 до 900 мг/дм 3 .

Как отмечалось выше (в разделе «Щелочность и кислотность»), карбонаты и гидрокарбонаты представляют собой компо­ненты, определяющие природную щелочность воды. Их содержание в воде обусловлено процессами растворения атмосферного СО2, взаимодействия воды с находящимися в прилегающих грунтах известняками и, конечно, жизненными процессами дыхания всех водных организмов.

Определение карбонат- и гидрокарбонат-анионов является титриметрическим и основано на их реакции с водородными ионами в присутствии фенолфталеина (при определении карбонат-анионов) или метилового оранжевого (при определении гидрокарбонат-анионов) в качестве индикаторов. Используя эти два индикатора, удается наблюдать две точки эквивалентности: в первой точке (рН 8,0-8,2) в присутствии фенолфталеина полнос­тью завершается титрование карбонат-анионов, а во второй (рН. 4,1-4,5) – гидрокарбонат-анионов. По результатам титрования можно определить концентрации в анализируемом растворе основных ионных форм, обуславливающих потребление кислот (гидроксо-, карбонат- и гидрокарбонат-анионов),а также величины свободной и общей щелочности воды, т.к. они находятся в стехиометрической зависимости от содержания гидроксол-, карбонат- и гидрокарбонат-анионов.Для титрования обычно используют титрованные растворы соляной кислоты с точно известным значением концентрации 0,05 г-экв/л либо 0,1 г-экв/л.

Определение гидрокарбонат-анионов основано на реакции:

Присутствие карбонат-аниона в концентрациях, определя­емых аналитически, возможно лишь в водах, рН которых более 8,0-8,2. В случае присутствия в анализируемой воде гидроксо-анионов при определении карбонатов протекает также реакция нейтрализации:

Определение гидрокарбонат-анионовосновано на реакции:

Таким образом, при титровании по фенолфталеину в реак­ции с кислотой участвуют анионы ОН — и СО3 2- , а при титровании по метиловому оранжевому – ОН — , СО3 2- и НСО3 — .

Величина карбонатной жесткости рассчитывается с уче­том эквивалентных масс участвующих в реакциях карбонат- и гидрокарбонат-анионов.

При анализе карбонатных природных вод правильность получаемых результатов зависит от величины потребления кис­лоты на титрование по фенолфталеину и метилоранжу. Если тит­рование в присутствии фенолфталеина обычно не вызывает труд­ностей, т.к. происходит изменение окраски от розовой до бесцветной, то в присутствии метилового оранжевого, при изме­нении окраски от желтой до оранжевой, определить момент окон­чания титрования иногда довольно сложно. Это может привести к значительной ошибке при определении объема кислоты, израсхо­дованной на титрование. В этих случаях, для более четкого выяв­ления момента окончания титрования, определение полезно прово­дить в присутствии контрольной пробы, для чего рядом с титруемой пробой помещают такую же порцию анализируемой воды (во вто­рой склянке), добавляя такое же количество индикатора.

В результате титрования карбоната и гидрокарбоната, ко­торое может выполняться как параллельно в разных пробах, так и последовательно в одной и той же пробе, для расчета значений концентраций необходимо определить общее количество кисло­ты (V) в миллилитрах, израсходованной на титрование карбоната (VK) и гидрокарбоната (VГК). Следует иметь в виду, что при определении потребления кислоты на титрование по метилоранжу (Vмо) происходит последовательное титрование и карбонатов, и гидрокарбонатов. По этой причине получаемый объем кислоты Vмо содержит соответствующую долю, обусловленнуюприсутствием в исходной пробе карбонатов, перешедших после реакции с катионом водорода в гидрокарбонаты, и не характеризует полностью концентрацию гидрокарбонатов в исходной пробе. Следовательно, при расчете концентраций основных ионных форм, обусловливающих потребление кислоты, необходимо учесть относительное потребление кислоты при титровании по фенолфталеину (Vф) и метилоранжу (Vмо). Рассмотрим несколько возможных вариантов, сопоставляя величины Vф и Vмо.

1. Vф = 0. Карбонаты, а также гидроксо-анионы в пробе отсутствуют, и потребление кислоты при титровании по метилоранжу может быть обусловлено только присутствием гидрокарбонатов.

2. Vф ¹ 0, причем 2Vф Vмо. В данном случае в исходной пробе гидрокарбонаты отсутствуют, но присутствуют не только карбонаты, но и другие потребляющие кислоту анионы, а именно – гидроксо-анионы. При этом содержание последних эквивалентно составляет Vон = 2Vф – Vмо. Содержание карбонатов можно рассчитать, составив и решив систему уравнений:

VOH = 2VФ – VMO

5. VФ = Vмо. В исходной пробе отсутствуют и карбонаты, и гидрокарбонаты, и потребление кислоты обусловлено присутстви­емсильных щелочей, содержащих гидроксо-анионы.

Присутствие свободных гидроксо-анионов в заметных ко­личествах (случаи 4 и 5) возможно только в сточных водах.

Массовые концентрации анионов (не солей!) рассчитыва­ются на основе уравнений реакций потребления кислоты кар­бонатами (Ск) и гидрокарбонатами (Сгк) в мг/л по формулам:

где Vк и Vгк – объем раствора соляной кислоты, израсходованной на титрование карбоната и гидрокарбонатасоответственно, мл;
Н – точная концентрация титрованного раствора соляной кислоты (нормальность), г-экв/л; VA – объем пробы воды, взятой для анализа, мл; 60 и 61 – эквивалентная масса карбонат- и гидрокарбонат-аниона соответственно, в соответствующих реакциях; 1000 – коэффициент пересчета единиц измерений.

Результаты титрования по фенолфталеину и метилоранжу позволяют рассчитать показатель щелочности воды, который чис­ленно равен количеству эквивалентов кислоты, израсходован­ной на титрование пробы объемом 1 л. При этом потребление кис­лоты при титровании по фенолфталеину характеризует свободную щелочность, а по метилоранжу – общую щелочность, которая измеряется в мг-экв/л. Показатель щелочности используется в Рос­сии, как правило, при исследовании сточных вод. В некоторых других странах (США, Канаде, Швеции и др.) щелочность опре­деляется при оценке качества природных вод и выражается мас­совой концентрацией в эквиваленте СаСО3.

Следует иметь в виду, что при анализе сточных и загрязнен­ных природных вод получаемые результаты не всегда корректно отражают величины свободной и общей щелочности, т.к. в воде, кроме карбонатов и гидрокарбонатов, могут присутствовать соеди­нения некоторых других групп (см. «Щелочность и кислотность»).

Дата добавления: 2014-12-26 ; Просмотров: 1523 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Химический анализ природной и питьевой воды. Метод ионообменной хроматографии и титриметрический метод определения ионов кальция и магния. Особенности приготовления растворов. Устранение мешающего влияния катионов железа, марганца, цинка, меди и олова.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Методика определения ионов кальция и магния в природных водах (определение общей жесткости воды)

2. Приготовление растворов

3.1 Титриметрический метод

3.2 Метод ионообменной хроматографии

Химический анализ природной и питьевой воды показывает, что любая вода представляет собой не чистое вещество с формулой Н2О, а смесь большого количества веществ.

