Меню Рубрики

Анализ очистки сточных вод от нефтепродуктов

Нефть и нефтепродукты содержатся в сточных водах нефтехимических и нефтеперерабатывающих производств, а также производств пестицидов, ПАВ и др. [1—4]. Многокомпонентный состав сточных вод нефтехимических производств затрудняет идентификацию отдельных компонентов и методы их обезвреживания. В настоящее время эти стоки классифицируют как мало- и многосернистые. Среднее содержание нефти и нефтепродуктов в сточных водах нефтеперерабатывающих заводов составляет 10 000 мг/л [5].

Пороговая концентрация по привкусу 0,1 мг/л [7]. Пороговая концентрация по запаху разных видов нефтепродуктов: бензин с добавкой нефти 0,00005, дизельное топливо 0,0005, деодорированный керосин 0,82, сырая нефть 0,1— 0,5, мазут 0,22—0,5, нефть очищенная 1,0—2,0 мг/л. В воде, содержащей 0,5 мг/л нефтепродуктов, мясо рыбы приобретает привкус нефти через 1 сут, 0,2 мг/л — через 3 сут, а 0,1 мг/л — через 10 сут [8]. Пороговая концентрация по запаху в мясе рыб 0,1 мг/л . При концентрации 0,25 мг/л мясо форели приобретает привкус через 24 ч, а при 1 мг/л — сразу [9].

Для теплокровных животных при приеме внутрь нефтепродукты малотоксичны. ЛД50 бензина для кроликов 28 350 мг/кг . Нефтяная пленка на поверхности воды пропитывает перья у перелетных птиц, они не могут взлететь и погибают.

Нефть и нефтепродукты относятся к числу трудноокисляемых органических веществ, как на очистных сооружениях канализации, так и в естественных условиях — в водоемах. Неочищенная нефть отличается высокой стабильностью, особенно при низкой температуре воды. В экспериментальных водоемах при низкой температуре воды сохраняет токсичность для водорослей 2 мес. [13]. Нефтепродукты, попавшие в водоем со сточными водами, подвергаются различным изменениям, постепенно опускаются на дно водоема. Бактериальное окисление нефтепродуктов на дне происходит примерно в 10 раз медленнее, чем на поверхности [14]. В водоемах примерно 40% нефти оседает на дне, 40% остается в воде в виде эмульсии и 20% — на поверхности в виде пленки. Нефтяная пленка даже толщиной 0,5 мм на поверхности водоемов затрудняет аэрацию воды, а нефть на дне образует донные отложения; в иле в местах спуска сточных вод обнаружено 3,5—22,0 % нефти [15]. Поэтому при изучении влияния на водоем сточных вод, содержащих нефть, необходимо отбирать не только среднюю пробу, но и отдельные ее фракции (поверхность, глубина примерно 10 см от поверхности, придонные слои и осадок).

Самоочищение водоемов от нефти происходит очень медленно. За 2,7 сут. содержание эмульгированных нефтепродуктов в воде снижалось при 20 °С на 40%, а при 5°С лишь на 15% [16]. В присутствии водной растительности в модельных опытах нефтяная пленка исчезала при ее толщине 0,06 см через 4—6 сут, а при 0,6 см — через 20—22 сут [17]. Следовательно, в водоемах нельзя рассчитывать на самоочищение от нефти. Эти процессы можно использовать лишь при доочистке в биологических прудах.

Нефтепродукты тормозят биологический процесс очистки сточных вод в аэротенках при 50 мг/л [18].

Определение в водных растворах: нефелометрия; весовой метод ;люминесцентный, ИК-спектрометрия, газохроматографический, автоматический метод [19].

Очистка сточных вод: механическая (решетки, отстойники, песколовки, нефтеловушки, песчаные фильтры), физико-химическая (нейтрализация, флотация, окисление кислородом воздуха и озоном, коагуляция), биологическая (аэротенки, аэрируемые пруды на 60 сут пребывания в них сточных вод, биологические фильтры [18, 21—23]. Эффективность очистки сточных вод от нефти на разных типах сооружений составила: нефтеловушки — 99,9%, через песок 50—87%, биофильтры — 47,5%, аэротенки — 53,4% [24]; окисление озоном [25]; биологическая очистка в аэротенках и биологических прудах (при малых концентрациях нефтепродуктов). Нефть и нефтепродукты разлагаются в аэробных условиях микроорганизмами; добавление к сточным водам минеральных солей, хозяйственно-фекальных вод, необходимых для жизнедеятельности микроорганизмов, подача воздуха способствуют более быстрому разложению остатков нефти и нефтепродуктов как на сооружениях биологической очистки в аэротенках, аэрофильтрах и биологических прудах, так и в небольшой степени в водоемах [26]. См. также [27, 28].

  1. Карелин Я. А., Жуков Д. Д., Денисов М. А. и др. Очистка производственных сточных вод (Опыт Ново-Горьковского нефтеперерабатывающего завода). М., Госстройиздат, 1970. 152 с.
  2. Хаскин С. А., Карш В. П. — В кн.: Очистка нефтеперерабатывающих сточных вод. М., 1973.
  3. Wilber Ch. — In: The Biological Aspects of Water Pollution. Springfield, 1969, p. 73.
  4. Грушко Д. AI., Кожова О. M., Мамонтова Л. М. — Гидробиологический журн., 1978, т. 14, № 2, с. 55.
  5. Монгайт И. Л., Родзиллер И. Д. — В кн.: Промышленные сточные воды. Вып. 5. М. Медгиз, 1960, с. 7.
  6. Sittig М. Environmental Sources and Emissions Handbook. Perk Ridge, New Jersey , London, England, 1975. 523 p.
  7. Гусев А. Г. — Журн. ВХО им. Д. И. Менделеева, 1972, т. 17, № 2, с. 134.
  8. Гусев А. Г. — В кн.: Производственные сточные воды. Вып. 5. М., Медгиз, 1960, с. 34
  9. Krishnaswatni S. К., Kupchatiko Е. Е. — J. Water Pollution Control Feder., 1969, v. 41, № 5, part 2, p. R189.
  10. Мосевич H. А., Гусева H. В., Драгулин M. Г. и dp. — В кн.: Известия ГосВНИОРХ, М., Пищепромиздат, 1952, т. 31, вып. 1, с. 41.
  11. Миронов О. Г. — Зоологич. журнал, 1969, т. 48, № 7, с. 980.
  12. Chipman W. A., Galisoff Р. S. Effects of Oil Mixed with Carbonized Sand on Aquatic Animals. Spec. Sci. Rep. Fisher. № 1, U. S. Fish, and Wildlife Service. Wash., 1949. 52 p
  13. Dickman M. — Artie. Kanad. Field-natur., 1971, v. 85, № 3, p. 249.
  14. Изъюрова А. И. — Гигиена и санитария, 1950, № 1, с. 9.
  15. Дадашев X.К., Григорян Э. В., Агамирова С. Н. Сокращение потерь нефтепродуктов с промышленными сточными водами нефтеперерабатывающих заводов. Баку, 1957. 138 с.
  16. Ломано Л. В., Майер Л. Н., Черепнева В. С. Материалы республиканского научно-технического совещания по изучению, комплексному использованию и охране водных ресурсов. Минск, 1965, с. 41.
  17. Морозов И. В., Петров Г. /7. — В кн.: Теория и практика биологического самоочищения загрязненных вод. М., Наука, 1972, с. 42.
  18. Жуков А. И., Демидов Л. Г., Монгайт И. Л. и др. — Канализация промышленных предприятий. Очистка промышленных сточных вод. М., Стройиздат, 1969. 370 с.
  19. Новиков Ю. В., Сайфутдинов М. М. — Гигиена и санитария, 1977, № 10, с. 60.
  20. Семенов А. Д., Страдомская А. Г., Павленко Л. Ф. — В кн.: Методы анализа природных и сточных вод. Сер. Проблемы аналитической химии, Т. 5. М., Наука, 1977, с. 220.
  21. Itieson Pachatn R. — In: Hepple P. (Ed.). Water Pollution by Oil. Proceed, by of Seminar held at Aviemor Invernes — Shiee, Scotland aponsored by the Institute of Water Pollution Control and the Institute of Petroleum, with the Assistance of Eur. Office of WHO, 4—8 May 1970. Amsterdam — London — New York, 1971, p. 143.
  22. Матвеев AI. C. — Химия и технология топлив и масел, 1962, № 8, с. 24.
  23. Рубинштейн С. Л., Хаскин С. А. Очистка сточных вод нефтеперерабатывающих заводов, М., ЦНИТЭНефтехим. Сер. «Нефтепереработка и нефтехимия», 1966. 85 с.
  24. Денисов М. А. Тезисы докладов конференции по методам очистки газовых выбросов и промстоков от вредных веществ. Дзержинск, 1967, с. 12.
  25. Меренищева Т. Н., Плехоткин В. Ф. Очистка промышленных сточных вод методов озонирования. Обзорная информация. Сер. «Прикладная химия», НИИТЭХим, М., 1974, 21 с.
  26. Карелин Я. А., Воробьева Г. И. — Химия и технология топлив и масел, 1957, № 10, с. 29.
  27. Немковский Б. Б., Злобина Г. П., Губанова И. Ф. — Гигиена и санитария, 1962, № 1, с. 61.
  28. Изъюрова А. И. — Там же, 1958, № 2, с. 72.
  29. Роговская Ц. И. — В кн.: Биохимический метод очистки производственных сточных вод. М., Стройиздат, 1967, с. 5.

