Меню Рубрики

Анализ сточная вода азот общий

АНАЛИЗ И ОЦЕНКА КАЧЕСТВА ПОВЕРХНОСТНЫХ ВОД Допущено Учебно-методическим объединением в качестве учебного пособия для студентов высших учебных заведений обучающихся по специальности 020804 – геоэкология

Азотсодержащие соединения находятся в поверхностных водах в растворенном, коллоидном и взвешенном состоянии и могут под влиянием многих физико-химических и биохимических факторов переходить из одного состояния в другое.

Средняя концентрация общего азота в природных водах колеблется в значительных пределах и зависит от трофности водного объекта: для олиготрофных изменяется обычно в пределах 0,3-0,7 мг/дм 3 , для мезотрофных – 0,7-1,3 мг/дм 3 , для эвтрофных – 0,8-2,0 мг/дм 3 .

Сумма минерального азота. Сумма минерального азота – это сумма аммонийного, нитратного и нитритного азота.

Повышение концентрации ионов аммония и нитритов обычно указывает на свежее загрязнение, в то время как увеличение содержания нитратов – на загрязнение в предшествующее время. Все формы азота, включая и газообразную, способны к взаимным превращениям.

Аммиак. В природной воде аммиак образуется при разложении азотсодержащих органических веществ. Хорошо растворим в воде с образованием гидроксида аммония.

ПДК в аммиака составляет 2,0 мг/дм 3 , ПДК вр – 0,05 мг/дм 3 (лимитирующий показатель вредности – токсикологический).

Фосфаты и общий фосфор. Под общим фосфором понимают сумму минерального и органического фосфора. Так же, как и для азота, обмен фосфором между его минеральными и органическими формами, с одной стороны, и живыми организмами – с другой – является основным фактором, определяющим его концентрацию. В природных и сточных водах фосфор может присутство­вать в разных видах. В растворенном состоянии (иногда говорят – в жидкой фазе анализируемой воды) он может находиться в виде ортофосфорной кислоты (Н 3 РО 4 ) и ее анионов (Н 2 РО 4 — , НРО 4 2- , РО 4 3- ), в виде мета-, пиро- и полифосфатов (эти вещества используют для предупреждения образования накипи, они входят также в состав моющих средств). Кроме того, существуют разно­образные фосфор­органические соединения – нуклеиновые кис­лоты, нуклеопротеиды, фосфолипиды и др., которые также могут присутствовать в воде, являясь продуктами жизнедеятельности или разложения организмов. К фосфор­органическим соединени­ям относятся также некоторые пестициды.

Фосфор может содержаться и в нерастворенном состоянии (в твердой фазе воды), присутствуя в виде взвешенных в воде труднорастворимых фосфатов, включая природные минералы, белковые, органические фосфорсодержащие соединения, остат­ки умерших организмов и др. Фосфор в твердой фазе в природных водоемах обычно находится в донных отложениях, однако может встречаться, и в больших количествах, в сточных и загрязненных природных водах. Формы фосфора в природных водах представлены в табл. 12.

Концентрация общего растворенного фосфора (минерального и органического) в незагрязненных природных водах изменяется от 5 до
200 мкг/дм 3 .

Формы фосфора в природных водах

Общий растворенный и взвешенный фосфор

Общий растворенный фосфор

Общий растворенный и взвешенный фосфор

Гидролизируемые кислотой фосфаты

Общие растворенные и взвешенные гидролизируемые кислотой фосфаты

Растворенные гидролизируемые кислотой фосфаты

Гидролизируемые кислотой фосфаты в частицах

Общий растворенный и взвешенный органический фосфор

Растворенный органический фосфор

Органический фосфор в частицах

Фосфор – важнейший биогенный элемент, чаще всего лимитирующий развитие продуктивности водоемов. Поэтому поступление избытка соединений фосфора с водосбора в виде минеральных удобрений с поверхностным стоком с полей (с гектара орошаемых земель выносится 0,4-0,6 кг фосфора), со стоками с ферм (0,01-0,05 кг/сут на одно животное), с недоочищенными или неочищенными бытовыми сточными водами (0,003-0,006 кг/сут. на одного жителя), а также с некоторыми производственными отходами приводит к резкому неконтролируемому приросту растительной биомассы водного объекта (это особенно характерно для непроточных и малопроточных водоемов). Происходит так называемое изменение трофического статуса водоема, сопровождающееся перестройкой всего водного сообщества и ведущее к преобладанию гнилостных процессов (и, соответственно, возрастанию мутности, солености, концентрации бактерий).

Один из вероятных аспектов процесса эвтрофикации – рост сине-зеленых водорослей (цианобактерий), многие из которых токсичны. Выделяемые этими организмами вещества относятся к группе фосфор- и серосодержащих органических соединений (нервно-паралитических ядов). Действие токсинов сине-зеленых водорослей может проявляться в возникновении дерматозов, желудочно-кишечных заболеваний; в особенно тяжелых случаях – при попадании большой массы водорослей внутрь организма – может развиваться паралич.

В соответствии с требованиями глобальной системы мониторинга состояния окружающей среды (ГСМОС/GEMS) в программы обязательных наблюдений за составом природных вод включено определение содержания общего фосфора (растворенного и взвешенного, в виде органических и минеральных соединений). Фосфор является важнейшим показателем трофического статуса природных водоемов. Основной формой неорганического фосфора при значениях pH водоема больше 6,5 является ион HPO 4 2 — (около 90 %). В кислых водах неорганический фосфор присутствует преимущественно в виде H 2 PO 4 — .

Концентрация фосфатов в природных водах обычно очень мала – сотые, редко десятые доли миллиграммов фосфора в 1 дм 3 , в загрязненных водах она может достигать нескольких миллиграммов в 1 дм 3 . Подземные воды содержат обычно не более 100 мкг/дм 3 фосфатов; исключение составляют воды в районах залегания фосфорсодержащих пород.

Содержание соединений фосфора подвержено значительным сезонным колебаниям, поскольку оно зависит от соотношения интенсивности процессов фотосинтеза и биохимического окисления органических веществ. Минимальные концентрации фосфатов в поверхностных водах наблюдаются обычно весной и летом, максимальные – осенью и зимой, в морских водах – соответственно весной и осенью, летом и зимой.

Общее токсическое действие солей фосфорной кислоты возможно лишь при весьма высоких дозах и чаще всего обусловлено примесями фтора.

В методике оценки экологической ситуации, принятой Госкомэкологией РФ, рекомендован норматив содержания растворимых фосфатов в воде – 50 мкг/дм 3 .

Без предварительной подготовки проб колориметрически определяются неорганические растворенные и взвешенные фосфаты.

Me n (PO 3 ) n , Me n+2 P n O 3n+1 , Me n H 2 P n O 3n+1 .

Полифосфаты применяются для умягчения воды, обезжиривания волокна, как компонент стиральных порошков и мыла, ингибитор коррозии, катализатор, в пищевой промышленности.

Полифосфаты малотоксичны. Токсичность полифосфатов объясняется их способностью к образованию комплексов с биологически важными ионами, особенно с кальцием.

Установленное допустимое остаточное количество полифосфатов в воде хозяйственно-питьевого назначения составляет 3,5 мг/дм 3 (лимитирующий показатель вредности — органолептический).

Фосфаты определяются, как правило, колориметрическим методом (ГОСТ 18309, ИСО 6878) по реакции с молибдатом ам­мония в кислой среде:

НРО 4 2- +3NН 4 + +12МоО 4 2- +23Н + =(NН 4 ) 3 [РМо 12 О 40 ]+12Н 2 О

Образующийся при этом комплекс, продукт желтого цвета, далее под действием восстановителя – хлорида олова (II) – пре­вращается в интенсивно окрашенный синий краситель сложного состава – «молибденовую синь». Концентрацию ортофосфатов в анализируемой воде определяют по окраске пробы, визуально срав­нивая ее с окраской образцов на контрольной шкале или измеряя оптическую плотность проб с помощью фотоколориметра.

В данную реакцию из всех присутствующих в воде фосфа­тов непосредственно вступают только ортофосфаты. Для опреде­ления полифосфатов их необходимо предварительно перевести в ортофосфаты путем кислотного гидролиза в присутствии серной кислоты. Многие сложные эфиры фосфорной кислоты также мо­гут быть определены после их кислотного гидролиза в тех же ус­ловиях, что и полифосфаты. Реакция кислотного гидролиза на примере пирофосфата протекает следующим образом:

Na 4 Р 2 О 7 +2Н 2 SО 4 +Н 2 О=2Н 3 РО 4 +4Na + +2SО 4 2- .

Некоторые фосфорсодержащие органические соединения могут быть определены только после их минерализации, называе­мой иногда также «мокрым сжиганием». Минерализация фосфор­содержащих органических соединений проводится при кипяче­нии пробы с добавлением кислоты и сильного окислителя – персульфата или перекиси водорода. В случае использования для этой цели персульфата калия реакция протекает по уравнению:

R-О-Р-О-R 1 +К 2 S 2 О 8 +Н 2 SО 4 =H 3 РО 4 +2К + +3SО 4 2- +R+R 1 ,

где R и R 1 – органические фрагменты.

Минерализация приводит к превращению в ортофосфаты все, даже труднорастворимые, формы фосфатов в воде. Таким образом определяется содержание общего фосфора в любой воде (этот показатель можно определять как для растворенных фосфа­тов, так и для нерастворимых соединений фосфора). Однако для природных вод, не содержащих или содержащих незначительное количество трудногидролизующихся фосфатов в твердой фазе, минерализации обычно не требуется, и полученный при анализе гидролизованной пробы результат может с хорошим приближе­нием быть принят за содержание общего фосфора.

Влияние некоторых примесей, которые могут присутствовать в сточных водах – силикатов (более 50 мг/л), соединений железа (III) (более
1 мг/л), сульфидов и сероводорода (более 3 мг/л), снижает точность анализа, что устраняют добавлением к пробе специальных реа­гентов, входящих в состав тест-комплекта, или изменением опе­раций обработки пробы.

Возможное влияние нитритов (до 25 мг/л) устраняется за счет прибавления к пробе раствора для их связывания (раствора сульфаминовой кислоты). Прове­дению анализа мешают большие количества хлоридов, нитри­тов, хроматов, арсенатов, танина.

При анализе фосфатов в гидролизованной пробе непосред­ственно определяются сумма ортофосфатов и полифосфатов; кон­центрация же полифосфатов рассчитывается как разность между результатами анализа гидролизованной и негидролизованной про­бы. Гидролиз полифосфатов протекает также и при проведении минерализации, т.к. ее проводят в сильнокислой среде.

ПДК полифосфатов (триполифосфат и гексаметафосфат) в воде водоемов составляет 3,5 мг/л в пересчете на ортофосфат-анион РО 4 3- , лимитирующий показатель вредности – органолептический.

Диапазон определяемых концентраций ортофосфатов в воде при визуально-колориметрическом определении – от 0,2 до 7,0 мг/л, при фотометрическом определении – 0,001 – 0,04 мг/л. Определение визуально-колориметрическим методом возможно и при концентрации ортофосфатов более 7,0 мг/л после соответ­ствующего разбавления пробы чистой водой.

Колба коническая термостойкая (Эрленмейера) на 150 мл со шлифом, мерная склянка с делениями (5,10,20 мл) с пробкой, холодильник обратный со шлифом, кипелки (стеклянные капилляры, зерна силикагеля), колба мерная вместимостью 50 мл, плитка электрическая с закрытым нагревательным элементом, пипетка-капельница, чашка фарфоровая на
200-500 мл, шприц-дозатор медицинский на 1 мл с соединительной трубкой.

Вода дистиллированная, перманганат калия кристалличес­кий, раствор восстановителя, раствор для связывания нитритов, раствор молибдата, раствор серной кислоты (10 %-ный) водный, раствор серной кислоты (1:3) водный, персульфат аммония в кап­сулах по 0,5 г.

Контрольная шкала образцов окраски для концентраций ортофосфатов (0; 0,2; 1,0; 3,5; 7,0 мг/л) из состава тест-комплекта или приготовленная самостоятельно.

О приготовлении растворов см. приложение 3.

А. Определение ортофосфатов в питьевой и природной воде

1. Отберите в мерную склянку 20 мл профильтрованной или отстоянной анализируемой воды (пробы), предварительно ополоснув ее 2-3 раза той же водой.

Примечание. При ожидаемой концентрации ортофосфатов более 5 мг/л рекомендуется отбирать 5 мл пробы (склянкой) или 1 мл (шприцем-доза­тором), доводя объем раствора в склянке до 20 мл чистой водой, не содер­жащей ортофосфатов.

2. Добавьте к пробе пипеткой-капельницей 10 капель раствора для связывания нитритов и затем шприцем-дозатором 1 мл раствора молибдата. Склянку закрой­те пробкой и встряхните для перемешивания раствора.

Раствор молибдата содержит серную кислоту. Соблюдайте ос­торожность при выполнении данной операции!

3. Оставьте пробу на 5 мин. для полного протекания реакции.

4. Добавьте к пробе пипеткой-капельницей 2-3 кап­ли раствора восстановителя. Склянку закройте проб­кой и встряхните для перемешивания раствора. При наличии в воде ортофосфатов раствор приобретает синюю окраску.

Раствор восстановителя содержит соляную кислоту. Соблюдай­ те осторожность при выполнении данной операции!

Оставьте пробу на 5 мин. для полного протекания реакции.