Многочисленные анализы природных вод показали, что среди большого числа компонентов, растворенных в них, 90 % солесодержания составляют карбонаты, гидрокарбонаты, хлориды и сульфаты кальция, магния и натрия. О.А. Алекиным предложена классификация природных вод по результатам их химического анализа. По преобладающему аниону воды делятся на три класса: карбонатные (гидрокарбонатные), хлоридные и сульфатные. По преобладающему катиону воды делятся на три группы: кальциевые, магниевые и натриевые.

В природных водах постоянно находятся ионы кальция и магния, обеспечивающие жесткость воды. Источник их поступления в воду — растворение гипса, известняков и доломитов, входящих в состав горных пород. В санитарно-гигиеническом отношении ионы кальция и магния не представляют большой опасности, но чрезмерная жесткость воды делает ее непригодной для бытовых целей, т.к. образующаяся накипь выводит из строя нагревательные элементы электрических систем нагрева воды. Оптимальная жесткость воды — до 7 мг-экв/л.

Для определения ионов кальция и магния используются два метода:

2. метод ионообменной хроматографии

1. Наиболее точный и распространенный метод определения общей жесткости — комплексометрический, основанный на образовании ионами Са 2+ и Mg 2+ прочных внутрикомплексных соединений с трилоном Б. В качестве индикатора при определении общей жесткости используется эриохром черный. В зависимости от общей жесткости концентрация рабочего раствора трилона Б и объем пробы воды могут быть различными.

Для определения кальция в природных водах преимущественно используются трилонометрический метод с индикатором мурексидом.

Содержание магния проводят расчетным методом, зная общую жесткость и содержание кальция.

2. Приготовление растворов

Раствор трилона Б с концентрацией 0,02 моль/дм 3 эквивалента.

Навеску 3,72г. трилона Б растворяют в 1 дм 3 дистиллированной воды. Точную концентрацию устанавливают по стандартному раствору хлорида цинка. Раствор хранят в полиэтиленовой посуде, проверяют его концентрацию не реже 1 раза в месяц.

Раствор хлорида цинка с концентрацией 0,02 моль/ дм 3 эквивалента.

Отвешивают на технических весах около 0,35 г металлического цинка, смачивают его небольшим количеством концентрированной соляной кислоты и сейчас же промывают дистиллированной водой. Цинк сушат в сушильном шкафу при 105 течение 1ч, затем охлаждают и взвешивают на аналитических весах.

Навеску цинка помещают в мерную колбу вместимостью 500 см 3 , в которую предварительно вносят 10-15 см 3 дистиллированной воды и 1,5 см 3 концентрированной соляной кислоты. Цинк растворяют. После растворения цинка объём раствора доводят до метки на колбе дистиллированной водой. Рассчитывают молярную концентрацию эквивалента раствора хлорида цинка CZn(1/2 ZnCl2), моль/дм 3 , по формуле:

где m — навеска металлического цинка, г; 32,69 — молярная масса эквивалента Zn 2+ , г/моль; V — объём мерной колбы, см 3 .

Буферный раствор NH4Cl +NH4OH.

7,0 г хлорида аммония растворяют в мерной колбе вместимостью 500 см 3 в 100 см 3 дистиллированной воды и добавляют 75 см 3 концентрированного раствора аммиака. Объем раствора доводят до метки дистиллированной водой и тщательно перемешивают. Буферный раствор хранят в стеклянной или полиэтиленовой посуде не более 2 месяцев. Гидроксид натрия, 2 моль/дм 3 .

40 г гидроксида натрия растворяют в мерной колбе вместимостью 500 см 3 и раствор доводят до метки дистиллированной водой.

Индикатор эриохром черный Т.

Растереть в ступке 0,25 г эриохрома черного Т с 50 г хлорида натрия.

0,5 г мурексида растереть с 100 г хлорида натрия. Водный раствор лучше не готовить, т.к. мурексид нестоек в растворе.

Раствор сульфида натрия, 4%.

2 г сульфида натрия растворяют в 50 см 3 дистиллированной воды. Хранят в плотной закрытой полиэтиленовой посуде не более недели.

Раствор гидрохлорида гидроксиламина.

5 г гидрохлорида гидроксиламина растворяют в 100 см 3 дистиллированной воды. Хранят не более 2 месяцев.

Установление точной концентрации раствора трилона Б.

В коническую колбу вместимостью 250 см 3 вносят 10 см 3 раствора хлорида цинка, добавляют дистиллированной воды приблизительно до 100 см 3 , 5 см 3 буферного раствора и 10-15 мг индикатора эриохрома чёрного Т. Содержимое конической колбы тщательно перемешивают и титруют из бюретки раствором трилона Б до перехода окраски красной в голубую. Концентрацию раствора трилона Б рассчитывают по формуле:

Читайте также:  Сдать воду из крана на анализ

3.1 Титриметрический метод

Определение ионов кальция и магния

Устранение мешающих ионов

Для устранения мешающего влияния катионов железа, цинка, меди и олова в пробу добавляют 0,5 мл раствора сульфида натрия.

Для устранения мешающего влияния марганца в пробу добавляют 0,5 мл солянокислого раствора гидроксиламина.

Перед выполнением анализа пробы воды с неизвестной величиной жёсткости проводят оценочное титрование. Для этого берут 10 см 3 воды, добавляют 0,5 см 3 буферного раствора, индикатор (эриохром чёрный Т) и титруют до перехода окраски из красной в голубую. По величине израсходованного трилона Б выбирают из таблицы 1 соответствующий объём пробы воды.

ионообменный хроматография вода магний

Таблица 1. Объём пробы воды, рекомендуемый для определения жёсткости по результатам оценочного титрования

Объём израсходованного раствора трилона Б, см 3

Рекомендуемый объём пробы, см 3

v Определение суммы кальция и магния

К пробе необходимого объёма (см. Оценочное титрование) 100 см 3 добавляют 5 см 3 буфера, индикатор (эриохром чёрный Т) на шпателе. Сразу же титруют при перемешивании до перехода окраски от винно-красной к синей.

К пробе необходимого объёма (см. Оценочное титрование) 100 см 3 добавляют 2 см 3 NaOH (2н) и индикатора (мурексид) на шпателе. Титруют до перехода окраски от красной в фиолетовую. Окраску раствора следует сравнивать с цветом перетитрованного раствора.

Содержание кальция высчитывают по формуле:

где Стр — молярная концентрация эквивалента трилона Б, моль/дм 3 ; V’ тр — объем трилона Б, пошедший на титрование с мурексидом, см 3 (см. Определение кальция); 20,04 — масса эквивалента Ca 2+ ; Vпробы — объем пробы, взятый для анализа, см 3 .