источник

Сегодня нефть и нефтепродукты являются одним из основных видов загрязнения сточных вод. Источниками нефти и ее продуктов являются нефтедобывающие компании, доставка нефтепродуктов, места ее хранения, переработки и использования. Отдельные водообъекты содержат более сотни кубических метров нефтезагрязнений. Построенные в середине прошлого столетия хранилища для нефтеперерабатывающей промышленности сегодня являются источниками загрязнения.

ЮНЕСКО назвала нефтепродукты самым опасным загрязнителем воды. Они растворены в некоторых жидкостях, а на воде чаще всего образуют поверхностный нерастворимый слой.

При защите природы следует руководствоваться принципами:

  • следует использовать то количество невосстанавливающихся природных ресурсов, что бы избежать их полного исчерпания;
  • выбрасываемые отходы нефтепромышленности должны быть в безопасном количестве и форме для живой природы.

Водоемы являются не только основным источником пресной воды для человека, но и средой жизни многих живых организмов. Вода совершает полный цикл круговорота, что важно для человеческой жизни.

Нефть является невосстанавливаемым природным ресурсом. Ее добыча, транспортировка и переработка сильно вредит окружающей среде. Проблема нефтяного загрязнения сегодня самая главная у природазащитников.

Вопрос должен решаться со всех сторон: экономики, политики, права. Технический проблему можно решить с помощью индивидуальных задач для каждого предприятия, имеющее отношение к нефти.

Сточные воды различного происхождения по-разному очищаются.

Сточные воды промышленных источников богаты содержанием многих химических веществ, включая нефтепродукты.

Еще пару лет назад считалось, что нефть невозможно растворить в воде. Сегодня известно, что многие продукты нефтяной промышленности под воздействием определенных факторов растворяются. При прямом взаимодействии воды и нефти с течением времени многие составляющие становятся частью состава воды. Например, при 2 часах совместного хранения концентрация нефти равняется 0,2 мг/л, при увеличении периода в 60 раз приводит к семикратному повышению. Если рассматривать бензин, то дополнительно следует учесть метиленовые и метильные группы. Так для А76 при увеличении продолжительности с 2 часов до 120 содержание бензина в воде возрастет с 1,4 до 11,9 мг/л, а ароматических углеродов – с 2,6 до 34 мг/л.

Отсюда следует, что концентрация нефтепродуктов может достигать больших концентраций.

На предприятиях промышленности метод очистки сточных вод определяется в зависимости от вида нефтехимических примесей. Компании по транспортировки нефти должны очищать выработанные сточные воды, а нефтепримеси отправляет на переработку. Тетраэтилсвинец удаляется только с добавлением реактивов. Разделяют сточные воды по группам нефтепродуктов и используют составные методы очистки, учитывая следующие правила:

  • следует стремиться к максимальному снижению количества сточных вод и содержание в них примесей;
  • нужно извлекать все примеси, которые в дальнейшем используются или перерабатываются;
  • стремятся к повторному применению очищенных вод в технологиях на производстве и водообеспечения предприятия.

Что бы определить более эффективный способ очистки, предварительно рассматривают несколько способов. При этом учитывают объем различных видов примесей и необходимое качество воды после очистки. Окончательный выбор учитывает экономическую целесообразность для очистки используемых водных масс, а так же существование очистных сооружений в районе.

Очистка сточных вод от нефтепродуктов должна:

  • максимально извлекать перерабатываемых примесей;
  • позволять повторное применение на производстве;
  • обеспечивать минимальные выбросы в природные водоемы.

Используются 3 вида очистных сооружений:

Нефтехранилища и станции по перекачке нефти по трубопроводам используют системы общего типа, при выбросах нефти в опасном объеме – локальные. Далее вода подается на очистные сооружения в районе или в близлежащие водоемы – зависит от степени очистки.

Локальные системы очистки необходимы после технологических цехов, работающих с опасными химическими продуктами: происходит отделения химических веществ с используемой воды только после определенного участка, а не всего предприятия.

Общий тип очистных необходим для удаления нефтепродуктов из сточных вод всего предприятия. В него входит биологический, физико-химический и механический методы очистки.

Механические способы включают песколовки, отстойники, нефтеловушки и фильтрационные установки. Они все удаляют крупнодисперсных примесей. Физико-химические методы включают флотационные установки с химическими реактивами, использование коллоидных коагулянтов. Биологическая очистка использует биофильтры, аэротенки и биологические пруды.

Популярны реагентные методы: обратный осмос, осаждение, ионный обмен, адсорбция, флотация, фильтрование, флокуляция, коагуляция и т.д.

Районные очистные используют те же способы очистки, что и общие. Сточные воды после производства отправляются туда, если не содержат примесей, мешающих работе системы. Необходимо выполнение следующих значений:

  • количество взвешенных частиц до 500 мг/л;
  • отсутствуют трубозасоряющие примеси;
  • нет веществ, вступающих в реакцию с материалом труб;
  • газы и горючие вещества, которые могут взрываться;
  • отсутствует большое содержание веществ, мешающих биологической очистке;
  • максимальная температура – 40 градусов;
  • нет залповых выбросов с высокой концентрацией примесей.

Используют следующие способы очистки:

  • биологические;
  • химические (озонирование, хлорирование);
  • физико-химические (сорбция, коагуляция, флотация);
  • механические (фильтрование, центрифугирование, отстаивание).

Чаще всего это первый этап очистки. Механическая очистка способна очищать бытовые воды до 65%, а производственные – до 95%. Главная ее задача – подготовить воду к последующим методам обработки. Она является дешевым способом и всегда оправдана при очистке сточных вод.

Фильтрованием, отстаиванием или процеживанием удаляются крупные частицы различного происхождения.

Первым устанавливают процеживание сточных вод через множество сит с различным размером ячеек. Отстаивание действенно для удаления веществ с плотностью отличной от воды: тяжелые – выпадают на дно, легкие – поднимаются вверх. Песколовки построены на выпадения осадка. Нефтеловушки для очистки сточных вод, жироловки и маслоуловители отделяют всплывшие частицы.

Фильтрование эффективно для очистки от мелких частиц. Сточные воды пропускают через фильтр с фильтрующей массой из различных тканей, зернистых и химических материалов. Фильтрующий материал собирает на своей активной поверхности всю взвесь.

Механического способа хватает только при условии, что отфильтрованная вода может повторно поступать на нужды предприятия или впускаться в водоемы. В других случаях метод механической очистки воды является только первой ступенью все очистительной системы.

В песколовках остаются примеси от 200 мкм. При их отсутствии весь песок будет задержан последующими способами очистки, что значительно усложняет их работу.

Песколовки работают на разности движений тяжелых частиц в воде. Они бывают горизонтальные, вертикальные, круговые, прямолинейные, с поступательно-вращательным движением. В названиях видов песколовок отражено направление движения вод. На выбор конструкции влияет объем подаваемой воды и количество примесей.

На практике наиболее действенными на нефтебазах являются горизонтальный тип, который очищают раз в два дня с использованием гидроэлеватора.

Самый незатейливый и доступный способ очистки от крупнодисперсных частиц. На них начинает воздействовать сила гравитации планеты. Частицы всплывают вверх или оседать на дно.

На предприятиях нефтепереработки, нефтебаз и при передаче используют резервуары из стали или железобетона. Они исполняют роль накопителя, отстойника или буфера. Буфер необходим при неравномерном потоке воды. В резервуаре нефтепродукты начинают подниматься на поверхность, удаляется до 95%. Часто предприятие имеет несколько буферных резервуаров, работающих по очереди. Отстаивают 6-24 часа.

Перфорированные трубы удаляют осадок со дна. Поверхность очищают от всплывших нефтепродуктов, а чистую воду выкачивают.

Удаление примесей происходит во время движения воды. Водные массы постоянно находятся в движении: по вертикале или горизонтали.

Нефтеловушки для очистки сточных вод представляют собой горизонтальные отстойники. Это резервуар прямоугольной формы, высота которого 1-4 метра, ширина – 2,5-6 метров, длина – до 50 метров. Выпавшие примеси на дне убирается скребками, а потом насосами.

Высотные параметры отстойника влияют на время ожидания всплытия частиц. В нефтеловушках для очистки сточных вод трудно ускорить период очистки. Одновременно толщина слоя сточной воды прямопропорциональна скорости процесса. Соответственно при тонком слое частицы всплывают быстрее. Достоинством является минимальный расход строительного материала. Недостатком — дополнительные резервуары для удаления легко отделимых нефтепродуктов: связано это с плохой плавучестью нефтяных пятен.

Центрифуги и гидроциклоны работают на принципе оседания взвешенных частиц под воздействием центробежной силы. Тяжелые частицы отбрасываются к периферии гарвитацией, инерцией и сопротивлением. Различают напорные и безнапорные гидроциклоны.

В напорных гидроциклонах вода меняет свое движение и стремится к центру потока. Существует разные размеры гидроциклонов. Чем меньше диаметр, тем удаляются более мелкие примеси.

В безнапорных гидроциклонах вода подается по касательной в низ. Вода подается через верх. Нефтепленка скапливается в центре потока, а потом образуется конус из нефтепродуктов – его легко удалить.

Различают 2 вида центрифуг: отстойные и фильтрующие. Суспензия вращается в перфорированном барабане, по периметру которого натянута сетка или ткань. Примеси задерживаются на стенках, которые легко чистить после слива воды.

Требования к качеству воды все время растет. Это заставляет многие предприятия применять фильтры для очистки сточных вод. Фильтрование используется после отстойников. Работа основана на прилипании нефтепродуктов к активной поверхности фильтрующей массы.

Фильтры могут иметь различные загрузочные материалы: ткань, сетка, мембрана и т.д. Ткани используются для грубой очистки, а мембраны для молекулярной.

