Меню Рубрики

Анализ на фосфаты в воде

Цель работы : определение фосфат-ионов в пробах природных вод.

Фосфор является необходимым элементом для жизни. Являясь важнейшим биогенным элементом, именно фосфор чаще всего лимитирует развитие продуктивности водоемов. Поэтому поступление избытка соединений фосфора с водосбора в виде минеральных удобрений с поверхностным стоком полей (с гектара орошаемых земель может выносится 0,4–0,6 кг фосфора), со стоками ферм (0,01–0,05 кг/ сут . на одно животное), с недоочищенными или неочищенными бытовыми сточными водами (0,003–0,006 кг/ сут . на одного жителя), а также с некоторыми производственными расходами приводит к резкому неконтролируемому приросту растительной биомассы водного объекта. Особенно характерен данный процесс для малопроточных и непроточных водоемов. Происходит изменение трофического статуса водоема, сопровождающееся перестройкой всего водного сообщества и ведущее к преобладанию гнилостных процессов (и, соответственно, возрастанию мутности, солености, концентрации бактерий).

В природных и сточных водах фосфор может присутствовать в разных видах. В растворенном состоянии (иногда говорят — в жидкой фазе анализируемой воды) он может находиться в виде ортофосфорной кислоты (Н3РО4) и ее анионов в виде мет а- , пиро — и полифосфатов (эти вещества используют для предупреждения образования накипи, они входят также в состав моющих средств). Кроме того, существуют разнообразные фосфорорганические соединения — нуклеиновые кислоты, нуклеопротеиды, фосфолипиды и др., которые также могут присутствовать в воде, являясь продуктами жизнедеятельности или разложения организмов. К фосфорорганическим соединениям относятся также некоторые пестициды.

Минерализация приводит к превращению в ортофосфаты все, даже труднорастворимые , формы фосфатов в воде. Таким образом, определяется содержание общего фосфора в любой воде (этот показатель можно определять как для растворенных фосфатов, так и для нерастворимых соединений фосфора). Однако для природных вод, не содержащих или содержащих незначительное количество трудногидролизующихся фосфатов в твердой фазе, минерализации обычно не требуется, и получен­ный при анализе гидролизованной пробы результат с хорошим приближением может быть принят за содержание общего фосфора.

ПДК полифосфатов ( триполифосфат и гексаметафосфат ) в воде водоемов составляет 3,5 мг/л в пересчете на ортофосфат-анион РО4 3- , лимитирующий показатель вредности – органолептический.

Диапазон определяемых концентраций ортофосфатов в воде при визуально-колориметрическом определении – от 0,2 до 7,0 мг/л, при фотометрическом определении – 0,01–0,4 мг/л. Определение визуально-колориметрическим методом возможно и при концентрации ортофосфатов более 7,0 мг/л после соответствующего разбавления пробы чистой водой.

Метод основан на получении восстановленной фосфорномолибденовой гетерополикислоты – «молибденовой сини».

При взаимодействии фосфатов с молибдатом ( VI ) в кислой среде образуется фосфорно-молибденовая гетерополикислота Н7 Р( Мо2О7)6, которая восстанавливается аскорбиновой кислотой в присутствии сурьмяно-виннокислого калия до фосфорно-молибденового комплекса, окрашенного в голубой цвет.

Оптическую плотность образованного фосфорно-молибденового комплекса определяют на фотоэлектроколориметре при красном светофильтре. Содержание фосфора фосфатов в пробе определяют по показаниям прибора, пересчитанным по предварительно построенному градуировочному графику.

– колбы мерные вместимостью 50, 100 см 3 ;

– цилиндры мерные вместимостью 50, 100 см 3 ;

– колбы конические плоскодонные вместимостью 100 см 3 ;

– смесь аскорбиновой и серной кислот.

1. В коническую плоскодонную колбу вместимостью 100 см 3 отбирают 50,0 см 3 отфильтрованной исследуемой пробы воды. Объем отбирают пипеткой вместимостью 50 см 3 . К пробе добавляют 10,0 см 3 смешанного реактива, и раствор хорошо перемешивают.

2. Через 10 мин на фотоэлектроколориметре измеряют оптическую плотность раствора при красном светофильтре в кювете с толщиной оптического слоя 5 см , используя в качестве сравнения дистиллированную воду.

3. Если исследуемая проба воды окрашена или слегка мутная, отдельно измеряют ее оптическую плотность относительно дистиллированной воды при красном светофильтре в кювете с толщиной оптического слоя 5 см , добавив к пробе 10 см 3 смеси серной и аскорбиновой кислот вместо смешанного индикатора.

4. По градуировочной характеристике полученному значению оптической плотности ставят в соответствие значение концентрации фосфат-ионов в исходной пробе воды. Содержание фосфатов ( Сх ) в мг/дм 3 находят по формуле:

где С о – концентрация фосфат-ионов , найденная по градуировочной характеристике, мг/дм 3 ;

n – степень разбавления исходной пробы воды (в случае, если исследуемую пробу не разбавляли, n = 1).

Форма записи результатов определения фосфат иона в пробах природных вод представлена ниже.

Таблица. Форма записи результатов определения фосфат-иона в пробах природных вод

Содержание
фосфат-иона ,
найденного

по градуировочному
графику мг/дм3

источник

Фосфор является необходимым элементом для жизни. Являясь важнейшим биогенным элементом, именно фосфор чаше всего лимитирует развитие продуктивности водоемов. Поэтому поступление избытка соединений фосфора в виде минеральных удобрений с поверхностным стоком полей (с орошаемых земель вынос фосфора может достигать 0,4—0,6 кг фосфора/га), со стоками ферм (0,01—0,05 кг/сут на одно животное), с недоочищенными или неочищенными бытовыми сточными водами (0,003—0,006 кг/сут на одного жителя), а также с некоторыми производственными расходами приводит к резкому неконтролируемому приросту растительной биомассы водного объекта. Особенно характерен данный процесс для малопроточных и непроточных водоемов. Происходит изменение трофического статуса водоема, сопровождающееся перестройкой всего водного сообщества и ведущее к преобладанию гнилостных процессов (и соответственно возрастанию мутности, солености, концентрации бактерий).

В природных и сточных водах фосфор может присутствовать в разных видах. В растворенном состоянии (иногда говорят — в жидкой фазе анализируемой воды) он может находиться в виде ортофосфорной кислоты (Н3Р04) и се анионов (Н2Р04 _ , НР04 2 , Р04 3_ ), в виде мета-, пиро- и полифосфатов (эти вещества используют для предупреждения образования накипи, они входят также в состав моющих средств). Кроме того, существуют разнообразные фосфорорганические соединения — нуклеиновые кислоты, нуклеопротеиды, фосфолипиды и др., которые также могут присутствовать в воде, являясь продуктами жизнедеятельности или разложения организмов. К фосфорорганическим соединениям относятся также некоторые пестициды [1] .

Фосфор может содержаться и в нерастворенном состоянии (в твердой фазе воды), присутствуя в виде взвешенных в воде труднорастворимых фосфатов, включая природные минералы, белковые, органические фосфорсодержащие соединения, остатки умерших организмов и др. Фосфор в твердой фазе в природных водоемах обычно находится в донных отложениях, однако может встречаться, причем в больших количествах, в сточных и загрязненных природных водах.

Фосфаты определяются колориметрическим методом (ГОСТ 18309, ИСО 6878) по реакции с молибдатом аммония в кислой среде:

Образующийся при этом комплекс, продукт желтого цвета, далее под действием восстановителя хлорида олова (11) превращается в интенсивно окрашенный синий краситель сложного состава «молибденовую синь». Концентрацию ортофосфатов в анализируемой воде определяют по окраске пробы, визуально сравнивая ее с окраской образцов на контрольной шкале или измеряя оптическую плотность проб с помощью фотоколориметра.

В данную реакцию из всех присутствующих в воде фосфатов непосредственно вступают только ортофосфаты. Для определения полифосфатов их необходимо предварительно перевести в ортофосфаты путем кислотного гидролиза в присутствии серной кислоты. Многие сложные эфиры фосфорной кислоты также могут быть определены после их кислотного гидролиза в тех же условиях, что и полифосфаты. Реакция кислотного гидролиза на примере пирофосфата протекает следующим образом:

Некоторые фосфорсодержащие органические соединения могут быть определены только после их минерализации, называемой иногда также «мокрым сжиганием». Минерализация фосфорсодержащих органических соединений проводится при кипячении пробы с добавлением кислоты и сильного окислителя — персульфата калия или пероксида водорода. В случае использования для этой цели персульфата калия реакция протекает по уравнению

где R и R| — органические фрагменты.

