Меню Рубрики

Анализ мазута на содержание воды

При определении содержания воды в мазуте в мерный цилиндр наливают 10 мл мазута и доливают до метки «50» (50 мл) керосин или дизельное топливо (производят разбавление мазута в 5 раз). Цилиндр закрывают пробкой, и смесь перемешивают встряхиванием. В пробирку отбирают 10 мл из полученной смеси и проводят определение, как указано в п. 9.3.4. Результат определения умножают на 5 (коэффициент разбавления).

При наличии воды в керосине (дизельном топливе), ее со­держание определяют отдельно по п. 9.3.4, после чего результат вычитают из полученного (по п. 9.3.5) значения.

Время взаимодействия нефтепродукта с гидридом кальция: без разбавления керосином — 10-20 мин; при разбавлении керо­сином 5-10 мин.

Температуру окружающего воздуха измерили термометром, ее значение составило 21°С.

Измеренное термометром значение температуры масла составило 23 °С (t1 = 23°С).

Максимальная температура масла после добавления гидрида каль­ция составила 24,5°С (t2 = 24,5°С).

Разность температур составила Δt=24,5-23,0=1,5°С. С помощью диаграммы (рис.9) находим содержание воды в масле. Оно соста­вило 0,1%, что значительно ниже браковочного показателя (0,5%, см. приложение 3).

4.4 Определение щелочного числа работающего масла

Щелочное число масла — показатель, характеризующий его способность к нейтрализации минеральных кислот (кислоты сер­ная, сернистая и соляная), образующихся в масле в процессе сжи­гания топлива или в результате протечек из систем охлаждения морской водой, а также органических кислот в процессе старения масла.

Щелочное число определяется количеством мг КОН, экви­валентным количеству соляной кислоты, израсходованной на нейтрализацию всех основных соединений, содержащихся в 1 г анализируемого нефтепродукта (масла).

Щелочное число масла обеспечивается вводимыми в базовое масло щелочными присадками, в составе которых присутствуют металлы (барий, цинк, кальций и др.). При этом образовавшиеся в процессе работы масла кислоты взаимодействуют в основном не с материалом деталей дизеля, а с металлом присадки. В процессе эксплуатации масла щелочные присадки срабатываются, и ще­лочное число снижается, что приводит к коррозионному износу втулок цилиндров, поршней, вкладышей подшипников коленча­того вала.

Современные циркуляционные масла, в зависимости от щелочного числа, подразделяются на:

— среднещелочные (20-30 мг КОН/г);

— высокощелочные (30-100 мг КОН/г).

Первые две группы масел применяются в дизелях, работаю­щих на топливах с содержанием серы до 2%, высокощелочные (цилиндровые) масла — при работе на топливах с содержанием серы от 2 до 5%. Минимальный запас щелочности работающего масла должен быть не меньше удвоенного содержания серы в топливе.

Применяемый в СЛТМ метод позволяет контролировать щелочное число масел и срабатываемость щелочных присадок.

Метод определения и характеристики

Сущность метода заключается в изменении окраски индика­тора бромтимолового синего, введенного в водный экстракт, по­лученный обработкой масла водным раствором ОП-10. В зависи­мости от содержания в экстракте кислот, окраска раствора с индикатором изменяется от синей до желтой.

Щелочное число определяется визуальным сравнением окраски водного экстракта с контрольной цветной шкалой в ин­тервале от 0,5 до 4,0 мг КОН/г масла.

Шкала построена по образцам малощелочных работающих масел, в которых численное значение щелочного числа определе­но по ГОСТ 11362-76.

Цвет шкалы ЩЧ,мг КОН/г
Желтый 0,5-1,0
Желто-зеленый 1,0-2,5
Зеленый 2,5-3,0
Бирюзовый 3,0-4,0
Синий 4,0 и выше

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10008 — | 7152 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Одна из главных проблем при хранении мазута — насыщение его водой и загрязнение механическими примесями. Это может происходить по нескольким причинам:

  • При поступлении мазута железнодорожным транспортом по технологии разогрева происходит взаимодействие прямого (острого) пара с нефтепродуктом. Во время разгрузки и приемки мазут насыщается водой, что приводит к повышению содержания воды в мазуте до 5%.
  • В лотки, находящиеся под железнодорожной цистерной, попадает песок, различный мусор, вода, в общем, все то, что находится в естественном фоне окружающей среды. Все это рано или поздно попадает в емкость, что приводит к повышенному содержанию механических примесей в мазуте.
  • При длительной эксплуатации мазутного хозяйства и продолжительном сроке хранения мазута без проведения технических осмотров и ремонта емкостей и регистров подогрева нефтепродукта, происходит повреждение системы подачи пара в емкость. Из-за этого повышается содержание воды, что негативно сказывается на состоянии мазута. Причем насыщение мазута водой происходит очень быстро.
  • Незакрытые люки емкости, дырявая проржавевшая от старости кровля (на резервуарах РВС) также не добавляют качества мазуту. Песок, вода, листья деревьев, перчатки, тряпки и различный мусор от неаккуратного обслуживающего персонала «добивают» мазут и все мазутное хозяйство.

В дальнейшем, из-за разницы плотности мазута и воды происходит расслоение: мехпримиси, вода выпадают вниз, а мазут остается наверху. Мазут старый с повышенным содержанием воды также при остывании, когда ни используется мазутное хозяйство, расслаивается на слои воды и мазута. Более тяжелые слои, с большим содержание воды, опускаются вниз, более легкие поднимаются наверх. Пример можно увидеть на рисунке.

Мазут старый в своей массе имеет различный процент содержания воды. Так как вода тяжелее мазута, в верхних слоях процент содержания воды может составлять 10%, а в нижних слоях — 30-50%. Таким образом среднее значение обводнения мазута составит 20-30%. Для определения параметров обводнения мазута следует брать пробы с различных слоев Для правильного определения воды и мехпримиси в мазуте необходимо брать пробы с трех уровней: с верхнего, среднего и нижнего.

— Мазут с пониженным содержанием воды

— Мазут с средним содержанием воды

Читайте также:  Атомно абсорбционный анализ питьевой воды

— Мазут с повышенным содержанием воды

Точные данные вам может предоставить только лаборатория.