Фильтрующая масса может быть тканевой, сетчатой или полимерной. Их конструкция состоит из барабанов диаметром 1,5-3 метра, которые вертятся, а фильтрующий элемент закреплен. Их монтируют горизонтально. Вода поступает в барабан и проходит через фильтр. Движение обеспечивается разностью уровней воды внутри и снаружи системы.

Выделяют три группы:

  • зернистые фильтры на основе адгезии;
  • волокнистые фильтры на основе сорбции;
  • зернистые и волокнистые для удаления эмульгированных представителей нефтепродуктов.
Читайте также:  Нужны ли анализы сточных вод

В первых двух типах фильтрующие массы вбирают в себя нефтепродукты. Со временем они перенасыщаются ими и нуждаются в регенерации.

В третьем методе пленка скапливается, но не впитывается в фильтрующую массу. Со временем она не выдерживает и выпадает в форме капель на поверхность воды. Капли нефтепродуктов быстро и легко собираются.

Это новый способ удаления нефтепродуктов с использованием пенополиуретана, обладающего высокими эластичными свойствами. Средний размер его ячеек около миллиметра, а их плотность от 25 до 60 килограмм на кубический метр. Фильтрующий материал имеет большую пористость, гидрофобность, устойчив к механическим и физическим воздействиям. Перечисленные характеристики важны при работе с нефтепродуктами.

Загрузка из пенополиуретана пропитывается нефтью, а во время восстановления отжимается и возвращается на прежнее место.
Существует ряд недостатков фильтрования от нефтепродуктов:

  • образуются стойкие эмульсии, которые сложно утилизировать;
  • вода должна пройти предварительные степени очистки;

Она состоит из трех видов систем:

Дисперсные частицы вырастают за счет различных реакций. Благодаря этим свойствам можно значительно ускорить оседание эмульгированных и тонкодисперсных примесей. Удаляемые частицы могут иметь размер до 100 микрометров. Коагуляционная очистка бывает естественной или с использованием коагулянтов. Из коагулянтов образуются металлические хлопья, быстро обседаемые на дно. Коллоидные частицы и коагулянты притягиваются за счет разных зарядов.

Образуются пузырьки с воздухом и скапливаются в форме пены, которую легко удалить.

Флотация распространена в очистке сточных вод.

Сначала образуется пузырек воздуха. Далее обеспечивают взаимодействие частицы и воздушного пузырька, а после они прилипают друг к другу и всплывают на поверхность. Контакты появляется благодаря однонаправленному движению водных и воздушных масс. Примеси разбросаны по всему объему водной массы, а совместное движение их с пузырьками способствует их сближению.

Следует строго следить за размером пузырьков: маленькие – не ухватят взвешенные частицы, а большие разъединят образовавшиеся пары и перемешивают воду при взрывании.

При сорбции твердые вещества (сорбенты) поглощают вещества из окружающей среды (сорбаты).

Один из наиболее действенных способов удаления органических соединений. Фильтрующий материал обязательно имеет повышенную пористость: уголь, зола, торф, некоторые виды глин и т.д.

Вид сорбента и схема очистки выбирается в зависимости от ряда факторов: метод очистки, место адсорбентов в общей схеме очистки, состав воды и т.д.

Химическая очистка базируется на окислительных реакциях: объединение вещества и кислорода. В процессе окисления изымаются электроны или ионы. Популярными являются хлорирование и озонирование.

В процессе хлорирования вода обезвреживается хлором и его соединениями. Удаляются органика и неорганические соединения.

Благодаря высоким свойствам окисляться при нормальной температуре происходит одновременное обезвреживание с обесцвечиванием, дезодорацией и обогащением кислородом.

Способность растворения озона растет с повышением рН и температуры. Озон чаще всего получают воздействием на воздух высоким зарядом.

Озонирование не влияет на солевой состав воды, отсутствуют загрязнения продуктами распада, а процесс можно полностью автоматизировать.

Предыдущие способы очистки не способны полностью удалить все органические примеси в сточной воде. Их дополняют биологическим методом.

Многие микроорганизмы питаются органикой из сточных вод. Биологическая очистка превращает органические соединения в безопасные продукты окисления. В очистных сооружениях развиваются простые микроорганизмы и бактерии.

Нужно разбираться в физиологии микроорганизма. Все они имеют свой обмен веществ: питательные вещества усваиваются, а продукты жизнедеятельности выделяются. Микроорганизмы живут за счет дыхания и питания.

Шунгитова порода способна обеспечить очистку сточных вод от нефтепродуктов для рыбхозяйственных водоемов. Хорошим эффектом обладает угольная сорбция. В ней используются активные виды угля, которые имеют высокую стоимость.

Одним из проблем очистки воды является замена синтетических фильтрующих наполнителей наиболее дешевыми материала природного происхождения. Шунгитова порода более чем на половину состоит из оксида кремния, четвертую ее часть составляет углерод, а остальное – оксид алюминия и другие примеси. Шунгитовой породой богата Карелия.

Эксперименты показывают эффективность использования породы в двойных фильтрах: удаление плавающих и растворенных нефтепродуктов. Шунгитова порода обладает алюмосиликатный каркас и высокий удельный весом. Поверхность ее обладает сорбционно-активным углеродным слоем. Даже при длительном периоде работы (более года) эффективность очистки значительно не снижается.

Сегодня до 7% всего объема нефти безвозвратно уходит в загрязнения. Для промывки оборудования и контейнеров из-по нефти обрабатываются паром или горячей водой до 90 градусов с использованием чистящих средств. Предприятия вынуждены собирать и утилизировать эту воду. Некоторые из них просто сливают ее в водоемы без очистки или городские канализации. Страдает окружающая природа и местное население. Проблема чистоты воздуха и воды на нашей планете уже стала обязательной темой многих ежегодных форумов во всем мире.

источник

Цель работы:

1. Познакомиться с нормативными требованиями, предъявляемыми к сточным водам промышленных предприятий.

2. Изучить методы очистки сточных вод.

3. Исследовать эффективность и степень очистки сточных вод от неф­тепродуктов методом фильтрования.

Общие положения

Интенсивное развитие промышленности, сельского хозяйства, а так­же рост населения вызывают увеличение водопотребления из естественных и искусственных водоемов. При этом увеличение количества по­требляемой воды приведет к возрастанию степени загрязненности водоемов различными примесями, так как 90% изъятой из водоемов воды возвращается в них в виде сточных вод.

Сточными называются воды, использованные промышленными или коммунальными предприятиями и населением и подлежащие очистке от различных примесей. В зависимости от условий образования сточные воды делятся на:

1) промышленные сточные воды (ПСВ),

2) бытовые сточные воды (БСВ),

3) атмосферные сточные воды (АСВ)

Попадая в реки, озера, водохранилища и т.д., сточные воды становят­ся основным источником их загрязнения, что проводит к ограничению или полной непригодности этих водоемов для использования в качестве объектов хозяйственно-питьевою и культурно-бытового водоснабжения.

В целях обеспечения безопасности здоровья населения и благоприят­ных условий санитарно-бытового водопользования состав и свойства воды в водоемах должны соответствовать гигиеническим нормативам вредных веществ, что является важнейшей составной частью российского водно-санитарного законодательства.

Основным показателем санитарных норм является предельно допустимая концентрация (ПДК) вредного вещества в воде водоемов.

ПДК – максимальная концентрация, при которой вещества не оказы­вают прямого или опосредованного влияния на состояние здоровья на­селения (при воздействии на организм в течении всей жизни) и не ухудшают гигиенические условия водопользования. Измеряется ПДК в мил­лиграммах на литр ( ). В «Правилах охраны поверхностных вод от загрязне­ния сточными водами» указано, что запрещается сбрасывать в водоемы сточные воды, «содержащие вещества, для которых не установлены пре­дельно допустимые концентрации (ПДК)».

Для обеспечения чистоты водных объектов кроме ПДК используется также другой норматив – лимитирующий показатель вредности.

Лимитирующий показатель вредности – один из признаков вредности (общесанитарный, органолептический или санитарно-токсикологический), определяющий преимущественно неблагоприятное воздействие вещества и характеризующийся наименьшей величиной пороговой или подпо-роговой концентрации.

Допустимая пороговая концентрация вещества по общесанитарному показателю вредности – максимальная концентрация, не приводящая к нарушению процессов естественного самоочищения водоемов.

Допустимая пороговая концентрация по органолептическому показа­телю вредности – максимальная концентрация в воде, при которой не обнаруживается неприемлемых для населения изменений органолептических свойств воды.

Допустимая подпороговая концентрация по санатарно-токсикологичес-кому показателю вредности – максимальная концентрация, не оказываю­щая неблагоприятного влияния на состояние здоровья населения.

Значения ПДК вредных веществ с учетом лимитирующего показателя вредности устанавливаются в соответствии с требованиями СНиП 42–121–4130–86 «Санитарные нормы предельно допустимого содержания вред­ных веществ в воде водных объектов хозяйственно–питьевого и культур­но-бытового водопользования» (табл. 1).

Промышленные сточные воды очищают от вредных примесей механическими, химическими, физико–химическими и биологическими методами.

Механическую очистку сточных вод применяют при отделении твер­дых нерастворимых примесей. Для этой цели используют методы процеживания, отстаивания и фильтрования. Методами процеживания воды через решетки и сетки избавляются от грубодисперсных примесей. Более мелкие твердые частицы удаляют путем отстаивания и фильтрования. Химические методы применяются для удаления из сточных вод раствори­мых примесей. Методы с вязаны с использованием различных реагентов, которые при введении в воду вступают в химические реакции с вредными примесями, в результате чего примеси окисляются или восстанавливаются с получением малотоксичных веществ или переводятся в мало­растворимые соединения и удаляются в виде осадка. Наиболее распро­странены методы нейтрализации и окисления активным хлором, кисло­родом воздуха, озоном и др.