Минерализация приводит к превращению в ортофосфаты все, даже труднорастворимые, формы фосфатов в воде. Таким образом определяется содержание общего фосфора в любой воде (этот показатель можно определять как для растворенных фосфатов, так и для нерастворимых соединений фосфора). Однако для природных вод, не содержащих или содержащих незначительное количество трудногидролизующихся фосфатов в твердой фазе, минерализации обычно не требуется, и полученный при анализе гидролизованной пробы результат может с хорошим приближением быть принят за содержание общего фосфора.

Влияние некоторых мешающих примесей, которые могут присутствовать в сточных водах, — силикатов (более 50 мг/л), соединений железа (III) (более 1 мг/л), сульфидов и сероводорода (более 3 мг/л) устраняют добавлением к пробе специальных реагентов, входящих в состав тест-комплекта, или изменением операций обработки пробы.

Возможное влияние нитритов (до 25 мг/л) устраняется за счет прибавления к пробе раствора для их связывания, предусмотренного методом (раствора сульфаминовой кислоты). Проведению анализа мешают большие количества хлоридов, нитритов, хроматов, арсенатов, танина.

При анализе фосфатов в гидролизованной пробе непосредственно определяется сумма ортофосфатов и полифосфатов; концентрация же полифосфатов рассчитывается как разность между результатами анализа гидролизованной и негидролизованной пробы. Гидролиз полифосфатов протекает также при минерализации, так как ее проводят в сильнокислой среде.

ПДК полифосфатов (триполифосфат и гексаметафосфат) в воде водоемов составляет 3,5 мг/л в пересчете на ортофосфат-анион РОД — , лимитирующий показатель вредности — органолептический.

Диапазон определяемых концентраций ортофосфатов в воде при визуально-колориметрическом определении — от 0,2 до 7,0 мг/л, при фотометрическом определении — 0,01—0,4 мг/л. Определение визуально-колориметрическим методом возможно и при концентрации ортофосфатов более 7,0 мг/л после соответствующего разбавления пробы чистой водой.

Колба коническая термостойкая (Эрленмейера) на 100 мл со шлифом, мерная склянка с делениями (5, 10, 20 мл) с пробкой, холодильник обратный со шлифом, кипелки’ (стеклянные капилляры, зерна силикагеля), колба мерная вместимостью 50 мл, плитка электрическая с закрытым нагревательным элементом, пипетка-капельница на 1 мл, чашка фарфоровая на 200—500 мл.

Вода дистиллированная, перманганат калия кристаллический, раствор восстановителя, раствор для связывания нитритов, раствор молибдата, раствор серной кислоты (10%-й) водный, раствор серной кислоты (1:3) водный, персульфат аммония в капсулах по 0,5 г.

Контрольная шкала образцов окраски для концентраций ортофосфатов (0; 0,2; 1,0; 3,5; 7,0 мг/л) из состава тест-комплекта или приготовленная самостоятельно.

Приготовление растворов см. приложение 3.

А. Определение ортофосфатов в питьевой и природной воде

1. Отберите в мерную склянку 20 мл профильтрованной или отстоенной анализируемой воды (пробы), предварительно ополоснув ее 2—3 раза той же водой.

Примечание. При ожидаемой концентрации ортофосфатов более 5 мг/л рекомендуется отбирать 5 мл пробы (склянкой) или 1 мл (шприцем-дозатором), доводя объем раствора в склянке до 20 мл чистой водой, не содержащей ортофосфатов. [2]

2. Добавьте к пробе пипеткой-капельницей 10 капель раствора для связывания нитритов и затем шприцем-дозатором 1 мл раствора молибдата. Склянку закройте пробкой и встряхните для перемешивания раствора.

А Раствор молибдата содержит серную кислоту. Соблюдайте осторожность при выполнении данной операции!

  • 3. Оставьте пробу на 5 мин для полного протекания реакции.
  • 4. Добавьте к пробе пипеткой-капельницей 2—3 капли раствора восстановителя. Склянку закройте пробкой и встряхните для перемешивания раствора. При наличии в воде ортофосфатов раствор приобретает синюю окраску.

А Раствор восстановителя содержит соляную кислоту. Соблю- . дайте осторожность при выполнении данной операции!

5. Оставьте пробу на 5 мин для полного протекания реакции.

6. Проведите визуальное колориметрирование пробы. Для этого мерную склянку поместите на белое поле контрольной шкалы и, освещая склянку рассеянным белым светом достаточной интенсивности, определите ближайшее по окраске поле контрольной шкалы и соответствующее ему значение концентрации ортофосфатов в мг/л.

При получении результата анализа учтите разбавление пробы чистой водой, введя поправочный коэффициент (например, при разбавлении пробы в 4 раза, т.е. при отборе 5 мл анализируемой воды, полученное по шкале значение концентрации умножьте на 4).

Для более точного определения концентрации ортофосфатов оптическая плотность пробы может быть измерена с помощью фотоколориметра. В этом случае для получения результата анализа следует воспользоваться предварительно построенной градуировочной зависимостью, которая линейна в диапазоне 0,01—0,4 мг/л.

Б. Дополнительные операции при определении ортофосфатов в загрязненных

поверхностных и сточных водах

При анализе сточных вод выполняются операции, позволяющие устранить мешающее влияние силикатов, соединений железа (111), сульфидов и сероводорода, а также танина.

Для этого выполните следующие операции:

  • 1) определите универсальной индикаторной бумажкой pH анализируемой воды. При наличии сильнощелочной среды пробу необходимо нейтрализовать раствором серной кислоты до значений pH 4—8;
  • 2) если в анализируемой воде ожидается присутствие силикатов (более 50 мг/л) и соединений железа (III) (более 1 мг/л), разбавьте пробу перед анализом либо отберите 5 мл воды и доведите объем пробы до 20 мл чистой водой;
  • 3) если в анализируемой воде ожидается присутствие сульфидов и сероводорода (более 3 мг/л), приготовьте разбавленный (слегка розовый) раствор перманганата калия и добавьте несколько капель его в пробу. При этом проба должна приобрести слабую розовую окраску (при значительной окраске раствора пробу можно разбавить анализируемой водой);
  • 4) если в анализируемой воде ожидается присутствие хроматов (более 3 мг/л), измените порядок прибавления растворов: первым прибавьте к пробе раствор восстановителя, а затем — раствор для связывания нитритов и раствор молибдата;
  • 5) если в анализируемой воде ожидается присутствие танина, его можно удалить фильтрованием через колонку с активированным углем.

В. Определение гидролизующихся полифосфатов и эфиров фосфорной кислоты

  • 1. Пробу анализируемой воды объемом 50 мл (может быть отобрана с использованием мерной колбы или цилиндра) поместите в коническую колбу.
  • 2. Добавьте к пробе шприцем-дозатором 1 мл раствора серной кислоты (10%) и несколько кипе- лок.

3. Присоедините к колбе обратный холодильник, как показано на рисунке. Поместите колбу на электроплитку и кипятите смесь при минимальной мощности нагревания 30 мин.

  • 4. После охлаждения смесь количественно перенесите в мерную колбу. В процессе кипячения происходит потеря растворителя — воды (около 5—10 мл). Потерю воды восполните добавлением в мерную колбу до метки (50 мл) дистиллированной воды, которой предварительно ополосните коническую колбу.
  • 5. Из полученного раствора отберите пробу (20 мл) в мерную склянку и анализируйте ее на содержание ортофосфатов. Полученный результат будет представлять сумму концентраций ортофосфатов и полифосфатов (С^) в пересчете на ортофосфат-анион 20 мл (РО 3- ).
  • 6. В отдельной пробе анализируемой воды, не подвергая ее кислотному гидролизу, определите концентрацию ортофосфатов Соф, как описано выше.

7. Рассчитайте концентрацию гидролизовавшихся полифосфатов (СПф) в мг/л по формуле

где Су; — суммарная концентрация полифосфатов, гидролизовавшихся органических фосфатов и ортофосфатов, определенная в условиях гидролиза, мг/л; Соф — концентрация ортофосфатов, мг/л.