Однако приблизительную степень обводнения можно определить визуально. Мазут, соответствующий требованиям ГОСТ, черного цвета, по консистенции в холодном состоянии похож на мёд. При этом, сильно обводненный не разогретый мазут по консистенции похож на битум: очень вязкий, при растягивании по поверхности стремится вернуться в исходное состояние, как резина.

источник

Нефтепродукты (НП) относятся к числу наиболее распространенных и опасных веществ, загрязняющих природные воды. Нефть и продукты ее переработки представляют собой сложную, непостоянную смесь предельных и непредельных углеводородов и их различных производных. Понятие «нефтепродукты» в гидрохимии условно ограничивается только углеводородной фракцией (алифатические, ароматические и ациклические), составляющей главную и наиболее характерную часть нефти и продуктов ее переработки. В международной практике содержание в воде нефтепродуктов определяется термином «углеводородный нефтяной индекс» (hydrocarbon oil index).

В связи с неблагоприятным воздействием нефтепродуктов на организм человека и животных, на биоценозы водоемов, контроль за содержанием нефтепродуктов в водах обязателен и регламентируется требованиями ГН 2.1.5.1315-03, ГН 2.1.5.2280-07, СанПиН 2.1.5.980-00, Приказом Росрыболовства от 18.01.2010 №20.

Предельно допустимые концентрации (ПДК) нефтепродуктов в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования 0,3 мг/дм3, в водах водных объектов рыбохозяйственного значения — 0,05 мг/дм3.

В настоящее время применяют методы определения содержания нефтепродуктов в воде, основанные на различных физических свойствах нефтепродуктов:

  1. Метод ИК-спектрофотометрии
  2. Гравиметрический метод
  3. Флуориметрический метод
  4. Метод газовой хроматографии.

Метод ИК-спектрофотометрии (ПНД Ф 14.1:2:4.168; МУК 4.1.1013-01, НДП 20.1:2:3.40-08) заключается в выделении эмульгированных и растворенных нефтяных компонентов из воды экстракцией четыреххлористым углеродом, хроматографическом отделении НП от сопутствующих органических соединений других классов на колонке, заполненной оксидом алюминия, и количественном их определении по интенсивности поглощения C-H связей в инфракрасной области спектра. Диапазон измеряемых концентраций: 0,02 – 2,00 мг/дм3. Погрешность методики при Р=0,95 ( ±δ, %): 25 – 50%.

Гравиметрический метод ( ПНД Ф 14.1:2.116-97) основан на извлечении нефтепродуктов из анализируемых вод органическим растворителем, отделении от полярных соединений других классов колоночной хроматографией на оксиде алюминия и количественном определении гравиметрическим методом. Диапазон измеряемых концентраций: 0,30 – 50,0 мг/дм3. Погрешность методики при Р=0,95 ( ±δ, %): 25 – 28% (для природных вод), 10 – 35% (для сточных вод).

Преимуществами этого метода определения НП являются высокая чувствительность и экспрессность анализа.

Методом газовой хроматографии (ГОСТ 31953-2012 ) определяют массовую концентрацию нефтепродуктов в питьевой воде, в том числе расфасованной в емкости, природной (поверхностной и подземной) воде, в том числе воде источников питьевого водоснабжения, а также в сточной воде с массовой концентрацией нефтепродуктов не менее 0,02 мг/дм3.

Метод основан на экстракционном извлечении нефтепродуктов из пробы воды экстрагентом, очистке экстракта от полярных соединений сорбентом, анализе полученного элюата на газовом хроматографе, суммировании площадей хроматографических пиков углеводородов в диапазоне времен удерживания равным и (или) более н-октана ( ) и расчете содержания нефтепродуктов в воде по установленной градуировочной зависимости. Этот метод позволяет определить не только общее содержание нефтепродуктов, но и проводить идентификацию состава нефтепродуктов. Погрешность методики при Р=0,95 ( ±δ, %): 25 – 50%.

В лаборатории АНО «Испытательный Центр «Нортест» измерение массовой концентрации нефтепродуктов в пробах природных, питьевых, сточных вод выполняется флуориметрическим и гравиметрическим методами анализа.

Гранулометрический (механический) состав грунтов и почв

Загрязнение почв и грунтов тяжелыми металлами

Анализ почвы и воды в современном испытательном центре

источник

Содержание воды в нефтях и нефтепродуктах

Диапазон содержания воды в нефтях весьма широк и может изменяться от десятых долей до 60 % и более.

Содержащаяся в нефтях вода может быть в трех формах: растворенная, диспергированная и свободная. Содержание растворенной воды зависит в основном от химического состава нефти и нефтепродуктов и температуры. С повышением температуры растворимость воды увеличивается во всех углеводородах. Наибольшей растворяющей способностью по отношению к воде обладают ароматические углеводороды. Чем выше содержание в нефти ароматических углеводородов, тем выше в ней растворимость воды.

При снижении температуры растворимость воды в нефти и нефтепродуктах уменьшается и вода может выделяться в виде дисперсных частиц, образуя водонефтяные эмульсии. В монодисперсных эмульсиях содержание воды может доходить до 74;%. В реальных условиях водонефтяные эмульсии являются полидисперсными. В нефтях, поступающих со сборных пунктов на установки обезвоживания и обессоливания, размеры глобул воды находятся в пределах от 3—5 до 7—10 мкм. Эти размеры зависят от гидродинамических и других условий добычи нефти, а также степени обводненности пласта. Размеры глобул в течение года для одной и той же скважины могут меняться в пределах 5—12 мкм. Содержание воды в нефти может доходить до 97 %, однако большинство нефтей образуют с водой достаточно устойчивые эмульсии с содержанием воды не более 60 %. Остальная часть воды находится в свободном состоянии и легко отстаивается.

Важным показателем нефтяных эмульсий является их устойчивость, т.е. способность в течение длительного времени не разрушаться. Агрегативная устойчивость нефтяных эмульсий измеряется продолжительностью их существования и для различных нефтяных эмульсий колеблется от нескольких секунд до нескольких часов и даже месяцев. Устойчивость водонефтяных эмульсий зависит от ряда факторов, в том числе от наличия в них веществ, называемых эмульгаторами. Эти вещества, адсорбируясь на поверхности раздела фаз, снижают межфазное поверхностное натяжение и таким образом повышают ее устойчивость. Известны десятки подобных веществ, содержащихся в нефтях. Большая их часть принадлежит к классу поверхностно-активных веществ. Такими компонентами нефти являются различные нефтяные кислоты, смолистые соединения.