Предельно допустимые концентрации (ПДК) вредных веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования (выписка из СНиП 42–121–4130–86)

Наименование вещества Лимитирующие показатели вредности ПДК, мг/л
Аммиак Ацетон Бензин Бутиловый спирт Газойль Кобальт (Со 2+ ) Керосин: осветительный технический тракторный Медь Мышьяк Нефть Скипидар Ртуть (Hg) Свинец (Pb) Нитраты (по азоту) Общесанитарный То же Органолептический То же То же Санитарно-токсикологический Органолептический То же То же Органолептический Санитарно-токсикологический Органолептический То же Общесанитарный То же То же 0,05 0,1 0,005 0,06 0,05 0,01 0,05 0,3 0,2 0,005 0,1

Физико-химические методы очистки применяют для удаления из сточ­ных вод суспензированных и эмульгированных примесей, а также рас­творенных неорганических и органических веществ. К этим методам от­носят: коагуляцию; флотацию; ионный обмен; адсорбцию и др.

Биологические методы считаются основными для обезвреживания сточ­ных вод от органических примесей, которые окисляются микроорганиз­мами. На практике широко распространены аэробные процессы, проте­кающие в естественных условиях ( на полях орошения; полях фильтра­ции и биологических прудах) и искусственных сооружениях ( аэротенки биофильтры). Эффективность различных методов очистки сточных вод составляет (в процентах): механических – 50-70%; химических — 80-90%; фи­зико-химических — 90-95%; биологических — 85-95%.

Особое место среди загрязняющих водоемы веществ занимают нефть и продукты ее перегонки (бензин, керосин, мазут, дизельное топливо и др.). Попадая в воду в значительных концентрациях они образую на поверх­ности водоемов пленку, которая ухудшает, а иногда и полностью нарушает процессы аэрации в них. В результате гибнет растительный и животный мир, начинается гниение и умирание водоемов.

Состав и концентрация нефтепродуктов, содержащихся в промыш­ленных сточных водах, определяются видом производства. Так, в сточ­ных водах машиностроительных предприятий, поступающих на общеза­водские очистные сооружения, содержится от 0,003 до 0,8 кг/м 3 различ­ных маслоподобных примесей (маслоэмульсионные стоки механических цехов, отходы прессов, изготовление стержневых и формовочных земель литейных цехов, продукты охлаждения оборудования, гидросбив и гид­росмыв металлической окалины прокатных, штамповочных и кузнечно-прессовых цехов и т. д). Нефтепродуктами загрязнены сточные волы ТЭС (стоки мазутохозяйств, главных корпусов, электротехнического обо­рудования. компрессорных и т. п.), автохозяйств, нефтехранилищ, круп­ных бензозаправок (АЗС), складов ГСМ и др.

Нефтепродукты попадают в водоемы в эмульгированном, коллоидном и растворенном состоянии. В зависимости от размера их частиц и кон­центрации очистка сточных вод осуществляется отстаиванием, флота­цией, очисткой в поле действия центробежных сил и фильтрованием.

Фильтрование сточных вод является заключительным процессом очист­ки их от маслопримесей и осуществляется в различных конструкциях фильтров, где в качестве фильтрующих материалов используются квар­цевый песок; керамзит; активированный уголь; отходы асбестового про­изводства, пенополиуретана и т. п. Периодически срабатывающиеся фильт­ры отключают на регенерацию и после восстановления используют вновь.

Фильтрование обеспечивает высокую степень очистки сточных вод. При исходной концентрации 0,02–0,05 кг/м 3 содержание нефтепродуктов на выходе из фильтра составляет всего 0,00008–0,00006 кг/м 3 , при этом эффективность очистки может достигать 97–99%.

Для количественного определения содержания нефтепродуктов в про­мышленных сточных водах существуют различные методы весовой, га­зожидкостной хроматографии; ИК-спектрометрии, прямой и непрямой колориметрии. Общие требования к методам устанавливаются ГОСТ 17.14.–80 «Общие требования к методам определения нефтепро­дуктов в природных и сточных водах».

источник

Сточные воды, содержащие нефтепродукты, очищаются по схеме: 1) механическая очистка от грубодисперсных частиц; 2) физико-химическая – от твердых и жидких примесей; 3) глубокая очистка сточных вод.

Красители – сложные органические вещества с определенными функциональными группами. Активные красители являются трудно окисляемыми органическими соединениями и не подвергаются окислению кислородом воздуха при обычных условиях. Для удаления красителей можно ввести окислитель, например, пероксид водорода. При этом происходит его окислительное разрушение. Скорость и глубина реакции окисления зависит не только от природы красителя, но и от параметров процесса: температура, рН, концентрация окислителя (Н2О2).

Экологическое воздействие производства изделий микроэлектроники, радиоэлектроники и т.п. опред-ся природой хим в-в; технологическими операциями, используемыми для созд-я приборов и устройств; воздействием изделий на окр среду при их эксплуатации и при взаимод-ии с внешней средой после окончания срока годности. Сюда же следует отнести бракованные детали, не подлежащие ремонту, которые вывозятся на пром свалки. В производстве микроэлектронных схем и ПП приборов исп-ся широкий комплекс материалов. К ним относятся: металлы и сплавы; различные р-ры, в состав кот-х входят органич-е и неорг-е в-ва; полимерные материалы, керамика, фарфор, стекло и ПП материалы. ПП материалы могут исп-ся в виде поликристаллов, амфотерных спеченных порошков, монокристаллов, эпитаксиальных пленок (структура решетки полученного слоя – точная копия стр-ры кристалла подложки). ПП материалы делятся на: 1) элементарные – кремний, германий; некот-е модификации бора, углерода, фосфора, мышьяка, сурьмы, висмута, серы, селена, теллура, йода; 2) сложные (хим соед-я) – оксиды (Cu2O, Mn3O4, Al2O3, ZnO, CdO), сульфиды (PbS, CdS, ZnS, Bi2S3), селениды и теллуриды (CdSe, PbSe, HgSe, CdTe, PbTe, Bi2Te3), арсениды (GaAs, InAs), фосфиды (GaP, InP), стеклообразные сплавы (As2S3, As2Se3), сложные тв. р-ры (CdTe-HgTe, PbTe-SnTe) и др. В связи с тем, что многие из этих в-в яв-ся вредными, это следует учитывать как при синтезе ПП материалов, так и при выращивании монокристаллов и эпитаксиальных пленок, при травлении пов-сти, при проведении различных операций, при изготовлении ПП устройств. Многие в-ва обладают токсичными св-вами (соед-я германия; мышьяк, кадмий, свинец и их соед-я; арсениды, теллуриды, селениды и др.). В операциях травления часто исп-ся вредные травители (цианистые эл-литы; р-ры на основе плавиковой к-ты, фторидов, бифторидов и т.д.).

Седиментация – оседание под действием гравитационного поля. Для увеличения скорости осаждения взвесей применяют флокулянты – водо-растворимые полимеры с полярными концевыми функциональными группами. Они связывают взвеси в рыхлые сетчатые агрегаты.

Отстойник периодического действия (при малом количестве воды) металлический или железобетонный резервуар с коническим днищем (вода отбирается через сифон или специальные желоба). Осадок убирают вручную.

Отстойник непрерывного действия (при больших количествах воды, расход не более 50000м(3)/сутки).

Вертикальные отстойники — во время движения воды из нее выпадают взвеси, удельный вес которых больше удельного веса воды.

Горизонтальные отстойники – прямоугольный резервуар из нескольких отделений (высота 3–5 метров, отношение длины к высоте не меньше 10). Дно – под уклоном в сторону, противоположную движению воды.

Радиальный отстойник – первичный отстойник, илоулавливатель — круглый резервуар, вода в котором движется радиально от центра к периферии. Скорость движения воды изменяется от мах значения у центра, до мin значения у периферии.

Тонкослойные отстойники (для тонкодисперсных примесей ) – малая глубина обеспечивает осветление воды в течение 4- 10 мин, что позволяет уменьшить их габариты. Резервуар глубиной 0.2 – 0.3 м с полочными или трубчатыми вставками, расположенными под углом  сползание осадка к шламосборнику (угол 30–40 гр.)

Фильтрация. Фильтры – устройства, в которых очистка жидкости от частиц твердой фазы происходит в процессе протекания через перегородку, имеющую поры (разность значения давления по обе стороны перегородки.

Сетчатые фильтры – для задерживания сравнительно грубых частиц. Изготовляют из одного или нескольких слоев ткани или металлической сетки. Действие основано на механической задержке больших частиц и инерционном осаждении частиц. Эффективность увеличивается по мере убирания отфильтрованного слоя.

Волокнистые фильтры – изготавливают из фильтровальной бумаги, специального картона. Применяют только при небольших течениях раствора (вследствие большого гидравлического сопротивления). Действие сводится к инерциальному осаждению, прилипанию частиц к выступам, седиментации. Инерциальное осаждение и седиментация повышаются при увеличении размера и плотности частиц.

Зернистые фильтры – используют кварцевый песок, дробленый шлак, гравий, антрацит. Бывают однослойные и многослойные. Очистку фильтра производят чистой водой или сжатым воздухом.

Фильтрование под вакуумом – для очистки маловязких жидкостей. Степень очистки не более 80%. Тонкость очистки определяется фильтрующим элементом (барабанные, дисковые, ленточные). Остаток высушивают до min влажности.

Центрифугирование – разделение твердых и жидких фаз в поле центробежных сил осуществляется в аппаратах 2 типов: центрифугах и гидроциклонах.