Г. Минерализация и определение общего фосфора

Читайте также:  Анализ на легионеллу в воде

  • 1. В фарфоровую чашку поместите 50 мл анализируемой воды (или меньший объем, разбавленный до 50 мл).
  • 2. Высыпьте в чашку содержимое одной капсулы (0,5 г) персульфата аммония и добавьте туда же 1 мл раствора серной кислоты (1:3).

3. Выпарьте смесь досуха, поместив чашку на нагревательный элемент электрической плитки.

4. Поместите чашку в сушильный шкаф и выдержите ее там в течение 6 ч при температуре 160 °С, после чего дайте остыть чашке до комнатной температуры (около 0,5 ч).

5. После охлаждения к сухому остатку в чашке осторожно прилейте 30 мл дистиллированной воды, перемешивая смесь до растворения солей.

Примечание. 1. Если раствор получился окрашенным, минерализацию повторите или возьмите меньший объем анализируемой воды.

  • 2. Появление белой мути за счет выпадения солей кальция в дальнейшем не мешает определению.
  • 6. Далее раствор перенесите в мерную колбу или склянку, доведите до метки «50 мл» дистиллированной водой и определите содержание ортофосфатов.
  • 7. Содержание общего фосфора (в мг/л) определите по градуировочному графику, предварительно построенному по стандартным растворам, обработанным в соответствии со всеми выполняемыми при минерализации операциями.

Контроль точности анализа

Контроль точности при анализе на содержание фосфатов и общего фосфора может быть выполнен путем тестирования специально приготовленного раствора ортофосфата при концентрациях, равных значениям, приведенным для образцов на контрольной шкале. Для этой цели рекомендуется использовать калий фосфорнокислый однозамещснный КН2РО4, обработанный по ГОСТ 4212. Эталонные растворы ортофосфата приготавливают согласно приложению 1.

источник

Фосфор относится к числу биогенных элементов, имеющих особое значение для развития жизни в водных объектах. Соединения фосфора встречаются во всех живых организмах, они регулируют энергетические процессы клеточного обмена. При отсутствии соединений фосфора в воде рост и развитие водной растительно­сти прекращается, однако избыток их также приводит к негативным последст­виям, вызывая процессы эвтрофирования водного объекта и ухудшение качества воды.

Соединения фосфора попадают в природные воды в результате процессов жиз­недеятельности и посмертного распада водных организмов, выветривания и рас­творения пород, содержащих фосфаты, обмена с донными осадками, поступления с поверхности водосбора, а также с бытовыми и промышленными сточными во­дами. Загрязнению природных вод фосфором способствуют широкое применение фосфорных удобрений, полифосфатов, содержащихся в моющих средствах, флотореагентов и др.

Фосфаты в воде могут присутствовать в виде различных ионов в зависимости от величины рН. В водах соединения фосфора, как минеральные, так и органические могут при­сутствовать в растворенном, коллоидном и взвешенном состоянии. Переход со­единений фосфора из одной формы в другую осуществляется довольно легко, что создает сложности при определении тех или иных его форм. Обычно идентификация их осуществляется по процедуре, с помощью которой проводят химический анализ сточных вод . В том случае, когда анализируют фильтрованную пробу воды, говорят о раство­ренных формах, в противном случае — о суммарном содержании. Содержание взвешенных соединений фосфора находят по разности. Определение растворен­ных фосфатов (ортофосфатов) при анализе сточных вод осуществляется по реакции с молибдатом аммония и аскорбиновой кислотой с образованием молибденовой сини в исходной водной пробе, в то время как для определения полифосфатов в сточной воде требуется предварительно перевести их в фосфаты путем кислого гидролиза.

Для получения сравнимых результатов оп­ределения соединений фосфора и однозначной их интерпретации важно строгое соблюдение условий предварительной обработки проб и процедуры анализа сточных вод , в частности при определении растворенных форм проба должна быть отфильтрова­на как можно быстрее после отбора через фильтр с размером пор 0,45 мкм.

Концентрация фосфатов в незагрязненных природных водах может составлять тысячные, редко сотые доли мг/дм 3 . Повышение их содержания свидетельствует о загрязнении водного объекта. Концентрация фосфатов в воде подвержена се­зонным колебаниям, поскольку она зависит от интенсивности процессов фото­синтеза и биохимического разложения органических веществ Минимальные концентрации соединений фосфора наблюдаются весной и летом, максимальные — осенью и зимой

Уменьшение содержания фосфатов в воде связано с потреблением его водными организмами, а также переходом в донные отложения при образовании нераство­римых фосфатов

Предельно допустимая концентрация фосфатов (в пересчете на фосфор) в во­де водных объектов рыбохозяйственного назначения составляет

— для олиготрофных водных объектов 0,05 мг/дм;

— для мезотрофных — 0,15 мг/дм;

Предельно допустимая концентрация фосфатов для водных объектов хозяйст­венно-питьевого и культурно-бытового назначения не установлена, в них норми­руется только содержание полифосфатов Предельно допустимая концентрация полифосфатов составляет 3,5 мг/дм 3 в пересчете на фосфат-ион и 1,1 мг/дм 3 в пересчете на фосфор.

источник

Фосфор является одним из главных биогенных элементов, определяющих продуктивность водоема. Соединения фосфора встречаются во всех живых организмах и регулируют энергетические процессы клеточного обмена.

Источники. Соединения фосфора поступают в поверхностные воды в результате процессов жизнедеятельности и разложения отмерших водных организмов, обмена с донными осадками, поступления с поверхности водосбора, выветривания и растворения пород.

Важным фактором повышения содержания соединений фосфора в поверхностных водах, нередко приводящим к значительной эвтрофикации водоемов, является хозяйственная деятельность человека. Загрязнению поверхностных вод фосфором способствуют широкое применение фосфорных удобрений, полифосфатов, как моющих средств, флотореагентов и умягчителей воды. Органические и минеральные соединения фосфора образуются при биологической переработке бытовых сточных вод и пищевых остатков, а также в процессах биологической очистки промышленных стоков.

Формы миграции. В природных водах соединения фосфора находятся в растворенном, коллоидном и взвешенном состояниях. Под влиянием физических, химических и биологических факторов относительно легко осуществляются переходы из одной формы в другую, что важно учитывать при анализе.

Растворенный фосфор представляет собой неорганические орто-, пиро-, мета- и полифосфаты и органические фосфаты.

Взвешенный фосфор (частицы более 0,45 мк) также может быть неорганического (фосфорсодержащие минералы) и органического происхождения. Органические взвеси (сестон) состоят из живых и отмерших (детрит) водных организмов. По сравнению с другими биогенными элементами фосфор обычно значительно быстрее переходит из органических в минеральные формы, т.е. является более динамичным в стадии прохождения через живое вещество.

Соотношение неорганических форм, в частности ортофосфатов, зависит от рН воды (таблица).

Соотношение форм производных фосфорной кислоты в воде

в зависимости от рН (% молей)

При значениях рН выше 6,5 характерных для поверхностных вод, фосфаты находятся, главным образом, в виде НРО4 .

Существенную часть неорганического растворимого фосфора могут составлять полифосфаты.

При значениях рН выше 8,5 характерных для поверхностных вод, фосфаты находятся главным образом в виде HPO4 2- .

Существенную часть неорганического растворимого фосфора могут составлять полифосфаты.

Содержание в поверхностных водах. Концентрация фосфатов в поверхностных водах составляет обычно сотые и тысячные доли мг Р/л. Содержание соединений фосфора подвержено значительным сезонным колебаниям, поскольку оно зависит от соотношения интенсивности процессов фотосинтеза и биохимического разложения органических веществ. Минимальные концентрации фосфатов наблюдаются обычно весной и летом, максимальные — осенью и зимой.

Свойства и цели наблюдения. Поскольку фосфор является элементом, лимитирующим развитие водных организмов, оценка его количественного содержания и характера распределения имеет большое значение при определении настоящей и потенциальной биологической продуктивности водоема. Загрязнение водоема соединениями фосфора ведет к его эвтрофикации и в связи с этим к существенному ухудшению качества воды.

Методы определения. Анализ вод на формы фосфора включает две общие стадии: превращение в растворимые ортофосфаты и их последующее количественное определение.

Для определения ортофосфатов наиболее широкое распространение в гидрохимии получили колориметрические методы, основанные на получении восстановленной фосфорно-молибденовой гетерополикислоты –«молибденовой сини».