Проведите визуальное колориметрирование пробы. Для этого мерную склянку поместите на белое поле контрольной шкалы и, освещая склянку рассеянным белым светом достаточной интенсивности, определите ближайшее по окраске поле контрольной шкалы и соответствующее ему значение концентрации ортофосфатов в мг/л.

При получении результата анализа учтите разбавление про­бы чистой водой, введя поправочный коэффициент (например, при разбавлении пробы в 4 раза, т.е. при отборе 5 мл анализируемой воды, полученное по шкале значение концентрации умножьте на 4).

В. Дополнительные операции при определении ортофосфатов в загрязненных поверхностных и сточных водах

При анализе сточных вод выполняются операции, позволя­ющие устранить мешающее влияние силикатов, соединений же­леза (III), сульфидов и сероводорода, а также танина.

Для этого выполните следующие операции:

1. Определите универсальной индикаторной бумажкой рН анализируемой воды. При наличии сильнощелочной среды пробу необходимо нейтрализовать раствором серной кислоты до значений рН 4-8.

2. Если в анализируемой воде ожидается присутствие сили­ катов (более 50 мг/л) и соединений железа ( III ) (более 1 мг/л), разбавьте пробу перед анализом либо отберите 5 мл воды и доведите объем пробы до 20 мл чистой водой.

3. Если в анализируемой воде ожидается присутствие суль фидов и сероводорода (более 3 мг/л), приготовьте разбавленный (слегка розовый) раствор перманганата калия и добавьте несколько капель его в пробу. При этом проба должна приобрести слабую розовую окраску (при значительной окраске раствора пробу можно разбавить анализируемой водой).

4. Если в анализируемой воде ожидается присутствие хроматов (более 3 мг/л), измените порядок прибавления растворов: первым прибавьте к пробе раствор восстановителя, а затем – раствор для связывания нитритов и раствор молибдата.

5. Если в анализируемой воде ожидается присутствие та­ нина, его можно удалить фильтрованием через колонку с активированным углем.

С. Определение гидролизующихся полифосфатов и эфиров фосфорной кислоты

1. Пробу анализируемой воды объемом 50 мл (может быть отобрана с использованием мерной колбы или цилиндра) поместите в коническую колбу.

Добавьте к пробе шприцем-дозатором 1 мл раствора серной кислоты (10 %) и несколько кипелок.

Присоедините к колбе обратный холодильник. Поместите колбу на электроплитку и кипятите смесь при минимальной мощности нагревания 30 мин.

После охлаждения смесь количественно перенесите в мерную колбу. В процессе кипячения происходит потеря растворителя – воды (около
5-10 мл). Потерю воды восполните добавлением в мерную колбу до метки (50 мл) дистиллированной воды, которой предварительно ополосните коническую колбу.

Из полученного раствора отберите пробу (20 мл) в мерную склянку и анализируйте ее на содержание ортофосфатов. Полученный результат будет представлять сумму концентраций ортофосфатов и полифосфатов (С с ) в пересчете на ортофосфат-анион (РО 4 3- ).

6. В отдельной пробе анализируемой воды, не подвергая ее кислотному гидролизу, определите концентрацию ортофосфатов С 0ф , как описано выше.

7. Рассчитайте концентрацию гидролизовавшихся фосфатов (С пф ) в мг/л по формуле: С пф = С с – С оф ,

где: С с – суммарная концентрация полифосфатов, гидролизовавшихся органических фосфатов и ортофосфатов, определенная в условиях гидролиза, мг/л;

С оф – концентрация ортофосфатов, мг/л.

D . Минерализация и определение общего фосфора

1. В фарфоровую чашку поместите 50 мл анализируемой воды (или меньший объем, разбавленный до 50 мл).

2. Высыпьте в чашку содержимое одной капсулы (0,5 г) персульфата аммония и добавьте туда же 1 мл раствора серной кислоты (1:3).

3. Выпарьте смесь досуха, поместив чашку на нагревательный элемент электрической плитки.

4. Поместите чашку в сушильный шкаф и выдержите ее там в течение 6 час. при температуре 160 °С, после чего дайте остыть чашке до комнатной температуры (около 0,5 часа).

5. После охлаждения к сухому остатку в чашке ос­торожно прилейте 30 мл дистиллированной воды, перемешивая смесь до растворения солей.

1. Если раствор получился окрашенным, минерализацию повторите или возьмите меньший объем анализируемой воды.

2. Появление белой мути за счет выпадения солей кальция в дальнейшем не мешает определению.

3. Далее раствор перенесите в мерную колбу или склянку, доведите до метки «50 мл» дистиллированной водой и определите содержание ортофосфатов.

4. Содержание общего фосфора (в мг/л) определите по градуировочному графику, предварительно построенному по стандартным растворам, обработанным в соответствии со всеми выполняемыми при минерализации операциями.

Контроль точности анализа

Контроль точности при анализе на содержание фосфатов и общего фосфора может быть выполнен путем тестирования специально приготовленного раствора ортофосфата при концентрациях, равных значениям, приведенным для образцов на контрольной шкале. Для этой цели рекомендуется использовать калий фосфор­нокислый однозамещенный КН 2 РО 4 , обработанный по ГОСТ 4212 [11]. Контрольные растворы приготавливают весовым методом в лабораторных условиях.

источник

ПНД Ф 14.1;2.206-04 Количественный химический анализ вод. Методика выполнения измерений массовой концентрации общего азота в природных и сточных водах

МИНИСТЕРСТВО ПРИРОДНЫХ РЕСУРСОВ
РОССИЙСКОЙ ФЕДЕРАЦИИ

Директор ФГУ «Федеральный
научно-методический центр
анализа и мониторинга
окружающей среды»
_________________ Г.М. Цветков
25 июня 2004 г.

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
МАССОВОЙ КОНЦЕНТРАЦИИ ОБЩЕГО АЗОТА
В ПРИРОДНЫХ И СТОЧНЫХ ВОДАХ
ТИТРИМЕТРИЧЕСКИМ МЕТОДОМ

Методика допущена для целей государственного
экологического контроля

Настоящая методика предназначена для определения азота общего титриметрическим методом в природных и сточных водах.

Диапазон измеряемых концентраций от 1,0 до 200 мг/дм 3 .

Если массовая концентрация в анализируемой пробе превышает верхнюю границу, то допускается разбавление пробы таким образом, чтобы концентрация азота общего соответствовала регламентированному диапазону.

Метод основан на восстановлении водородом (в момент выделения) нитратов и нитритов в кислой среде до аммиака и последующей минерализации азотосодержащих органических соединений серной кислотой с сульфатом калия при каталитическом действии сульфата ртути. Этим способом все азотосодержащие соединения переводят в гидросульфат аммония. Минерализованную пробу подщелачивают, отгоняют аммиак и определяют его титрованием. Концентрацию азота общего определяют расчетным путем по п. 10.1.

2 ПРИПИСАННЫЕ ХАРАКТЕРИСТИКИ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ И ЕЕ СОСТАВЛЯЮЩИХ

2.1 Методика выполнения измерений обеспечивает получение результатов измерений с погрешностью, не превышающей значений, приведённых в таблице 1.

Диапазон измерений, значения показателей точности, повторяемости и воспроизводимости методики

Диапазон измерений, мг/дм 3

Показатель точности (границы относительной погрешности при вероятности Р = 0,95), ± d, %

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), sr, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), sR, %

2.2 Значения показателя точности методики используют при:

— оформлении результатов измерений, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов измерений при реализации методики выполнения измерений в конкретной лаборатории.

— Бюретка вместимостью 25, 50 см 3 , 2 класса точности по ГОСТ 29251-91.

— Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и ценой деления 0,1 мг по ГОСТ 24104-2001.

— Весы технические по ГОСТ 24104-2001.

— Колбы мерные вместимостью 100, 500, 1000 см 3 , 2 класса точности по ГОСТ 1770-74.

— Пипетки градуированные вместимостью 5, 10 см 3 , 2 класса точности по ГОСТ 29227-91.

— Цилиндры мерные вместимостью 50, 100, 250 см 3 , 2 класса точности по ГОСТ 1770-74.

— ГСО с аттестованным содержанием азота общего 7193-95, 7194-95 (для проведения оперативного контроля погрешности МВИ).

— Электрическая плитка с закрытой спиралью и регулятором температуры, по ГОСТ 14919-83.

— Термометр лабораторный ртутный, по ГОСТ 13646-68, пределы измерения 0 — 100 °С, цена деления 1 °С.

— Колбы Кьельдаля со шлифом и втулкой вместимостью 250 — 500 см 3 по ГОСТ 25336-82.

— Установка для перегонки дистиллированной воды, состоящая из перегонной колбы, холодильника и приемной колбы.

— Стаканы термостойкие вместимостью 1 дм 3 по ГОСТ 25336-82.

— Вода дистиллированная по ГОСТ 6709-72.

— Кислота серная (d = 1,84 г/см 3 ) по ГОСТ 4204-77.

— Кислота соляная по ГОСТ 3118-77.

— Натрий серноватистокислый 5-ти водный по ГОСТ 27068-86.

— Ртуть окись по ГОСТ 5230-74.

— Натрий гидроокись по ГОСТ 4328-77.

— Спирт этиловый ректификованный по ГОСТ 18300-87.

— Фенолфталеин по ГОСТ 5850-72.

— Метиловый красный по ТУ 6-09-4070-75.

— Метиленовый синий по ТУ 6-09-29-76.

— Порошкообразное железо, восстановленное.

— Калий марганцовокислый по ГОСТ 20490-75.

— Аммоний роданистый по ГОСТ 27067-86.

— Катионит КУ-2 или СБС по ГОСТ 20298-74.

— Стекловолокно по ГОСТ 10727-74.

— Универсальная индикаторная бумага по ТУ 6-09-1181-76.

Примечания. 1. Допускается применять средства измерения, устройства, материалы и реактивы, отличные от указанных выше, но не уступающие им по метрологическим и техническим характеристикам.

2. Все реактивы должны иметь квалификацию «хч» или «чда».

4.1 При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76.

4.2 Электробезопасность при работе с электроустановками по ГОСТ 12.1.019-79.

4.3 Организация обучения персонала безопасности труда по ГОСТ 12.0.004-90.

4.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.

К выполнению измерений и обработке их результатов допускают специалиста, имеющего высшее или среднее специальное химическое образование или опыт работы в химической лаборатории, прошедшего соответствующий инструктаж, освоившего метод в процессе тренировки и уложившегося в нормативы при выполнении процедур контроля погрешности.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

— температура окружающего воздуха (20 ± 5) °С;

— атмосферное давление (97,3 — 104,6) кПа;

— относительная влажность воздуха до 80 % при температуре 25°;

— частота переменного тока (50 ± 1) Гц;

— напряжение в сети (220 ± 22) В.

7.1 Отбор проб осуществляют в соответствии с ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб».

7.2 Пробы воды отбирают в стеклянные бутыли, предварительно ополоснутые отбираемой водой. Объем отбираемой пробы должен быть 0,5 — 1,0 дм 3 в зависимости от концентрации азота общего.

7.3 Если пробу нельзя проанализировать в день отбора, то ее консервируют, прибавляя 1 см 3 концентрированной серной кислоты на 1,0 дм 3 пробы.

7.4 При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— должность, фамилия отбирающего пробу, дата.

Дистиллированную воду пропускают через колонку с катионитом КУ-2 или СБС. Предварительно проводят подготовку катионита. Для этого катионит помещают в стакан и заливают дистиллированной водой. На следующий день катионит помещают в стеклянную бюретку вместимостью 50 см 3 (в нижнюю часть бюретки предварительно помещают слой стекловолокна толщиной 1 — 2 см) и промывают раствором соляной кислоты с массовой долей 15 % для освобождения от железа, проверяя наличие последнего по качественной реакции с роданистым аммонием. Подготовка катионита заканчивается промыванием его дистиллированной водой до нейтральной реакции (по индикаторной бумаге). Катионит следует хранить под слоем дистиллированной воды.

Безаммиачную воду также можно получить вторичной перегонкой дистиллированной воды, предварительно подкислив ее 1 см 3 разбавленной (1:4) серной кислоты на 1 дм 3 и добавив марганцевокислый калий до четко малиновой окраски.

Полученную одним из описанных выше способов воду проверяют на наличие аммиака по качественной реакции с реактивом Несслера и используют для приготовления реактивов.

Все растворы готовят на безаммиачной воде.

При приготовлении растворов серной кислоты необходимо соблюдать осторожность. Растворы готовят добавлением серной кислоты к воде.

Прибавляют при перемешивании к 3 объемам безаммиачной воды 1 объем серной кислоты (r = 1,84). Срок хранения раствора 6 месяцев.

В термостойком стакане растворяют 134,0 г сульфата калия в 650 см 3 безаммиачной воды, добавляют 200 см 3 концентрированной серной кислоты, тщательно перемешивают. Затем добавляют раствор сульфата ртути (см. Примечание), раствор охлаждают до комнатной температуры и переносят в мерную колбу вместимостью 1 дм 3 (тщательно смывая все со стенок стакана) и доводят до метки безаммиачной водой. В качестве катализатора вместо сульфата ртути можно использовать металлическую ртуть.

Примечание. Раствор сульфата ртути готовят следующим образом: навеску 2 г окиси ртути растворяют в стакане в 25 см 3 20 % раствора серной кислоты.

В термостойком стакане растворяют 500 г гидроксида натрия и 25 г серноватистокислого натрия в 500 см 3 безаммиачной воды, доводят объем до 1 дм 3 .