В процессе образования и стабилизации водонефтяных эмульсий наряду с поверхностно-активными веществами важную роль играют тонкодисперсные нерастворимые твердые продукты, находящиеся в нефти в коллоидном состоянии.

К ним относятся асфальтены, микрокристаллы парафина, сульфид железа и другие механические примеси. Эти продукты образуют на поверхности капель механически прочные оболочки, препятствующие их коалесценции.

Стабилизация водонефтяных эмульсий определяется закономерностями адсорбции на поверхности капель различных эмульгирующих веществ. Вначале этот процесс идет быстро, а затем, по мере заполнения свободной поверхности капель, постепенно затухает и скорость его стремится к нулю. В этот период состав и структура бронирующих оболочек стабилизируются. Время, необходимое для такой стабилизации, называется временем старения эмульсии. Время старения эмульсии зависит от многих факторов и для большинства нефтей СССР изменяется от двух-трех до десятков часов. Во время старения повышается и устойчивость эмульсий к расслоению.

Стойкость эмульсий существенно зависит от фракционного состава нефтей. Чем больше содержание в нефти светлых фракций, тем менее устойчивы водонефтяные эмульсии, так как при этом увеличивается разность плотностей воды и нефти. Эмульсии высоковязких нефтей имеют более высокую стойкость, так как более высокая вязкость дисперсной среды препятствует столкновению частиц воды и их укрупнению, т. е. коалесценции.

Повышение концентрации солей в пластовой воде, которая образует с нефтью водонефтяную эмульсию, приводит к уменьшению стойкости эмульсии, так как в этом случае возрастает разность плотности воды и нефти.

В нефтепродуктах содержание воды значительно меньше, чем в нефтях. Большинство нефтепродуктов по отношению к воде обладает очень низкой растворяющей способностью. Кроме того, нефтяные дистиллятные топлива обладают и меньшей, чем нефть, эмульгирующей способностью, так как в процессе переработки удаляется значительная часть смолистых веществ, нафтеновых кислот и их солей, серосодержащих соединений, которые, как сказано выше, играют роль эмульгаторов.

Наличие воды в моторных топливах, смазочных маслах крайне нежелательно. Содержание воды в смазочных маслах усиливает их склонность к окислению и ускоряет коррозию металлических поверхностей, соприкасающихся с маслом. Присутствие воды в моторных топливах может привести при низких температурах к прекращению подачи топлива из-за забивки топливныхфильтров кристаллами льда.

Методы определения воды в нефти и нефтепродуктах могут быть разбиты на две группы: качественные и количественные.

Качественные испытания позволяют определять не только эмульсионную, но и растворенную воду. К этим методам относятся пробы на прозрачность Клиффорда, на потрескивание и на реактивную бумагу. Первые два из этих методов используют для определения воды в прозрачных нефтепродуктах. Наиболее часто применяемым методом качественного определения воды является проба на потрескивание.

Для количественного определения воды в нефти и нефтепродуктах можно использовать различные их свойства, функционально связанные с содержанием в них воды: плотность, вязкость, поверхностное натяжение, диэлектрическую проницаемость, электропроводимость, теплопроводность и т. д. Заранее рассчитать вид функции, как правило, невозможно из-за неаддитивного вклада воды в измеряемый параметр. Неаддитивность обусловлена химическим взаимодействием молекул воды и вещества. По этой причине математическую зависимость обычно находят, используя экспериментальные данные.

Другая группа методов основана на использовании химических и физико-химических свойств самой воды. К ним, например, относятся метод титрования реактивом Фишера, гидридкальциевый.

Существующие количественные методы определения воды в жидких продуктах, кроме того, делят на прямые и косвенные. К прямым методам относят метод Дина и Старка, титрование реактивом Фишера, гидридкальциевый метод и центрифугирование, к косвенным — диэлькометрический,ИК-спектрофото-метрически кондуктометрический, колориметрический и др.

Пробирка диаметром 10—15 и высотой 120—150 мм

При нагревании нефти или нефтепродукта до 150 °С содержащаяся в них вода вскипает и образует пену, вызывая треск и помутнение продукта. По этим признакам делают заключение о наличии или отсутствии воды в продукте.

В стеклянную пробирку диаметром 10—15 и высотой 120— 150 мм наливают испытуемый продукт до высоты 80—90 мм. Пробирку закрывают пробкой, снабженной термометром и имеющей отверстие для прохождения образующихся паров. Шарик термометра должен находиться на расстоянии 20— 30 мм от дна пробирки. Пробирку с испытуемым продуктом вставляют вертикально в термостат, нагретый до 170°С, и наблюдают за ней в течение нескольких минут, пока температура в пробирке не достигнет 150°С. При наличии в продукте влаги он начинает пениться, слышится треск.

Рис. 2.4. Схема установки для определения воды по методу Фишера

Приборы: стакан для титрования, метиловый спирт, реактив Фишера

Подготовка к испытанию. Для проведения анализа собирают прибор (рис. 2.4) и определяют титр реактива Фишера в соответствии с ГОСТ 24629—81.

Массу навески анализируемого нефтепродукта берут из такого расчета, чтобы на титрование расходовалось 3—8 мл реактива Фишера. В качестве растворителя используют метиловый спирт.

Проведение испытания. В стакан для титрования вводят обезвоженный метанол в объеме, необходимом для погружения платиновых электродов, и оттитровывают реактивом Фишера воду, содержащуюся в обезвоженном метиловом спирте, а также адсорбированную стенками колбы и электродами. В начале титрования реактив Фишера подают по каплям со скоростью одна капля в секунду. При этом стрелка микроамперметра незначительно отклоняется от нулевого деления. Когда стрелка начнет сильно колебаться, реактив Фишера добавляют со скоростью одна капля за 5 с, а при приближении к точке эквивалентности—со скоростью одна капля за 10 с.

Титрование проводят до тех пор, пока стрелка микроамперметра не установится на определенном делении шкалы и не продержится на этом делении в течение 30 с. Такое положение стрелки свидетельствует о конце титрования.