Центрифуги – ускорение оседающей части по сравнению с гравитационным ускорением увеличивается на величину Kp = w(2)r/g w – угловая скорость вращения жидкости. R – радиус вращения. Уравнение движения — V = (gLdr(2)(pф – pс))/18м .. L – центробежная сила, dr – диаметр частицы, рф и рс – плотность дисперсной фазы и среды, м – вязкость среды. Улучшение в результате агрегации и фильтрации (укрупнение частиц).

Напорные – цилиндрическая и коническая части. Вращение жидкости вызывается ее выпуском в тангенциальный патрубок, расположенный в верхней части цилиндра. Коническая часть кончается насадкой через которую выводится осадок. Низкий КПД из-за избыточной интенсивности турбулентности. Применяют для выделения частиц со скоростью осаждения менее 0.02 м/с.

Многоярусные: по принципу выделения аналогичны напорным. Устройство в камере нескольких секций, через которое проходит очищаемый поток, позволяет более полно использовать объем гидроциклона и уменьшить время пребывания жидкости в циклоне.

Читайте также:  Объем пробы для анализа сточных вод

Открытые – для очистки от частиц со скоростью оседания более 0.02 м/с. большая производительность и малые потери напора. Эффективность зависит от характера загрязнений.

источник

Источник: Проблемы и перспективы современной науки / сборник научных трудов Четвертой Международной Телеконференции «Фундаментальные науки и практика» . Том 3 – № 1. – Томск – 2011.

Основными источниками загрязнений нефтью и нефтепродуктами являются добывающие предприятия, системы перекачки и транспортировки, нефтяные терминалы и нефтебазы, хранилища нефтепродуктов, железнодорожный транспорт, речные и морские нефтеналивные танкеры, автозаправочные комплексы и станции. Объемы отходов нефтепродуктов и нефтезагрязнений, скопившиеся на отдельных объектах, составляют десятки и сотни тысяч кубометров. Значительное число хранилищ нефтешламов и отходов, построенных с начала 50-х годов, превратилось из средства предотвращения нефтезагрязнений в постоянно действующий источник таких загрязнений.

Наиболее широко распространенными загрязнителями сточных вод являются нефтепродукты – неидентифицированная группа углеводородов нефти, мазута, керосина, масел и их примесей, которые вследствие их высокой токсичности, принадлежат, по данным ЮНЕСКО, к числу десяти наиболее опасных загрязнителей окружающей среды. Нефтепродукты могут находиться в растворах в эмульгированном, растворенном виде и образовывать на поверхности плавающий слой.

Основные вопросы защиты окружающей среды необходимо решать на основе следующих принципов:

  • форма и масштабы человеческой деятельности должны быть соизмеримы с запасами невозобновляемых природных ресурсов;
  • неизбежные отходы производства должны попасть в окружающую среду в форме и концентрации, безвредных для жизни. Особенно это относится к водным ресурсам.

Природная вода – не только источник водоснабжения и транспортное средство, но и среда обитания животных и растений. Круговорот воды в природе создает необходимые условия для жизни человечества на Земле.

Происхождение воды на земле связано с происхождением самой Земли. Существует две гипотезы образования воды на Земле. В первом случае это существование готовых молекул воды в газопылевом облаке, из которого произошла Земля и которое наблюдается в кометах и метеоритах сегодня. Во втором случае вода образовалась из водорода и кислорода после конденсации газопылевого облака в планету Земля. Впоследствии при повышении температуры недр Земли и их дегазации, а также в процессе миграции водорода и кислорода из центральной части планеты к периферии и химических реакций образовались молекулы воды.

Происхождение воды, ее первичное образование как растворителя и ее миграция представляют единое целое в изучении природной воды.

Одним из невосполнимых природных ресурсов является нефть, которая в процессе добычи, транспорта, переработки и потребления постоянно соприкасается с окружающей средой и загрязняет ее, особенно воду.

В настоящее время защита окружающей среды от нефтесодержащих сточных вод – одна из главных задач. Мероприятия, направленные на очистку воды от нефти, помогут сберечь определенные количества нефти и сохранить чистым воздушный и водный бассейны. На земном шаре много воды, но чистой пресной воды очень мало. Круговорот воды в природе создает необходимые условия для существования человечества на земле.

Для правильного подхода к решению актуальных задач в области окружающей среды необходимы определенные знания в этой области. Учебные программы, разработанные во многих университетах и институтах можно разбить на две крупные группы:

  • решение экологических вопросов в политическом, юридическом, экономическом и других гуманитарных направлениях;
  • решение экологических вопросов в техническом аспекте, где решаются общетехнические задачи или частные задачи отдельной или близких отраслей промышленности.

Методы очистки сточных вод выбирают в зависимости от их вида: бытовые, промышленные и дождевые. Сточные воды нефтяной и нефтехимической промышленности содержат нефть, нефтепродукты и различные химические вещества (тетраэтилсвинец, фенолы и др.). Эти сточные воды можно классифицировать следующим образом:

Таблица 1 – Классификация сточных вод

Сточные воды

Технологические процессы, связанные с получением сточных вод Методы вторичного использования вод и извлечение из них полезных веществ Дисперсный состав загрязнителя свободные и связанные, воды содержащиеся в сырье и исходных продуктах нерастворимые примеси с частицами 10 -5 – 10 -4 м и более промывные воды коллоидные растворы водные экстракты и адсорбционные жидкости охлаждающие жидкости растворенные газы и молекулярно – растворимые органические вещества технические воды дождевые и талые воды с территории потенциальных загрязнителей электролиты

Два первых направления классификации не позволяют систематизировать примеси сточных вод для последующей разработки принципов выбора эффективных систем очистки. Третье направление классификации с этой точки зрения является более подходящим. Его сущность заключается в том, что все сточные воды делятся по дисперсионному составу загрязняющего вещества на четыре группы. Классификация третьей группы позволяет для каждой из выше перечисленных групп предложить определенные методы очистки воды.

До недавнего времени количество растворенной нефти в воде практически не рассматривали. Современные исследования дают возможность судить о растворимости разных нефтепродуктов в воде в зависимости от различных факторов.

При непродолжительности контакта нефтепродуктов с водой без перемешивания последних количество нефтепродуктов, перешедших в воду, с увеличением времени возрастает. С увеличением контакта от 2 до 120 часов количество нефти в воде возрастает от 0,2 до 1,4 мг/л, дизельного топлива – от 0,2 до 0,8 мг/л, а растворимость бензинов зависит не только от времени, но и от метильных и метиленовых групп углеводородов, входящих в состав бензина. Для метильных и метиленовых групп концентрация бензина А76 в воде при контакте от 2 до 120 часов увеличивается от 1,4 до 11,9 мг/л, а для ароматических углеводородов при тех же параметрах в бензине А76 – от 2,6 до 34 мг/л. Как следует из предыдущих примеров количество растворенных нефтепродуктов в воде довольно значительно.

На нефтетранспортных предприятиях сбор сточных вод и их очистку ведут в зависимости от нефтехимических примесей и способов их очистки. В сточных водах нефтетранспортных предприятий находятся нефть и нефтепродукты, которые после отделения от воды можно использовать в народном хозяйстве. Химические примеси, как, например, тетраэтилсвинец, отделяют специальными химическими методами. В этом случае целесообразно применять раздельный сбор сточных вод и комбинированную систему очистки.

При выборе системы сбора и очистки сточных вод руководствуются следующими основными положениями:

  • необходимостью максимального уменьшения количества сточных вод и снижения содержания в них примесей;
  • возможностью извлечения из сточных вод ценных примесей и их последующей утилизации;
  • повторным использованием сточных вод (исходных и очищенных) в технологических процессах и системах оборотного водоснабжения.

Имея данные по расходам сточных вод, их подробную характеристику, в том числе и по содержанию примесей, а также требования к очищенной воде, по схеме можно отобрать для проверки несколько методов. На основании экспериментальных исследований с учетом технико-экономических показателей выбирают оптимальный метод очистки сточных вод. Выбор метода очистки сточных вод предприятий зависит от многих факторов: количество сточных вод различных видов, их расходы, возможность и экономическая целесообразность извлечения примесей из сточных вод, требования к качеству очищенной воды при ее использовании для повторного и оборотного водоснабжения и сброса в водоем, мощность водоема, наличие районных или городских очистных сооружений.

Очистка нефтесодержащих сточных вод должна обеспечивать:

  • максимальное извлечение ценных примесей для использования их по назначению;
  • применение очищенных сточных вод в технических процессах;
  • минимальный сброс сточных вод в водоем.

Для очистки сточных вод используют очистные сооружения трех основных типов: локальные, общие и районные или городские.На нефтебазах и насосных станциях трубопроводов применяют очистные сооружения общего типа, а в случае попадания в сточные воды особо вредных химических веществ – очистные сооружения локального типа. В зависимости от степени очистки сточных вод на очистных сооружениях локального или общего типа и характеристики водоема сточные воды либо направляют на районные или городские очистные сооружения, либо сбрасывают в водоем.

Очистные сооружения локального типа предназначены для обезвреживания сточных вод непосредственно после технологических цехов, имеющих вредные химические вещества, например после резервуарного парка технологических коммуникаций, насосных станций, хранящих и перекачивающих этилированные бензины. Применение таких установок дает возможность избежать необходимости пропускать сточные воды предприятия через установки для извлечения из воды определенных химических веществ.

Очистные сооружения общего типа предназначены для очистки всех нефтесодержащих вод нефтетранспортного предприятия. Обычно эти очистные сооружения включают механическую, физико-химическую и биологическую очистки. К сооружениям механической очистки относятся песколовки, нефтеловушки, отстойники, флотационные и фильтрационные установки и другие. На этих сооружениях удаляют грубодисперсные примеси. К сооружениям физико-химической очистки относятся флотационные установки с применением химических реагентов, установки с применением коагулянтов для коллоидных примесей. К сооружениям биологической очистки относятся аэротенки, биофильтры, биологические пруды и другие.