Раствор хранят в полиэтиленовой посуде. Срок хранения 6 месяцев.

В колбе растворяют 0,5 г фенолфталеина в 50 см 3 96 % этилового спирта и доводят до 100 см 3 безаммиачной водой.

Раствор хранят в темном месте до внешних изменений.

Читайте также:  Анализ на биохимию пить воду

В термостойкий стакан наливают 500 см 3 безаммиачной воды и медленно при перемешивании добавляют 28,0 см 3 концентрированной серной кислоты. После охлаждения раствор переносят в мерную колбу вместимостью 1 дм 3 и доводят до метки безаммиачной водой.

В термостойкий стакан наливают 500 см 3 безаммиачной воды и медленно при перемешивании добавляют 2,8 см 3 концентрированной серной кислоты. После охлаждения раствор переливают в мерную колбу вместимостью 1 дм 3 и доводят до метки безаммиачной водой.

В термостойком стакане к 500 см 3 безаммиачной воды добавляют 200 см 3 0,1 моль/дм 3 эквивалента раствора серной кислоты. Раствор переносят в мерную колбу вместимостью 1 дм 3 и доводят до метки безаммиачной водой. Срок хранения 6 месяцев.

При использовании этого раствора для титрования титр или поправку проверяют титрованием раствором гидроксида натрия (0,02 моль/дм 3 эквивалента).

В стакане растворяют 40 г гидроксида натрия в 200 — 300 см 3 свежепрокипяченной и охлажденной безаммиачной воды, по окончании растворения переносят в мерную колбу вместимостью 1 дм 3 и доводят до метки свежепрокипяченной и охлажденной безаммиачной водой. Раствор хранят в полиэтиленовой бутыли с пробкой и хлоркальцевой трубкой, заполненной натронной известью (для предотвращения попадания углекислоты из воздуха), в течение 3 месяцев.

Поправочный коэффициент определяют титрованием 1,0 моль/дм 3 эквивалента раствором серной кислоты (см. Приложение А).

В стакане растворяют 4,0 г гидроксида натрия в 100 см 3 свежепрокипяченной и охлажденной безаммиачной воды. По окончании растворения раствор охлаждают, переносят в мерную колбу вместимостью 1 дм 3 и доводят до метки свежепрокипяченной и охлажденной безаммиачной водой.

Раствор хранят в полиэтиленовой бутыли с пробкой и хлоркальцевой трубкой, заполненной натронной известью (для предотвращения попадания углекислоты из воздуха), в течение 3 месяцев.

Поправочный коэффициент определяют титрованием 0,1 моль/дм 3 эквивалента раствором серной кислоты (см. Приложение А).

В мерную колбу вместимостью 1 дм 3 наливают 200 см 3 0,1 н раствора гидроксида натрия и разбавляют свежепрокипяченной и охлажденной безаммиачной водой до метки. Раствор хранят в полиэтиленовой бутыли с пробкой и хлоркальцевой трубкой, заполненной натронной известью (для предотвращения попадания углекислоты из воздуха), в течение 6 месяцев.

Поправочный коэффициент определяют титрованием раствором серной кислоты 0,02 моль/дм 3 эквивалента (см. Приложение А).

Растворяют 0,1 г метилового красного в 100 см 3 96 % этилового спирта. Раствор хранят в защищенном от света месте до внешних изменений.

Растворяют 0,2 г метилового красного в 100 см 3 96 % этилового спирта. Раствор хранят в защищенном от света месте до внешних изменений.

Растворяют 0,2 г метиленового синего в 100 см 3 96 % этилового спирта. Раствор хранят в защищенном от света месте до внешних изменений.

В колбе смешивают два объема 0,2 % раствора метилового красного в 96 % этиловом спирте и один объем 0,2 % раствора метиленового синего в 96 % растворе этилового спирта.

Раствор храпят в склянке из темного стекла до внешних изменений.

В мерную колбу вместимостью 1 дм 3 помещают 300 см 3 дистиллированной воды и приливают при перемешивании 353 см 3 соляной кислоты (r = 1,18). Раствор доводят до метки дистиллированной водой.

В зависимости от предполагаемого содержания азота общего помещают в колбу Кьельдаля от 25 до 100 см 3 пробы воды (см. таблицу 2), далее пробу подкисляют 5 см 3 разбавленной серной кислоты (1:3). Добавляют 0,5 г порошкообразного железа. Смесь нагревают на водяной бане до тех пор, пока в колбе не останется лишь незначительное количество железа. После охлаждения добавляют 50 см 3 смеси для минерализации. В горло колбы вставляют втулку и содержимое колбы слабо кипятят под тягой. В случае высокого содержания органических веществ, не содержащих азота, добавляют двукратное количество смеси для минерализации. Минерализация считается законченной через 20 — 30 мин после осветления смеси.

Остаток в колбе разбавляют безаммиачной водой приблизительно до 300 см 3 , добавляют несколько капель фенолфталеина (п. 8.2.4) и нейтрализуют раствором для подщелачивания (п. 8.2.3) до слаборозовой окраски.

Колбу подсоединяют к установке для перегонки и отгоняют приблизительно 200 см 3 дистиллята в приемник, в который предварительно было налито 25 см 3 раствора серной кислоты (концентрация кислоты в зависимости от предполагаемого содержания в пробе аммиака указана в табл. 2).

Концентрация азота, мг/дм 3

Содержание аммиака в дистилляте определяют путем титрования раствором гидроксида натрия соответствующей концентрации (такой же, какой применялась серная кислота для поглощения аммиака), по метиловому красному или со смешанным индикатором 1 . Параллельно определяют количество раствора гидроксида натрия, пошедшее на титрование 25 см 3 серной кислоты, помещенной в приемник. Количество серной кислоты, израсходованной на поглощение аммиака, определяют по разности этих двух титрований.

1 При содержании в пробе общего азота менее 1 мг/дм 3 возможно определение аммиака фотометрическим метолом.

10 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

10.1 Концентрацию азота общего (С) в мг/дм 3 вычисляют по формуле:

где V1 — объем раствора гидроксида натрия, израсходованного на титрование 25 см 3 раствора серной кислоты, см 3 ;

V2 — объем раствора гидроксида натрия, израсходованного на титрование дистиллята, см 3 ;

К — поправочный коэффициент к концентрации раствора гидроксида натрия;

N — концентрация раствора гидроксида натрия;

18,04 — эквивалент иона аммония;

V — объем пробы, взятой для анализа, см 3 ;

0,78 — коэффициент пересчета аммиака на азот.

10.2 За результат анализа Хср принимают среднее арифметическое значение двух параллельных определений Х1 и Х2

для которых выполняется следующее условие:

где r — предел повторяемости, значения которого приведены в таблице 3.

Значения предела повторяемости при вероятности Р = 0,95

Диапазон измерений, мг/дм 3

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r, %

При невыполнении условия (1) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6-2002.

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 4.

Значения предела воспроизводимости при вероятности Р = 0,95

Диапазон измерений, мг/дм 3

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6-2002.

11 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ АНАЛИЗА

Результат анализа Хср в документах, предусматривающих его использование, может быть представлен в виде: Хср ± D, Р = 0,95,

где D — показатель точности методики.

Значение D рассчитывают по формуле: Д = 0,01 ? d ? Хср. Значение d приведено в таблице 1.

Допустимо результат анализа в документах, выдаваемых лабораторией, представлять в виде: Хср ± Dл, Р = 0,95, при условии Dл 3 эквивалента; 0,1 моль/дм 3 эквивалента и 0,02 моль/дм 3 эквивалента готовя в соответствии с п.п. 8.2.5; 8.2.6 и 8.2.7.

1.2 Приготовление 1 % раствора фенолфталеина в 96 % этиловом спирте

Растворяют 1,0 г фенолфталеина в 100 см 3 96 % этилового спирта. Раствор хранят в защищенном от света месте до внешних изменений.

30 — 40 см 3 раствора гидроксида натрия помещают в коническую колбу, добавляют 3 — 4 капли 1 % раствора фенолфталеина и титруют раствором серной кислоты соответствующей концентрации до момента обесцвечивания раствора. Затем раствор нагревают до кипения (накрыв часовым стеклом). Если розовая окраска вновь появится, раствор охлаждают и добавляют по каплям раствор серной кислоты до исчезновения окраски. Нагревание до кипения, охлаждение и титрование производят до тех пор, пока кипячение не перестанет вызывать розовую окраску.

30 — 40 см 3 серной кислоты соответствующей концентрации помещают в коническую колбу, добавляют 3 — 4 капли фенолфталеина и титруют раствором гидроксида натрия до появления неисчезающей розовой окраски.

3 Расчет поправочного коэффициента

Поправочный коэффициент (К) для приведения к точной концентрации раствора гидроксида натрия рассчитывают по формуле:

где V1 — объем раствора серной кислоты, взятый или израсходованный на титрование, см 3 ;

V — объем раствора гидроксида натрия, взятый или израсходованный на титрования, см 3 .

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ
ПО СТАНДАРТИЗАЦИИ И МЕТРОЛОГИИ

ФГУП «УРАЛЬСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИИ» — ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ МЕТРОЛОГИЧЕСКИЙ ЦЕНТР

«THE URALS RESEARCH INSTITUTE FOR METROLOGY» — STATE SCIENTIFIC METROLOGICAL CENTRE

ГСП-824, ул. Красноармейская, 4

620219, GSP-824, Ekaterinburg, Russia

СВИДЕТЕЛЬСТВО № 224.01.02.136/2004
CERTIFICATE
об аттестации методики выполнения измерений

Методика выполнения измерений массовой концентрации общего азота в природных и сточных водах титриметрическим методом.

разработанная ФГУ «Центр экологического контроля и анализа» МПР России (г. Москва).

аттестована в соответствии с ГОСТ Р 8.563-96.

Аттестация осуществлена по результатам метрологической экспертизы материалов по разработке методики выполнения измерений.

В результате аттестации установлено, что методика соответствует предъявляемым к ней метрологическим требованиям и обладает следующими основными метрологическими характеристиками:

1. Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости

Диапазон измерений, мг/дм 3

Показатель точности (границы относительной погрешности при вероятности Р = 0,95), ± d, %

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), sr, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), sR, %

2. Диапазон измерений, значения пределов повторяемости и воспроизводимости при вероятности Р = 0,95

Диапазон измерений, мг/дм 3

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r, %

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

3. При реализации методики в лаборатории обеспечивают:

— контроль исполнителем процедуры выполнения измерений (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);

— контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

Алгоритм контроля исполнителем процедуры выполнения измерений приведен в документе на методику выполнения измерений.

Процедуры контроля стабильности результатов выполняемых измерений регламентируют во внутренних документах лаборатории.

4. Дата выдачи свидетельства 02.02.2004 г.

2 приписанные характеристики погрешности измерений и ее составляющих. 1

3 средства измерений, вспомогательное оборудование, реактивы и материалы.. 2

4 условия безопасного проведения работ. 3

5 требования к квалификации операторов. 3

6 условия выполнения измерений. 3

7 отбор проб, их консервирование и хранение. 3

8 Подготовка к выполнению анализа. 3

10 обработка результатов измерений. 6

11 оформление результатов анализа. 7

12 Контроль качества результатов анализа при реализации методики в лаборатории. 8

Приложение А. Установление поправочного коэффициента для растворов гидроксида натрия по серной кислоте

источник

Контроль различных форм азота в процессе очистки сточных вод

Биогенные вещества (соединения углерода, азота и фосфора), содержащиеся в сточных водах, при поступлении в поверхностные водоёмы наносят значительный ущерб экологической системе любого региона. Например, нитраты, содержащиеся в сточных водах, при попадании в водоём становятся питательной средой для микрофлоры, что может привести к эвтрофикации (гибели) водоёма. Поэтому проблема очистки сточных вод от этих соединений, в частности азота особенно актуальна. На всех этапах очистки сточных вод проводится технологический контроль изменений их химического состава, и, в первую очередь контролируется содержание соединений азота.

Соединения азота поступают на очистные сооружения преимущественно в виде аммонийного азота, азота нитратов, азота нитритов и азота, связанного в органических соединениях. В хозяйственно-бытовых сточных водах концентрация общего азота составляет от 50 до 60 мг/дм3 и может изменяться в зависимости от происхождения сточных вод. Соотношение массовых концентраций различных форм азота не является постоянным и зависит от стадии переработки сточных вод. Изменение состава начинается уже в процессе транспортировки сточных вод на городские очистные сооружения. В частности, в результате жизнедеятельности бактерий органическое соединение карбамид (мочевина), содержащийся в хозяйственно-бытовых сточных водах, распадается с образованием аммоний-иона (процесс аммонификации). Соответственно, чем протяжённее канализационная сеть, чем больше времени проходит от сброса сточных вод в систему канализации до их поступления на очистные сооружения, тем глубже протекает данный процесс.

Содержание нитрат-ионов на входе в очистные сооружения невелико, а содержание нитрит-ионов городских сточных водах вообще можно считать незначительным.

Под «органическим» понимают азот, входящий в состав органических веществ, таких, как протеины и протеиды, полипептиды (высокомолекулярные соединения), аминокислоты, амины, амиды, карбамид (низкомолекулярные соединения). Органические соединения (в том числе и азотсодержащие) попадают в сточные воды в составе либо хозяйственно-бытовых стоков, либо стоков предприятий пищевой промышленности.