Содержание магния высчитывают по формуле:

где Стр — молярная концентрация эквивалента трилона Б, моль/дм 3 ; V тр — объем трилона Б, пошедший на титрование с эриохромом черным Т, см 3 (см. Определение суммы кальция и магния); V’тр — объем трилона Б, пошедший на титрование с мурексидом, см 3 (см. Определение кальция); 12,15- масса эквивалента Mg 2+ ; Vпробы- объем пробы, взятый для анализа, см 3 .

v Определение общей жесткости воды

Общую жесткость находят по формуле:

где Стр — молярная концентрация эквивалента трилона Б, моль/дм 3 ; Vтр — объем раствора трилона Б, пошедшего на титрование пробы, см 3 ; Vпробы — объем пробы, взятый для анализа, см 3 .

Метод добавок. Для определения данным методом в пробу вводят добавку, равную 50-150% (желательно 100%) жёсткости воды (см. Определение общей жёсткости воды) ГСО 8206-2002.

Затем высчитывают общую жесткость воды с добавкой.

a. Результаты измерений, полученных в условиях воспроизводимости для пробы 1.

Проба 1: оз. Среднее, с. Озёрное, 85 км от берега, дата: 1.10.13, время: 16.55, t = +3.

Установлена точная концентрация трилона Б: Стрилона = 0,002226 (моль/дм 3 ). При выполнении оценочного титрования объем необходимой пробы соответствует 100 (мл).

источник

Окисляемость показывает количество кислорода в миллиграммах, необходимого для окисления органических веществ, содержащихся в 1 дм³ воды.

Воды поверхностных и подземных источников имеют разную окисляемость — у подземных вод величина окисляемости незначительна, за исключением болотных вод и вод нефтяных месторождений. Окисляемость горных рек ниже, чем равнинных. Наибольшая величина окисляемости (до десятков мг/дм³) — у рек с питанием болотными водами.

Величина окисляемости закономерно изменяется в течение года. Окисляемость характеризуется несколькими величинами — перманганатной, бихроматной, йодатной окисляемостью (в зависимости от того, какой окислитель используется).

ПДК окисляемости воды имеют следующие значения: химическое потребление кислорода или бихроматная окисляемость (ХПК) водоемов питьевого назначения не должна превышать 15 мг О₂ /дм³. Для водоемов в зонах рекреации величина ХПК не должна превышать 30 мг О₂ /дм³.

Водородный показатель (pH) природной воды показывает количественное содержание в ней угольной кислоты и ее ионов.

Санитарно-гигиенические нормативы для водоемов разного типа водопользования (питьевого, рыбохозяйственного, рекреационных зон) устанавливают ПДК pH в интервале 6,5-8,5.

Концентрация ионов водорода, выраженная величиной pH — один из важнейших показателей качества воды. Величина pH имеет решающее значение при протекании многочисленных химических и биологических процессов в природной воде. Именно от величины pH зависит, какие растения и организмы будут развиваться в данной воде, каким образом будет происходить миграция элементов, от этой величины также зависит степень коррозионной активности воды на металлические и бетонные конструкции.

От величины pH зависят пути превращения биогенных элементов и степени токсичности загрязняющих веществ.

Жесткость природной воды проявляется вследствие содержания в ней растворенных солей кальция и магния. Суммарное содержание ионов кальция и магния является общей жесткостью. Жесткость можно выражать несколькими единицами измерения, на практике чаще используют величину мг-экв/дм³.

Высокая жесткость ухудшает бытовые характеристики и вкусовые свойства воды, оказывает неблагоприятное воздействие на здоровье человека.

ПДК по жесткости питьевой воды нормируется величиной 10,0 мг-экв/дм³.

К технической воде отопительных систем предъявляют более строгие требования по жесткости их-за вероятности образования накипи в трубопроводах.

Присутствие аммиака в природной воде обусловлено разложением азотсодержащих органических веществ. Если аммиак в воде образуется при разложении органических остатков (фекальное загрязнение), то такая вода непригодна для питьевых нужд. Аммиак определяется в воде по содержанию ионов аммония NH₄⁺.

ПДК аммиака в воде составляет 2,0 мг/дм³.

Нитриты NO₂⁻ являются промежуточным продуктом биологического окисления аммиака до нитратов. Процессы нитрификации возможны только в аэробных условиях, в противном случае природные процессы идут по пути денитрификации — восстановления нитратов до азота и аммиака.

Нитриты в поверхностных водах находятся в виде нитрит-ионов, в кислых водах частично могут быть в форме недиссоциированной азотистой кислоты (HN0₂).

Содержание нитритов в поверхностных водах существенно ниже, чем в водах подземного происхождения. Подземные воды верхних водоносных горизонтов могут содержать нитритов до десятых долей миллиграмма на литр.

ПДК нитритов в воде составляет 3,3 мг/дм³ (по нитрит-иону), или 1 мг/дм³ в пересчете на азот аммонийный. Для водоемов рыбохозяйственного назначения нормы составляют 0,08 мг/дм³ по нитрит-иону или 0,02 мг/дм³ в пересчете на азот.

Нитраты по сравнению с другими азотными соединениями наименее токсичны, однако в значительных концентрациях вызывают вредные последствия для организмов. Основная опасность нитратов — в их способности накапливаться в организме и окисляться там до нитритов и нитрозаминов, которые значительно более токсичны и способны вызывать так называемое вторичное и третичное нитратное отравление.

Накопление больших количеств нитратов в организме способствует развитию метгемоглобинемии. Нитраты вступают в реакцию с гемоглобином крови и образуют метгемоглобин, которые не переносит кислород и, таким образом, вызывает кислородное голодание тканей и органов.

Подпороговая концентрация нитрата аммония, не оказывающая вредных последствий на санитарный режим водоема составляет 10мг/дм³.

Для водоемов рыбохозяйственного назначения повреждающие концентрации нитратов аммония для различных видов рыб начинаются с величин порядка сотен миллиграммов на литр.

ПДК нитратов для питьевой воды составляет 45 мг/дм³ , для рыбохозяйственных водоемов —40 мг/дм³ по нитратам или 9,1 мг/дм³ по азоту.

Хлориды в повышенной концентрации ухудшают вкусовые качества воды, а при высокой концентрации делают воду непригодной для питьевых целей. Для технических и хозяйственных целей содержание хлоридов также строго нормируется. Вода, в которой много хлоридов непригодна для орошения сельскохозяйственных насаждений.

ПДК хлоридов в питьевой воде не должно превышать 350 мг/дм³, в воде рыбохозяйственных водоемов — 300мг/дм³.

Сульфаты в питьевой воде ухудшают ее органолептические показатели, при высоких концентрациях оказывают физиологическое воздействие на организм человека. Сульфаты в медицине используются как слабительное средство, поэтому их содержание в питьевой воде строго нормируется.