Для очистки сточных вод применяют реагентные методы: коагуляцию, флокуляцию, осаждение примесей, фильтрование, флотацию, адсорбцию, ионный обмен, обратный осмос и др. Очистные сооружения районного или городского типа предназначены в основном для механической, физико-химической и биологической очистки сточных вод. Если на эти очистные сооружения направляют производственные сточные воды, то в них не должно быть примесей, которые могут нарушить нормальный ритм работы канализации и очистных сооружений.Эти производственные воды не должны содержать:

  • взвешенных и всплывающих веществ в количестве более 500 мг/л;
  • веществ, способных засорять трубы канализационной сети или отлагаться на стенках труб;
  • веществ, оказывающих разрушающее действие на материал труб и элементы сооружений канализации;
  • горючих примесей и растворенных газообразных веществ, способных образовывать взрывоопасные смеси в канализационных сетях и сооружениях;
  • вредных веществ в концентрациях, препятствующих биологической очистке сточных вод или сбросу их в водоем (с учетом эффекта очистки).

Температура этих вод не должна превышать 40 о C. Не допускаются залповые сбросы сильноконцентрированных сточных вод.

Для очистки сточных вод от нефтепродуктов применяют:

  • механические;
  • физико-химические;
  • химические;
  • биологические методы.

Из механических практическое значение имеют отстаивание, центрифугирование и фильтрование; из физико-механических – флотация, коагуляция и сорбция; из химических – хлорирование и озонирование. Типовые технологические схемы очистки сточных вод от нефтепродуктов показаны на рисунке 1.

Рисунок 1 – Структурные схемы очистки сточных вод от нефтепродуктов.

Механическую очистку сточных вод от нефтепродуктов применяют преимущественно как предварительную. Механическая очистка обеспечивает удаление взвешенных веществ из бытовых сточных вод на 60– 65%, а из некоторых производственных сточных вод на 90– 95%. Задачи механической очистки заключаются в подготовке воды к физико-химической и биологической очисткам. Механическая очистка сточных вод является в известной степени самым дешевым методом их очистки, а поэтому всегда целесообразна наиболее глубокая очистка сточных вод механическими методами..

Механическую очистку проводят для выделения из сточной воды находящихся в ней нерастворенных грубодисперсных примесей путем процеживания, отстаивания и фильтрования. Для задержания крупных загрязнений и частично взвешенных веществ применяют процеживание воды через различные решетки и сита. Для выделения из сточной воды взвешенных веществ, имеющих большую или меньшую плотность по отношению к плотности воды, используют отстаивание. При этом тяжелые частицы оседают, а легкие всплывают. Сооружения, в которых при отстаивании сточных вод выпадают тяжелые частицы, называются песколовками..

Сооружения, в которых при отстаивании загрязненных промышленных вод всплывают более легкие частицы, называются в зависимости от всплывающих веществ жироловками, маслоуловителями, нефтеловушками и другие..

Фильтрование применяют для задержания более мелких частиц. В фильтрах для этих целей используют фильтровальные материалы в виде тканей (сеток), слоя зернистого материала или химических материалов, имеющих определенную пористость. При прохождении сточных вод через фильтрующий материал на его поверхности или в поровом пространстве задерживается выделенная из сточной воды взвесь..

Механическую очистку как самостоятельный метод применяют тогда, когда осветленная вода после этого способа очистки может быть использована в технологических процессах производства или спущена в водоемы без нарушения их экологического состояния. Во всех других случаях механическая очистка служит первой ступенью очистки сточных вод..

Песколовки предназначены для выделения механических примесей с размером частиц 200– 250 мкм. Необходимость предварительного выделения механических примесей (песка, окалины и др.) обуславливается тем, что при отсутствии песколовок эти примеси выделяются в других очистных сооружениях и тем самым усложняют эксплуатацию последних..

Принцип действия песколовки основан на изменении скорости движения твердых тяжелых частиц в потоке жидкости.Песколовки делятся на горизонтальные, в которых жидкость движется в горизонтальном направлении, с прямолинейным или круговым движением воды, вертикальные, в которых жидкость движется вертикально вверх, и песколовки с винтовым (поступательно-вращательным) движением воды. Последние в зависимости от способа создания винтового движения разделяются на тангенциальные и аэрируемые.

Самые простейшие горизонтальные песколовки представляют собой резервуары с треугольным или трапециидальным поперечным сечением. Глубина песколовок 0,25–1 м. Скорость движения воды в них не превышает 0,3 м/с. Песколовки с круговым движением воды изготавливаются в виде круглого резервуара конической формы с периферийным лотком для протекания сточной воды. Осадок собирается в коническом днище, откуда его направляют на переработку или отвал. Применяются при расходах до 7000 м 3 /сут. Вертикальные песколовки имеют прямоугольную или круглую форму, в них сточные воды движутся с вертикальным восходящим потоком со скоростью 0,05 м/с.

Конструкцию песколовки выбирают в зависимости от количества сточных вод, концентрации взвешенных веществ. Наиболее часто используют горизонтальные песколовки. Из опыта работы нефтебаз следует, что горизонтальные песколовки необходимо очищать не реже одного раза в 2–3 суток. При очистке песколовок обычно применяют переносный или стационарный гидроэлеватор.

Отстаивание – наиболее простой и часто применяемый способ выделения из сточных вод грубо дисперсных примесей, которые под действием гравитационной силы оседают на дне отстойника или всплывают на его поверхности.

Нефтетранспортные предприятия (нефтебазы, нефтеперекачивающие станции) оборудуют различными отстойниками для сбора и очистки воды от нефти и нефтепродуктов. Для этой цели обычно используют стандартные стальные или железобетонные резервуары, которые могут работать в режиме резервуара-накопителя, резервуара-отстойника или буферного резервуара в зависимости от технологической схемы очистки сточных вод.

Исходя из технологического процесса, загрязненные воды нефтебаз и нефтеперекачивающих станций неравномерно поступают на очистные сооружения. Для более равномерной подачи загрязненных вод на очистные сооружения служат буферные резервуары, которые оборудуют водораспределительными и нефтесборными устройствами, трубами для подачи и выпуска сточной воды и нефти, уровнемером, дыхательной аппаратурой и т.д. Так как нефть в воде находится в трех состояниях (легко–, трудноотделимая и растворенная), то попав в буферный резервуар, легко– и частично трудноотделимая нефть всплывает на поверхность воды. В этих резервуарах отделяют до 90–95% легко отделимых нефтей. Для этого в схему очистных сооружений устанавливают два и более буферных резервуара, которые работают периодически: заполнение, отстой, выкачка. Объем резервуара выбирают из расчета времени заполнения, выкачки и отстоя, причем время отстоя принимают от 6 до 24 ч. Таким образом, буферные резервуары (резервуары-отстойники) не только сглаживают неравномерность подачи сточных вод на очистные сооружения, но и значительно снижают концентрацию нефти в воде.

Перед откачкой отстоявшейся воды из резервуара сначала отводят всплывшую нефть и выпавший осадок, после чего откачивают осветленную воду. Для удаления осадка на дне резервуара устраивают дренаж из перфорированных труб.

Отличительная особенность динамических отстойников заключается в отделении примеси, находящейся в воде, при движении жидкости.

В динамических отстойниках или отстойниках непрерывного действия жидкость движется в горизонтальном или вертикальном направлении, отсюда и отстойники подразделяются на вертикальные и горизонтальные.

Вертикальный отстойник представляет собой цилиндрический или квадратный (в плане) резервуар с коническим днищем для удобства сбора и откачки осаждающегося осадка. Движение воды в вертикальном отстойнике происходит снизу вверх (для осаждающихся частиц).

Горизонтальный отстойник представляет собой прямоугольный резервуар (в плане) высотой 1,5–4 м, шириной 3–6 м и длиной до 48 м. Выпавший на дне осадок специальными скребками передвигают к приямку, а из него гидроэлеватором, насосами или другими приспособлениями удаляют из отстойника. Всплывшие примеси выводят с помощью скребков и поперечных лотков, установленных на определенном уровне.

В зависимости от улавливаемого продукта горизонтальные отстойники делятся на песколовки, нефтеловушки, мазутоловки, бензоловки, жироловки и т.п. Некоторые типы нефтеловушек представлены на рисунке 2.

В радиальных отстойниках круглой формы вода движется от центра к периферии или наоборот. Радиальные отстойники большой производительности, применяемые для очистки сточных вод, имеют диаметр до 100 м и глубину до 5 м. Радиальные отстойники с центральным впуском сточной воды имеют повышенные скорости впуска, что обуславливает менее эффективное использование значительной части объема отстойника по отношению к радиальным отстойникам с периферийным впуском сточных вод и отбором очищенной воды в центре.

Чем больше высота отстойника, тем больше необходимо времени для всплытия частицы на поверхности воды. А это, в свою очередь, связано с увеличением длины отстойника. Следовательно, интенсифицировать процесс отстаивания в нефтеловушках обычных конструкций сложно. С увеличением размеров отстойников гидродинамические характеристики отстаивания ухудшаются. Чем тоньше слой жидкости, тем процесс всплытия (оседания) происходит быстрее при прочих равных условиях. Это положение привело к созданию тонкослойных отстойников, которые по конструкции можно разделить на трубчатые и пластинчатые.