После этого в оттитрованную смесь вносят взвешенную массу или отмеренный объем анализируемого продукта и снова титруют реактивом Фишера до эквивалентной точки.

Необходимая для анализа масса навески нефтепродукта зависит от содержания воды:

3 ; V1— объем реактива Фишера, израсходованный на титрование анализируемого продукта, мл; V2 — объем анализируемого продукта, мл; р — плотность анализируемого продукта, г/см 3 .

За результат анализа принимают среднее арифметическое двух параллельных определений.

Определение содержания воды хроматографическим методом

Содержание воды определяют методом газоадсорбционной хроматографии на насадочной колонке. В качестве сорбентов используют пористые полимеры типа полисорба-1. Детектирование осуществляют по теплопроводности в гелии. После выхода пика воды проводят обратную продувку хроматографической колонки.

Приборы, реактивы, материалы

Хроматограф с детектором по теплопроводности

Подготовка к анализу. Включают хроматограф в сеть и проверяют его герметичность согласно инструкции по эксплуатации прибора. Если хроматографическая колонка загружена свежеприготовленным адсорбентом, то ее продувают гелием в течение 10—12 ч со скоростью 3 л/ч при температуре около 200 °С. Используют колонку длиной 4 м и внутренним диаметром 4 мм.

При анализе нефти необходимо соблюдать следующие условия:

Температура детектора, °С 125-150

Температура испарителя, °С 280

Чувствительность детектирования, мВ 2

Скорость движения ленты диаграммы, 360

Объем анализируемой пробы, мл 0,05-0,2

Проведение анализа. Определение количества воды в нефти чаще всего проводят способом абсолютной калибровки.

После установления заданных условий анализа микрошприцем вводят в испаритель точное количество (1 мкл) калибровочной смеси. В качестве калибровочной смеси используют этиловый спирт-ректификат, содержащий от 0,1 до 6,% воды. При расчете хроматограмм используют массовые коэффициенты чувствительности для воды и этилового спирта—1IKв и 1/Кэт

Количество воды в калибровочной смеси рассчитывают как среднее 3—4 параллельных определений.

После этого пробу нефти тщательно перемешивают и отбирают на анализ хорошо просушенным чистым шприцем в количестве 0,05—0,2 мл. Для герметизации на конец иголки насаживают кусочек резиновой пробки и взвешивают на аналитических весах. Результат взвешиваний записывают в рабочую тетрадь. Затем, сняв с иголки кусочек пробки, пробу вводят в испаритель, снова кусочек пробки насаживают на иголку и взвешивают шприц. По разности взвешиваний определяют массу введенной в колонку пробы. Когда на хроматограмме появится пик воды, осуществляют обратную продувку колонки.

Массовую долю воды А, %, при абсолютной калибровке рассчитывают по формуле:

где S — площадь пика воды в анализируемой пробе, мм 2 ; Ук — объем калиб­ровочной смеси, использованной для анализа, см 3 ; g— массовая доля воды в калибровочной смеси, %; р — плотность калибровочной смеси, г/см ;

5к—площадь пика воды в калибровочной смеси, мм 2 ; М— масса навески анализируемой пробы, г.

источник

К наиболее распространенным и токсически опасным веществам, которые служат источниками загрязнения природной водной среды, специалисты относят нефтепродукты (НП).

Нефть и её производные являются непостоянными смесями углеводородов предельной и непредельной группы, а также их производных разного вида. Гидрохимия условно трактует понятие «нефтепродукты», ограничиваясь только их углеводородными алифатическими, ароматическими и ациклическими фракциями, которые составляют основную и наиболее распространенную часть нефти и её компонентов, выделяемых в процессе нефтепереработки. Для обозначения содержания нефтепродуктов в воде, в международной практике существует термин Нydrocarbon Оil Index («углеводородный нефтяной индекс»).

Предельная допустимая концентрация (ПДК) в воде нефти и нефтепродуктов для культурно-бытовых и хозяйственно-питьевых объектов водопользования находится на отметке 0,3 миллиграмма на кубический дециметр, а для объектов рыбохозяйственного водопользования – 0,05 миллиграмма на кубический дециметр.

Определение нефтепродуктов, содержащихся в воде, возможно с помощью различных приборов и методов, о которых мы кратко расскажем в этой статье.

На сегодняшний момент существуют четыре основных методики определения концентрации нефти и её производных в воде, которые основаны на разных физических свойствах определяемых нефтепродуктов:

  • метод гравиметрии;
  • ИК-спектрофотометрия;
  • флуориметрический метод;
  • методика газовой хроматографии.

Методика применения того или иного способа измерения содержания нефтей и нефтепродуктов в воде, а также нормы ПДК для различных видов нефтепродуктов, регламентируется природоохранными нормативными документами федерального значения (сокращенно – ПНД Ф).

Его применение регулируется ПНД Ф за номером 14.1:2.116-97.

Суть его – извлечение (обезвоживание) нефтепродуктов из предоставленных для анализа проб с помощью органического растворителя, с последующим отделением от полярных соединений с помощью колоночной хроматографии на оксиде алюминия других классов соединений, после чего производится количественное определение содержания вещества в воде.

В исследованиях сточных вод этот способ применяется при концентрациях, диапазон которых составляет от 0,30 до 50,0 миллиграмм на кубический дециметр, что не позволяет определить соответствие воды нормам ПДК на объектах рыбохозяйственного водопользования.

Еще одним существенным недостатком этого способа является длительный период времени, который требуется для проведения измерений. Поэтому его не применяют при текущем технологическом контроле на производстве, а также в других случаях, когда скорость получения результатов имеет первостепенное значение.

К достоинствам этой методики специалисты относят отсутствие стандартных градуировок по образцам, которые характерны для прочих методов анализа.

Погрешность при использовании этого способа при показателе Р равном 0,95 (±δ, %) при анализе природных вод варьируется от 25-ти до 28-ми процентов, а при анализе сточных вод – от 10-ти до 35-ти.

Применение этой методики регламентируется ПНД Ф за номером 14.1:2:4.168, а также методическими указаниями МУК 4.1.1013-01.