При эксплуатации канализационных очистных сооружений необходимо предотвращать возникновение неконтролируемых процессов, для чего следует знать содержание общего азота и соотношение различных его форм в очищаемой сточной воде.

Методы выполнения аналитических определений. Для определения содержания аммонийного азота, как правило, применяется относительно недорогой, простой и доступный фотометрический метод с использованием реактива Несслера. С аналитической точки зрения метод не отличается селективностью, на результат анализа оказывает влияние состав пробы. В частности, присутствие органических соединений в некоторых случаях может дать вклад до 30…35% измеренной величины, что превышает допустимую погрешность измерения. Более совершенный, но и более затратный метод определения аммоний-иона предполагает использование капиллярного электрофореза — этот метод обладает высокой селективностью и дает более достоверную информацию о содержании аммонийного азота в пробе.

В качестве метода технологического контроля содержания нитратов часто применяется фотометрическое определение (например, с салицилатом натрия). Для грубого определения обычно используется колориметрический метод с тестовым комплектом. В обоих случаях определению мешает присутствие в анализируемой пробе окрашенных веществ, а также нитрит-иона. Измерение нитрит-иона при технологическом контроле, как правило, не является обязательным, так как содержание его в городских сточных водах незначительно. При необходимости определение массовых концентраций нитрит-иона производят по методике с реактивом Грисса.

Общий азот (неорганический) определяется как сумма соединений азота в форме аммоний-, нитрат — и нитрит-иона. Химические методы определения неорганического азота отсутствуют, значение этого показателя рассчитывается математически как сумма азота аммонийного, азота нитратов и азота нитритов.

При выполнении анализа содержания общего азота по методу Къельдаля (определяется сумма органически связанного азота и аммонийного азота) требуется длительное кипячение пробы в концентрированной серной кислоте, отгонка аммиака, а также титриметрическое и фотометрическое определение. Весь процесс достаточно длительный (3…4 часа) и трудоёмкий. Использование этого показателя ограничено, так как он не дает полной характеристики нагрузки очистных сооружений по азоту (исключаются из рассмотрения азот нитратов и азот нитритов).

Для определения нагрузки на входе в очистные сооружения, а также на экосистему водоёма, в который сбрасываются очищенные сточные воды, используется показатель «общий азот» – сумма содержания всех растворимых форм органического и неорганического азота. Общий азот аналитически определяется методом каталитического окисления различных форм азота до окислов, методика измерений изложена в ISO/TR 11905 «Качество воды. Определение содержания азота».

Ввиду разнообразия форм существования органического азота единого аналитического метода определения этого показателя не существует. Он рассчитывается математически как разность между величиной общего азота и неорганического азота. Эта же величина может быть определена как разность между величинами общего азота по Къельдалю и аммонийного азота.

Для получения правильного представления о процессах удаления азота из сточных вод недостаточно определения какого-либо одного показателя, необходимо найти несколько независимых величин. Прежде всего, следует определить валовое содержание всех форм азота, т. е. показатель «общий азот». Эта величина характеризует нагрузку по азоту на входе в очистные сооружения и нагрузку на окружающую природную среду на выходе из очистных сооружений.

= > O2 + NO2 + hv» w />
Современные методы химического анализа. В основу работы автоматизированного анализатора общего азота, позволяющего определять в пробе валовое содержание всех форм азота, положен процесс термического окисления органических и неорганических форм азота на катализаторе и перевод их в форму монооксида азота (NO). В реакторе монооксид азота вступает во взаимодействие с озоном, в результате чего образуется молекула диоксида азота в нестабильном возбуждённом состоянии. Возбуждение молекулы снимается с испусканием кванта света. Данное явление носит общее название хемилюминесценции, так как свет возникает в результате протекания химической реакции. Процессы, протекающие в хемилюминесцентном реакторе, можно представить схематично:

Интенсивность хемилюминесценции, возникающей в результате реакции окислов азота с озоном, изменяется по мере прохождения продуктов разложения пробы через реактор. Зависимость интенсивности люминесценции от времени представляет собой колоколообразную кривую, площадь под кривой является мерой содержания общего азота в исследуемой пробе воды. Если провести предварительную калибровку прибора, получив соответствующие сигналы от растворов стандартных образцов с заранее известной концентрацией общего азота, то можно определить содержание азота в неизвестной пробе.

Первый отечественный прибор для измерения массовых концентраций общего азота, освоенный в серийном производстве, получил наименование «ТОПАЗ-N». В основу его работы положена методика ISO/TR 11905-2 «Качество воды. Определение содержания азота». Управление процессом измерения и обработка полученной информации осуществляются персональным компьютером при помощи специально разработанной программы «NORMA-N».

В этом приборе ввод пробы осуществляется вручную при помощи хроматографического шприца. После введения пробы автоматически начинается процесс измерения и регистрации результатов. По окончании процесса измерения на экране компьютера отображается значение массовой концентрации общего азота. Для серии из нескольких измерений (повторностей) автоматически рассчитывается среднее значение и среднеквадратичное отклонение. Результаты архивируются и сохраняются в памяти компьютера.

Для обеспечения работоспособности анализатора «ТОПАЗ-N» необходим баллон со сжатым воздухом, снабжённый редуктором. На входе прибора устанавливается давление не менее 200 кПа. Поток воздуха используется в качестве газа-окислителя, а также обеспечивает перенос продуктов каталитического окисления пробы и озона, получаемого в озонаторе по измерительному тракту прибора. Сжатый воздух, используемый в приборе, не должен содержать значительного количества окислов азота или аммиака. Степень чистоты воздуха влияет на нижний предел определения содержания общего азота (как правило, чистота обычного сжатого воздуха бывает достаточной). Диапазон измерений массовой концентрации общего азота при объеме вводимой пробы от 10 до 100 мкл составляет от 0,2 до 100 мг/дм3 (без разбавления пробы).

Применение автоматизированного анализатора общего азота позволяет получить достоверный результат, свободный от субъективных ошибок при выполнении измерений. Процесс однократного измерения занимает не более 4 минут, что снижает трудозатраты при выполнении анализов и позволяет повысить частоту отбора проб для контроля за технологическим процессом очистки сточных вод.

Метод капиллярного электрофореза получил широкое распространение в российской аналитической практике в связи с освоением производства отечественных анализаторов «Капель» и разработкой соответствующего методического обеспечения. Методика определения аммонийного азота в пробах природных и сточных вод (ФР 1.31.2004.01229) позволяет исключить влияние факторов, искажающих результат (влияние органических соединений – за счёт высокой селективности, субъективного фактора – за счёт автоматизации процесса измерения).

В целом процесс проведения анализа не имеет существенных отличий от анализа других катионов, выполняемого методом капиллярного электрофореза, за исключением процедуры отгонки паров аммиака. Отгонка аммиака обязательна при измерении содержания аммоний-иона в сточных водах, при этом одновременно решаются две задачи:

1. повышается селективность определения, так как катионы металлов нелетучие, а другие соединения не могут давать электрофоретического пика в месте выхода ионов аммония;

2. получается проба, свободная от посторонних веществ, которые могли бы при попадании в капилляр необратимо изменить свойства его поверхности.

Диапазон измеряемых концентраций аммоний-иона составляет от 0,1 до 200 мг/дм3 (без разбавления пробы). Процедура подготовки пробы и выполнения измерений занимает немного времени: отгонка аммиака 5 минут и непосредственно процесс электрофоретического анализа 5…6 минут.

Выводы. Процессы, протекающие при биологической очистке сточных вод, требуют постоянного контроля параметров, используемых для технологических целей, в том числе измерение содержания различных форм азота в процессе их трансформации. Традиционные методы измерений содержания различных форм азота не дают достоверной информации и, как правило, не позволяют получать необходимую информацию достаточно быстро.

Разработанные химико-аналитические методы (и освоенные к серийному выпуску приборы, реализующие эти методы) позволяют решить проблемы оперативного получения информации и повышения её достоверности по сравнению с традиционными методами. Используемые в современных приборах компьютерные технологии позволяют автоматизировать управление процессом измерения и расчёт получаемых данных, что снижает вероятность ошибок, связанных с субъективными факторами. В этом случае возможно архивирование и хранение полученной информации в электронном виде.

Тезисы доклада на XIII ежегодном семинаре «Вопросы аналитического контроля качества вод», г. Москва, 22-26 сентября 2008 года

источник

Азот — один из основных биогенных элементов, являющихся незаменимыми составными частями тканей любого живого организма.

В природных водах азот присутствует в виде двух основных групп — азота неорганических соединений и азота, входящего в состав органических веществ. В воде также имеется растворенный молекулярный азот, однако, количество его незначительно.

Неорганические соединения азота — нитриты, нитраты и ионы аммония — присутствуют в водах главным образом в растворенном виде. Органические азотсодержащие вещества в значительной степени могут находится в виде взвешенных и коллоидных форм. Состав органических соединений азота, присутствующих в водах, весьма разнообразен (простые и сложные белки, аминокислоты, амины, амиды, мочевина и др.).

Содержание общего азота в незагрязненных природных водах зависит от степени трофии водоема. В олиготрофных водоемах концентрация азота составляет от 0,3 до 0,7 мг/дм 3 , мезотрофных от 0,7 до 1,3 мг/дм 3 , эвтрофных от 0,8 до 2,0 мг/дм 3 и более.

Источниками поступления азота в природные воды являются: разложение клеток отмерших организмов, прижизненные выделения гидробионтов, атмосферные осадки, фиксация из воздуха в результате жизнедеятельности азотфиксирующих бактерий. Значительное количество азота может попадать в водоемы с бытовыми, сельскохозяйственными и промышленными сточными водами.

Понижение содержания соединений азота в водоемах связано, в основном, с потреблением их водными растениями. Некоторую роль в этом процессе играет денитрификация, т.е. перевод связанного азота в свободное состояние.

Содержание азота в природных водах является одним из показателей санитарного состояния водоема. Значительное повышение концентрации азота приводит к эвтрофикации водного объекта и ухудшению качества воды. Состав и соотношение минеральных и органических форм азота указывает на направление и интенсивность биологических и биохимических процессов, протекающих в водоеме, в том числе процессов самоочищения. Эта информация может быть использована не только для оценки качества воды, но при решении других вопросов, например, в установлении взаимосвязи между процессами жизнедеятельности водных организмов и химическим составом воды.

МАССОВАЯ КОНЦЕНТРАЦИЯ ОБЩЕГО АЗОТА В ВОДАХ. МЕТОДИКА
ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ ФОТОМЕТРИЧЕСКИМ МЕТОДОМ
ПОСЛЕ ОКИСЛЕНИЯ ПЕРСУЛЬФАТОМ КАЛИЯ

1.1 Настоящий руководящий документ устанавливает методику выполнения измерений (далее — методика) массовой концентрации общего азота в пробах природных и очищенных сточных вод фотометрическим методом в диапазоне от 0,05 до 10,0 мг/дм 3 . При анализе проб воды с массовой концентрацией общего азота, превышающей 10,0 мг/дм 3 . допускается выполнение измерений после соответствующего разбавления пробы водой, не содержащей соединений азота.

1.2 Настоящий руководящий документ предназначен для использования в лабораториях, осуществляющих анализ природных и очищенных сточных вод.

В настоящем руководящем документе использованы ссылки на следующие нормативные документы:

ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007-76 ССБТ. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 17.1.5.04-81 Охрана природы. Гидросфера. Приборы и устройства для отбора, первичной обработки и хранения проб природных вод. Общие технические условия

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков

ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

ГОСТ Р 51592-2000 Вода. Общие требования к отбору проб

Читайте также:  Анализ на чистоту воды очищенной

МИ 2881-2004 Рекомендация. ГСИ. Методики количественного химического анализа. Процедуры проверки приемлемости результатов анализа.

РД 52.24.380-2006 Массовая концентрация нитратов в водах. Методика выполнения измерений фотометрическим методом с реактивом Грисса после восстановления в кадмиевом редукторе.

РД 52.24.381-2006 Массовая концентрация нитритов в водах. Методика выполнения измерений фотометрическим методом с реактивом Грисса.

РД 52.24.383-2006 Массовая концентрация аммиака и ионов аммония в поверхностных водах суши. Методика выполнения измерений фотометрическим методом в виде индофенолового синего.

Примечание — Ссылки на остальные нормативные документы приведены в разделах 4, Г.3 и Г.4.

3.1 При соблюдении всех регламентируемых методикой условий проведения измерений характеристики погрешности результата измерения с вероятностью 0,95 не должны превышать значений, приведенных в таблице 1.

Таблица 1 — Диапазон измерений, значения характеристик погрешности и ее составляющих при принятой вероятности Р = 0,95

Показатель повторяемости (среднеквадратическое отклонение повторяемости)

Показатель воспроизводимости (среднеквадратическое отклонение воспроизводимости)

Показатель правильности (границы систематической погрешности)

Показатель точности (границы погрешности)

При выполнении измерений общего азота в пробах с массовой концентрацией свыше 10,00 мг/дм 3 после соответствующего разбавления погрешность измерения не превышает величины D · h , где D — погрешность измерения концентрации общего азота в разбавленной пробе; h — степень разбавления.

Предел обнаружения общего азота фотометрическим методом после окисления персульфатом калия равен 0,04 мг/дм 3 .

3.2 Значения показателя точности методики используют при:

— оформлении результатов измерений, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения измерений;

— оценке возможности использования результатов измерений при реализации методики в конкретной лаборатории.