Для определения очень низких концентраций (меньше 5 мкг/л), особенно в окрашенных водах, предложены флюориметрические и экстракционно- фотометрические методы.

Отбор, предварительная обработка, хранение проб. Фосфаты являются биохимически подвижными компонентами, определение которых следует производить в свежеотобранных пробах. Если анализ не может быть выполнен немедленно, пробы фильтруют через мембранный фильтр 0,45 мк, добавляют 2—4 мл хлороформа на 1 л воды и хранят при 3-5°С не более трех суток.

Назначение метода. Метод основан на взаимодействии фосфатов с молибдатом в кислой среде с образованием фосфорно-молибденовой гетерополикислоты H7[P(Mo27)6l 28Н2О восстановлением ее аскорбиновой кислотой в присутствии сурьмяновиннокислого калия до фосфорно-молибденового комплекса, окрашенного в голубой цвет.

Характеристики метода. Минимальная определяемая концентрация 0,005 мгР/л. Относительное стандартное отклонение U при концентрации 0,06 мгР/л составляет 1,5% (п =20). Продолжительность определения единичной пробы 40 мин

Качественное определение. Для определения фосфатов применяют молибденовую жидкость. Ее наливают в пробирку, доливают исследуемую воду и слегка подогревают. В случае присутствия иона PO4 3- выпадает желтый кристаллический осадок.

источник

Аналитический центр более 20 лет занимается химическим анализом и разработкой новых методов анализа и диагностики веществ и материалов

В нашем распряжении самый современный приборный парк благодаря научно-техническому взаимодействию с крупнейшими мировыми разработчиками аналитического оборудования

Наши сотудники — это лучшие специалисты страны в области химического анализа, кандидаты и доктора наук

Аккредитация позволяет исследовать питьевую, природную, морскую, технологическую, талую воду и воду бассейнов

Обратившись к нам, Вы получите не только точные данные о присутствующих в воде загрязнителях, но и подробные рекомендации о способах очистки воды.

На основании анализа воды БЕСПЛАТНО подберем несколько вариантов систем водоочистки!

В нашей лаборатории Вы можете проверить качество воды из любого источника: колодца, скважины, водопровода, бассейна, родника, водоема. Для каждого источника есть оптимальный набор показателей, характеризующий возможность использования воды для тех или иных нужд. Чтобы правильно подобрать набор показателей, свяжитесь с нами по номеру +7 (495)149-23-57 или напишите на почту info@ion-lab.ru

Мы рекомендуем выбирать набор параметров в зависимости от того, какой у Вас источник водоснабжения, а также для каких целей планируете использовать воду. Для воды из городского водопровода, а также для воды, используемой в технических целях, подойдут наборы «Минимальный» или «Начальный». Для воды природных источников (скважины, колодцы, родники и т.д.) мы рекомендуем проверить воду на химический состав (наборы «Расширенный» или «Максимальный»), а также сделать анализ на микробиологию.

Да, Вы можете самостоятельно отобрать воду для анализа, следуя инструкции. Или же заказать выезд специалиста, который приедет в назначенное время со всей необходимой тарой, отберет воду и доставит ее в лабораторию.

Да, конечно! Пункт приема проб расположен по адресу: Москва, ул. Добролюбова, 21А, корпус А, пом. 14 (в пешей доступности от метро Фонвизинская, Бутырская, Тимирязевская)

Стоимость выезда специалиста зависит от выбранного Вами набора показателей и удаленности. Более точная информация размещена в разделе Доставка и оплата

© 1997-2019 — Лаборатория ИОН. Все права защищены.

Для химического анализа необходимо заполнить водой чистую пластиковую тару (оптимально 1,5 л). Использовать бутылки из-под сладких, газированных или ароматизированных напитков, а также солёной или минеральной воды недопустимо.
Если выбранный Вами анализ включает определение содержания нефтепродуктов, необходимо заполнить дополнительную стеклянную тару объемом 0,2 л.
Если выбранный Вами анализ включает определение содержания сероводорода, необходимо заполнить дополнительную стеклянную тару объемом 0,5 л (необходимо использовать консервант).

При отборе воды из проточного источника, непосредственно перед отбором необходимо пролить воду сильной струёй в течение 3-5 минут. Перед отбором проб ёмкости и крышки необходимо 3 раза промыть изнутри водой, подлежащей анализу. Использование моющих средств недопустимо. Наполнять тару необходимо тонкой струёй по стенке сосуда «под горлышко». Это снижает насыщение воды кислородом и предотвращает протекание реакций.

Для микробиологического анализа необходимо использовать стерильный контейнер для биоматериалов объемом 150-200 мл.

Перед взятием пробы необходимо протереть водопроводный кран спиртовой салфеткой, уделив особое внимание месту выхода воды.
При отборе воды из водопровода, скважины или колонки необходимо пролить воду сильной струёй в течение 3–5 минут.
При отборе воды из колодца с помощью ведра необходимо обдать ведро кипятком для дезинфекции. Отбор пробы через поливочные шланги и предметы, контактирующие с почвой, не допускается.
Для отбора пробы необходимо надеть перчатки и вскрыть упаковку стерильного контейнера. Не касаясь внутренней поверхности ёмкости, отобрать образец воды (2/3 объема контейнера) и закрыть крышкой.

Рекомендуем доставлять пробу сразу после отбора.
Если сразу после отбора нет возможности доставить пробу в лабораторию, допускается хранение образцов при температуре 2–10 °C в течение 1 суток.

Съезд на ул. Руставели, на первом светофоре поворот налево на ул. Яблочкова.
Через 300 м поворот направо на ул. Гончарова, через 500 м поворот налево (напротив дома №6), через 200 метров вы на месте — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Поворот на ул. Руставели, на светофоре поворот направо на ул. Добролюбова, через 300м на светофоре поворот налево на ул. Гончарова, напротив дома №6 поворот направо, через 200 метров вы на месте — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Двигаясь по ул. Милошенкова, поворачиваем на ул. Добролюбова
Через 150 метров поворот направо, за домом 21АкБ поворот налево, через 100-120 метров вы на месте — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Ближайшее станция метро – Фонвизинская (600 м)
Последний вагон из центра. Выход в сторону улицы Фонвизина. Из стеклянный дверей направо. Перейти через пешеходный переход и идти через дворы в соответствии со схемой. Пункт назначения — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Анализ «Минимальный» содержит минимальный и обязательный перечень загрязнителей, часто встречающихся в питьевой воде, и включает 16 показателей:

  • органолептические: мутность, цветность, запах, привкус;
  • общехимические: рН, жесткость, окисляемость перманганатная, минерализация, электропроводность, щелочность общая, щелочность свободная;
  • катионы: железо, аммоний;
  • анионы: нитраты, карбонат, гидрокарбонат.

Данный набор рекомендуется для исследования воды хозяйственно-бытового назначения. Анализ «Минимальный» не обладает достаточной информативностью для подбора системы водоочистки, так как не позволяет получить полную картину о безопасности воды. Если Вы планируете использовать воду в питьевых целях, рекомендуем обратить внимание на наборы, содержащие большее число параметров.

  • Точность определения
  • Подходит для воды, применяемой в хоз-бытовом назначении
  • Срок выполнения — 3-4 рабочих дня
  • Не подходит для воды, применяемой в питьевых целях
  • Не подходит для корректного подбора фильтров
  • Не содержит определения опасных загрязнителей

Анализ «Начальный» предназначен для выявления наиболее часто встречающихся вредных веществ в питьевой воде и включает 23 параметра: мутность, цветность, запах, привкус, рН, жесткость, окисляемость, минерализация, электропроводность, щелочность свободная, щелочность общая, железо, марганец, калий, магний, кальций, фториды, хлориды, нитраты, сульфаты, карбонат, гидрокарбонат, аммоний Данный анализ рекомендуется для оценки качества воды из колодцев, скважин, родников. По протоколу анализа «Начальный» возможен подбор системы водоочистки и типа фильтрующей загрузки. В перечень определяемых параметров входят органолептические показатели, общие химические показатели, а также содержание катионов и анионов

  • Точность определений
  • Подходит для подбора водоочистного оборудования
  • Подходит для колодцев и скважин
  • Позволяет оценить эффективность фильтрующей загрузки в фильтре и всей системы в целом
  • Позволяет корректно и экономично настроить водоочистное оборудование
  • Не содержит перечень тяжелых металлов
  • Не содержит перечень всех опасных загрязнений
  • Срок выполнения исследований 5-6 рабочих дней

Анализ «Расширенный» содержит перечень наиболее часто встречающихся загрязнителей воды, вне зависимости от источника, и включает 31 показатель: мутность, цветность, запах, привкус, рН, жесткость, окисляемость, минерализация, электропроводность, щелочность общая, щелочность свободная, аммоний, алюминий, железо общее, магний, кальций, калий, натрий, марганец, медь, мышьяк, свинец, кадмий, цинк, стронций, фториды, хлориды, нитраты, сульфаты, гидрокарбонат, карбонат. Данный набор рекомендуется, в первую очередь, владельцам колодцев и скважин. Содержит перечень основных тяжелых металлов. Перед покупкой системы водоподготовки рекомендуем провести исследование воды с данным перечнем загрязнителей. Ориентируясь на полученную информацию, Вы сможете подобрать оборудование водоочистки с эффективностью до 98%, а так же корректно его настроить.