Суть этой методики определения содержания нефтепродуктов в воде – выделение растворенных и эмульгированных нефтяных загрязнений путем экстракции их с помощью четыреххлористого углерода, с последующим хроматографическим отделением нефтепродукта от прочих соединений органической группы, на заполненной оксидом алюминия колонке. После этого определение количества НП в воде производится по показателям интенсивности поглощения в инфракрасной области спектра C-H связей.

Инфракрасная спектроскопия на сегодняшний момент является одной из наиболее мощных аналитических методик, и широко применяется в исследованиях как прикладного, так и фундаментального характера. Её применение также возможно для нужд текущего контроля производственного процесса.

Характеристика топливных смесей. Международные стандарты качества минеральной массы. Улучшение физико-химических свойств мазута. Исследования, проведенные после процесса гомогенизации. Применение гидродинамических устройств в топливной системе дизелей.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КАЧЕСТВО МАЗУТА: ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Стремление к сокращению затрат на приобретение топлива заставляет судовладельцев и изготовителей судовых энергетических установок использовать наиболее дешевые высоковязкие сорта углеводородных видов топлива — осуществлять поиск технических решений по снижению его расхода. топливный смесь мазут гомогенизация

В судовых дизельных двигателях используются смеси дистиллятных видов топлива с высоковязкими крекинг-остатками. В зависимости от конструктивных особенностей, характеристик рабочего процесса двигателей, совершенства системы топливоподготовки.

В основном применяются топливные смеси вязкостью от 180 сСт до 700 сСт.

С повышением вязкости доля дистиллятного топлива в смеси уменьшается и соответственно увеличивается доля мазута, что приводит к ухудшению качественных характеристик топлива.

Мазут относится к группе остаточных фракций углеводородов, получаемых в процессе переработки нефти. Свойства мазута зависят от исходных свойств сырой нефти и глубины ее переработки на нефтеперерабатывающих заводах. В мазуте, как конечном продукте нефтепереработки, сосредоточивается балласт — негорючая часть, состоящая из минеральной массы, воды. В процессах крекинга нефти легкие углеводородные фракции, бензин, керосин, дизельное топливо насыщаются содержащимся в нефти водородом в большей степени, поэтому в мазуте содержание водорода по сравнению с сырой нефтью уменьшается, что приводит к снижению его теплотворной способности.

Снижение теплотворной способности мазута обусловливается повышенным содержанием в его составе серы, азота, кислорода, смол, асфальтенов, золы, механических примесей.

В минеральной массе мазута присутствует значительное количество различных металлов, в том числе и ванадия. Ванадий сосредоточивается в нефтяных смолах, асфальтенах, являющихся и основными серосодержащими компонентами. Окислы ванадия вызывают как низкотемпературную так и высокотемпературную, при 600-700oС, коррозию металлов, приводящую к разрушению поверхностей нагрева, уплотняющих поверхностей выпускных клапанов и лопаток газовых турбин.

Согласно международным стандартам качества минеральная масса, содержащаяся в мазуте, не должна превышать 0,1-0,3%, но, несмотря на малое ее содержание, образующаяся при сжигании мазута зола, отлагаясь на поверхностях нагрева котлоагрегатов, значительно уменьшает передачу тепла от продуктов сгорания. Отложения золы на поверхностях деталей поршневой группы дизелей вызывают ускоренный износ трущихся поверхностей, затрудняют отвод тепла к охлаждающим средам.

При транспортировке и хранении в емкостях качество мазута изменяется. В результате постоянного окисления, полимеризации, химических реакций, углеводороды мазута превращаются в твердые продукты, выпадающие в осадок.

В холодную погоду во время разогрева железнодорожных цистерн острым паром, содержание воды в мазуте может достигать 10-15%. Во время дальнейшего хранения мазут дополнительно обводняется атмосферной влагой. Анализы качества мазута, хранящегося в емкостях на одной из нефтебаз, показали, что содержание воды в пробах, отобранных на уровне 4-5 м от днища, достигает 5%, а в придонных слоях -12%.

Бункерные компании производят подогрев мазута в емкостях до температуры, при которой обеспечивается перекачивание, смешивание мазута. При недостаточном подогреве отстаивание воды в высоковязком мазуте, обладающем высокой плотностью, становится практически невозможным и с большой вероятностью можно полагать, что к потребителям поступает чрезмерно обводненный мазут. Качество мазута может ухудшиться и при смешивании его в емкостях нефтебаз с мазутом, в котором вследствие длительного хранения качественные характеристики не отвечают стандартным требованиям. Бункерующие компании приобретают партии топлива от различных поставщиков и смешивают их, выдерживая только стандарты качества по вязкости, и почти не учитывают другие показатели. Действуя таким образом, они основываются на международных стандартах качества, которые не включают в себя проверку на степень очистки от посторонних включений и на стабильность топлива, не определяют расчетный углеродный ароматический индекс /CCAI/, оказывающий существенное влияние на способность топлива к воспламенению. При индексе CCAI более 850-890 способность топлива к воспламенению резко ухудшается.

Это приводит к аварийному загрязнению продуктами сгорания цилиндро-поршневой группы, выпускных клапанов, газотурбонагнетателей. Несгоревшее топливо может накапливаться в газовыпускном тракте, что приводит к повышению давления сгорания, стукам в цилиндрах, взрывам, пожару в выпускном тракте. Повышенное содержание ароматических фракций наиболее возможно у топлива с пониженной вязкостью от 180 сСт до 220 сСт, полученных при смешивании дистиллятных топлив с высоковязким мазутом. Смешивание же углеводородов различного природного происхождения, имеющих несовместимое структурное строение молекул, может привести к быстрой потере стабильности топлива. Использование нестабильного топлива в энергетических установках вызывает быстрое отложение нефтешлама в трубопроводах, непроходимость фильтров, приводит к аварийному загрязнению продуктами сгорания деталей цилиндро-поршневой группы и узлов газовыпускного тракта дизелей. Бункерующие компании принимают меры по предотвращению поставки некачественного топлива, но их возможности в повышении качества хранящегося мазута ограничены, и они вынуждены производить его поставку потребителю в состоянии «как есть». Поэтому каждая операция по смешиванию топлива несет в себе неопределенность по качеству конечного продукта.