Рабочий элемент трубчатого отстойника – труба диаметром 2,5–5 см и длиной около 1 м. Длина зависит от характеристики загрязнения и гидродинамических параметров потока. Применяют трубчатые отстойники с наклоном труб. Отстойники с малым наклоном трубы работают по периодическому циклу: осветление воды и промывка трубок. Эти отстойники целесообразно применять для осветления сточных вод с небольшим количеством механических примесей. Эффективность осветления составляет 80–85%. В круто наклонных трубчатых отстойниках расположение трубок приводит к сползанию осадка вниз по трубкам, и в связи с этим отпадает необходимость их промывки. Продолжительность работы отстойников практически не зависит от диаметра трубок, но возрастает с увеличением их длины.

Читайте также:  Нужно ли делать анализ воды

Стандартные трубчатые блоки изготовляют из поливинилового или полистирольного пластика. Обычно применяют блоки длиной около 3 м, шириной 0,75 м и высотой 0,5 м. Размер трубчатого элемента в поперечном сечении составляет 5х5 см. Конструкции этих блоков позволяют монтировать из них секции на любую производительность; секции или отдельные блоки легко можно устанавливать в вертикальных или горизонтальных отстойниках.

Пластинчатые отстойники состоят из ряда параллельно установленных пластин, между которыми движется жидкость. В зависимости от направления движения воды и выпавшего (всплывшего) осадка, отстойники делятся на прямоточные, в которых направления движения воды и осадка совпадают; противоточные, в которых вода и осадок движутся навстречу друг другу; перекрестные, в которых вода движется перпендикулярно к направлению движения осадка. Наиболее широкое распространение получили пластинчатые противоточные отстойники.

Достоинства трубчатых и пластинчатых отстойников – их экономичность вследствие небольшого строительного объема, возможность применения пластмасс, которые легче металла и не корродируют в агрессивных средах.

Общий недостаток тонкослойных отстойников – необходимость создания емкости для предварительного отделения легко отделимых нефтяных частиц и больших сгустков нефти, окалины, песка и др. Сгустки имеют нулевую плавучесть, их диаметр может достигать 10–15 см при глубине в несколько сантиметров. Такие сгустки очень быстро выводят из строя тонкослойные отстойники. Если часть пластин или труб будет забита подобными сгустками, то в остальных повысится расход жидкости. Такое положение приведет к ухудшению работы отстойника. Принципиальные схемы отстойников приведены на рисунке 3.

Осаждение взвешенных частиц под действием центробежной силы проводят в гидроциклонах и центрифугах.

Для очистки сточных вод используют напорные и открытые (безнапорные) гидроциклоны.

При вращении жидкости в гидроциклонах на частицы действуют центробежные силы, отбрасывающие тяжелые частицы к периферии потока, силы сопротивления движущегося потока, гравитационные силы и силы инерции. Силы инерции незначительны и ими можно пренебречь. При высоких скоростях вращения центробежные силы значительно больше сил тяжести.

В напорные гидроциклоны вода подается через тангенциально направленный патрубок в цилиндрическую часть. В гидроциклоне вода, двигаясь по винтовой спирали наружной стенки аппарата, направляется в коническую его часть. Здесь основной поток изменяет направление движения и перемещается к центральной части аппарата. Поток осветленной воды в центральной части аппарата по трубе выводится из гидроциклона, а тяжелые примеси вдоль конической части перемещаются вниз и выводятся через патрубок шлама (рисунок 4а). Промышленность выпускает напорные гидроциклоны нескольких типоразмеров. Для грубой очистки применяют гидроциклоны больших диаметров. Эффективность гидроциклонов находится на уровне 70%. Гидроциклоны малого диаметра объединяют в общий агрегат, в котором они работают параллельно (рисунок 4б).

Одним из технических приспособлений для сбора нефтяной пленки с поверхности воды является безнапорный гидроциклон. Если в предыдущих конструкциях для вращения жидкости в гидроциклоне применяли подачу воды в гидроциклон по патрубку, расположенному по касательной в цилиндрической части, то в данном случае проводят отсос воды из гидроциклона по патрубку, расположенному по касательной внизу конической части гидроциклона. Такое расположение патрубка дает возможность образовывать внутри гидроциклона вращение жидкости, причем поступление воды из водоема происходит в верхней части гидроциклона.

Собранная с поверхности воды пленка нефтепродуктов, попадая в гидроциклон как более легкая, собирается в центре гидроциклона. По мере увеличения количества нефтепродуктов в гидроциклоне внутри него образуется конус из нефтепродуктов, который, увеличиваясь в размере, достигает нефтяного отборного патрубка, расположенного в центре гидроциклона. Нефтепродукты по этому патрубку сбрасываются в специальные емкости на берегу водоема.

Для удаления осадков из сточных вод могут быть использованы фильтрующие или отстойные центрифуги. Центробежное фильтрование достигается вращением суспензии в перфорированном барабане, обтянутом сеткой или фильтровальной тканью. Осадок остается на стенках барабана. Его удаляют вручную или ножевым съемом. Такое фильтрование наиболее эффективно, когда надо получать продукт наименьшей влажностью и требуется промывка осадка.

Центрифуги могут быть периодического или непрерывного действия; горизонтальными, вертикальными или наклонными; различаются по расположению вала в пространстве; по способу выгрузки осадка из ротора (с ручной, с ножевой, поршневой или центробежной выгрузкой). Они могут быть в герметизированном и негерметизированном исполнении.

Метод фильтрования приобретает все большее значение в связи с повышением требований к качеству очищенной воды. Фильтрование применяют после очистки сточных вод в отстойниках или после биологической очистки. Процесс основан на прилипании грубодисперсных частиц нефти и нефтепродуктов к поверхности фильтрующего материала. Фильтры по виду фильтрующей среды делятся на тканевые или сетчатые, каркасные или намывные, зернистые или мембранные.

Фильтрование через различные сетки и ткани обычно применяют для удаления грубо дисперсных частиц. Более глубокую очистку нефтесодержащей воды можно осуществлять на каркасных фильтрах. Пленочные фильтры очищают воду на молекулярном уровне.

Микрофильтры представляют собой фильтровальные аппараты, в качестве фильтрующего элемента использующие металлические сетки, ткани и полимерные материалы. Микрофильтры обычно выпускают в виде вращающихся барабанов, на которых неподвижно закреплены или прижаты к барабану фильтрующие материалы. Барабаны выпускают диаметром 1,5–3 м и устанавливают горизонтально. Очищаемая вода поступает внутрь барабана и фильтруется через фильтр наружу. Микрофильтры широко используют для осветления природных вод.

В промышленности применяют микрофильтры различных конструкций. Процесс фильтрации происходит только за счет разности уровней воды внутри и снаружи барабана. Полотно сетки не закреплено, а лишь охватывает барабан в виде бесконечной ленты, натягиваемой с помощью натяжных роликов.

Микросетки изготовляют из различных материалов: капрона, латуни, никеля, нержавеющей стали, фосфористой бронзы, нейлона и др.Каркасные фильтры Фильтровальные процессы на каркасных фильтрах можно разделить на три большие группы:

  • фильтрование через пористые зернистые материалы, обладающие адгезионными свойствами (кварцевый песок, керамзит, антрацит, пенополистирол, котельные и металлургические шлаки и др.);
  • фильтрование через волокнистые и эластичные материалы, обладающие сорбционными свойствами и высокой нефтеемкостью (нетканые синтетические материалы, пенополиуретан и др.);
  • фильтрование через пористые зернистые и волокнистые материалы для укрупнения эмульгированных частиц нефтепродуктов (коалесцирующие фильтры).

Два первых метода близки по основным технологическим принципам, лежащим в основе процесса изъятия нефтепродуктов из воды, и отличаются нефтеемкостью, регенерацией фильтрующей загрузки и конструктивным оформлением. По мере насыщения загрузки нефтепродуктами их фронт перемещается в глубь слоя к его нижней границе, и концентрация нефтепродуктов в фильтрате возрастает. При этом фильтр отключается и производится регенерация загрузочного материала. Имеются конструкции фильтров с непрерывной регенерацией загрузки.

Третий метод принципиально отличается от рассмотренных. Период фильтроцикла, характерный для первых двух методов, завершает этап «зарядки» коалесцирующего фильтра. После этого пленка нефтепродуктов отрывается от поверхности фильтрующего слоя в виде капель с диаметром несколько миллиметров. Капли быстро всплывают и легко отделяются от воды.

До недавнего времени в основном применяли каркасные фильтры с засыпкой из пористых материалов.

В качестве фильтрующего материала используют гравий, песок, дробленый антрацит, кварц, мрамор, керамическую крошку, хворост, древесный уголь, синтетические и полимерные материалы.

Фильтры разделяются по скорости движения воды в них на фильтры с постоянной и переменной скоростью.

При переменной скорости фильтрования (постоянной разности давления до и после фильтра) по мере увеличения объема фильтрата, т.е. продолжительности фильтрования, скорость фильтрования уменьшается.

При постоянной скорости фильтрования разность давления до и после фильтра увеличивается.

В нефтяной и нефтехимической промышленности обычно применяют фильтры с зернистой загрузкой, которые по скорости фильтрования делятся на медленные, скорые и сверхскоростные. Зернистую загрузку размещают в определенном порядке и во избежание выноса ее из фильтра применяют специальные дренажные системы и поддерживающие слои.

Для очистки нефтесодержащих сточных вод разработана новая технология с использованием эластичных полимерных материалов, в частности, эластичного пенополиуретана. Этот материал имеет открытоячеистую структуру со средним размером пор 0,8–1,2 мм и кажущуюся плотность 25–60 кг/м 3 . Эластичный пенополиуретан характеризуется высокой пористостью, механической прочностью, химической стойкостью, гидрофобными свойствами, что обеспечивает значительную поглощающую способность по нефтепродуктам.