  • Точность определений
  • Подходит для подбора водоочистного оборудования
  • Подходит для колодцев и скважин
  • Содержит перечень тяжелых металлов
  • Позволяет оценить эффективность фильтрующей загрузки в фильтре и всей системы в целом
  • Позволяет корректно и экономично настроить водоочистное оборудование

Анализ «Максимальный» содержит полный перечень опасных для здоровья человека веществ, встречающихся в воде, поступающих из скважин или колодцев, включая ионы тяжелых металлов и органические вещества, а именно: мутность, цветность, запах, привкус, рН, жесткость, окисляемость, минерализация, электропроводность, щелочность общая, щелочность свободная, аммоний, натрий, калий, магний, кальций, алюминий, железо, марганец, литий, барий, бериллий, бор, ванадий, молибден, кобальт, цинк, никель, хром, стронций, кадмий, мышьяк, медь, свинец, кремний, серебро, титан, ртуть, гиброкарбонат, карбонат, нитрат, хлорид, сульфат, фосфат, фторид, нитрит, сероводород, сульфид, гидросульфид, хлор общий, хлор остаточный, хлор остаточный свободный, АПАВ, нефтепродукты, фенол, формальдегид, бензол, толуол, о-ксилол, п-ксилол, м-ксилол, стирол Данное исследование рекомендуется для клиентов, которые серьезно относятся к выбору питьевой воды. Протокол анализа «Максимальный» позволяет со 100% уверенностью сделать вывод о пригодности воды для питья и приготовления пищи. Результаты исследования позволяют выбрать схему водоочиски, а также оценить эффективность уже установленного оборудования.

Воды, применяемой в хозяйственно-бытовом назначении; оценки работы системы водоочистки.

пластиковая бутылка 1,5 — 2 л.

  • Точность определений
  • Подходит для подбора водоочистного оборудования
  • Подходит для любых источников воды
  • Позволяет оценить эффективность фильтрующей загрузки в фильтре и всей системы в целом
  • Включает полный перечень тяжелых металлов
  • Позволяет корректно и экономично настроить водоочистное оборудование
  • Содержит полный перечень опасных органических веществ

Помимо хичиеского анализа воды мы настоятельно рекомендуем провести микробиологическое исследование Вашей воды. Микробиологический анализ воды включает определение общего микробного числа (ОМЧ), количества общих колиформных и колиформных термотолерантных бактерий.

источник

Массовая концентрация фосфатов и полифосфатов в водах. Методика выполнения измерений фотометрическим методом

Документ устанавливает методику выполнения измерений массовой концентрации неорганических соединений фосфора — фосфатов и полифосфатов — в сумме(фосфор минеральный) и раздельно в пробах природных и очищенных сточных вод в диапазоне от 0,010 мг/дм куб. до 0,200 мг/дм куб. в пересчете на фосфор фотометрическим методом.

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ГИДРОМЕТЕОРОЛОГИИ
И МОНИТОРИНГУ ОКРУЖАЮЩЕЙ СРЕДЫ
(РОСГИДРОМЕТ)

МАССОВАЯ КОНЦЕНТРАЦИЯ ФОСФАТОВ И
ПОЛИФОСФАТОВ В ВОДАХ. МЕТОДИКА ВЫПОЛНЕНИЯ
ИЗМЕРЕНИЙ ФОТОМЕТРИЧЕСКИМ МЕТОДОМ

1. РАЗРАБОТАН ГУ «Гидрохимический институт»

2. РАЗРАБОТЧИКИ Л.В. Боева, канд. хим. наук, А.А. Назарова, канд. хим. наук, Т.О. Гончарова, канд. хим. наук, И.А. Рязанцева.

3. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Заместителем Руководителя Росгидромета

4. СВИДЕТЕЛЬСТВО ОБ АТТЕСТАЦИИ МВИ Выдано метрологической службой ГУ «Гидрохимический институт» 15.02.2005 г. № 33.24-2005 г.

5. ЗАРЕГИСТРИРОВАН ГУ ЦКБ ГМП за номером РД 52.24.382-2006

6. ВЗАМЕН РД 52.24.382-95 «Методические указания. Методика выполнения измерений массовой концентрации фосфатов и полифосфатов в водах фотометрическим методом»

Фосфор относится к числу биогенных элементов, имеющих особое значение для развития жизни в водных объектах. Соединения фосфора встречаются во всех живых организмах, они регулируют энергетические процессы клеточного обмена. При отсутствии соединений фосфора в воде рост и развитие водной растительности прекращается, однако избыток их также приводит к негативным последствиям, вызывая процессы эвтрофирования водного объекта и ухудшение качества воды.

Соединения фосфора попадают в природные воды в результате процессов жизнедеятельности и посмертного распада водных организмов, выветривания и растворения пород, содержащих фосфаты, обмена с донными осадками, поступления с поверхности водосбора, а также с бытовыми и промышленными сточными водами. Загрязнению природных вод фосфором способствуют широкое применение фосфорных удобрений, полифосфатов, содержащихся в моющих средствах, флотореагентов и др.

Неорганические соединения фосфора в природных водах представлены в виде ортофосфатов и полифосфатов (к последним причисляются также пирофосфаты), причем преобладающей формой обычно являются ортофосфаты — соли ортофосфорной кислоты. Сумму неорганических соединений фосфора часто обозначают термином «фосфор минеральный»; данный термин принят и в настоящей методике выполнения измерений (иногда термин «фосфор минеральный» применяют по отношению к ортофосфатам, однако, несмотря на то, что ортофосфаты являются обычно преобладающей формой, такое использование термина некорректно). Если используется термин «фосфаты», обычно имеют в виду ортофосфаты, в противном случае приводят уточнение, например, полифосфаты, пирофосфаты и т.п.

Фосфаты в воде могут присутствовать в виде различных ионов в зависимости от величины рН (таблица 1).

Таблица 1 — Мольные доли, %, производных фосфорной кислоты в зависимости от рН воды

В водах соединения фосфора, как минеральные, так и органические могут присутствовать в растворенном, коллоидном и взвешенном состоянии. Переход соединений фосфора из одной формы в другую осуществляется довольно легко, что создает сложности при определении тех или иных его форм. Обычно идентификация их осуществляется по процедуре, с помощью которой проводят определение. В том случае, когда анализируют фильтрованную пробу, говорят о растворенных формах, в противном случае о суммарном содержании. Содержание взвешенных соединений фосфора находят по разности. Определение растворенных фосфатов (ортофосфатов) осуществляется по реакции с молибдатом аммония и аскорбиновой кислотой с образованием молибденовой сини в исходной водной пробе, в то время как для определения полифосфатов требуется предварительно перевести их в фосфаты путем кислого гидролиза. Следует, однако, отметить, что разграничение приведенных форм не является строгим. При определении фосфатов из-за кислой реакции среды может гидролизоваться некоторая часть полифосфатов или лабильных органических соединений фосфора, но доля таких соединений невелика и на практике этим пренебрегают. При определении растворенных форм также может возникать неопределенность из-за возможности быстрого перехода разных форм фосфора друг в друга или прохождения через фильтр коллоидных веществ с размером частиц меньше, чем размер пор фильтра, поэтому иногда используют термин не «растворенные» формы, а «фильтруемые».

По причинам, приведенным выше, для получения сравнимых результатов определения соединений фосфора и однозначной их интерпретации важно строгое соблюдение условий предварительной обработки проб и процедуры анализа, в частности при определении растворенных форм проба должна быть отфильтрована как можно быстрее после отбора через фильтр с размером пор 0,45 мкм.