При выполнении измерений применяют следующие средства измерений и другие технические средства:

4.1.1 Фотометр или спектрофотометр любого типа (КФК-2, КФК-2мп, КФК-3, СФ-46, СФ-56 и др.)

4.1.2 Весы лабораторные высокого (II) класса точности по ГОСТ 24104-2001.

4.1.3 Весы лабораторные среднего (III) класса точности по ГОСТ 24104-2001.

4.1.4 рН-метр или иономер любого типа с комплектом электродов для измерения рН (рН-150, рН-155, Экотест-2000, Анион-410 и др.).

4.1.5 Термометр по ГОСТ 29224-91 с диапазоном измерения температур от 0 °С до 150 °С и ценой деления не более 1 °С.

4.1.6 Государственный стандартный образец состава водных растворов общего азота ГСО 7193-95/7194-95 (далее — ГСО).

4.1.7 Колбы мерные 2-го класса точности исполнения 2, 2а по ГОСТ 1770-74 вместимостью:

4.1.8 Пипетки градуированные 2-го класса точности исполнения 1, 2 по ГОСТ 29227-91 вместимостью:

4.1.9 Пипетки с одной отметкой 2-го класса точности исполнения 2 по ГОСТ 29169-91 вместимостью:

4.1.10 Цилиндры мерные исполнения 1, 3 по ГОСТ 1770-74 вместимостью:

4.1.11 Пробирка коническая исполнения 1 по ГОСТ 1770-74.

4.1.12 Колбы конические Кн исполнения 2 по ГОСТ 25336-82 вместимостью:

4.1.13 Пробирки диаметром 21 мм, высотой 200 мм типа П1-21-200 ТС или П2-21-200 ТС по ГОСТ 25336-82

4.1.14 Пробки-холодильники (рисунок 1)

4.1.16 Стаканы В-1, ТХС, по ГОСТ 25336-82 вместимостью:

4.1.17 Ступка 2 или 3 с пестиком по ГОСТ 9147-80

4.1.18 Стаканчики для взвешивания (бюксы) по ГОСТ 25336-82

4.1.19 Воронки лабораторные по ГОСТ 25336-82 диаметром:

4.1.20 Колонка стеклянная с краном и пористой пластиной высотой 50 — 60 см, диаметром 2 — 4 см или бюретка с прямым краном вместимостью 50 см 3 по ГОСТ 29251-91 с прокладкой из стеклоткани или стекловаты

4.1.21 Склянка с тубусом исполнения 1, 2 или 3 вместимостью 2 или 3 дм 3 по ГОСТ 25336-82

4.1.22 Колба с тубусом (колба Бунзена) исполнения 1 или 2 вместимостью 500 см 3 по ГОСТ 25336-82

4.1.23 Воронка фильтрующая с пористой пластиной ВФ-1-40-ПОР 160 ТХС по ГОСТ 25336-82

4.1.24 Эксикатор исполнения 2, диаметром корпуса 190 мм по ГОСТ 25336-82

4.1.25 Чашка биологическая (Петри) ЧБН-2 по ГОСТ 25336-82

4.1.26 Шпатели пластмассовые

4.1.29 Посуда стеклянная (в том числе темного стекла) для хранения проб и растворов вместимостью 0,1; 0,25; 0,5 и 1,0 дм 3 .

4.1.30 Посуда полиэтиленовая (полипропиленовая) для хранения проб и растворов вместимостью 0,25 дм 3 и 1,0 дм 3 .

4.1.31 Устройство для фильтрования проб с использованием мембранных фильтров.

4.1.32 Баня водно-глицериновая.

4.1.33 Электроплитка с закрытой спиралью по ГОСТ 14919-83.

4.1.34 Шкаф сушильный общелабораторного назначения.

4.1.36 Насос вакуумный любого типа

Рисунок 1 — Пробка-холодильник (размеры даны в миллиметрах)

Допускается использование других типов средств измерений, вспомогательных устройств, в том числе импортных, с характеристиками не хуже, чем у приведенных в 4.1.

4.2.1 Карбамид (мочевина) по ГОСТ 6691-77, ч.д.а., и D,L-лейцин по ТУ 6-09-1170-77, ч. (при отсутствии ГСО).

4.2.2 Калий надсернокислый (персульфат калия) по ГОСТ 4146-74, ч.д.а., перекристаллизованный.

4.2.3 Калий азотнокислый (нитрат калия) по ГОСТ 4217-77, х.ч.

4.2.4 Аммоний хлористый (хлорид аммония) по ГОСТ 3773-72, ч.д.а.

4.2.5 Реактив Грисса по ТУ 6-09-3569-74, ч.д.а., или кислота сульфаниловая по ГОСТ 5821-78, ч.д.а., и 1-нафтиламин, ч.д.а.

4.2.6 Натрий азотистокислый (нитрит натрия) по ГОСТ 4197-74, х.ч.

4.2.7 Натрий хлористый (хлорид натрия) по ГОСТ 4233-77, ч.д.а.

4.2.8 Натрия гидроокись (гидроксид натрия) по ГОСТ 4328-77, х.ч. (допустимо ч.д.а.).

4.2.9 Кислота уксусная по ГОСТ 61-75, х.ч.

4.2.10 Кислота соляная по ГОСТ 3118-77, ч.д.а.

4.2.11 Кислота серная по ГОСТ 4204-77, х.ч.

4.2.12 Вода дистиллированная по ГОСТ 6709-72.

4.2.14 Фильтры мембранные «Владипор МФАС-ОС-2», 0,45 мкм, по ТУ 6-55-221-1-29-89 или другого типа, равноценные по характеристикам.

4.2.15 Фильтры бумажные обеззоленные «белая лента» по ТУ 6-09-1678-86.

4.2.16 Катионит сильнокислотный КУ-2-8-чС по ГОСТ 20298-74 или другой, равноценный по характеристикам.

4.2.17 Анионит сильноосновной АВ-17-8-чС по ГОСТ 20301-74 или другой, равноценный по характеристикам.

4.2.18 Универсальная индикаторная бумага по ТУ 6-09-1181-76. Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже указанной в 4.2.

Размеры даны в миллиметрах

4.3.1 Источник постоянного тока (выпрямитель) любого типа, позволяющий получить напряжение на ячейке 3 В при величине тока не менее 2 А.

4.3.2 Вольтметр постоянного тока по ГОСТ 8711-93, позволяющий измерить напряжение 3 В.

4.3.3 Амперметр постоянного тока по ГОСТ 8711-93, позволяющий измерить ток 1 — 2 А.

4.3.4 Печь муфельная по ТУ 79 РСФСР 337-72.

4.3.6 Свинцовая или кадмиевая пластинка площадью 80 — 100 см 3 .

4.3.7 Кадмий в палочках, ч. или ч.д.а.; или кадмий гранулированный ч. или ч.д.а., сплавленный виде палочки по ТУ 6-09-5434-88.

4.3.8 Кадмий сернокислый (сульфат кадмия) по ГОСТ 4456-75, ч.д.а.

4.3.9 Медь сернокислая, 5-водная (сульфат меди) по ГОСТ 4165-78, ч.д.а.

Выполнение измерений массовой концентрации общего азота основано на окислении азотсодержащих соединений персульфатом калия при нагревании в щелочной среде. Азот, содержащийся в органических и неорганических соединениях, в результате реакции превращается в нитраты, которые далее восстанавливают омедненным металлическим кадмием до нитритов с последующим определением последних по цветной реакции с реактивом Грисса. Максимум оптической плотности в спектре получающегося при этом азокрасителя наблюдается при длине волны 520 нм.

Органический азот определяется по разности между общим содержанием азота и содержанием неорганических форм (нитратов, нитритов, ионов аммония).

Степень превращения органического азота в нитраты в основном составляет от 90 % до 100 %, за исключением соединений, содержащих азогруппы (- N =N-) или гидразогруппы (-N= NH ). Степень окисления их до нитратов не превышает 40 %, а остальная часть превращается в свободный азот.

Мешающих влияний при выполнении измерений массовой концентрации общего азота фотометрическим методом после окисления персульфатом не обнаружено.

6.1 При выполнении измерений массовой концентрации общего азота в пробах природных и очищенных сточных вод соблюдают требования безопасности, установленные в национальных стандартах и соответствующих нормативных документах.

6.2 По степени воздействия на организм вредные вещества, используемые при выполнении измерений, относятся ко 2, 3 классам опасности по ГОСТ 12.1.007.

6.3 Содержание используемых вредных веществ в воздухе рабочей зоны не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005.

6.4 Работу по получению и омеднению металлического кадмия следует проводить в резиновых перчатках.

6.5 Вредно действующие вещества подлежат сбору и утилизации в соответствии с установленными правилами.

К выполнению измерений и обработке их результатов допускаются лица со средним профессиональным образованием, имеющие стаж работы в лаборатории не менее года и освоившие методику.

8.1 При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

— температура окружающего воздуха (22 ± 5) °С;

— атмосферное давление от 84,0 до 106,7 кПа (от 630 до 800 мм рт. ст.);

— влажность воздуха не более 80 % при 25 °С;

— напряжение в сети (220 ± 10) В;

— частота переменного тока в сети питания (50 ± 1) Гц.

8.2 В помещении, где выполняют измерения массовой концентрации общего азота, запрещается проводить работы, связанные с применением аммиака, щелочных растворов солей аммония и других летучих соединений азота.

9.1 Отбор проб для определения общего азота производят в соответствии с ГОСТ 17.1.5.05 и ГОСТ Р 51592. Оборудование для отбора проб должно соответствовать ГОСТ 17.1.5.04 и ГОСТ Р 51592. Пробы отбирают в склянки вместимостью 0,25 дм 3 , предварительно ополоснув их 2 — 3 раза отбираемой водой. Если требуется определять общий азот растворенный, пробу сразу после отбора фильтруют через мембранный фильтр с размером пор 0,45 мкм. Мембранные фильтры перед употреблением очищают двух- трехкратным кипячением в течение 15 — 20 мин в 100 см 3 деионированной воды. Чистые фильтры хранят в плотно закрытом бюксе. Первую порцию фильтрата отбрасывают. При необходимости определения валового содержания общего азота, отбирают нефильтрованную пробу.

9.2 В связи с тем, что соединения азота биохимически неустойчивы, пробу следует анализировать в течение суток. Длительное хранение возможно при замораживании пробы. Пробы, законсервированные серной кислотой из расчета 1 см 3 раствора H 2 SO 4 (1:1) на 0,25 дм 3 воды, можно хранить до 5 дней в холодильнике.

10.1.1 Раствор персульфата калия

В 100 см 3 теплой (t = 40 — 45 °С) деионированной воды растворяют 4 г перекристаллизованного персульфата калия. Раствор хранят не более 5 дней в темной склянке.

Очистка персульфата калия перекристаллизацией приведена в приложении А.

10.1.2 Раствор гидроксида натрия, 1,5 моль/дм 3

Растворяют 15 г гидроксида натрия в 250 см 3 деионированной воды. Хранят в полиэтиленовой посуде.

Деионированную воду получают в соответствии с приложением Б.

10.1.4 Раствор гидроксида натрия, 1 моль/дм 3

Растворяют 40 г гидроксида натрия в 1 дм 3 дистиллированной воды. Хранят в полиэтиленовой посуде.

10.1.5 Раствор соляной кислоты, 1 моль/дм 3

Растворяют 84 см 3 концентрированной соляной кислоты в 916 см 3 дистиллированной воды.

10.1.6 Раствор соляной кислоты, 0,05 моль/дм 3

К 1 дм 3 дистиллированной воды приливают 4,4 см 3 концентрированной соляной кислоты и перемешивают.

10.1.7 Раствор хлорида аммония, 5 г/дм 3

Растворяют 5 г хлорида аммония в 1 дм 3 дистиллированной воды. Раствор устойчив в течение 6 мес.

10.1.8 Раствор реактива Грисса

10.1.8.1 Приготовление из готового препарата.

В бюксе взвешивают 10 г сухого, растертого в ступке до однородной массы, реактива Грисса и растворяют его в 100 см 3 12 %-ного раствора уксусной кислоты. Раствор фильтруют через бумажный фильтр «белая лента». Хранят в склянке из темного стекла с притертой или полиэтиленовой пробкой в холодильнике не более недели. При комнатной температуре допустимо хранение не более 2 сут.

10.1.8.2 Приготовление из 1-нафтиламина и сульфаниловой кислоты Раствор сульфаниловой кислоты. Взвешивают 2,0 г сульфаниловой кислоты и растворяют её в 300 см 3 12 %-ного раствора уксусной кислоты. Для ускорения растворения смесь можно слегка подогреть в горячей воде. Раствор устойчив в течение нескольких месяцев при хранении в темном месте.

Раствор 1-нафтиламина. В бюксе взвешивают 0,1 г 1-нафтиламина, растворяют его в нескольких каплях уксусной кислоты, добавляют 150 см 3 12 %-ного раствора уксусной кислоты и перемешивают. Раствор фильтруют и хранят в темной склянке в прохладном месте не более месяца.

Раствор реактива Грисса готовят, смешивая равные объемы растворов сульфаниловой кислоты и 1-нафтиламина. Раствор используют в день приготовления.

10.1.9 Раствор уксусной кислоты, 12 %-ный

К 440 см 3 дистиллированной воды приливают 60 см 3 уксусной кислоты и перемешивают. Хранят в склянке с притертой пробкой.

10.1.10 Раствор серной кислоты, 0,05 моль/дм 3

В 1 дм 3 дистиллированной воды растворяют 2,8 см 3 концентрированной серной кислоты.