Содержание сульфатов в технической воде также подлежит контролю. В присутствии кальция сульфаты образуют накипь, что важно учитывать при подготовке вод, питающих паросиловые установки.

Содержание сульфатов в промышленной и питьевой воде может быть благоприятным или нежелательным фактором.

Сульфат магния определяется в воде на вкус при содержании от 400 до 600 мг/дм³, сульфат кальция — от 250 до 800 мг/дм³.

ПДК сульфатов для питьевой воды — 500 мг/дм³, для вод рыбохозяйственных водоемов —100 мг/дм³.

О влиянии сульфатов на процессы коррозии нет достоверных данных, но отмечается, что при содержании сульфатов в воде свыше 200 мг/дм³ из свинцовых труб вымывается свинец.

Соединения железа поступают в природную воду из природных и антропогенных источников. Значительные количества железа поступают в водоемы вместе со сточными водами металлургических, химических, текстильных и сельскохозяйственных предприятий.

При концентрации железа свыше 2 мг/дм³ ухудшаются органолептические показатели воды— в частности, появляется вяжущий привкус.

Высокое содержание железа делает воду непригодной для питьевых и технических целей.

ПДК железа в питьевой воде 0,3 мг/дм³,при лимитирующем показатели вредности – органолептическом. Для вод рыбохозяйственных водоемов — 0,1 мг/дм³, лимитирующий показатель вредности — токсикологический.

Высокие концентрации фтора наблюдаются в сточных водах стекольных, металлургических и химических производств (при производстве удобрений, стали, алюминия и др.), а также на горнорудных предприятиях.

Содержание фтора в питьевой воде нормируется. Повышенное содержание фтора в питьевой воде вызывает заболевание костной ткани — флюороз. Недостаток фтора тоже опасен. В местностях, где в питьевой воде содержание фторидов понижено – менее 0,01 мг/дм³, у людей чаще развивается кариес зубов.

ПДК по фтору в питьевой воде составляет 1,5 мг/дм³, при лимитирующем показателе вредности санитарно-токсикологическом.

Щелочность — показатель, логически противоположный кислотности. Щелочность природных и технических вод – способность содержащихся в них ионов нейтрализовать эквивалентное количество сильных кислот.

Показатели щелочности воды необходимо учитывать при реагентной подготовке воды, в процессах водоснабжения, при дозировании химических реагентов.

Если концентрация щелочноземельных металлов повышена, знание щелочности воды необходимо при определении пригодности воды для систем орошения.

Щелочность воды и показатель pH используются в расчете баланса угольной кислоты и определении концентрации карбонат-ионов.

Поступление кальция в природные воды идет из естественных и антропогенных источников. Большое количество кальция поступает в природные водоемы со стоками металлургических, химических, стекольных и силикатных производств, а также при стоке с поверхности сельхозугодий, где применялись минеральные удобрения.

ПДК кальция в воде рыбохозяйственных водоемов составляет 180 мг/дм³.

Ионы кальция относятся к ионам жесткости, которые образуют прочную накипь в присутствии сульфатов, карбонатов и некоторых других ионов. Поэтому содержание кальция в технических водах, питающих паросиловые установки, строго контролируется.

Количественное содержание в воде ионов кальция необходимо учитывать при исследовании карбонатно-кальциевого равновесия, а также при анализе происхождения и химсостава природных вод.

Алюминий известен как легкий серебристый металл. В природных водах он присутствует в остаточных количествах в виде ионов или нерастворимых солей. Источники попадания алюминия в природные воды — сточные воды металлургических производств, переработки бокситов. В процессах водоподготовки соединения алюминия применяют в качестве коагулянтов.

Растворенные соединения алюминия отличаются высокой токсичностью, способны накапливаться в организме и приводить к тяжелым поражениям нервной системы.

ПДК алюминия в питьевой воде не должна превышать 0,5 мг/дм³.

Магний — один из важнейших биогенных элементов, играющий большую роль в жизнедеятельности живых организмов.

Антропогенные источники поступления магния в природные воды— сточные воды металлургии, текстильной, силикатной промышленности.

ПДК магния в питьевой воде — 40 мг/дм³.

Натрий — щелочной металл и биогенный элемент. В небольших количествах ионы натрия выполняют важные физиологические функции в живом организме, в высоких концентрациях натрий вызывает нарушение работы почек.

В сточных водах натрий поступает в природные воды преимущественно с орошаемых сельхозугодий.

ПДК натрия в питьевой воде составляет 200 мг/дм³.

Элемент марганец содержится в природе в виде минеральных соединений, а для живых организмов является микроэлементом, то есть в малых количествах необходим для их жизнедеятельности.

Значительное поступление марганца в природные водоемы происходит со стоками металлургических и химических предприятий, горно-обогатительных фабрик и шахтных производств.

ПДК ионов марганца в питьевой воде —0,1 мг/дм³, при лимитирующем показателе вредности органолептическом.

Избыточное поступление марганца в организм человека нарушает метаболизм железа, при тяжелых отравлениях возможны серьезные психические расстройства. Марганец способен постепенно накапливаться в тканях организма, вызывая специфические заболевания.

Используемый для обеззараживания воды гипохлорит натрия присутствует в воде в виде хлорноватистой кислоты или иона гипохлорита. Использование хлора для дезинфекции питьевых и сточных вод, несмотря на критику метода, до сих пор широко используется.

Читайте также:  Сдать питьевую воду на анализ москве

Хлорирование также применяется в процессах изготовления бумаги, ваты, для дезинсекции холодильных установок.

В природных водоемах активный хлор присутствовать не должен.

ПДК свободного хлора в питьевой воде 0.3 — 0.5 мг/дм³.

Нефтепродукты — одни из наиболее опасных загрязнителей природных водоемов. Нефтепродукты попадают в природные воды несколькими путями: в результате разливов нефти при авариях нефтеналивных судов; со сточными водами нефтегазовой промышленности; со сточными водами химических, металлургических и других тяжелых производств; с хозяйственно-бытовыми стоками.

Небольшие количества углеводородов образуются в результате биологического разложения живых организмов.

Для санитарно-гигиенического контроля определяются показатели содержания растворенной, эмульгированной и сорбированной нефти, поскольку каждый перечисленный вид по-разному влияет на живые организмы.

Растворенные и эмульгированные нефтепродукты оказывают многообразное неблагоприятное воздействие на растительный и животный мир водоемов, на здоровье человека, на общее физико-химическое состояние биогеоценоза.

ПДК нефтепродуктов для питьевой воды —0,3 мг/дм³, при лимитирующем показатели вредности органолептическом. Для водоемов рыбохозяйственного назначения ПДК нефтепродуктов 0,05 мг/дм³.

Полифосфатные соли используются в процессах водоподготовки для умягчения технической воды, в качестве компонента средств бытовой химии, как катализатор или ингибитор химических реакций, как пищевая добавка.