Учитывая все факторы риска, судовой экипаж должен использовать для проверки качества находящуюся в его распоряжении судовую экспресс лабораторию, привлекать сторонние теплотехнические лаборатории и принимать другие необходимые меры по предотвращению приемки некачественного топлива. Конечная ответственность за последствия использования некачественного топлива всегда возлагается на судовую администрацию. Для предотвращения негативных последствий судовая система топливоподготовки должна быть снабжена эффективными техническими средствами, позволяющими до сжигания мазута в энергетических установках улучшать его качественные характеристики.

Улучшение физико-химических свойств мазута на судах достигается в результате применения различных гомогенизирующих устройств. Например, наше гидродинамическое оборудование, успешно применяется в топливных системах судовых энергетических установок для гомогенизации топлива, приготовления высокодисперсной водотопливной эмульсии с 1985 г. Применение гидродинамических устройств в судовой системе топливоподготовки

На судах дизельное топливо и мазут хранятся в судовых танках раздельно. Если на судне установлено эффективное смесительное оборудование, имеется система для подогрева мазута в танках основного запаса и подогреватели, обеспечивающие подогрев мазута до необходимой температуры, то смешивание топлива для корректировки вязкости мазута целесообразно производить на судне. В этом случае исключается риск получения от бункерующих компаний большого объема нестабильного топлива, предотвращаются последствия его негативного воздействия на состояние энергетических установок и их систем, и появляется возможность использования более дешевых сортов мазута. Смешивание топлива на судне с одновременным улучшением качественных характеристик производится по мере уменьшения его объема в отстойных расходных емкостях, из которых обеспечивается подача топлива к судовым энергетическим установкам. Сокращение времени между гидродинамической обработкой топлива в смесительных устройствах и его сжиганием в энергетических установках не позволяет активным углеводородным радикалам, из-за недостатка времени на осуществление обратных химических реакций, возвратиться в исходное состояние, что и является одним из факторов повышения эффективности использования топлива. Приготовление к процессу смешивания топлива начинается с заполнения отстойных мазутных танков и соответственно отстойных танков дизельного топлива. Мазут в отстойных танках подогревается до температуры, при которой содержащаяся в нем вода осаждается в нижних горизонтах цистерны и затем через дренажный трубопровод удаляется. Аналогично, после отстаивания, удаляется и вода из цистерн дизельного топлива. Перед смешиванием топлива по номограммам известной вязкости компонентов производят определение их объемного содержания в смеси. В нашей установке, дизельное топливо на входе в кавитационный смеситель вводится в несущий поток мазута, предварительно подогретого до необходимой температуры. Приготовленная топливная смесь из кавитационного смесителя поступает в гомогенизатор-смеситель вихревой, в котором вследствие трансформации параметров состояния многокомпонентного потока возникают интенсивные акустические колебания в ультразвуковом спектре частот, создающие в объеме потока кавитационные разрывы. Закрытие кавитационных разрывов сопровождается концентрацией энергии, позволяющей в локальном объеме топлива повысить температуру до 1500-1800оС, давление до 200 кг/см2, что значительно превышает параметры крекинг-процесса при переработке нефти.

Исследования, проведенные после процесса гомогенизации, подтвердили глубокие структурные изменения в молекулярном составе углеводородов, повышение степени дисперсности асфальтенов, карбенов, карбоидов до размерного ряда частиц 2-3 мкм. Длинные молекулярные цепи преобразовывались в легкие углеводородные радикалы газовых, дистиллятных топливных фракций. При этом вязкость мазута уменьшалась на 20%, плотность на 2,5%.

Приобретенные после гомогенизации качественные характеристики сохранялись длительное время. Измельчение остаточных фракций способствовало сокращению потери горючей части топлива на 85%, ранее удаляемой в процессе сепарирования топлива в виде нефтешлама.

Применение гидродинамических устройств в топливной системе дизелей обусловливается необходимостью повышения дисперсности, преобразования углеводородных молекул остаточных фракций мазута в более активные радикалы, ускоряющих в цилиндрах дизеля процесс сгорания.

Гомогенизация топлива непосредственно перед процессом сгорания, перевод рабочего процесса судовых дизелей на высокодисперсную водотопливную эмульсию в настоящее время интенсивно применяется практически всеми ведущими дизелестроительными концернами для повышения эффективности использования топлива и предотвращения загрязнения окружающей среды вредными примесями уходящих газов.

Водотопливная эмульсия является особым видом топлива, качественно и количественно изменяющего процесс горения. Содержащиеся в топливе высокодисперсные частицы водной фазы при прогреве в цилиндре превращаются в паровые пузырьки, мгновенно дробящие топливные капли на мельчайшие частицы, которые быстрее прогреваются и интенсивнее взаимодействуют вначале с кислородом, образующимся в результате диссоциации воды, воспламеняются, и, перемешиваясь с кислородом воздушного заряда, ускоренно сгорают.

Находящаяся в составе эмульгированного топлива водная фаза может быть диссоциирована частично, в ходе окисления топлива в предпламенных процессах. Затем, по мере повышения температуры в фазе активного сгорания, реакция диссоциации воды ускоряется. Образующийся при диссоциации избыток атомов водорода быстро диффундирует в область с избытком кислорода, где их реакция компенсирует затраты энергии на диссоциацию воды. Участие в реакции горения дополнительного количества водорода приводит к увеличению количества продуктов сгорания. Молекулы воды ускоряют ход реакций в окислительных процессах и вследствие возникновения полярного эффекта, существенно улучшающего ориентацию частиц активных радикалов топлива. В ходе экспериментальных исследований установлено, что добавление к топливу 5-10% воды ускоряет процесс сгорания в 5-6 раз. Расширение дополнительных продуктов сгорания увеличивает работу газов в цилиндре двигателя.

Благодаря более полному и ускоренному сгоранию топлива, постоянной газификации отложений углерода, детали цилиндро-поршневой группы, газовыпуского тракта не загрязняются продуктами сгорания, меньше подвержены абразивному износу. Повышение степени дисперсности остаточных фракций, расщепление углеводородных молекул под воздействием ультразвуковой кавитации на более легкие фракции, интенсивное перемешивание многокомпонентной среды в высокотурбулентных вихрях способствует ускорению реакции горения, что позволяет компенсировать влияние ароматических углеводородов на задержку самовоспламенения топлива.