10.1.11 Раствор серной кислоты, 0,025 моль/дм 3

К 250 см 3 раствора серной кислоты 0,05 моль/дм 3 добавляют 250 см 3 дистиллированной воды.

10.1.12 Раствор серной кислоты, 1:1

К 50 см 3 дистиллированной воды, помещенной в термостойкий стакан, осторожно при перемешивании приливают 50 см 3 концентрированной серной кислоты.

10.1.13 Раствор гидроксида натрия, 10 %-ный

В 180 см 3 дистиллированной воды растворяют 20 г гидроксида натрия. При хранении в полиэтиленовой посуде раствор устойчив.

10.1.14 Кадмий металлический омедненный

Кадмий металлический омедненный получают в соответствии с приложением В.

10.1.15 Раствор нитрата калия с массовой концентрацией нитратного азота 250 мг/дм 3

Для приготовления раствора взвешивают на лабораторных весах в бюксе 0,451 г нитрата калия (KNO 3 ), предварительно высушенного в сушильном шкафу при температуре 110 °С в течение 1 ч и охлажденного в эксикаторе над хлоридом кальция. Количественно переносят навеску в мерную колбу вместимостью 250 см 3 , растворяют в дистиллированной воде, доводят объём раствора до метки на колбе и перемешивают. Переносят раствор в склянку из темного стекла с хорошо притертой стеклянной или пластиковой пробкой. Хранят в холодильнике не более 6 мес.

10.1.16 Раствор нитрита натрия с массовой концентрацией нитритного азота 250 мг/дм 3

Для приготовления раствора взвешивают на лабораторных весах в бюксе 0,308 г нитрита натрия (NaNO 2 ), предварительно высушенного в сушильном шкафу при температуре 105 °С в течение I ч и охлажденного в эксикаторе над хлоридом кальция.

Количественно переносят навеску в мерную колбу вместимостью 250 см 3 , растворяют в дистиллированной воде, доводят объём раствора до метки на колбе и перемешивают. Переносят раствор в склянку из темного стекла с хорошо притертой стеклянной или пластиковой пробкой. Хранят в холодильнике не более 1 мес.

10.1.17 Водно-глицериновая смесь

Смешивают 1 объемную часть глицерина с 2 объемными частями дистиллированной воды.

В качестве бани может использоваться любой металлический сосуд высотой около 20 см с плотно закрывающейся крышкой. В крышке вырезают отверстия для установки пробирок и термометра. Диаметр отверстий должен как можно более точно соответствовать диаметру пробирок для предотвращения значительного испарения воды из бани. Пробирки, установленные в бане, должны выступать над крышкой не более, чем на 2 см.

Количество отверстий зависит от диаметра бани, но их должно быть не менее 8. На дно бани следует положить металлическую сетку или подставку с отверстиями произвольного размера. Если стенки сосуда тонкие, для уменьшения теплообмена снаружи его следует покрыть слоем асбеста. Баня заполняется водно-глицериновой смесью на высоту 14 — 16 см и устанавливается на электроплитку мощностью 0,8 — 1 кВт.

Температура бани после закипания должна быть 103 °С — 104 °С. Если температура ниже требуемой величины, в смесь следует добавить глицерин, в противном случае — разбавить водой. В процессе кипения за счет небольшого испарения воды температура бани может повышаться на 1 — 2 °С. Перед выполнением анализа следующей серии в баню следует добавить дистиллированную воду до первоначального уровня и проверить температуру кипения.

Примечание — Для нагревания пробирок вместо водно-глицериновой бани может использоваться термостат (термоблок), позволяющий установить необходимую температуру и обеспечить равномерное нагревание жидкости в пробирках.

10.3.1 Омедненный кадмий переносят в редуктор, заполненный дистиллированной водой, следя за тем, чтобы он равномерно распределялся по колонке, без пустот и воздушных пузырьков.

После заполнения редуктора омедненным кадмием необходимо пропустить через редуктор 1,0 — 2,0 дм 3 стабилизирующего раствора с концентрацией нитратного азота 0,200 мг/дм 3 . Для его приготовления в мерную колбу вместимостью 1 дм 3 помещают 0,80 см 3 раствора нитрата калия с концентрацией нитратного азота 250 мг/дм 3 , добавляют 20 см 3 раствора хлорида аммония, доводят дистиллированной водой до метки и перемешивают.

10.3.2 Для каждого вновь подготовленного редуктора следует установить оптимальную скорость пропускания пробы. Для этого берут по 100 см 3 стабилизирующего раствора и пропускают его через редуктор с различной скоростью (в интервале от 8 до 14 см 3 /мин). Первые 60 — 65 см 3 раствора, прошедшего через редуктор, отбрасывают, последующие 25 см 3 отбирают в коническую колбу, добавляют 1,5 см 3 реактива Грисса и через 40 мин измеряют оптическую плотность. Оптимальной является скорость, при которой оптическая плотность раствора максимальна.

10.3.3 Для определения степени восстановления редуктора следует сравнить оптическую плотность стабилизирующего раствора, полученного при пропускании его через редуктор при оптимальной скорости, с оптической плотностью раствора с концентрацией нитритного азота 0,200 мг/дм 3 , к 25 см 3 которого добавлено 1,5 см 3 реактива Грисса. Для приготовления раствора с концентрацией нитритного азота 0,200 мг/дм 3 в мерную колбу вместимостью 1 дм 3 помещают 0,80 см 3 раствора нитрита натрия с концентрацией нитритного азота 250 мг/дм 3 , доводят до метки дистиллированной водой и перемешивают. При необходимости следует провести определение холостой пробы и ввести поправку на содержание нитратного азота в дистиллированной воде.

Степень восстановления равна A ( NO 3 — )/A ( NO 2 — ) · 100, где A ( NO 3 — ) и A ( NO 2 — ) — оптические плотности растворов нитрата и нитрита, за вычетом оптической плотности холостой пробы. Удовлетворительным считается редуктор, для которого степень восстановления превышает 90 % (допустимо использовать редуктор со степенью восстановления не менее 80 %).

При падении степени восстановления редуктора следует кадмий из колонки перенести в стакан и промыть 300 см 3 раствора соляной кислоты с концентрацией 0,05 моль/дм 3 , затем отмыть кадмий от мелких частиц дистиллированной водой.

Промывание кадмия следует проводить до тех пор, пока вода над ним после взбалтывания не останется совершенно прозрачной.

Отмытый кадмий загружают в редуктор и вновь проверяют степень восстановления. Если указанная процедура не приведет к повышению степени восстановления, колонку следует заполнить свежей порцией омедненного кадмия.

10.4.1 Градуировочный раствор готовят из ГСО с концентрацией общего азота 0,500 г/дм 3 (0,500 мг/см 3 ).

Для приготовления градуировочного раствора вскрывают ампулу и переносят ее содержимое в сухую чистую коническую пробирку. Отбирают 2,0 см 3 образца с помощью чистой сухой градуированной пипетки вместимостью 2 см 3 и переносят в мерную колбу вместимостью 100 см 3 . Объем в колбе доводят до метки деионированной водой и перемешивают. Массовая концентрация общего азота в градуировочном растворе составит 10,0 мг/дм 3 (если концентрация общего азота в ГСО не равна точно 0,500 мг/см 3 , рассчитывают массовую концентрацию общего азота в градуировочном растворе соответственно концентрации конкретного образца, либо пересчитывают объем ГСО, который необходимо отобрать, чтобы получить раствор с концентрацией общего азота 10,0 мг/дм 3 ).

Градуировочный раствор используется в день приготовления и хранению не подлежит.

10.4.2 При отсутствии ГСО допускается в качестве градуировочного раствора использовать аттестованную смесь, приготовленную из мочевины и D ,L-лейцина. Методика приготовления аттестованной смеси приведена в приложении Г.

Для приготовления градуировочных образцов в пробирки, дважды промытые деионированной водой, с помощью градуированных пипеток вместимостью 2 и 5 см 3 помещают 0; 0; 0,5; 1,0; 1,5; 2,0; 2,5; 3,0 см 3 градуировочного раствора и доводят объем пробы в каждой пробирке до 10 см 3 деионированной водой.

Содержание общего азота в градуировочных образцах составит соответственно 0; 0; 0,0050; 0,0100; 0,0150; 0,0200; 0,0250 и 0,0300 мг. Далее выполняют все операции, описанные в разделе 11. Среднее значение холостого опыта вычитают из оптических плотностей образцов, содержащих азот.

Градуировочную зависимость оптической плотности от содержания азота в образцах рассчитывают методом наименьших квадратов.

Градуировочную зависимость устанавливают при приготовлении нового редуктора, либо замене измерительного прибора, но не реже одного раза в год.

10.6.1 Контроль стабильности градуировочной характеристики проводят каждый раз перед анализом серии проб. Средствами контроля являются образцы, используемые для установления градуировочной зависимости по 10.5 (не менее 3).

Градуировочная характеристика считается стабильной при выполнении следующих условий

где X — результат контрольного измерения массовой концентрации общего азота в образце, мг/дм 3 ;

С — приписанное значение массовой концентрации общего азота в образце, мг/дм 3 ;

d — допустимое расхождение между измеренным и приписанным значением содержания общего азота в образце, мг (таблица 2).

Если условие стабильности не выполняется для оного градуировочного образца, необходимо выполнить повторное измерение этого образца для исключения результата, содержащего грубую погрешность. При повторном невыполнении условия, выясняют причины нестабильности, устраняют их и повторяют измерение с использованием других образцов, предусмотренных методикой. Если градуировочная характеристика вновь не будет удовлетворять условию (1), устанавливают новую градировочную зависимость.

Таблица 2 — Допустимые расхождения между измеренными и приписанными значениями содержания общего азота в образце при контроле стабильности градуировочной зависимости

Допустимое расхождение d, мг

Приписанное значение содержания общего азота в образце, мг

Допустимое расхождение d, мг

10.6.2 При выполнении условия (1) учитывают знак разности между измеренными и приписанными значениями массовой концентрации общего азота в образцах. Эта разность должна иметь как положительное, так и отрицательное значение, если же все значения имеют один знак, это говорит о наличии систематического отклонения. В таком случае требуется установить новую градуировочную зависимость.

11.1 Пробирки и пробки-холодильники дважды промывают депонированной водой и помещают в пробирки с помощью пипетки аликвоту (2 — 25 см 3 ) пробы воды, содержащую не более 0,030 мг азота. Рекомендуемый объем аликвоты при различной концентрации общего азота приведен в таблице 3.

Таблица 3 — Рекомендуемый объем пробы воды при выполнении измерений массовой концентрации общего азота фотометрическим методом

Массовая концентрация азота, мг/дм 3

При отборе аликвоты для определения массовой концентрации валового азота (суммы растворенных и взвешенных форм общего азота), пробу следует тщательно перемешивать встряхиванием в течение 3 мин после чего немедленно отобрать аликвоту для анализа.

Добавляют к пробе 3 см 3 раствора персульфата калия и 1,5 см 3 раствора гидроксида натрия с концентрацией 1,5 моль/дм 3 . Закрывают пробирки пробками-холодильниками, заполненными дистиллированной водой, и немедленно помещают в кипящую водно-глицериновую баню. Одновременно с каждой серией проб проводят анализ холостой пробы. Для этого в пробирку помещают 3 см 3 раствора персульфата калия и 1,5 см 3 раствора гидроксида натрия, 1,5 моль/дм 3 , (без добавления деионированной воды) и также ставят в баню. Уровень жидкости в бане должен быть выше уровня жидкости в пробирках не менее чем на 2 см. Температура бани, измеренная через 15 мин после установки в нее пробирок, должна быть (104 ± 1)°С (при объеме пробы воды 20 — 25 см 3 температуру бани следует поддерживать (103 ± 1) °С).

11.2 Через 40 — 45 мин (не более!) пробирки вынимают из бани и охлаждают. Содержимое каждой пробирки количественно переносят в стакан вместимостью 100 см 3 , предварительно сполоснув пробки-холодильники небольшим количеством дистиллированной воды, доводят рН пробы до величины 7 — 8 раствором серной кислоты с концентрацией 0,05 моль/дм 3 при помощи рН-метра. При отсутствии рН-метра допустимо использование универсальной индикаторной бумаги. При анализе сильно минерализованных проб образуются обильные осадки гидроксидов металлов, не растворяющихся при доведении рН до величины 7 — 8. В таком случае необходимо подкислить пробу до pH 2 — 3 тем же раствором серной кислоты, а затем нейтрализовать, добавляя по каплям раствор гидроксида натрия с концентрацией 1,5 моль/дм 3 .

11.3 После нейтрализации пробу количественно переносят в мерную колбу вместимостью 100 см 3 , ополаскивая стакан небольшими порциями дистиллированной воды. Добавляют 2 см 3 раствора хлорида аммония, доводят раствор в колбе до метки дистиллированной водой и тщательно перемешивают. Далее пробу пропускают через редуктор омедненным кадмием. Первые 60 — 65 см 3 пробы, прошедшие через редуктор, отбрасывают, следующую порцию раствора объемом 25 см 3 отбирают в мерный цилиндр вместимостью 25 см 3 . Предварительно цилиндр ополаскивают тем же раствором.

Читайте также:  Анализ на фтор в воде

Из цилиндра пробу переносят в сухую коническую колбу вместимостью 50 см 3 , немедленно добавляют 1,5 см 3 раствора реактива Грисса и тщательно перемешивают.