Технология работы фильтров следующая. Сточная вода по трубопроводу поступает в емкость фильтра, заполненную измельченным пенополиуретаном размером 15–20 мм. Пройдя через слой загрузки, сточные воды освобождаются от нефтепродуктов и механических примесей и через сетчатое днище отводятся по трубопроводу из установки. В процессе фильтрования загрузка насыщается нефтепродуктами и периодически цепным ковшовым элеватором подается на отжимные барабаны для регенерации. Отрегенерированная загрузка вновь поступает в емкость фильтра, а отжатые загрязнения по сборному желобу отводятся в разделочную емкость.

Такие фильтры целесообразно применять после предварительной очистки стоков в песколовках и нефтеловушках. Очищенную воду можно использовать в техническом водоснабжении промышленных предприятий.

Общим недостатком всех рассмотренных фильтров (кроме пенополиуретановых) является то, что в результате их регенерации образуются высокоэмульгированные и весьма стойкие эмульсии, существенно затрудняющие утилизацию выделенных нефтепродуктов.

Кроме вышеупомянутых фильтров, существуют и другие типы:

  • открытые – вода, прошедшая через этот фильтр, должна быть прозрачной, а концентрация нефтепродуктов в ней не должна превышать 10–15 мг/л;
  • с плавающей загрузкой – в связи с высокой адгезионной способностью по отношению к нефтепродуктам их применяют и для разделения водонефтяных эмульсий;
  • коалесцирующие – укрупнение мелких эмульгированных капель нефтепродуктов в более крупные.

К физико-химическим методам очистки сточных вод от нефтепродуктов относят коагуляцию, флотацию и сорбцию.

Это процесс укрупнения дисперсных частиц в результате их взаимодействия и объединения в агрегаты. В очистке вод ее применяют для ускорения процесса осаждения тонкодисперсных примесей и эмульгированных веществ. Коагуляция наиболее эффективна для удаления из воды коллоидно-дисперсных частиц, то есть частиц размером 1-100 мкм. Коагуляция может происходить самопроизвольно или под влиянием химических и физических процессов. В процессах очистки сточных вод коагуляция происходит под влиянием добавляемых к ним специальных веществ – коагулянтов. Коагулянты в воде образуют хлопья гидроксидов металлов, которые быстро оседают под действием силы тяжести. Хлопья обладают способностью улавливать коллоидные и взвешенные частицы и агрегировать их. Так как коллоидные частицы имеют слабый отрицательный заряд, а хлопья коагулянтов слабый положительный заряд, то между ними возникает взаимное притяжение.

Флотация является сложным физико-химическим процессом, заключающимся в создании комплекса частица-пузырек воздуха или газа, всплывании этого комплекса и удалении образовавшегося пенного слоя. Процесс флотации широко применяют при обогащении полезных ископаемых, а также при очистке сточных вод. В зависимости от способа получения пузырьков в воде существуют следующие способы флотационной очистки:

  • флотация пузырьками, образующимися путем механического дробления воздуха (механическими турбинами-импеллерами, форсунками, с помощью пористых пластин и каскадными методами);
  • флотация пузырьками, образующимися из пересыщенных растворов воздуха в воде (вакуумная, напорная);
  • электрофлотация.

Процесс образования комплекса пузырек-частица происходит в три стадии: сближение пузырька воздуха и частицы в жидкой фазе, контакт пузырька с частицей и прилипание пузырька к частице.Прочность соединения пузырек-частица зависит от размеров пузырька и частицы, физико-химических свойств пузырька, частицы и жидкости, гидродинамических условий и других факторов. Процесс очистки стоков при флотации заключается в следующем: поток жидкости и поток воздуха (мелких пузырьков) в большинстве случаев движутся в одном направлении. Взвешенные частицы загрязнений находятся во всем объеме сточной воды и при совместном движении с пузырьками воздуха происходит агрегирование частицы с воздухом. Если пузырьки воздуха значительных размеров, то скорости воздушного пузырька и загрязненной частицы различаются так сильно, что частицы не могут закрепиться на поверхности воздушного пузырька. Кроме того, большие воздушные пузырьки при быстром движении сильно перемешивают воду, вызывая разъединение уже соединенных воздушных пузырьков и загрязненных частиц. Поэтому для нормальной работы флотатора во флотационную камеру не допускаются пузырьки более определенного размера.

Сточная жидкость при пропускании через нее постоянного электрического тока насыщается пузырьками водорода, образующегося на катоде. Электрический ток, проходящий через сточную воду, изменяет химический состав жидкости, свойства и состояние нерастворимых примесей. В одних случаях эти изменения положительно влияют на процесс очистки стоков, в других – ими надо управлять, чтобы получить максимальный эффект очистки. В общем, достоинствами флотации являются непрерывность процесса, широкий диапазон применения, небольшие капитальные и эксплуатационные затраты, простая аппаратура, селективность выделения примесей, по сравнению с отстаиванием большая скорость процесса, а также возможность получения шлама более низкой влажности (90–95%), высокая степень очистки (95–98%), возможность рекуперации удаляемых веществ.

Среди физико-химических методов очистки сточных вод от нефтепродуктов лучший эффект дает сорбция на углях.

Сорбция v это процесс поглощения вещества из окружающей среды твердым телом или жидкостью. Поглощающее тело называется сорбентом, поглощаемое – сорбатом. Различают поглощение вещества всей массой жидкого сорбента (абсорбция) и поверхностным слоем твердого или жидкого сорбента (адсорбция). Сорбция, сопровождающаяся химическим взаимодействием сорбента с поглощаемым веществом, называется хемосорбцией.

Сорбция представляет собой один из наиболее эффективных методов глубокой очистки от растворенных органических веществ сточных вод предприятий нефтехимической промышленности.

В качестве сорбентов применяют различные пористые материалы: золу, коксовую мелочь, торф, силикагели, алюмогели, активные глины и др. Эффективными сорбентами являются активированные угли различных марок. Пористость этих углей составляет 60–75%, а удельная площадь поверхности 400–900 м 2 /г. В зависимости от преобладающего размера пор активированные угли делятся на крупноv и мелкопористые и смешанного типа. Поры по своему размеру подразделяются на три вида: макропоры размером 0,1–2 мкм, переходные размером 0,004–0,1 мкм, микропоры – менее 0,004 мкм.

В зависимости от области применения метода сорбционной очистки, места расположения адсорберов в общем комплексе очистных сооружений, состава сточных вод, вида и крупности сорбента и др. назначают ту или иную схему сорбционной очистки и тип адсорбера. Так, перед сооружениями биологической очистки применяют насыпные фильтры с диаметром зерен сорбента 3–5 мм. или адсорбер с псевдоожиженным слоем сорбента с диаметром зерен 0,5 – 1 мм. При глубокой очистке производственных сточных вод и возврате их в систему оборотного водоснабжения применяют аппараты с мешалкой и намывные фильтры с крупностью зерен сорбента 0,1 мм и менее.

Наиболее простым является насыпной фильтр, представляющий собой колонну с неподвижным слоем сорбента, через который фильтруется сточная вода. Скорость фильтрования зависит от концентрации растворенных в сточных водах веществ и составляет 1–6 м/ч; крупность зерен сорбента – 1,5–5 мм. Наиболее рациональное направление фильтрования жидкости – снизу вверх, так как в этом случае происходит равномерное заполнение всего сечения колонны и относительно легко вытесняются пузырьки воздуха или газов, попадающих в слой сорбента вместе со сточной водой.

В колонне слой зерен сорбента укладывают не беспровальную решетку с отверстиями диаметром 5–10 мм и шагом 10–20 мм, на которые укладывают поддерживающий слой мелкого щебня и крупного гравия высотой 400–500 мм, предохраняющий зерна сорбента от проваливания в предрешеточное пространство и обеспечивающий равномерное распределение потока жидкости по всему сечению. Сверху слой сорбента для предотвращения выноса закрывают сначала слоем гравия, затем слоем щебня и покрывают решеткой (т.е. в обратном порядке).

Озон обладает высокой окислительной способностью и при нормальной температуре разрушает многие органические вещества, находящиеся в воде. При этом процессе возможно одновременное окисление примесей, обесцвечивание, дезодорация, обеззараживание сточной воды и насыщение ее кислородом. Преимуществом этого метода является отсутствие химических реагентов при очистке сточных вод.

Растворимость озона в воде зависит от pH и количества примесей в воде. При наличии в воде кислот и солей растворимость озона увеличивается, а при наличии щелочей – уменьшается.

Озон самопроизвольно диссоциирует на воздухе и в водном растворе, превращаясь в кислород. В водном растворе озон диссоциирует быстрее. С ростом температуры и pH скорость распада озона резко возрастает.

Озон можно получить разными методами, но наиболее экономичным является пропускание воздуха или кислорода через электрический разряд высокого напряжения (5000–25000 В) в генераторе озона (озонаторе), который состоит из двух электродов, расположенных на небольшом расстоянии друг от друга.

Промышленное получение озона основано на расщеплении молекул кислорода с последующим присоединением атома кислорода к нерасщепленной молекуле под действием тихого полукоронного или коронного электрического разряда.Для получения озона необходимо применять очищенный и осушенный воздух или кислород.

Перспективность применения озонирования как окислительного метода обусловлена также тем, что оно не приводит к увеличению солевого состава очищаемых сточных вод, не загрязняет воду продуктами реакции, а сам процесс легко поддается полной автоматизации.

Смешение очищаемой воды с озонированным воздухом может осуществляться различными способами: барботированием воды через фильтры, дырчатые (пористые) трубы, смешением с помощью эжекторов, мешалок и т.д.

источник