Разработанные технологии для смешивания, обработки топлива в поле ультразвуковой кавитации и приготовления высокодисперсных водотопливных эмульсий применяются в топливных системах судовых дизелей, в котлоагрегатах промышленных предприятий, на нефтебазах. Изготавливаемые в модульном исполнении наши установки комплексного диспергирования имеют производительность по готовому продукту 3,6-6,3 м3/ч, производительность по диспергируемому объему водной фазы 0,5-0,6 м3/ч, и обеспечивают основной размер частиц водной фазы в эмульсии 1-5 мкм.

С переводом рабочего процесса судовых дизелей на водотопливную эмульсию- с водосодержанием 17-20% расход топлива сокращается на 12%,

— эмиссия окислов азота NOx уменьшается на 30-37%, сернистого ангидрида SO2x на 50%, сероводородов H2S на 50%,

— несгоревшие углеводороды отсутствуют.

— cповышением эффективности использования топлива температура уходящих газов снижается на 8-10оС, соответственно уменьшается теплонапряженность деталей цилиндро-поршневой группы.

— gри работе установок в режиме гомогенизации расход высоковязкого обезвоженного топлива уменьшается на 5%.

Отказов в работе гидродинамического оборудования не наблюдается, трудоемкость обслуживания незначительная.

С переводом работы котлоагрегатов на гомогенизированную, высокодисперсную эмульсию с водосодержанием 12-15% расход топлива сокращается на 6-8%, содержание вредных выбросов уменьшается, NOx на 40%, SO2 на 50%, H2S и несгоревших углеводородов в несколько раз.

Снижение расхода топлива в котлоагрегатах в основном достигается за счет сокращения подачи воздуха в топочное пространство, ускорения процесса сгорания топлива, увеличения теплопередачи от газов к греющим поверхностям, прекращения подачи пара к форсункам для распыления топлива, увеличения потока лучистой энергии, вследствие повышения температуры факела и резкого уменьшения нагарообразования на греющих поверхностях.

С переводом работы котлоагрегатов на эмульгированное топливо, изменения в динамике горения можно наблюдать визуально. Факел горящего эмульгированного топлива в топочном пространстве сокращается в объеме, становится прозрачным. Температура уходящих газов уменьшается по сравнению с обезвоженным мазутом на 30-35оС.

Изменение параметров процесса горения и состава уходящих газов свидетельствуют о повышении эффективности использования топлива. Приготавливаемая на базе мазута водотопливная эмульсия с размерным рядом частиц 1-3 мкм, является коллоидным раствором, которая обладает высокой агрегативной и кинетической устойчивостью и равномерно распределяется в объеме цистерны для хранения топлива, следовательно, частицы водной фазы не выпадают в осадок.

Таким образом, вода, которая находится в нижних слоях емкостей и могла бы вызывать срыв процесса горения в котлоагрегатах, после эмульгирования в гидродинамических устройствах равномерно распределяется в объеме емкости, что повышает эффективность использования мазута. Во время сдачи гидродинамического оборудования в работу, имели место случаи, когда при переводе снабжения котлоагрегатов на топливо из новой емкости, вследствие большого количества воды, выпавшей в осадок, водомазутная эмульсия, поступающая к форсункам, имела в своем составе до 65% водной фазы. И только благодаря высокодисперсному эмульгированию горение в топках котлоагрегатов оставалось стабильным без срыва факела.

Изучение технологии производства мазута, его назначения и применения. Характеристика физико-химических свойств мазута. Обоснование способа его получения и особенностей выбранного метода. Химическое и коррозионное действие среды на материал и оборудование.

реферат [1,6 M], добавлен 27.05.2010

Типы промышленных установок. Блок атмосферной перегонки нефти установки. Особенности технологии вакуумной перегонки мазута по масляному варианту. Перекрестноточные посадочные колонны для четкого фракционирования мазута с получением масляных дистиллятов.

реферат [2,5 M], добавлен 14.07.2008

Прогноз структуры топливно-энергетического комплекса России. Основное назначение мазутного хозяйства. Физико-химическая характеристика мазута. Оборудование хозяйства: хранение мазута, мазутопроводы, арматура, мазутонасосная станция, подогреватели.

реферат [1,4 M], добавлен 20.01.2012

Распределение грузооборота на односторонней железнодорожной эстакаде слива мазута. Установка аварийного слива УВСМ-15. Гидравлический расчет сливного коллектора и трубопровода. Подбор откачивающих насосов для мазута. Расчет экономической эффективности.

дипломная работа [1,9 M], добавлен 31.08.2012

Физико-химические свойства мазута, технология его производства. Анализ возникновения и развития аварийных ситуаций, определение вероятностей сценариев с помощью деревьев событий. Негативные поражающие факторы аварий; экономический и экологический ущерб

дипломная работа [4,5 M], добавлен 11.05.2014

Описание технологического процесса фракционирования углеводородного сырья. Схема дисцилляции — фракционирования нефти. Регулирование уровня мазута в кубе ректификационной колонны. Обработка массива данных с помощью пакета System Identification Toolbox.

курсовая работа [2,4 M], добавлен 28.05.2015

Классификация пива по приоритетным факторам. Основные свойства, характеризующие качество и безопасность пищевых продуктов. Фальсификация и дефекты пива. Исследование физико-химических показателей пива при помощи анализатора качества пива «Колос-1».

курсовая работа [255,7 K], добавлен 05.01.2015

Газовый баланс как уравнение, выражающее равенство прихода и расхода тепла газообразного топлива на металлургическом заводе, рассмотрение способов составления. Общая характеристика схемы транспортировки мазута, знакомство с основными особенностями.

презентация [442,6 K], добавлен 07.08.2013

Автомобильный бензин как топливо для карбюраторных двигателей. Основные показатели физико-химических свойств бензинов и их маркировка. Последствия применения бензина с высокой температурой конца перегонки. Особенности определения качества и марки бензина.

реферат [20,8 K], добавлен 29.12.2009

Описание принципиальной технологической схемы установки вакуумной перегонки мазута. Построение кривой ИТК мазута Северо-варьеганской нефти. Технологический расчёт и расчёт теплового баланса вакуумной колонны, расчёт её диаметра и высоты, числа тарелок.

курсовая работа [1,4 M], добавлен 28.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.