ПДК полифосфатов для воды хозяйственно-питьевого назначения — 3,5 мг/дм³, при лимитирующем показатели вредности органолептическом.

Кремний – распространенный в земной коре элемент, входит в состав многих минералов. Для организма человека является микроэлементом.

Значительное содержание кремния наблюдается в сточных водах керамических, цементных, стекольных и силикатных производств, при производстве вяжущих материалов.

ПДК кремния в питьевой воде — 10 мг/дм³.

Сульфиды — серосодержащие соединения, соли сероводородной кислоты H₂S. В природных водах содержание сероводорода позволяет судить об органическом загрязнении, поскольку сероводород образуется при гниении белка.

Антропогенные источники сероводорода и сульфидов — хозяйственно-бытовые сточные воды, стоки металлургических, химических и целлюлозных производств.

Высокая концентрация сероводорода придает воде характерный неприятный запах (тухлых яиц) и токсичные свойства, вода становится непригодной для технических и хозяйственно-питьевых целей.

ПДК по сульфидам — в водоемах рыбохозяйственного назначения содержание сероводорода и сульфидов недопустимо.

Химически активный металл, в естественной форме является микроэлементом растительных и животных организмов.

Повышенные поступления стронция в организм изменяют метаболизм кальция в организме. Возможно развитие стронциевого рахита или «уровской болезни», при которой наблюдается задержка роста и искривление суставов.

Радиоактивные изотопы стронция вызывают у человека канцерогенный эффект или лучевую болезнь.

ПДК природного стронция в питьевой воде составляет 7 мг/дм³, при лимитирующем показателе вредности санитарно-токсикологическом.

источник

Настоящий нормативный документ устанавливает пламенный атомно-абсорбционный метод определения массовых концентраций магния, кальция и стронция в питьевых, природных и сточных водах. Диапазоны определяемых концентраций указаны в таблице 1.

Мешающее влияние со стороны сопутствующих элементов: алюминия, кремния, титана, цинка, щелочных металлов, серной кислоты, фосфорной кислоты в воздушно-ацетиленовом пламени устраняют введением в анализируемые растворы хлорида лантана.

Блок-схема анализа приведена в Приложении 1.

Диапазоны определяемых концентраций

Диапазоны определяемых концентраций, мг/дм 3

Питьевая и природная вода

При соответствующем дальнейшем разбавлении возможен анализ проб с более высокими содержаниями кальция, магния и стронция.

Метод основан на измерении резонансного поглощения света свободными атомами магния, кальция или стронция при прохождении света через атомный пар исследуемого образца, образующийся в пламени.

Настоящая методика обеспечивает получение результатов анализа с погрешностями, не превышающими значений, приведенных в табл. 2.

3.1.1. Атомно-абсорбционный спектрометр с пламенным атомизатором.

3.1.2. Лампы с полым катодом на кальций, магний, стронций.

3.1.4. Государственные стандартные образцы (ГСО) состава водных растворов магния, кальция и стронция с относительной погрешностью аттестованных значений массовых концентраций не более 1 % при Р = 0,95.

3.1.5. Бидистиллятор стеклянный БС ТУ 25-11.1592 или установка для получения деионизированной воды (степень чистоты 2 по ГОСТ Р 52501).

3.1.6. Плитка электрическая по ГОСТ 14919 или баня песчаная, или микроволновая печь с закрытыми стаканами, например, MDS-2000 (СЕМ) или Mars 5 (СЕМ).

Примечание : Допускается использовать средства измерений и вспомогательное оборудование с метрологическими и техническими характеристиками не хуже, чем у вышеуказанных

Диапазон измеряемых концентраций, относительные показатели точности, правильности, повторяемости и воспроизводимости методики при доверительной вероятности Р = 0,95

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), s r( d ), %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости) s R( d ), %

Показатель правильности (границы относительной систематической погрешности при вероятности Р = 0,95) ± d c, %

Показатель точности (границы, в которых находится погрешность методики при Р = 0,95), ± d , %

3.2.1. Колбы мерные вместимостью 25, 50, 100, 1000 см 3 , по ГОСТ 1770, 2 класс точности.

3.2.2. Пипетки градуированные вместимостью 1, 2, 5, 10 см 3 , по ГОСТ 29227 или с одной меткой по ГОСТ 29169.

3.2.3. Цилиндры мерные наливные вместимостью 50, 100, 1000 см 3 , по ГОСТ 1770, 2 класс точности.

3.2.4. Стаканы химические термостойкие из боросиликатного стекла вместимостью 50, 100, 1000 см 3 , по ГОСТ 25336.

3.2.5. Полиэтиленовые емкости или емкости из боросиликатного стекла для хранения проб вместимостью 500 см 3 .

3.3.1. Фильтры мембранные с диаметром пор 0,45 мкм (тип МФА-МА по ТУ 6-05-1903) или 5 мкм, или аналогичные.

3.3.3. Ацетилен растворенный газообразный по ГОСТ 5457.

3.3.4. Фильтры обеззоленные «белая лента» по ТУ 6-09-1678.

3.3.5. Бумага индикаторная универсальная по ТУ 6-09-1181.

3.4.1. Лантан хлористый семиводный, LaCl 3 × 7H 2 O, х.ч., ТУ 6-09-4773.

3.4.2. Кислота соляная, конц. (d = 1,18 г/см 3 ), НСl, о.с.ч., ГОСТ 3118, или фиксаналы соляной кислоты с концентрацией 0,1 моль/дм 3 .

3.4.3. Кислота азотная, конц. (d = 1,42 г/см 3 ), HNO 3 , о.с.ч., ГОСТ 4461.

3.4.4. Вода дистиллированная по ГОСТ 6709 или вода для лабораторного анализа по ГОСТ Р 52501 (степень чистоты 2).

3.4.5. Перекись водорода 30 %, ос.ч., ТУ 2611-003-57856778.

4.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

4.2. При работе с оборудованием необходимо соблюдать правила электробезопасности по ГОСТ 12.1.019.

4.3. Обучение работающих безопасности труда должно быть организовано в соответствии с ГОСТ 12.0.004.

4.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

К выполнению измерений и обработке их результатов допускают лиц, имеющих высшее инженерно-химическое образование, владеющих методом атомно-абсорбционного анализа, знающих принцип действия, конструкцию и правила эксплуатации данного оборудования.

К выполнению работ по пробоподготовке допускают лиц, имеющих среднее специальное химическое образование, обученных методике подготовки проб.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

относительная влажность воздуха

7.1. Отбор проб воды осуществляют в соответствии с ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб» и ГОСТ Р 51593-2000 «Отбор проб. Питьевая вода».

7.2. Пробы отбирают в емкости из полиэтилена или боросиликатного стекла. Требуемый объем пробы не менее 0,2 дм 3 .