Концентрация фосфатов в незагрязненных природных водах может составлять тысячные, редко сотые доли мг/дм 3 . Повышение их содержания свидетельствует о загрязнении водного объекта. Концентрация фосфатов в воде подвержена сезонным колебаниям, поскольку она зависит от интенсивности процессов фотосинтеза и биохимического разложения органических веществ. Минимальные концентрации соединений фосфора наблюдаются весной и летом, максимальные — осенью и зимой.

Уменьшение содержания фосфатов в воде связано с потреблением его водными организмами, а также переходом в донные отложения при образовании нерастворимых фосфатов.

Предельно допустимая концентрация фосфатов (в пересчете на фосфор) в воде водных объектов рыбохозяйственного назначения составляет:

— для олиготрофных водных объектов 0,05 мг/дм 3 ;

— для мезотрофных — 0,15 мг/дм 3 ;

— для эвтрофных — 0,20 мг/дм 3 .

Предельно допустимая концентрация фосфатов для водных объектов хозяйственно-питьевого и культурно-бытового назначения не установлена, в них нормируется только содержание полифосфатов. Предельно допустимая концентрация полифосфатов составляет 3,5 мг/дм 3 в пересчете на фосфат-ион и 1,1 мг/дм 3 в пересчете на фосфор.

МАССОВАЯ КОНЦЕНТРАЦИЯ ФОСФАТОВ И ПОЛИФОСФАТОВ В ВОДАХ. МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ ФОТОМЕТРИЧЕСКИМ МЕТОДОМ

1.1. Настоящий руководящий документ устанавливает методику выполнения измерений (далее — методика) массовой концентрации неорганических соединений фосфора — фосфатов и полифосфатов — в сумме (фосфор минеральный) и раздельно в пробах природных и очищенных сточных вод в диапазоне от 0,010 мг/дм 3 до 0,200 мг/дм 3 в пересчете на фосфор фотометрическим методом.

При анализе проб воды с массовой концентрацией фосфора, превышающей 0,20 мг/дм 3 , допускается выполнение измерений после соответствующего разбавления пробы дистиллированной водой.

1.2. Настоящий руководящий документ предназначен для использования в лабораториях, осуществляющих анализ природных и очищенных сточных вод.

В настоящем руководящем документе использованы ссылки на следующие нормативные документы:

ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007-76 ССБТ. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 17.1.5.04-81 Охрана природы. Гидросфера. Приборы и устройства для отбора, первичной обработки и хранения проб природных вод. Общие технические условия

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков

ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

ГОСТ Р 51592-2000 Вода. Общие требования к отбору проб

МИ 2881-2004 Рекомендация. ГСИ. Методики количественного химического анализа. Процедуры проверки приемлемости результатов анализа.

А также на нормативные документы, приведенные в разделе 4.

3.1. При соблюдении всех регламентируемых методикой условий проведения измерений характеристики погрешности результата измерения с вероятностью 0,95 не должны превышать значений, приведенных в таблице 2.

Таблица 2 — Диапазон измерений, значения характеристик погрешности и ее составляющих (Р = 0,95)

Показатель повторяемости (среднеквадратическое отклонение повторяемости) s r, мг/дм 3

Показатель воспроизводимости (среднеквадратическое отклонение воспроизводимости) s r , мг/дм 3

Показатель правильности (границы систематической погрешности при вероятности Р = 0,95) ± D c, мг/дм 3

Показатель точности (границы погрешности при вероятности Р = 0,95) ± D , мг/дм 3

При выполнении измерений в пробах с массовой концентрацией фосфора свыше 0,200 мг/дм 3 после соответствующего разбавления погрешность измерения не превышает величины D · η, где D — погрешность измерения концентрации фосфора в разбавленной пробе; η — степень разбавления

Предел обнаружения фосфатов 0,002 мг/дм 3 , полифосфатов 0,005 мг/дм 3 (в пересчете на фосфор), фосфора минерального — 0,004 мг/дм 3 .

3.2. Значения показателя точности методики используют при:

— оформлении результатов измерений, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения измерений;

— оценке возможности использования результатов измерений при реализации методики в конкретной лаборатории.

При выполнении измерений применяют следующие средства измерений и другие технические средства:

4.1.1. Фотометр или спектрофотометр любого типа (КФК-3, КФК-2, СФ-46, СФ-56 и др.)

4.1.2. Весы лабораторные высокого ( II ) класса точности по ГОСТ 24104-2001 .

4.1.3. Весы лабораторные обычного ( IV ) класса точности по ГОСТ 29329-92 с наибольшим пределом взвешивания 200 г.

4.1.4. Государственный стандартный образец состава раствора фосфат-ионов ГСО 7260-96.

4.1.5. Колбы мерные не ниже 2 класса точности по ГОСТ 1770-74

вместимостью: 50 см 3 — 8 шт.

4.1.6. Пипетки градуированные не ниже 2 класса точности по ГОСТ 29227-91 вместимостью: 1 см 3 — 3 шт.

4.1.7. Пипетки с одной отметкой не ниже 2 класса точности по ГОСТ 29169-91 вместимостью: 5 см 3 — 2 шт.

4.1.8. Цилиндры мерные по ГОСТ 1770-74 вместимостью:

4.1.9. Колбы конические или плоскодонные по ГОСТ 25336-82 вместимостью:

4.1.10. Колбы конические или плоскодонные термостойкие по ГОСТ 25336-82 вместимостью: 250 см 3 — 4 шт.

4.1.11. Часовые стекла — 4 шт.

4.1.12. Воронки лабораторные по ГОСТ 25336-82 диаметром:

4.1.13. Стаканы химические термостойкие по ГОСТ 25336-82 вместимостью:

4.1.14. Стаканчики для взвешивания (бюксы) по ГОСТ 25336-82 — 2 шт.

4.1.15. Эксикатор по ГОСТ 25336-82 — 1 шт.

4.1.16. Капельница по ГОСТ 25336-82 — 1 шт.

4.1.17. Шкаф сушильный общелабораторного назначения.

4.1.18. Плитка электрическая с закрытой спиралью по ГОСТ 14919-83 или баня песчаная.

4.1.20. Устройство для фильтрования проб с использованием мембранных фильтров.

Допускается использование других типов средств измерений, вспомогательных устройств, в том числе импортных, с характеристиками не хуже, чем у приведенных в 4.1.

При выполнении измерений применяют следующие реактивы и материалы:

4.2.1. Калий фосфорнокислый однозамещенный (дигидрофосфат калия) KН2РО4 по ГОСТ 4198-75 , х. ч. (при отсутствии ГСО).

4.2.2. Аммоний молибденовокислый (молибдат аммония ( N Н4)6Мo 7 О24 · 4Н2О) по ГОСТ 3765-78 , ч. д. а.

4.2.3. Аскорбиновая кислота фармакопейная.

4.2.4. Калий сурьмяно-виннокислый (антимонилтартрат калия) K(SbO)C 4 H 4 O 6 · 1/2Н2O по ТУ 6-09-803-76, ч. д. а. (допускается ч.).

4.2.5. Натрия гидроокись (гидроксид натрия) по ГОСТ 4328-77 , ч. д. а.

4.2.6. Кислота серная по ГОСТ 4204-77 , х. ч.

4.2.7. Кислота соляная по ГОСТ 3118-77 , ч. д. а.

4.2.8. Калий марганцевокислый (перманганат калия) по ГОСТ 20490-75 , ч. д. а.

4.2.9. Натрий серноватистокислый (натрия тиосульфат) 5-водный по ГОСТ 27068-86 , ч. д. а.

4.2.10. Сульфаминовая кислота по ТУ 6-09-2437-79, ч.

4.2.11. Фенолфталеин, индикатор, по ТУ 6-09-629-77, ч. д. а.

4.2.12. Кальций хлористый, безводный (хлорид кальция) по ГОСТ 450-77 , ч.

4.2.13. Спирт этиловый по ГОСТ 18300-87 .

4.2.14. Хлороформ по ГОСТ 20015-88 , очищенный.

4.2.15. Вода дистиллированная по ГОСТ 6709-72 .

4.2.16. Фильтры бумажные обеззоленные «белая лента» по ТУ 6-09-1678-86.