Через 40 мин измеряют оптическую плотность пробы при длине волны 520 нм на спектрофотометрах или фотометрах с непрерывной разверткой спектра (на фотометрах, снабженных светофильтрами — при длине волны 540 нм) относительно дистиллированной воды в кювете с толщиной поглощающего слоя 1 см.

После пропускания каждой серии проб (не более 10) колонку следует промыть 20 см 3 раствора серной кислоты 0,025 моль/дм 3 , затем дистиллированной водой (80 — 100 см 3 ).

При анализе сильнозагрязненных вод (величина химического потребления кислорода более 50 мг/дм 3 ) в пробу для окисления следует добавить 5 см 3 раствора персульфата калия и 2 см 3 раствора щелочи. Аналогично выполняют и анализ холостой пробы.

12.1 Массовую концентрацию общего азота в анализируемой пробе воды X , мг/дм 3 , рассчитывают по формуле:

(2)

где q — содержание общего азота в пробе, найденное по градуировочной зависимости, мг;

V — объем аликвоты пробы, взятый для анализа, см 3 .

12.2 Расчет массовой концентрации азота органического

Массовую концентрацию органического азота ХАО, мг/дм 3 , в анализируемой пробе воды рассчитывают по формуле

где Х — массовая концентрация общего азота, мг/дм 3 ;

ХАМ — массовая концентрация минерального азота, мг/дм 3 .

Массовая концентрация минерального азота ХАМ, мг/дм 3 , рассчитывается по формуле

(4)

где — массовая концентрация нитритного азота, найденная фотометрическим методом (например, в соответствии с РД 52.24.381), мг/дм 3 ;

— массовая концентрация нитратного азота, найденная фотометрическим методом после восстановления нитратов до нитритов (например, в соответствии РД 52.24.380), мг/дм 3 ;

— массовая концентрация аммонийного азота, найденная фотометрическим методом в виде индофенолового синего по РД 52.24.383, мг/дм 3 .

12.3 Результат измерений в документах, предусматривающих его использование, представляют в виде:

где ± D — границы характеристик погрешности результатов измерений для данной массовой концентрации общего азота (таблица 1), мг/дм 3 .

Погрешность расчета массовой концентрации органического азота D АО , мг/дм 3 , вычисляют по формуле

(6)

где XAO — массовая концентрация азота органического, мг/дм 3 ;

D — значение характеристики погрешности, соответствующее массовой концентрации общего азота X, мг/дм 3 ;

X — массовая концентрация общего азота, мг/дм 3 ;

— значение характеристики погрешности, соответствующее массовой концентрации нитритного азота , мг/дм 3 ;

— массовая концентрация нитритного азота, мг/дм 3 ;

— значение характеристики погрешности, соответствующее массовой концентрации нитратного азота , мг/дм 3 ;

— массовая концентрация нитратного азота, мг/дм 3 ;

— значение характеристики погрешности, соответствующее массовой концентрации аммонийного азота , мг/дм 3 ;

— массовая концентрация аммонийного азота, мг/дм 3 .

Численные значения результата измерения должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности. Последние не должны содержать более двух значащих цифр.

12.4 Допустимо представлять результат в виде:

x ± D л (Р = 0,95) при условии D л D , (7)

где ± D л — границы характеристик погрешности результатов измерений, установленные при реализации методики в лаборатории и обеспечиваемые контролем стабильности результатов измерений, мг/дм 3 .

Примечание — Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения D л = 0,84 · D с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов измерений.

12.5 Результаты измерений оформляют протоколом или записью в журнале, по формам, приведенным в Руководстве по качеству лаборатории.

13.1.1 Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:

— оперативный контроль исполнителем процедуры выполнения измерений (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);

— контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

13.1.2 Периодичность контроля исполнителем процедуры выполнения измерений, а также реализуемые процедуры контроля стабильности результатов выполняемых измерений регламентируются в Руководстве по качеству лаборатории.

13.2.1 Контроль исполнителем процедуры выполнения измерений проводят путем сравнения результатов отдельно взятой контрольной процедуры Кк с нормативом контроля К.

13.2.2 Результат контрольной процедуры Кк, мг/дм 3 , рассчитывают по формуле

где x’ — результат контрольного измерения массовой концентрации общего азота в пробе с известной добавкой, мг/дм 3 ;

х — результат измерения массовой концентрации общего азота в рабочей пробе, мг/дм 3 ;

С — величина добавки, мг/дм 3 .

13.2.3 Норматив контроля погрешности К, мг/дм 3 рассчитывают по формуле

(9)

где D лх’ — значения характеристики погрешности результатов измерений установленные при реализации методики в лаборатории, соответствующие массовой концентрации общего азота в пробе с добавкой, мг/дм 3 ;

D лх — значения характеристики погрешности результатов измерений, установленные в лаборатории при реализации методики, соответствующие массовой концентрации общего азота в рабочей пробе, мг/дм 3 .

Примечание — Допустимо для расчета норматива контроля использовать значения характеристик погрешности, полученные расчетным путем по формулам D лх’ = 0,84 · D x и D лх = 0,84 · D х.

13.2.4 Если результат контрольной процедуры удовлетворяет условию

процедуру анализа признают удовлетворительной.

При невыполнении условия (10) контрольную процедуру повторяют. При повторном невыполнении условия (10), выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Расхождение между результатами измерений, полученными в двух лабораториях, не должно превышать предела воспроизводимости R, мг/дм 3 . При выполнении этого условия приемлемы оба результата измерений и в качестве окончательного может быть использовано их общее среднее значение. Значение предела воспроизводимости рассчитывают по формуле

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов измерений согласно разделу 5 ГОСТ Р ИСО 5725 или МИ 2881.

Примечание — Проверка приемлемости проводится при необходимости сравнения результатов измерений, полученных двумя лабораториями.

В 350 см 3 нагретой до температуры 65 °С деионированной воды растворяют при перемешивании 70 г соли персульфата калия. При необходимости быстро фильтруют через неплотный обеззоленный бумажный фильтр. Охлаждают в бане со льдом. Выпавшие кристаллы фильтруют через стеклянный фильтр под вакуумом, промывая несколько раз небольшими порциями охлажденной деионированной воды, и высушивают в вакуум-эксикаторе или обычном эксикаторе над концентрированной серной кислотой. Хранят высушенный препарат в плотно закрытой склянке из темного стекла.

Перекристаллизацию персульфата калия повторяют, если оптическая плотность холостого опыта (без добавления деионированной воды) не находится в пределах 0,03 — 0,05.

Замачивают 50 — 60 г сухого катионита на 1 — 2 сут в насыщенном растворе хлорида натрия в дистиллированной воде (70 г хлорида натрия растворяют в 200 см 3 воды). Затем раствор хлорида натрия сливают, промывают катионит 2 — 3 раза дистиллированной водой и переносят его в колонку вместе с водой так, чтобы не образовалось воздушных пузырьков. Предварительно в колонку приливают немного дистиллированной воды. Избыток воды при заполнении колонки периодически сливают через кран. После заполнения пропускают через колонку с катионитом последовательно по 100 см 3 раствора соляной кислоты 1 моль/дм 3 , дистиллированной воды и раствора гидроксида натрия 1 моль/дм 3 со скоростью 1 — 2 капли в секунду, повторяя процедуру 8 — 10 раз. Заканчивают обработку катионита пропусканием 100 см 3 раствора соляной кислоты. После чего промывают колонку дистиллированной водой до рН 6 по универсальной индикаторной бумаге, пропуская воду с максимально возможной скоростью. Колонка с катионитом пригодна к работе длительное время. В перерыве между использованием колонку хранят герметично закрытой. Катионит должен постоянно находиться под слоем воды.

При ухудшении качества катионированной воды колонку регенерируют, пропуская 100 см 3 раствора соляной кислоты 1 моль/дм 3 и промывая дистиллированной водой.

Катионит (как сухой, так и влажный) со временем стареет и теряет ионообменные свойства. Для проверки пригодности катионита готовят раствор хлорида натрия с молярной концентрацией 0,010 моль/дм 3 , для чего взвешивают 0,0585 г хлорида натрия и растворяют его в дистиллированной воде в мерной колбе вместимостью 100 см 3 . Через колонку после первоначальной подготовки или после регенерации пропускают 100 см 3 дистиллированной воды со скоростью 1 — 2 капли в секунду.

Первые 50 — 60 см 3 воды, прошедшей через колонку отбрасывают, следующую порцию объемом 30 — 40 см 3 собирают в стакан вместимостью 50 см 3 и измеряют рН катионированной воды. После этого пропускают с той же скоростью приготовленный раствор хлорида натрия, первые 50 — 60 см 3 раствора, прошедшие через колонку отбрасывают, а следующую порцию собирают в стакан и также измеряют рН. За счет замещения ионов натрия в растворе при пропускании через катионит на ионы водорода, рН раствора понижается по сравнению с катионированной дистиллированной водой. Если качество катионита удовлетворительное, разница в величине рН должна составлять 2,5 — 3 единицы.

Б.2 Подготовка и регенерация колонки с анионитом

Замачивают 50 — 60 г сухого анионита на 1 — 2 сут. в насыщенном растворе хлорида натрия в дистиллированной воде (70 г хлорида натрия растворяют в 200 см 3 воды). Затем раствор хлорида натрия сливают, промывают анионит 2 — 3 раза дистиллированной водой и переносят его в колонку вместе с водой так, чтобы не образовалось воздушных пузырьков. Предварительно в колонку приливают немного дистиллированной воды. Избыток воды при заполнении колонки периодически сливают через кран. После этого анионит «тренируют», пропуская последовательно по 100 см 3 раствора гидроксида натрия, дистиллированной воды, раствора соляной кислоты и вновь дистиллированной воды. Скорость пропускания растворов примерно 1 — 2 капли в секунду. Цикл обработки анионита повторяют 8 — 10 раз. Заканчивают обработку анионита раствором гидроксида натрия и промывают дистиллированной водой до рН 7 по универсальной бумаге.

Регенерацию анионита осуществляют, пропуская через колонку 100 см 3 раствора гидроксида натрия 1 моль/дм 3 и затем промывая ее дистиллированной водой.

Проверку пригодности анионита проверяют с помощью раствора хлорида натрия с молярной концентрацией 0,010 моль/дм 3 по процедуре, аналогичной описанной в разделе Б.1. За счет замещения ионов хлора в растворе при пропускании через анионит на гидроксид-ионы, рН раствора повышается по сравнению с анионированной дистиллированной водой. Если качество анионита удовлетворительное, разница в величине рН должна составлять 2,5 — 3 единицы.

Б.3 Получение депонированной воды

Для получения деионированной воды собирают установку, схема которой изображена на рисунке 2 .

Дистиллированную воду пропускают через колонку с анионитом, а затем через колонку с катионитом со скоростью 1 — 2 капли в секунду.

Качество подготовленной воды проверяют по значению оптической плотности холостого опыта, который выполняется с деионированной водой при установлении градуировочной зависимости (величина оптической плотности должна быть не более 0,10).

1 — склянка с дистиллированной водой; 2 — пластиковые соединительные трубки; 3 — склянка с деионированной водой; 4 — колонка с катионитом; 5 — колонка с анионитом.

Рисунок Б.1 — Схема установки для получения деионированной воды

В.1 Приготовление растворов

В.1.1 Раствор сульфата меди

Растворяют 10 г сульфата меди в 0,5 дм 3 дистиллированной воды.

В. 1.2 Раствор сульфата кадмия

Растворяют 400 г сульфата кадмия в 1 дм 3 дистиллированной воды и доводят рН полученного раствора до 2 по универсальной индикаторной бумаге с помощью серной кислоты.

В.1.3 Раствор соляной кислоты, 0,05 моль/дм 3

К 1 дм 3 дистиллированной воды приливают 4,4 см 3 концентрированной соляной кислоты и перемешивают.

В.2 Получение электролитического кадмия

Для проведения электролиза собирают установку по схеме, приведенной на рисунке В.1.

1 — источник постоянного тока; 2 — переменное сопротивление; 3 — амперметр; 4 — вольтметр; 5 — анод (кадмиевая палочка, помещенная в мешочек из марли или неплотной ткани); 6 — катод (свинцовая или кадмиевая пластина); 7 — сосуд с раствором сульфата кадмия.

Рисунок В.1 — Схема установки для получения кадмия электролизом

Электролит (раствор сульфата кадмия) помещают в сосуд вместимостью 4 — 6 дм 3 , в качестве которого могут использоваться сосуды цилиндрической или прямоугольной формы или стаканы (см. 4.3.5). Допустимо использовать аналогичные сосуды из полиэтилена или полипропилена. Высота электролита в сосуде должна быть не менее 12 см, расстояние между электродами не менее 8 — 10 см, напряжение на ячейке устанавливают 3 В при силе тока в цепи 0,8 — 1,2 А. Сила тока регулируется глубиной погружения кадмиевой палочки. Во избежание замыкания электроды не должны касаться дна и стенок сосуда.

Образующиеся в процессе электролиза кристаллы собирают пластмассовым шпателем непосредственно с катода. Не следует допускать, чтобы кристаллы скапливались на дне сосуда. Для предотвращения окисления кристаллы кадмия хранят под водой. Дальнейшему измельчению кадмий подвергать не следует.

Вместо свинцовой или кадмиевой пластины в качестве катода можно использовать кадмиевую палочку. В этом случае следует обязательно поставить стеклянную пластину между электродами, т.к. образующиеся на катоде кристаллы вытягиваются по направлению к аноду. Выход кадмия близок к теоретическому и составляет около 2 г/А·ч.