источник

В этой статье мы поговорим о том, как определить качество мазута. Стремление к сокращению затрат на приобретение топлива заставляет судовладельцев и изготовителей судовых энергетических установок использовать наиболее дешевые высоковязкие сорта углеводородных видов топлива, осуществлять поиск технических решений по снижению его расхода.

В судовых дизельных двигателях используются смеси дистиллятных видов топлива с высоковязкими крекинг-остатками.

В зависимости от конструктивных особенностей, характеристик рабочего процесса двигателей, совершенства системы топливоподготовки, в основном применяются топливные смеси вязкостью от 180 сСт до 700 сСт.

С повышением вязкости доля дистиллятного топлива в смеси уменьшается и соответственно увеличивается доля мазута, что приводит к ухудшению качественных характеристик топлива.

Мазут относится к группе остаточных фракций углеводородов, получаемых в процессе переработки нефти. Свойства мазута зависят от исходных свойств сырой нефти и глубины ее переработки на нефтеперерабатывающих заводах.

В мазуте, как конечном продукте нефтепереработки, сосредоточивается балласт-негорючая часть, состоящая из минеральной массы, воды. В процессах нефтекрекинга легкие углеводородные фракции, бензин, керосин, дизельное топливо насыщаются содержащимся в нефти водородом в большей степени, поэтому в мазуте содержание водорода по сравнению с сырой нефтью уменьшается.

Уменьшение содержания водорода в мазуте приводит к снижению его теплотворной способности. Снижение теплотворной способности мазута обусловливается также и повышенным содержанием в его составе серы, азота, кислорода, смол, асфальтенов, золы, механических примесей.

В минеральной массе мазута присутствует значительное количество различных металлов, в том числе и ванадия. Ванадий сосредоточивается в нефтяных смолах, асфальтенах, являющихся и основными серосодержащими компонентами.
Окислы ванадия вызывают как низкотемпературную так и высокотемпературную, при 600-700oС, коррозию металлов, приводящую к разрушению поверхностей нагрева, уплотняющих поверхностей выпускных клапанов и лопаток газовых турбин.

Согласно международным стандартам качества, минеральная масса, содержащаяся в мазуте, не должна превышать 0,1-0,3%, но, несмотря на малое ее содержание, образующаяся при сжигании мазута зола, отлагаясь на поверхностях нагрева котлоагрегатов, значительно уменьшает передачу тепла от продуктов сгорания. Отложения золы на поверхностях деталей поршневой группы дизелей вызывают ускоренный износ трущихся поверхностей, затрудняют отвод тепла к охлаждающим средам.

При транспортировке и хранении в емкостях качество мазута изменяется. В результате постоянного окисления, полимеризации, химических реакций, углеводороды мазута превращаются в твердые продукты, выпадающие в осадок.
В холодную погоду во время разогрева железнодорожных цистерн острым паром, содержание воды в мазуте может достигать 10-15%. Во время дальнейшего хранения мазут дополнительно обводняется атмосферной влагой.

Анализы качества мазута, хранящегося в емкостях на одной из нефтебаз, показали, что содержание воды в пробах, отобранных на уровне 4-5 м от днища, достигает 5%, а в придонных слоях – 12%.

Бункерные компании производят подогрев мазута в емкостях до температуры, при которой обеспечивается перекачивание, смешивание мазута. При недостаточном подогреве отстаивание воды в высоковязком мазуте, обладающем высокой плотностью, становится практически невозможным и с большой вероятностью можно полагать, что к потребителям поступает чрезмерно обводненный мазут. Качество мазута может ухудшиться и при смешивании его в емкостях нефтебаз с мазутом, в котором вследствие длительного хранения качественные характеристики не отвечают стандартным требованиям.

Бункерующие компании приобретают партии топлива от различных поставщиков и смешивают их, выдерживая только стандарты качества по вязкости, и почти не учитывают другие показатели.

Действуя таким образом, они основываются на международных стандартах качества, которые не включают в себя проверку на степень очистки от посторонних включений и на стабильность топлива, не определяют расчетный углеродный ароматический индекс /CCAI/, оказывающий существенное влияние на способность топлива к воспламенению.

При индексе CCAI более 850-890 способность топлива к воспламенению резко ухудшается. Это приводит к аварийному загрязнению продуктами сгорания цилиндро-поршневой группы, выпускных клапанов, газотурбонагнетателей. Несгоревшее топливо может накапливаться в газовыпускном тракте, что приводит к повышению давления сгорания, стукам в цилиндрах, взрывам, пожару в выпускном тракте.

Повышенное содержание ароматических фракций наиболее возможно у топлива с пониженной вязкостью от 180 сСт до 220 сСт, полученных при смешивании дистиллятных топлив с высоковязким мазутом.

Смешивание же углеводородов различного природного происхождения, имеющих несовместимое структурное строение молекул, может привести к быстрой потере стабильности топлива.

Использование нестабильного топлива в энергетических установках вызывает быстрое отложение нефтешлама в трубопроводах, непроходимость фильтров, приводит к аварийному загрязнению продуктами сгорания деталей цилиндро-поршневой группы и узлов газовыпускного тракта дизелей.

Бункерующие компании принимают меры по предотвращению поставки некачественного топлива, но их возможности в повышении качества хранящегося мазута ограничены, и они вынуждены производить его поставку потребителю в состоянии “как есть”. Поэтому каждая операция по смешиванию топлива несет в себе неопределенность по качеству конечного продукта.

Учитывая все факторы риска, судовой экипаж должен использовать для проверки качества находящуюся в его распоряжении судовую экспресс лабораторию, привлекать сторонние теплотехнические лаборатории и принимать другие необходимые меры по предотвращению приемки некачественного топлива.

Конечная ответственность за последствия использования некачественного топлива всегда возлагается на судовую администрацию. Для предотвращения негативных последствий судовая система топливоподготовки должна быть снабжена эффективными техническими средствами, позволяющими до сжигания мазута в энергетических установках улучшать его качественные характеристики.

Улучшение физико-химических свойств мазута на судах достигается в результате применения различных гомогенизирующих устройств. Например, гидродинамическое оборудование, изготавливаемое под торговой маркой GlobeCore, успешно применяется в топливных системах судовых энергетических установок для гомогенизации топлива, приготовления высокодисперсной водотопливной эмульсии с 1965 г.

источник