7.3. При определении растворенных кальция, магния и стронция пробы воды фильтруют через мембранный фильтр 0,45 мкм и подкисляют азотной кислотой до рН

7.4. При определении общего содержания кальция, магния и стронция нефильтрованные пробы воды подкисляют концентрированной азотной кислотой до рН 3 кислоты на 1 дм 3 пробы). Срок хранения проб 1 месяц.

7.5. Срок хранения проб без консервации 2 суток.

7.6. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

Подготовку спектрометра к работе проводят в соответствии с инструкцией по эксплуатации. Рекомендуемая длина волны для измерения кальция — 422,7 нм; для магния — 285,2 нм; для стронция — 460,7 нм.

Примечание : Условия определения элементов (длина волны, ширина щели, расход газов, скорость распыления раствора и др.) могут варьироваться в зависимости от модели спектрометра и версии используемого программного обеспечения.

8.2.1. Приготовление 1 % (v/v) раствора азотной кислоты

В мерную колбу вместимостью 1 дм 3 наливают 700 — 800 см 3 дистиллированной воды и осторожно приливают к ней 10 см 3 концентрированной азотной кислоты, отмеренные цилиндром. Объем раствора доводят до метки водой и перемешивают.

Срок хранения раствора 3 месяца при комнатной температуре.

0,1 моль/дм 3 раствора соляной кислоты

В мерную колбу вместимостью 1 дм 3 наливают 700 — 800 см 3 дистиллированной воды и осторожно приливают к ней 8 см 3 концентрированной соляной кислоты, доводят объем до метки дистиллированной водой и тщательно перемешивают.

При использовании фиксаналов соляной кислоты в мерную колбу вместимостью 1 дм 3 наливают 700 — 800 см 3 дистиллированной воды и в колбу количественно переносят содержимое ампулы, доводят до метки дистиллированной водой и тщательно перемешивают.

Срок хранения раствора 3 месяца.

8.2.3. Приготовление спектроскопического буферного раствора

250 г хлористого лантана растворяют в 500 — 600 см 3 0,1 моль/дм 3 раствора НСl, переносят в мерную колбу вместимостью 1 дм 3 , доводят до метки 0,1 моль/дм 3 раствором НСl.

В закрытом стеклянном сосуде раствор устойчив в течение 3 месяцев.

8.2.4. Приготовление градуировочных растворов кальция

10 см 3 стандартного раствора кальция ГСО (С = 1 мг/см 3 ) с помощью пипетки переносят в мерную колбу вместимостью 100 см 3 . Доводят до метки 1 % (v/v) раствором азотной кислоты и перемешивают. Полученный основной градуировочный раствор содержит 0,1 мг/см 3 кальция. Срок хранения раствора 2 месяца при температуре 2 — 10 °С или 14 суток при комнатной температуре.

10 см 3 основного градуировочного раствора с помощью пипетки переносят в мерную колбу вместимостью 100 см 3 и доводят объем до метки 1 % (v/v) раствором азотной кислоты (промежуточный раствор). Концентрация кальция в полученном растворе 10 мг/дм 3 . Срок хранения раствора 1 месяц при температуре 2 — 10 °С или 14 суток при комнатной температуре.

Градуировочные растворы кальция готовят в соответствии с таблицами 3 и 4, добавляя в мерные колбы по 5 см 3 раствора соли лантана перед доведением объема до метки 1 % (v/v) раствором азотной кислоты. Срок хранения растворов 1 месяц при температуре 2 — 10 °С или 14 суток при комнатной температуре.

8.2.5. Приготовление градуировочных растворов магния

10 см 3 стандартного раствора магния ГСО (С = 1 мг/см 3 ) с помощью пипетки переносят в мерную колбу вместимостью 100 см 3 . Доводят объем до метки 1 % (v/v) раствором азотной кислоты и перемешивают. Полученный основной градуировочный раствор содержит 0,1 мг/см 3 магния. Срок хранения раствора 2 месяца при температуре 2 — 10 °С или 14 суток при комнатной температуре.

10 см 3 основного градуировочного раствора с помощью пипетки переносят в мерную колбу вместимостью 100 см 3 и доводят объем до метки 1 % (v/v) раствором азотной кислоты (промежуточный раствор). Концентрация магния в полученном растворе 10 мг/дм 3 . Срок хранения раствора 1 месяц при температуре 2 — 10 °С или 14 суток при комнатной температуре.

Градуировочные растворы магния готовят в соответствии с таблицами 5 и 6, добавляя в мерные колбы по 5 см 3 раствора соли лантана перед доведением объема до метки 1 % (v/v) раствором азотной кислоты. Срок хранения растворов 1 месяц при температуре 2 — 10 °С или 14 суток при комнатной температуре.

8.2.6. Приготовление градуировочных растворов стронция

10 см 3 стандартного раствора стронция ГСО (С = 1 мг/см 3 ) с помощью пипетки переносят в мерную колбу вместимостью 100 см 3 . Доводят объем до метки 1 % (v/v) раствором азотной кислоты и перемешивают. Полученный основной градуировочный раствор содержит 0,1 мг/см 3 стронция. Срок хранения раствора 2 месяца при температуре 2 — 10 °С или 14 суток при комнатной температуре.

10 см 3 основного градуировочного раствора с помощью пипетки переносят в мерную колбу вместимостью 100 см 3 и доводят объем до метки 1 % (v/v) раствором азотной кислоты (промежуточный раствор). Концентрация стронция в полученном растворе 10 мг/дм 3 . Срок хранения раствора 1 месяц при температуре 2 — 10 °С или 14 суток при комнатной температуре.

Градуировочные растворы стронция готовят в соответствии с таблицей 7, добавляя в мерные колбы по 0,5 см 3 раствора соли лантана перед доведением объема до метки 1 % (v/v) раствором азотной кислоты. Срок хранения растворов 1 месяц при температуре 2 — 10 °С или 14 суток при комнатной температуре.

Распыляют градуировочные растворы в пламени горелки и регистрируют поглощение каждого элемента при требуемой длине волны.

Оптическую плотность градуировочных растворов измеряют в порядке возрастания массовой концентрации определяемого элемента.

Градуировочную характеристику, выражающую зависимость показаний прибора от количества определяемого элемента (мг/дм 3 ), устанавливают по среднеарифметическим результатам трех измерений для каждой точки за вычетом среднеарифметического результата трех измерений холостой пробы. Для установления градуировочной характеристики используют не менее 5 точек. Холостой пробой является 1 % раствор азотной кислоты, к которому добавляют такое же количество спектроскопического буфера, как и в градуировочные растворы.

Читайте также:  Сдать родниковую воду на анализ

Через каждые десять проб повторяют измерение одного из градуировочных растворов. Если измеренная концентрация этого градуировочного раствора отличается от истинной более, чем на 8 %, градуировку повторяют полностью.