4.2.17. Фильтры мембранные «Владипор МФАС-ОС-2», 0,45 мкм, по ТУ 6-55-221-1-29-89 или другого типа, равноценные по характеристикам.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже указанной в 4.2.

Определение ортофосфатов фотометрическим методом основано на взаимодействии их с молибдатом аммония в кислой среде с образованием молибдофосфорной гетерополикислоты Н7[Р(Мо2O 7 )6] · nH 2 О, которая затем восстанавливается аскорбиновой кислотой в присутствии антимонилтартрата калия до интенсивно окрашенной молибденовой сини. Максимум оптической плотности образовавшегося соединения наблюдается при 882 нм.

Для определения полифосфатов их предварительно переводят в ортофосфаты кипячением с серной кислотой. В полученном растворе находят сумму орто- и полифосфатов (фосфор минеральный). Полифосфаты определяют по разности между содержанием ортофосфатов в исходной пробе и в пробе после кипячения.

6.1. При выполнении измерений массовой концентрации орто- и полифосфатов в пробах поверхностных вод суши и очищенных сточных вод соблюдают требования безопасности, установленные в государственных стандартах и соответствующих нормативных документах.

6.2. По степени воздействия на организм вредные вещества, используемые при выполнении измерений, относятся ко 2, 3 классам опасности по ГОСТ 12.1.007-76 .

6.3. Содержание используемых вредных веществ в воздухе рабочей зоны не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005-88 .

6.4. Вредно действующие вещества подлежат сбору и утилизации в соответствии с установленными правилами.

6.5. Дополнительных требований по экологической безопасности не предъявляется.

К выполнению измерений и обработке их результатов допускаются лица со средним профессиональным образованием или без профессионального образования, но имеющие стаж работы в лаборатории не менее года, освоившие методику.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

температура окружающего воздуха (22 ± 5) ° C ;

атмосферное давление от 84,0 до 106,7 кПа (от 630 до 800 мм рт. ст.);

влажность воздуха не более 80 % при 25 ° C ;

напряжение в сети (220 ± 10) В;

частота переменного тока в сети питания (50 ± 1) Гц.

Отбор проб для определения фосфатов и полифосфатов производится в соответствии с ГОСТ 17.1.5.05-85 и ГОСТ Р 51592-2000 . Оборудование для отбора проб должно соответствовать ГОСТ 17.1.5.04-81 и ГОСТ Р 51592-2000 . Пробы помещают в стеклянную посуду, полиэтиленовая посуда допускается только при консервации пробы замораживанием.

Вследствие биохимической неустойчивости соединения фосфора следует определять как можно быстрее после отбора пробы. Если анализ не может быть выполнен в течение 4 ч после отбора, пробу консервируют, добавляя 2 — 4 см 3 хлороформа на 1 дм 3 воды, и хранят при температуре 3 — 5 °C не более 3 дней. Более длительное хранение возможно при замораживании пробы. Следует иметь в виду, что использование консервации не дает гарантии полной сохранности проб.

При определении растворенных форм фосфора фильтрование проб осуществляют немедленно после отбора пробы.

10.1.1. Раствор серной кислоты, 34 %-ный (по объему)

170 см 3 концентрированной серной кислоты осторожно при непрерывном перемешивании приливают к 370 см 3 дистиллированной воды. После охлаждения раствор переносят в толстостенную склянку.

10.1.2. Раствор серной кислоты, 2,5 моль/дм 3

70 см 3 серной кислоты осторожно приливают к 440 см 3 дистиллированной воды, непрерывно перемешивая смесь. Раствор применяют после охлаждения.

10.1.3. Раствор молибдата аммония

20 г молибдата аммония (NH 4 )6 Mo 7 O 24 · 4H 2 O растворяют в 500 см 3 теплой дистиллированной воды. Если соль не растворяется, оставляют раствор до следующего дня. Если раствор остается мутным, его фильтруют через бумажный обеззоленный фильтр «белая лента». Хранят раствор в темной склянке не более месяца.

10.1.4. Раствор аскорбиновой кислоты

1,76 г аскорбиновой кислоты растворяют в 100 см 3 дистиллированной воды. Используют раствор в день приготовления, либо хранят в холодильнике не более 5 дней.

10.1.5. Раствор антимонилтартрата калия

0,274 г антимонилтартрата калия K (SbO)C 4 H 4 O 6 · 1/2Н2O растворяют в 100 см 3 дистиллированной воды. Раствор хранят в темной склянке до появления белого хлопьевидного осадка.

125 см 3 раствора серной кислоты, 2,5 моль/дм 3 , смешивают с 37,5 см 3 раствора молибдата аммония, добавляют 75 см 3 раствора аскорбиновой кислоты и затем приливают 12,5 см 3 раствора антимонилтартрата калия. Полученную смесь тщательно перемешивают. Реактив можно хранить не более 24 ч.

Смешивают 42 см 3 раствора серной кислоты, 2,5 моль/дм 3 , 17 см 3 дистиллированной воды и 25 см 3 раствора аскорбиновой кислоты. Полученную смесь тщательно перемешивают. Раствор хранят не более 24 ч.

10.1.8. Раствор тиосульфата натрия, 12 г/дм 3

1,2 г тиосульфата натрия растворяют в 100 см 3 дистиллированной воды. Хранят раствор в темной склянке не более 3 мес.

10.1.9. Раствор гидроксида натрия, 10 %-ный

25 г гидроксида натрия растворяют в 225 см 3 дистиллированной воды. Хранят в полиэтиленовой посуде с плотно завинчивающейся пробкой.

10.1.10. Раствор фенолфталеина, 1 %-ный

0,4 г фенолфталеина растворяют в 50 см 3 этилового спирта. Хранят в темной плотно закрытой склянке.

10.1.11. Раствор соляной кислоты, 5 %-ный

К 360 см 3 дистиллированной воды приливают 50 см 3 концентрированной соляной кислоты и перемешивают.

10.2. Приготовление градуировочных растворов

10.2.1. Градуировочные растворы готовят из стандартного образца (ГСО) с массовой концентрацией ортофосфатов 0,500 мг/см 3 , что в пересчете на фосфор составляет 0,1631 мг/см 3 .

Вскрывают ампулу и ее содержимое переносят в сухую чистую пробирку. Для приготовления градуировочного раствора № 1 отбирают 4,90 см 3 образца с помощью чистой сухой градуированной пипетки вместимостью 5 см 3 и переносят в мерную колбу вместимостью 100 см 3 . Доводят объем в колбе до метки свежеперегнанной дистиллированной водой и перемешивают. Массовая концентрация фосфора в градуировочном растворе № 1 составит 7,99 мг/дм 3 (если концентрация фосфат-ионов в ГСО не равна точно 0,500 мг/см 3 , рассчитывают массовую концентрацию фосфора в градуировочном растворе № 1 в соответствии с концентрацией конкретного образца). Раствор хранят в плотно закрытой склянке в холодильнике не более 2-х недель.

Для приготовления градуировочного раствора № 2 пипеткой с одной отметкой отбирают 25 см 3 градуировочного раствора № 1, помещают его в мерную колбу вместимостью 200 см 3 и доводят до метки дистиллированной водой. Массовая концентрация фосфора в градуировочном растворе № 2 составит 1,00 мг/дм 3 . Раствор хранению не подлежит.

10.2.2. При отсутствии ГСО допускается использовать аттестованный раствор, приготовленный из дигидрофосфата калия. Методика приготовления аттестованного раствора приведена в приложении А.

Для приготовления образцов для градуировки в мерные колбы вместимостью 50 см 3 градуированными пипетками вместимостью 1, 5 и 10 см 3 вносят 0; 0,5; 1,0; 2,0; 3,0; 4,0; 6,0; 8,0; 10,0 см 3 градуировочного раствора № 2 с массовой концентрацией фосфора фосфатов 1,00 мг/дм 3 , доводят объём растворов до меток дистиллированной водой и тщательно перемешивают. Массовые концентрации фосфора в полученных образцах равны соответственно 0; 0,010; 0,020; 0,040; 0,060; 0,080; 0,120; 0,160; 0,200 мг/дм 3 . Содержимое каждой колбы полностью переносят в сухие конические или плоскодонные колбы вместимостью 100 см 3 и далее выполняют определение в соответствии с 10.1. Значение оптической плотности холостого опыта (раствора, не содержащего фосфатов) вычитают из оптической плотности растворов, содержащих фосфаты.