В стакан вместимостью 1 дм 3 помещают 120 г электролитического кадмия, промывают 300 см 3 раствора соляной кислоты 0,05 моль/дм 3 , затем дистиллированной водой и заливают 500 см 3 раствора сульфата меди. Перемешивают до почти полного обесцвечивания раствора сульфата меди (до появления черных мелкодисперсных частиц).

Вместо электролитического кадмия можно использовать также кадмиевые опилки, полученные измельчением кадмиевой палочки грубым напильником или пилой с крупными зубьями. Размер опилок должен быть около 1 мм.

После омеднения кадмий следует тщательно отмыть дистиллированной водой от мелких частиц, не осаждающихся в течение 2 — 3 с после интенсивного перемешивания кристаллов омедненного кадмия в стакане с водой.

Хранить омедненный кадмий следует в закрытой склянке под слоем дистиллированной воды, подкисленной соляной кислотой до рН 3.

Методика приготовления аттестованной смеси AC2-N для установления градуировочных характеристик приборов и контроля точности результатов измерений массовой концентрации общего азота фотометрическим методом

Г.1 Назначение и область применения

Настоящая методика регламентирует процедуру приготовления аттестованной смеси мочевины и D,L-лейцина, предназначенной для установления градуировочных характеристик приборов и контроля точности результатов измерений массовой концентрации общего азота в природных и очищенных сточных водах фотометрическим методом после окисления персульфатом калия.

Г.2 Метрологические характеристики

Г.2.1 Аттестованное значение массовой концентрации общего азота в аттестованной смеси составляет 10,00 мг/дм 3 .

Г.2.2 Абсолютная величина погрешности аттестованного значения массовой концентрации общего азота в аттестованной смеси с вероятностью 0,95 не превышает 0,18 мг/дм 3 .

Г.3.1 Весы лабораторные высокого (II) класса точности по ГОСТ 24104-2001.

Г.3.2 Колбы мерные 2-го класса точности исполнения 2, 2а по ГОСТ 1770-74 вместимостью:

Г.3.3 Пипетка с одной отметкой 2-го класса точности исполнения 2 по ГОСТ 29169-91 вместимостью

Г.3.4 Пипетка градуированная 2-го класса точности исполнения 3,2 по ГОСТ 29227-91 вместимостью:

Г.3.5 Стаканчики для взвешивания (бюксы) СВ-19/9 по ГОСТ 25336-82

Г.3.6 Воронки лабораторные по ГОСТ 25336-82 диаметром 36 мм

Г.3.7 Шпатели пластмассовые

Г.3.8 Эксикатор исполнения 2, диаметром корпуса 190 мм по ГОСТ 25336-82.

Г.3.9 Хлорид кальция обезвоженный по ТУ 6-09-4711-81, ч.

Г.3.10 Склянки из темного стекла с пришлифованными или плотными пластиковыми пробками для хранения растворов вместимостью

1.3.12 Шкаф сушильный общелабораторного назначения.

Г.4.2 D, L -лейцин C 6 H 13 O 2 N по ТУ 6-09-1170-77, ч.

Г.4.3 Вода деионированная (см. приложение Б).

Г.4.4 Натрия гидроокись (гидроксид натрия) по ГОСТ 4328-77, х.ч. (допустимо ч.д.а.).

Г.5 Процедура приготовления аттестованной смеси

Г.5.1 Приготовление основного раствора мочевины с массовой концентрацией общего азота 500 мг/дм 3 .

Для приготовления раствора взвешивают на лабораторных весах в бюксе с точностью до четвертого знака после запятой 0,107 г мочевины, предварительно высушенной в сушильном шкафу при температуре 105 °С в течение 1 ч и охлажденной в эксикаторе над хлоридом кальция. Количественно переносят навеску в мерную колбу вместимостью 100 см 3 , растворяют в деионированной воде, доводят объём раствора до метки на колбе и перемешивают. Переносят раствор в склянку из темного стекла с хорошо притертой стеклянной или пластиковой пробкой.

Полученному раствору приписывают массовую концентрацию общего азота 500 мг/дм 3 .

Г.5.2 Приготовление промежуточного раствора мочевины с массовой концентрацией общего азота 100 мг/дм 3 .

Отбирают пипеткой с одной отметкой 20,0 см 3 основного раствора мочевины с массовой концентрацией общего азота 500 мг/дм 3 и переносят его в мерную колбу вместимостью 100 см 3 . Объем раствора доводят до метки на колбе деионированной водой и перемешивают.

Полученному раствору приписывают массовую концентрацию общего азота 100 мг/дм 3 .

Г.5.3 Приготовление раствора D, L -лейцина с массовой концентрацией общего азота 100 мг/дм 3

Для приготовления раствора взвешивают на лабораторных весах в бюксе с точностью до четвертого знака после запятой 0,0935 — 0,0939 г D,L-лейцина. В бюкс добавляют 5 см 3 деионированной воды, 0,30 г гидроксида натрия. Растворив навеску лейцина, количественно переносят раствор в мерную колбу вместимостью 100 см 3 , доводят объём раствора деионированной водой до метки на колбе и перемешивают. Переносят раствор в склянку из темного стекла с пластиковой пробкой.

Полученному раствору приписывают массовую концентрацию общего азота 100 мг/дм 3 .

Г.5.4 Приготовление аттестованной смеси AC2- N

Отбирают пипеткой с одной отметкой 5,0 см 3 промежуточного раствора мочевины с массовой концентрацией общего азота 100 мг/дм 3 и 5,0 см 3 раствора D ,L-лейцина с массовой концентрацией общего азота 100 мг/дм 3 , переносят их в мерную колбу вместимостью 100 см 3 . Объем раствора доводят до метки на колбе деионированной водой и перемешивают.

Полученному раствору приписывают массовую концентрацию общего азота 10,0 мг/дм 3 .

Г.6 Расчет метрологических характеристик аттестованного раствора

Г.6.1 Расчет метрологических характеристик основного раствора мочевины с массовой концентрацией общего азота 500 мг/дм 3

Аттестованное значение массовой концентрации общего азота С1, мг/дм 3 , рассчитывают по формуле

(Г.1)

где т — масса навески мочевины, г;

14,01 и 60,06 — масса молей азота и мочевины, соответственно, г/моль;

V — вместимость мерной колбы, см 3 .

Расчет погрешности приготовления основного раствора мочевины D 1 , мг/дм 3 , выполняют по формуле

(Г.2)

где С1 — приписанное основному раствору мочевины значение массовой концентрации общего азота, мг/дм 3 ;

D m — предельное значение возможного отклонения массовой доли основного вещества в реактиве от приписанного значения m , %;

m — массовая доля основного вещества (мочевины) в реактиве, приписанная реактиву квалификации «ч.д.а.», %;

D m — предельная возможная погрешность взвешивания, г;

т — масса навески мочевины, г;

D V — предельное значение возможного отклонения вместимости мерной колбы от номинального значения, см;

V — вместимость мерной колбы, см 3 .

Погрешность приготовления основного раствора мочевины равна:

Г.6.2 Расчет метрологических характеристик промежуточного раствора мочевины с массовой концентрацией общего азота 100 мг/дм 3

Аттестованное значение массовой концентрации общего азота С2, мг/дм 3 , рассчитывают по формуле

(Г.3)

где С1 — приписанное промежуточному раствору мочевины значение массовой концентрации общего азота, мг/дм 3 ;

V 1 — объем основного раствора мочевины, отбираемый пипеткой, см 3 ;

V — вместимость мерной колбы, см 3 .

Расчет погрешности приготовления промежуточного раствора мочевины D 2 , мг/дм 3 , выполняют по формуле

(Г.4)

где С2 — приписанное промежуточному раствору мочевины значение массовой концентрации общего азота, мг/дм 3 ;

D 1 — предел возможных значений погрешности приготовления основного раствора мочевины, мг/дм 3 ;

С 1 — приписанное основному раствору мочевины значение массовой концентрации общего азота, мг/дм 3 ;

— предельное значение возможного отклонения объема V 1 от номинального значения, см 3 ;

V 1 — объем основного раствора мочевины, отбираемый пипеткой, см 3 ;

D V — предельное значение возможного отклонения вместимости мерной колбы от номинального значения, см 3 ;

V — вместимость мерной колбы, см 3 .

Погрешность приготовления промежуточного раствора мочевины равна

Г.6.3 Расчет метрологических характеристик раствора D ,L-лейцина с массовой концентрацией общего азота 100 мг/дм 3

Аттестованное значение массовой концентрации общего азота С3, мг/дм 3 , рассчитывают по формуле

(Г.5)

где т — масса навески D,L-лейцина, г;

14,01 и 131,17 — масса молей азота и мочевины, соответственно, г/моль;

V — вместимость мерной колбы, см 3 .

Расчет погрешности приготовления раствора D, L -лейцина D 3 , мг/дм 3 , выполняют по формуле

(Г.6)

где С3 — приписанное раствору D, L -лейцина значение массовой концентрации общего азота, мг/дм 3 ;

D m — предельное значение возможного отклонения массовой доли основного вещества в реактиве от приписанного значения m , %;

m — массовая доля основного вещества (D, L -лейцина) в реактиве, приписанная реактиву квалификации «ч.», %;

D m — предельная возможная погрешность взвешивания, г;

т — масса навески D, L -лейцина, г;

D V — предельное значение возможного отклонения вместимости мерной колбы от номинального значения, см 3 ;

V — вместимость мерной колбы, см 3 .

Погрешность приготовления раствора D, L -лейцина равна:

Г.6.4 Расчет метрологических характеристик аттестованной смеси AC 2-N с массовой концентрацией общего азота 10,0 мг/дм 3

Аттестованное значение массовой концентрации общего азота С4, мг/дм 3 , рассчитывают по формуле

(Г.7)

где С4 — приписанное аттестованной смеси AC 2-N значение массовой концентрации общего азота, мг/см 3 ;

С 4 — приписанное промежуточному раствору мочевины значение массовой концентрации общего азота, мг/дм 3 ;

С 3 — приписанное раствору D ,L-лейцина значение массовой концентрации общего азота, мг/дм 3 ;

V 2 — объемы растворов мочевины и D, L -лейцина, отбираемых пипеткой, см 3 ;

V — вместимость мерной колбы, см 3 .

Расчет погрешности приготовления аттестованной смеси AC2-N D 4 , мг/дм 3 , выполняют по формуле

(Г.8)

где С4 — приписанное смеси AC2-N значение массовой концентрации общего азота, мг/см 3 ;

D 2 — предел возможных значений погрешности приготовления промежуточного раствора мочевины, мг/дм 3 ;

С 2 — приписанное промежуточному раствору мочевины значение массовой концентрации общего азота, мг/дм 3 ;

D 3 — предел возможных значений погрешности приготовления раствора D,L-лейцина, мг/дм 3 ;

С 3 — приписанное раствору D ,L-лейцина значение массовой концентрации общего азота, мг/дм 3 ;

D v — предельное значение возможного отклонения вместимости мерной колбы от номинального значения, см 3 ;

V — вместимость мерной колбы, см 3 .

— предельное значение возможного отклонения объема V 2 от номинального значения, см 3 ;

V 2 — объемы растворов мочевины и D, L -лейцина, отбираемых пипеткой, см 3 .

Погрешность приготовления аттестованной смеси AC2- N равна

Г.7 Требования безопасности

Необходимо соблюдать общие требования техники безопасности при работе в химических лабораториях.

Г.8 Требования к квалификации операторов

Аттестованную смесь может готовить инженер или лаборант со средним профессиональным образованием, прошедший специальную подготовку.

Г.9 Требования к маркировке

На склянки должны быть наклеены этикетки с указанием раствора, массовой концентрации общего азота, погрешности ее установления и даты приготовления.

Аттестованная смесь AC2- N хранению не подлежит.

Основной раствор мочевины следует хранить в плотно закрытой склянке в холодильнике не более 3 мес.

Промежуточный раствор мочевины и раствор D, L -лейцина следует хранить в плотно закрытых склянках в холодильнике не более 1 мес.

Федеральная служба по гидрометеорологии и мониторингу окружающей среды

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ «ГИДРОХИМИЧЕСКИЙ ИНСТИТУТ»

344090, г. Ростов-на-Дону пр. Стачки, 198

СВИДЕТЕЛЬСТВО № 13.24-2006
об аттестации методики выполнения измерений

Методика выполнения измерений массовой концентрации общего азота в водах фотометрическим методом после окисления персульфатом калия,

разработанная Государственным учреждением «Гидрохимический институт»

и регламентированная РД 52.24.364-2007 Массовая концентрация общего азота в водах. Методика выполнения измерений фотометрическим методом после окисления персульфатом калия,

аттестована в соответствии с ГОСТ Р 8.563-96 с изменениями 2002 г.

Аттестация осуществлена по результатам экспериментальных исследований.

В результате аттестации установлено, что методика выполнения измерений соответствует предъявляемым к ней метрологическим требованиям и обладает метрологическими характеристиками, приведенными в таблицах 1 и 2.

Таблица 1 — Диапазон измерений, значения характеристик погрешности и ее составляющих при принятой вероятности Р = 0,95

Диапазон измерений массовой концентрации общего азота

Показатель повторяемости (среднеквадратическое отклонение повторяемости)

Показатель воспроизводимости (среднеквадратическое отклонение воспроизводимости)

Показатель правильности (границы систематической погрешности)

источник