Приготовление шкалы градуировочных растворов кальция
(используется при анализе проб питьевых, природных и сточных вод)

Объем основного раствора кальция (100 мг/дм 3 ), см 3

Объем промежуточного раствора кальция, (10 мг/дм 3 ), см 3

Концентрация градуировочного раствора кальция, мг/дм 3

Приготовление шкалы градуировочных растворов кальция
(используется при анализе проб дистиллированной или деионизированной воды)

Объем промежуточного раствора кальция, (10 мг/дм 3 ), см 3

Концентрация градуировочного раствора кальция, мг/дм 3

Приготовление шкалы градуировочных растворов магния
(используется при анализе проб питьевых, природных и сточных вод)

Объем промежуточного раствора магния, (10 мг/дм 3 ), см 3

Объем раствора магния с концентрацией 1 мг/дм 3 , см 3

Концентрация градуировочного раствора магния, мг/дм 3

Приготовление шкалы градуировочных растворов магния
(используется при анализе проб дистиллированной или деионизированной воды)

Объем промежуточного раствора магния, (10 мг/дм 3 ), см 3

Объем раствора магния с концентрацией 1 мг/дм 3 , см 3

Концентрация градуировочного раствора магния, мг/дм 3

Приготовление шкалы градуировочных растворов стронция

Объем промежуточного раствора стронция, (10 мг/дм 3 ), см 3

Концентрация градуировочного раствора стронция, мг/дм 3

При определении растворенных металлов пробу воды фильтруют через мембранный фильтр с диаметром пор 0,45 мкм. Фильтрат подкисляют концентрированной азотной кислотой до рН = 2 — 3. К 50 см 3 фильтрата добавляют 2,5 см 3 конц. азотной кислоты и в полученном растворе определяют содержание металлов.

При определении взвешенных (суспендированных) форм металлов хорошо перемешанную пробу воды определенного объема фильтруют через обеззоленный фильтр. Осадок с фильтром подвергают озолению конц. азотной кислотой при нагревании на электроплитке с закрытой спиралью, либо на песчаной бане, или в микроволновой печи. Полученный раствор фильтруют через мембранный фильтр 0,45 мкм, количественно переносят в мерную колбу, доводят объем до метки дистиллированной водой и в нем определяют содержание элементов. Концентрацию взвешенных (суспендированных) форм элементов рассчитывают с учетом объема взятой для анализа пробы воды.

При определении кислото-экстрагируемых металлов хорошо перемешанную пробу воды подкисляют азотной кислотой до рН = 2 — 3, нагревают на водяной бане или электроплитке, охлаждают, фильтруют через мембранный фильтр 0,45 мкм. Объем полученного раствора доводят до первоначального объема пробы воды и в полученном растворе определяют содержание металлов.

При определении общего содержания металлов нефильтрованную хорошо перемешанную пробу воды подвергают кислотному озолению на электроплитке, песчаной бане или в микроволновой печи (МВП).

Примечание 1: При анализе сточных вод предпочтительно проводить минерализацию в микроволновой печи.

При использовании электроплитки, песчаной или водяной бани к 50 см 3 тщательно гомогенизированной пробы анализируемой воды добавляют 2,5 см 3 концентрированной азотной кислоты и нагревают, не доводя до кипения, до образования влажных солей. Если проба содержит значительное количество органических веществ, например, проба сточной воды, в процессе нагрева добавляют 1 — 3 см 3 перекиси водорода до получения прозрачного раствора. Объем полученного раствора доводят до первоначального объема пробы воды дистиллированной водой. Полученные растворы в зависимости от дисперсности и размеров частиц осадка фильтруют через мембранный фильтр с диаметром пор 0,45 или 5,00 мкм или через фильтр «белая лента» и в полученном растворе определяют содержание металлов.

При использовании микроволновой печи к 50 см 3 тщательно гомогенизированной пробы воды в стакане, предназначенном для микроволновой печи, приливают 2,5 см 3 концентрированной азотной кислоты, выдерживают 15 — 30 мин. Подготовленные стаканы ставят в турель микроволновой печи и проводят разложение по подобранному лабораторией режиму.

По окончании разложения пробы воды охлаждают в закрытых стаканах для микроволновой печи, затем открывают стаканы и фильтруют полученные растворы через мембранный фильтр с диаметром пор 0,45 или 5,00 мкм (в зависимости от дисперсности и размера частиц осадка) или через фильтр «белая лента».

Независимо от способа минерализации предварительно проводится холостой опыт для каждого типа используемых фильтров.

При необходимости подготовленные пробы анализируемой воды разбавляют таким образом, чтобы величина измеряемого сигнала абсорбции попадала в диапазон построенного для каждого элемента градуировочного графика. Например, при необходимости разбавления пробы в 5 раз в мерную колбу вместимостью 50 см 3 вносят 10 см 3 пробы, 5 см 3 раствора хлорида лантана при определении кальция и магния, или 0,5 см 3 при определении стронция, доводят объем до метки дистиллированной водой. Можно использовать меньшие объемы, например: в мерную колбу вместимостью 10 см 3 вносят 2 см 3 пробы, 1 см 3 спектроскопического буфера при определении кальция и магния, или 0,1 см 3 при определении стронция, доводят объем до метки дистиллированной водой. При разбавлении пробы более чем в 5 раз для доведения объема используют 1 % (v/v) раствор азотной кислоты.

Примечание 2: Для разбавления проб возможно использовать программируемый автоматический разбавитель.

Перед проведением серии анализов контролируются чистота посуды и качество используемых реактивов путем предварительного анализа холостого опыта.

При обработке результатов измерений содержания кальция, магния и стронция в анализируемой воде следует учитывать разбавление пробы. Содержание металла в пробе рассчитывают по формуле:

А — содержание металла в анализируемой пробе воды, найденное по градуировочному графику или рассчитанное с использованием градуировочных коэффициентов, мг/дм 3 ;

V 1 — объем колбы, в которой проводили разбавление, см 3 ;

V — объем пробы анализируемой воды, см 3 .

Результаты анализа в протоколе представляют в виде:

Значения d (показатель точности) приведены в табл. 2

12.1. При необходимости проверку приемлемости результатов измерений, полученных в условиях повторяемости (сходимости), осуществляют в соответствии с требованиями раздела 5.2. ГОСТ Р ИСО 5725-6-2002. Расхождение между результатами измерений не должно превышать предела повторяемости (r). Значения r приведены в таблице 8.

12.2. При необходимости проверку приемлемости результатов измерений, полученных в условиях воспроизводимости, проводят с учетом требований раздела 5.3 ГОСТ Р ИСО 5725-6-2002. Расхождение между результатами измерений, полученными двумя лабораториями, не должно превышать предела воспроизводимости (R). Значения R приведены в таблице 8.

Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:

— контроль стабильности результатов измерений путем контроля стабильности среднеквадратического отклонения повторяемости, промежуточной прецизионности и погрешности;

— контроль исполнителем процедуры выполнения измерений путем оценки погрешности при реализации отдельно взятой контрольной процедуры.

Периодичность контроля исполнителем процедуры выполнения измерений и алгоритмы контрольных процедур (с использованием метода добавок, с использованием образцов для контроля и т.п.), а также реализуемые процедуры контроля стабильности результатов измерений регламентируют во внутренних документах лаборатории.

Диапазон измеряемых массовых концентраций и пределы повторяемости и воспроизводимости результатов измерений при доверительной вероятности Р = 0,95

(относительное значение допускаемого расхождения между двумя параллельными результатами измерений), r, %

(относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

источник

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ИЗМЕРЕНИЙ МАССОВЫХ КОНЦЕНТРАЦИЙ МАГНИЯ, КАЛЬЦИЯ, СТРОНЦИЯ В ПРОБАХ ПИТЬЕВЫХ, ПРИРОДНЫХ И СТОЧНЫХ ВОД ПЛАМЕННЫМ АТОМНО-АБСОРБЦИОННЫМ МЕТОДОМ

И.о. директора ФГБУ «Федеральный центр анализа и оценки техногенного воздействия» А.Г.Кудрявцев 15 декабря 2017 г.

Методика допущена для целей государственного экологического контроля

Методика измерений аттестована Центром метрологии и сертификации «СЕРТИМЕТ» Уральского отделения РАН (Аттестат аккредитации N RA.RU.310657 от 12.05.2015), рассмотрена и одобрена федеральным государственным бюджетным учреждением «Федеральный центр анализа и оценки техногенного воздействия» (ФГБУ «ФЦАО»).

Настоящее издание методики введено в действие взамен ПНД Ф предыдущего издания и действует со 2 июля 2018 года до выхода нового издания.

Методика зарегистрирована в Федеральном информационном фонде по обеспечению единства измерений. Информация о методике представлена на сайтах www.fundmetrology.ru в разделе «Сведения об аттестованных методиках (методах) измерений» и www.rossalab.ru в разделе «Методики анализа».

Заместитель директора ФГБУ «ФЦАО»

Разработчик:

© ЗАО «РОСА», 1998

Адрес: 119297, г.Москва, ул.Родниковая, 7, стр.35

Телефон: (495) 502-44-22, телефон/факс: (495) 439-52-13

http://www.rossalab.ru

e-mail: quality@rossalab.ru

1 ОБЩИЕ ПОЛОЖЕНИЯ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий нормативный документ устанавливает методику измерений массовых концентраций магния, кальция, стронция пламенным атомно-абсорбционным методом в пробах питьевых, природных и сточных вод.

Примечание — Под питьевыми водами подразумеваются воды централизованных и нецентрализованных систем водоснабжения, воды расфасованные в емкости (упакованная питьевая вода), минеральные воды. Под природными водами подразумеваются поверхностные и подземные воды, в том числе источники питьевого водоснабжения, грунтовые, талые, атмосферные осадки (дождь, снег, град). Под сточными водами подразумеваются воды производственные, хозяйственно-бытовые, ливневые и очищенные.

Допускается применение методики для анализа вод бассейнов и аквапарков, технических вод (открытых и закрытых систем технического водоснабжения, восстановленных), вытяжек (из материалов, используемых в системах водоснабжения, из продукции, изготовленной из полимерных материалов, из укупорочных материалов, из продукции текстиля, меха и кожи, из материалов, используемых при изготовлении игрушек и прочей продукции).

Диапазоны измерений массовых концентраций определяемых элементов указаны в таблице 1.

Мешающее влияние со стороны сопутствующих элементов: алюминия, кремния, титана, цинка, серной кислоты, фосфорной кислоты в воздушно-ацетиленовом пламени устраняют введением в анализируемые пробы раствора хлорида лантана (спектроскопического буфера).

Таблица 1 — Перечень определяемых показателей и диапазоны измерений

Диапазоны измерений массовых концентраций, мг/дм

Питьевая и природная вода

Блок-схема проведения анализа приведена в приложении А.

ГОСТ 12.0.004-2015 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения.

ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования.

ГОСТ 12.1.007-76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности.

ГОСТ 12.4.009-83 Система стандартов безопасности труда. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание.

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков.

ГОСТ 1770-74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия.

ГОСТ 5457-75 Ацетилен растворенный и газообразный технический. Технические условия.

ГОСТ 6709-72 Вода дистиллированная. Технические условия.

ГОСТ 11125-84 Кислота азотная особой чистоты. Технические условия.

ГОСТ 14261-77 Кислота соляная особой чистоты. Технические условия.

ГОСТ 14919-83 Электроплиты, электроплитки и жарочные электрошкафы бытовые. Общие технические условия.

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры.

ГОСТ 28311-89 Дозаторы медицинские лабораторные. Общие технические требования и методы испытания.

ГОСТ 29169-91 Посуда лабораторная стеклянная. Пипетки с одной отметкой.

ГОСТ 29227-91 Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования.

ГОСТ 31861-2012 Вода. Общие требования к отбору проб.

ГОСТ Р 12.1.019-2009 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты.

ГОСТ Р 52501-2005 Вода для лабораторного анализа. Технические условия.

ГОСТ Р 53228-2008 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания.

ГОСТ Р 56237-2014 Вода питьевая. Отбор проб на станциях водоподготовки и в трубопроводных распределительных системах.

ГОСТ OIML R 76-1-2011 Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания.

ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике.

МУ 2.1.4.2898-11 Методические указания. Санитарно-эпидемиологические исследования (испытания) материалов, реагентов и оборудования, используемых для водоочистки и водоподготовки.

МУК 4.1/4.3.2038-05 Методы контроля. Химические факторы/физические факторы. Санитарно-эпидемиологическая оценка игрушек. Методические указания.

ТУ 6-05-1903-87* Мембраны «Владипор» типа МФА-МА.
________________
* ТУ, упомянутые здесь и далее по тексту, не приводятся. За дополнительной информацией обратитесь по ссылке. — Примечание изготовителя базы данных.

ТУ 6-09-1181-89 Бумага индикаторная универсальная для определения РН 1-10 и 7-14. Технические условия.

ТУ 6-09-1678-95 Фильтры обеззоленные (белая, красная, синяя ленты).

ТУ 6-09-4773-84 Хлориды иттрия и редкоземельных элементов (лантана, празеодима, европия, гадолиния, тербия, диспрозия, гольмия, эрбия, тулия, иттербия, лютеция, неодима, самария).

ТУ 2114-002-14555954-2004 Воздух сжатый.

ГОСТ 177-88 Водорода перекись. Технические условия.

ТУ 2642-001-33813273-97 Стандарт-титры (Фиксаналы; Нормадозы).

Примечание — Если ссылочный стандарт заменен (изменен), то следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

Настоящая методика обеспечивает получение результатов измерений с погрешностью, не превышающей значений, приведенных в таблице 2.

Таблица 2 — Диапазоны измерений определяемых показателей, значения показателей точности, воспроизводимости и повторяемости

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), , %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), , %

Показатель точности (границы относительной погрешности при доверительной вероятности 0,95), , %

источник