Градуировочную зависимость оптической плотности от массовой концентрации фосфора фосфатов рассчитывают методом наименьших квадратов.

Градуировочную зависимость устанавливают один раз в год, а также при замене измерительного прибора.

10.4. Контроль стабильности градуировочной характеристики

10.4.1. Контроль стабильности градуировочной характеристики проводят при приготовлении нового раствора молибдата аммония. Средствами контроля являются образцы, используемые для установления градуировочной зависимости по 10.3 (не менее 3 образцов). Градуировочная характеристика считается стабильной при выполнении следующих условий:

где X — результат контрольного измерения массовой концентрации фосфора в образце, мг/дм 3 ;

С — приписанное значение массовой концентрации фосфора в образце, мг/дм 3 ;

s r — показатель воспроизводимости для концентрации С, мг/дм 3 (таблица 2).

Если условие стабильности не выполняется для одного образца для градуировки, необходимо выполнить повторное измерение этого образца для исключения результата, содержащего грубую погрешность. При повторном невыполнении условия, выясняют причины нестабильности, устраняют их и повторяют измерение с использованием других образцов, предусмотренных методикой. Если градуировочная характеристика вновь не будет удовлетворять условию (1), устанавливают новую градуировочную зависимость.

10.4.2. При выполнении условия (1) учитывают знак разности между измеренными и приписанными значениями массовой концентрации фосфора в образцах. Эта разность должна иметь как положительное, так и отрицательное значение, если же все значения имеют один знак, это говорит о наличии систематического отклонения. В таком случае требуется установить новую.

10.5. Подготовка посуды для определения фосфора

Посуду, используемую для определения соединений фосфора, периодически обрабатывают горячим 5 %-ным раствором соляной кислоты, после чего посуду тщательно промывают дистиллированной водой. Новую посуду или посуду после анализа сильно загрязненных проб заливают на несколько часов концентрированной серной кислотой, затем промывают водой. Синий налет на стенках колб можно устранить промыванием 10 %-ным раствором щелочи.

Использовать посуду для других определений не рекомендуется.

Отмеривают мерным цилиндром вместимостью 50 см 3 две аликвоты отфильтрованной анализируемой воды объемом 50 см 3 и помещают в две сухие конические или плоскодонные колбы вместимостью 100 см 3 , добавляют в каждую 10 см 3 смешанного реактива и содержимое колб хорошо перемешивают. Через 10 — 15 мин измеряют оптическую плотность раствора на спектрофотометре или фотометре с непрерывной разверткой спектра при длине волны 882 нм (на фотометре, снабженном светофильтрами — при 670 — 750 нм) в кювете с толщиной слоя 5 см относительно дистиллированной воды.

Одновременно выполняют два параллельных измерения оптической плотности холостых проб, в качестве которых используют 50 см 3 дистиллированной воды.

Если оптическая плотность пробы выше таковой для последней точки градуировочной зависимости, повторяют определение, предварительно разбавив исходную пробу воды дистиллированной водой. Для этого отбирают пипеткой такой объем анализируемой воды, чтобы при разбавлении в мерной колбе вместимостью 50 см 3 полученная концентрация фосфора находилась в пределах от 0,1 до 0,2 мг/дм 3 .

11.2.1. Если проба воды интенсивно окрашена или слегка мутная, следует отдельно измерить оптическую плотность пробы, к которой вместо смешанного реактива добавлено 10 см 3 раствора для компенсации собственной оптической плотности воды (10.1.7). В том случае, когда пробу перед определением фосфатов разбавляли, собственную оптическую плотность следует учитывать также для воды, разбавленной в той же пропорции.

11.2.3. Для устранения мешающего влияния мышьяка ( V ) при концентрации последнего более 50 мкг/дм 3 , его восстанавливают, добавляя к 50 см 3 пробы 1 см 3 раствора тиосульфата натрия, выдерживают 10 мин, затем добавляют смешанный реактив. Измерение оптической плотности следует в этом случае проводить через 10 — 11 мин после добавления смешанного реактива (не позже. ).

11.2.4. Влияние повышенной концентрации нитритов устраняют добавлением к пробе нескольких кристалликов сульфаминовой кислоты.

11.2.5. Влияние хрома ( VI ) при концентрации более 2 мг/дм 3 устраняют, добавляя 10 капель раствора для компенсации собственной оптической плотности воды на 50 см 3 пробы и выдерживая 5 мин, после чего добавляют смешанный реактив. Если к пробе добавляли тиосульфат натрия, то проводить дополнительно устранение влияния хромa (VI) не следует.

11.2.7. При достаточно высоком содержании фосфатов мешающее влияние перечисленных веществ можно также устранить разбавлением пробы в такой пропорции, при которой концентрации мешающих веществ станут ниже указанных в 11.2.2 — 11.2.6.

11.3. Выполнение измерений массовой концентрации фосфора минерального (суммы фосфатов и полифосфатов)

Для определения растворенного фосфора минерального в термостойкую коническую или плоскодонную колбу вместимостью 250 см 3 отбирают 100 см 3 отфильтрованной анализируемой воды, содержащей не более 0,020 мг фосфора (или меньший объем, доведенный до 100 см 3 дистиллированной водой), прибавляют 2 см 3 34 %-ного раствора серной кислоты. Колбу накрывают часовым стеклом или лабораторной воронкой диаметром 56 мм и кипятят пробу на слабо нагретой электроплитке или песчаной бане 30 мин.

После охлаждения в пробу добавляют 1 — 2 капли раствора фенолфталеина и нейтрализуют 10 %-ным раствором гидроксида натрия до появления бледно-розовой окраски индикатора. Следует избегать избытка щелочи. Переносят пробу в мерную колбу вместимостью 100 см 3 , при необходимости доводят до метки дистиллированной водой и перемешивают. Если в пробе появился осадок, ее фильтруют через фильтр «белая лента», предварительно промытый горячей дистиллированной водой. Первую порцию фильтрата отбрасывают, из остальной отбирают 50 см 3 пробы в коническую колбу вместимостью 100 см 3 и определяют фосфаты, как описано в 11.1. Для каждой пробы выполняют два параллельных определения. Холостой опыт выполняют аналогично, используя 100 см 3 дистиллированной воды.

При выполнении измерений массовой концентрации фосфора минерального следует учитывать только возможное мешающее влияние цветности и мышьяка ( V ). Устранение мешающего влияния производится, как описано в 11.2.

При необходимости определения общего содержания растворенных и взвешенных форм минерального фосфора для кипячения отбирают аликвоту тщательно перемешанной нефильтрованной пробы. В этом случае стадия фильтрования после нейтрализации пробы является обязательной.

12.1. Вычисление результатов измерения массовой концентрации фосфатов (в пересчете на фосфор)

12.1.1. Вычисляют значение оптической плотности Ах, соответствующее концентрации фосфора фосфатов в пробе воды по формуле

где А — значение оптической плотности анализируемой пробы, в которую добавлен смешанный реактив;

A 1 — значение собственной оптической плотности анализируемой воды (если ее измерение не проводилось, A 1 = 0);

А2 — среднее арифметическое значение оптической плотности холостой пробы.

12.1.2. По градуировочной зависимости находят массовую концентрацию фосфора, соответствующую рассчитанному значению оптической плотности.

Массовую концентрацию фосфатов (ортофосфатов) в пересчете на фосфор Хо.ф, мг/дм 3 , в исходной пробе воды рассчитывают по формуле

(3)

где X — массовая концентрация фосфора, найденная по градуировочной зависимости, мг/дм 3 ;

V — объем аликвоты исходной пробы воды, отобранный для анализа, см 3 .

Если необходимо произвести пересчет фосфора в другие формы, следует пользоваться таблицей 3.

Таблица 3 — Коэффициенты пересчета для различных соединений фосфора

источник

Обозначение: РД 52.24.382-2006
Название рус.: Массовая концентрация фосфатов и полифосфатов в водах. Методика выполнения измерений фотометрическим методом
Статус: действует
Заменяет собой: РД 52.24.382-95 «Методические указания. Методика выполнения измерений массовой концентрации фосфатов и полифосфатов в водах фотометрическим методом»
Дата актуализации текста: 05.05.2017
Дата добавления в базу: 01.09.2013
Дата введения в действие: 01.04.2006
Утвержден: 01.04.2006 Росгидромет (Rosgidromet )
Ссылки для скачивания: