Меню Рубрики

Анализ технологической схемы очистки воды

Для очистки природной воды наибольшее применение получили следующие схемы осветления и обесцвечивания воды [ 1, 2 ]:

схема очистки с применением отстойников и фильтров;

схема очистки с применением осветлителей со взвешенным осадком.

Схема очистки воды с применением отстойников и фильтров.Известна с давних времен и считается классической. На рис. 40 показана схема очистки воды с применением отстойников и фильтров.

От насосов I-го подъема обрабатываемая вода поступает в смеситель, сюда же из реагентного цеха поступают реагенты (коагулянт и др.).

После перемешивания в смесителе реагентов с водой она поступает в камеру хлопьеобразования. Здесь происходит агломерация (слипание) коллоидных и взвешенных частиц в крупные быстроосаждающиеся хлопья. Из камеры хлопьеобразования вода переходит в отстойник, где осаждается основная масса хлопьев.

После отстойника вода поступает на фильтр, в котором задерживаются частицы взвеси, не успевшие осесть в отстойнике.

Осветленная вода для обеззараживания хлорируется и отводится в резервуар чистой воды, одновременно выполняющего функцию контактного резервуара, откуда насосом П-го подъема перекачивается в разводящую сеть потребителю.

Рис. 40. Схема очистки воды с применением отстойников и фильтров:

1 – насосы I-го подъема; 2 – реагентный цех; 3 – смеситель; 4 – камера хлопьеобразования;

5 – отстойник; 6 – фильтр; 7 – резервуар чистой воды; 8 – насосы II-го подъема.

Отличительной особенностью этой схемы является использование отстойников с камерами хлопьеобразования, применение которых позволяет очищать воду любой мутности и цветности.

Недостатком предложенной схемы являются относительно большие размеры и стоимость сооружений (отстойников и камер хлопьеобразования) из-за малых скоростей движения воды в них, что обусловлено технологией их работы. Движение воды по сооружениям происходит самотеком.

Схема очистки воды с применением осветлителей со взвешенным осадком и фильтров.Представлена на рис. 41 и работает следующим образом.

Насосами I-го подъема вода подается в смеситель, где перемешивается с реагентами, поступающими из реагентного цеха.

Затем вода проходит через осветлитель и фильтр, освобождаясь от взвешенных и коллоидных частиц.

Очищенная вода хлорируется и собирается в резервуар чистой воды, одновременно выполняющего функцию контактного резервуара, откуда насосом П-го подъема подается потребителю.

Рис. 41. Схема очистки воды с применением осветлителей со взвешенным осадком и фильтров:

1 – насосы I-го подъема; 2 – реагентный цех; 3 – смеситель; 4 – осветлитель со взвешенным осадком; 5 — фильтр; 6 – резервуар чистой воды; 7 – насосы II-го подъема.

В осветлителях благодаря хорошему перемешиванию поступающей воды и контакту с ранее образовавшимися хлопьями осадка, процесс коагуляции протекает быстрее и эффективнее. Образующиеся хлопья взвеси в осветлителе более тяжелые и осаждаются быстрее, чем в отстойниках. Поэтому объем осветлителей со взвешенным осадком значительно меньше, чем объем отстойников с камерами хлопьеобразования.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 8443 — | 7002 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Рейтинги сегодня печатаются и отражаются везде, где не лень. Потому и отношение у потребителя к ним весьма двоякое. Стоит ли доверять им и стоит ли пользоваться их результатами? Хотя с другой стороны при строительстве частного дома своими силами очищение воды покажется самой маленькой проблемой, которую предстоит решать!

Большинство очистных схем как раз направлено на то, чтобы устранить такие примеси, которые образуют запахи, цветность и мутность. Потому разговаривая о разных схемах нужно понимать, что они нужны, чтобы улучшить органолептические свойства воды.

Первые технологии очистки воды начинали с того, что устраняли из воды весь видимый мусор, мутность, цвет и запах, на сколько это было возможно. Но органические примеси такие механические устройства устранить не в состоянии. В их ведении любые твердые примеси и взвеси, которые убираются путем удерживания в сетках, гравийной засыпке или активированном угле. Такие подключенные фильтры одни из самых долговечных, нуждаются только в замене со временем засыпок и решеток.

Средняя стоимость такой схемы очистки воды составляет 30 000 рублей.

Стоимость ежемесячного обслуживания 700-1000 руб.

Самое большое количество разнообразных технологий включает в себя умягчение. Приводить примеры работы данной очистки технической воды можно на ионообменном кувшине. Здесь основу составляет катионная гелевая смола, насыщенная натрием. Поскольку технология ионообменная, то и процесс умягчения состоит в том, чтобы заменить одни ионы на другие. Но слишком много возни с такой реагентной технологией. Картридж придется полностью заменить, при умягчении технологической воды придется картридж восстановить с помощью сильного соляного раствора. В общем, масса дополнительной работы. Есть еще безреагентные устройства, такие как электромагнитные очистители. Вот они тряски над собой не требуют. Такой прибор достаточно установить, подключить. Дальше он все выполняет самостоятельно. Сам контролирует состояние поверхностей, постепенно устраняя старые остатки накипи. Сам умягчает воду. И никаких замен или чисток.

1-ая схема очистки воды. Умягчение воды, механика, органолептика Цена
Простенькая схема очистки воды. Включает в себя фильтр умягчения воды ионообменный, фильтр грязевик и угольный фильтр. Схема предназначена для «нормальной» воды.

Средняя стоимость такой схемы очистки воды составляет 80 000 рублей.

Стоимость ежемесячного обслуживания 2500 — 3000 руб.

Что касается обезжелезивания или дезинфекции то принцип деления по технологиям очистки воды все тот же. Растворить и убить бактерии с вирусами можно путем размешивания воды с химикатами, и путем облучения ультрафиолетовыми лучами. Что касается устранения солей железа то тут в помощь обычный кислород.

2-ая схема очистки воды. Умягчение воды, обезжелезивание (аэрация), механика Цена
Более серьезная схема. Включает в себя фильтр умягчения воды ионообменный, фильтр грязевик, систему аэрации воды + фильтр обезжелезивания. Финишная очистка — угольный фильтр. Схема предназначена для воды с высоким содержанием солей жесткости и солей железа.

Средняя стоимость такой схемы очистки воды составляет 55 000 рублей.

Стоимость ежемесячного обслуживания 1500 руб.

Химическое воздействие на воду как дезинфицирующее, является относительно вредным. Но при этом оно помогает и дальше устранять бактерии в течение еще нескольких часов после добавления и растворения. Это о хлорсодержащих веществах говорится. Ультрафиолетовое облучение или озонирование так не может. Но зато оба этих метода абсолютно экологически безопасны.

3-ая схема очистки воды. Обезжелезивание и механика Цена
Схема включает в себя: фильтр грязевик, систему аэрации воды и фильтр обезжелезивания. Финишная очистка — угольный фильтр. Схема предназначена для воды с высоким содержанием солей железа, НЕ УМЯГЧЕНИЯ!

Средняя стоимость такой схемы очистки воды составляет 120 000 рублей.

Стоимость ежемесячного обслуживания 4000 руб.

Убрать соли железа можно и с помощью марганцевого песка. Но это наистарейший метод и не такой эффективный, чем простое окисление. Все таки песок нужно и менять, и перетряхивать, чтобы он вновь обрел свою эффективность очищения. В комплексе с солями свинца марганцевый песок работает более эффективно. Но это технология прошлого века. И называть ее в пятерке лучших, не совсем корректно.

Благодаря всеобщей глобализации, сегодня потребитель может пользоваться всеми благами развитого рынка. И последний, готов предложить потребителю много чего. Если необходима качественная технологическая схема очистки воды, то залогом успеха в данном случае станет, прежде всего, правильно выполненный тест состава воды. Без него, подключение любой системы или фильтра – большой риск. Причем не только заболеть, а еще и выкинуть свои деньги в никуда.

Какие на сегодня есть системы и схемы очистки водных ресурсов?

Устранение вредных бактерий

Устранение цветности и мутности, достижение прозрачности (улучшение органолептики)

Из всех очистных схем более всего вопросов возникает к органолептическим свойствам воды. К органолептикам относят:

То есть под их улучшением понимают устранение мути, запахов и цвета. Вода в обязательном порядке должна быть чистой и прозрачной. Прежде всего, эти качества воды определяют, на сколько вода пригодна для потребления в пищу. Как найти ту единственную правильную схему подключения фильтров для воды и систем. По сути органалептика — это все то, что человек может воспринять органами чувств и зрительно. Если внешне вода грязная, то однозначно придется использовать целый комплекс очистных схем и систем.

Если у воды органолептические показатели не в норме, то это крайне негативно скажется на здоровье человека, прежде всего. И первым пострадает от мутной и грязной воды желудок.

Первое, на что обращает внимание человек – это на прозрачность воды, то есть способность воды пропускать свет и любой предмет, погруженный в воде должен быть абсолютно видимым. Чем меньше примесей в воде, тем более она прозрачная. Причем примесей механического характера.

Прозрачность имеет 30 сантиметров, и не менее 20 сантиметров для бассейнов. Определить прозрачность лучше всего в лаборатории с помощью специального оборудования.

Следующим органолептическим показателем будет мутность. В отличие от прозрачности, мутность определяют очень мелкие примеси, размером до 100 нанометров . Природа у таких взвесей может быть органической и неорганической. Появляется она в воде за счет размытия пород, русла рек, когда в процессе вымывания песка или глины в воде оседает остаток подобной природы. Мутность могут составлять и бактерии, и различные соли металлов. Проблема с мутностью состоит в том, что она загораживает вредные примеси от влияния того же ультрафиолета. И пока ее не устранишь, работать с другими вредными примесями не получится.

Цветность воде дают тоже определенные примеси. Например, бурый или желтый цвет в состоянии дать соли железа. Хлористый осадок белесую мутность. Подземные источники зачастую прозрачны, если только путь подземного источника не пролегал через породы содержащие железный известняк. Сероводород дает воде зеленый цвет. Для определения примеси, которая дала воде определенный цвет используют специальные химикаты, которые вступают в реакцию с определенными примесями.

Остались неучтенными еще запахи и осадок. Часто так случается, что наливаешь воду, она вроде прозрачная, без запахов, но стоит ей постоять, как внутри образуется осадок. Он может быть и кристаллическим, и в виде взвешенных хлопьев. В любом случае, это означает, что очень мелкие примеси есть в воде и их в обязательном порядке нужно убирать из воды.

Запах в воде означает только одно – внутри воды есть органический осадок, который разлагается и появляется плохой запах. Так смоляной запах говорит о высоком пороге стоков в воде. Резкий запах хлорки говорит о хлорсодержащих примесях, причем в большом количестве. Запахи оценивают по 5-бальной шкале. По умолчанию вода должна быть абсолютно без запаха. Правда, большинство людей на земле запах силой до 2 баллов практически не ощущают.

Вкусовые качества воды напрямую зависят от газов, которые в ней растворены. Изменение вкуса может дать и любое вещество чрезмерно растворенное в воде. Есть вкус сладкий, есть соленый, дополняет их еще кислота и горечь. Остальное все это уже привкусы. Вкус воды определяют только по нагретой воде. Выявить все это богатство в воде можно путем анализа состояния воды и после первичного осмотра. Устранить помогут различные схемы фильтров и систем очистки воды.

источник

Сооружение береговых водоприемников на глубоководных реках со стабильными стойкими берегами. Построение схемы типичной водоочистной станции. Технология процессов осветления, обесцвечивания и обеззараживания воды с применением осветлителей и фильтров.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.

Схема осветления, обесцвечивания и обеззараживания воды с применением камер хлопьеобразования, отстойников и фильтров. Определение размеров зон санитарной охраны источника водоснабжения. Расчет расстояния, на котором сказывается воздействие выбросов.

курсовая работа [175,0 K], добавлен 26.02.2013

Физико-химические свойства воды. Основные типы ее загрязнений и методы их удаления. Выбор места расположения очистных сооружений и определение требуемых площадей. Электрофизический способ очистки и обеззараживания питьевой воды с помощью нанотехнологий.

научная работа [350,7 K], добавлен 17.03.2011

Этапы системы водоподготовки, сферы их применения. Очистка подземных вод, содержащих сероводород. Двухступенчатая схема очистки воды городского водоснабжения с применением сернокислого алюминия и хлора: озонирование, коагуляция, ультрафильтрация.

реферат [31,5 K], добавлен 21.01.2011

Основные положения компоновки водоочистной станции. Проектирование генерального плана очистных сооружений. Выбор методов обработки воды и состава основных технологических сооружений. Дозирование реагентов в обрабатываемую воду. Зоны санитарной охраны.

курсовая работа [93,6 K], добавлен 23.09.2013

Источники загрязнения внутренних водоемов. Методы очистки сточных вод. Выбор технологической схемы очистки сточных вод. Физико-химические методы очистки сточных вод с применением коагулянтов. Отделение взвешенных частиц от воды.

реферат [29,9 K], добавлен 05.12.2003

Порядок проектирования водопроводных очистных сооружений, его основные этапы и назначение. Определение расчетной производительности очистной станции, выбор метода и схемы очистки. Расчет установок реагентного хозяйства, процесс обеззараживание воды.

курсовая работа [367,1 K], добавлен 12.02.2010

Проблема питьевого водоснабжения. Гигиенические задачи обеззараживания питьевой воды. Реагентные и физические методы обеззараживания питьевой воды. Ультрафиолетовое облучение, электроимпульсный способ, обеззараживание ультразвуком и хлорирование.

реферат [36,0 K], добавлен 15.04.2011

Санитарно-гигиеническое значение воды. Характеристика технологических процессов очистки сточных вод. Загрязнение поверхностных вод. Сточные воды и санитарные условия их спуска. Виды их очистки. Органолептические и гидрохимические показатели речной воды.

дипломная работа [88,8 K], добавлен 10.06.2010

Анализ качества шахтных вод шахты Бутовская и сравнение показателей с требованиями к очищенным шахтным водам для сброса в реку. Схема осветления шахтных вод. Технологические расчеты очистных сооружений. Использование воды для подпитки обратного цикла.

курсовая работа [32,9 K], добавлен 21.10.2013

Факторы загрязнения поверхностных вод. Основные физические, химические и биологические загрязнители воды. Естственные источники загрязнения подземных вод. Методы обеззараживания и очистки поверхностных вод, используемых для питьевого водоснабжения.

реферат [25,4 K], добавлен 25.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.

источник

Кондиционирование воды представляет собой комплекс физических, химических и биологических методов изменения ее первоначального состава. Под кондиционированием воды понимают не только ее очистку от ряда нежелательных и вредных примесей, но и улучшение природных свойств путем обогащения ее недостающими ингредиентами.

Многочисленные способы обработки воды можно классифицировать на следующие основные группы: улучшение органолептических свойств воды (осветление, обесцвечивание, дезодорация и др.); обеспечение эпидемиологической безопасности (хлорирование, озонирование, ультрафиолетовая радиация и др.); улучшение минерального состава (фторирование и обесфторивание, обезжелезивание и деманганация, умягчение или обессоливание и др.).

В процессе очистки и обработки вода подвергается осветлению (освобождение от взвешенных веществ), обесцвечиванию, обеззараживанию (уничтожение находящихся в ней болезнетворных бактерий), умягчению (снижение или почти устранение содержащихся в ней солей жесткости). Кроме того, при использовании воды некоторых источников и для отдельных потребителей требуется удалять все растворенные в ней соли (обессоливание) или только некоторые определенные соли, например соли железа (обезжелезивание), растворенные в ней газы (дегазация), иногда приходится устранять привкусы и запахи, предотвращать коррозионное действие воды на трубы, удалять из воды фтор (обесфторивание) и т.п. Те или иные комбинации указанных процессов применяют в зависимости от категорий потребителей и качества воды в источниках.

Для получения воды питьевого качества при использовании поверхностных источников, как правило, необходимо производить осветление, обесцвечивание и обеззараживание воды. При этом в зависимости от качества исходной воды в некоторых случаях дополнительно необходимо применять и специальные методы водоподготовки — фторирование, обесфторивание, умягчение и др.

Совокупность необходимых технологических процессов и сооружений составляет технологическую схему улучшения качества воды , Применяемые в водоподготовке технологические схемы можно классифицировать:

  1. на реагентные и безреагентные;
  2. по эффекту обработки;
  3. по числу ступеней;
  4. на напорные и безнапорные.

1. Безреагентные и реагентные технологические схемы отличаются размерами водоочистных сооружений и условием их эксплуатации.

При применении реагентов процессы обработки воды протекают интенсивнее и более эффективно. Так, для осаждения основной массы взвешенных веществ в первом случае требуется 2-4 ч, во втором — несколько суток. С использованием реагентов фильтрование осуществляется со скоростью 5-12 м/ч и более, а без реагентов (медленное фильтрование) — 0,1-0,3 м/ч.

При обработке воды с применением реагентов водоочистные сооружения меньше по объему, компактнее, дешевле в строительстве, но сложнее в эксплуатации, чем сооружения безреагентной очистки.

2. По эффекту обработки различают технологические схемы для полной или глубокой очистки воды и для неполной или неглубокой. Например, в первом варианте очищенная вода соответствует требованием питьевой воды; во втором — получается грубо осветленная вода (с мутностью на выходе 5—80 мг/л), которая может использоваться для целей охлаждения производственного оборудования и др.

3. Двухступенчатые реагентные схемы осветления и обесцвечивания воды, подаваемой для хозяйственно-питьевых целей, показаны на рисунках ниже. Здесь процессы осветления и обесцвечивания осуществляются в две ступени: на отстойниках и фильтрах; на осветлителях со слоем взвешенного осадка и фильтрах; во флотаторах и на фильтрах. Схема с контактными осветлителями — одноступенчатая.

4. По характеру движения обрабатываемой воды технологические схемы подразделяются на самотечные (безнапорные) и напорные. На крупных водоочистных комплексах движение обрабатываемой воды по сооружениям осуществляется самотеком. В этом случае следует наиболее рационально использовать рельеф местности для уменьшения заглубления отдельных сооружений, уменьшения объема земляных работ, снижения стоимости фундаментов и т.п. Поэтому взаиморасположение отдельных очистных сооружений технологической схемы, т.е. высотная схема, имеет первостепенное значение.

Безреагентные технологические схемы водоподготовки с медленным (а) и акустическим (б) фильтрами, с гидроциклоном (в)

1,4 — подача исходной воды и отвод обработанной воды; 2,7 — медленный и акустический фильтры; 3 — резервуар чистой воды; 5 — насос; б — сооружения оборота промывной воды; 8,10 — скорый фильтр I и II ступени; 9 — распределительный бак;11 — гидроциклон

источник

Очистка сточных вод — обработка сточных вод с целью разрушения или удаления из них вредных веществ. Освобождение сточных вод от загрязнения — сложное производство. В нем, как и в любом другом производстве имеется сырье (сточные воды) и готовая продукция (очищенная вода).

Очистка воды предназначена для доведения всех параметров, характеризующих ее качество, до нормативных показателей. Существенно отличается очистка воды для питьевых нужд, в технологических целях (как из поверхностных водоемов, так и подземных вод) и очистка сточных вод.

Причем даже для промышленных стоков, сбрасываемых в водоемы или на грунт и сливаемых в систему канализации, нормативы и требования к очистке различные. И они постоянно ужесточаются. Считается, что суммарные затраты на очистку сточных вод современных предприятий в среднем составляют от 15 до 40% их общей стоимости.

Методы очистки воды при всем их многообразии можно подразделить на три группы: механические, физико-химические и биологические.

Механическая очистка сточных вод используется преимущественно как предварительная. Она обеспечивает удаление взвешенных веществ из производственных сточных вод до 90-95%. Задачей механической очистки является подготовка сточной воды к другим методам очистки. В результате механической очистки из сточных вод удаляются загрязнения, находящиеся в нерастворённом (песок, шлак, уголь, стекло и др.) и частично коллоидном состоянии (взвешенные и плавающие, грубоэмульгированные и суспендированные загрязнения). Для удаления перечисленных загрязнений используют гравитационные и центробежные силы, применяют процеживание и фильтрование. При механической очистке применяют решётки, песколовки, отстойники, осветлители, жироловки, нефтеловушки гидроциклоны, центрифуги, фильтры и другие сооружения.

Процеживание — первичная стадия очистки сточных вод — вода пропускается через специальные металлические решетки с шагом 5—25 мм, установленные наклонно. Периодически они очищаются от осадка с помощью специальных поворотных приспособлений.

Отстаивание происходит в специальных емкостях, которые по направлению движения воды делят на горизонтальные, вертикальные, радиальные и комбинированные. Общими для них являются, выход очищенной воды в верхней части отстойника и гравитационный принцип осаждения частиц, которые собираются внизу. Разновидностью отстойника являются песколовки. Как правило, время нахождения воды в песколовках намного меньше, чем в отстойниках, где оно доходит до 1,5 часов (для сточных вод).

Рис. 1 Схема вертикального отстойника

1 — трубопровод для вывода очищ. воды из отстойника, 2 — цилиндрическая перегородка, З — кольцевой водосборник, 4 — трубопровод для удаления шлама, 5 — подводящий трубопровод, 6 — корпус отстойника, 7 — кольцевой отражатель, 8 — шламосборник.

Рис. 2 Горизонтальная песколовка с круговым движением воды: 1 — гидроэлеватор; 2 — трубопровод для отвода всплывающих примесей; 3 — желоб; 4 — затворы; 5 — подводящий лоток; 6 — пульпопровод; 7 — трубопровод рабочей жидкости; 8 — камера переключения; 9 — устройство для сбора всплывающих примесей; 10 — отводящий лоток; 11 — полупогружные щиты

Инерционное разделение осуществляется в гидроциклонах. Различают открытые и напорные гидроциклоны, причем первые имеют большую производительность и малые потери напора, но проигрывают в эффективности очистки (особенно от мелких частиц)

Рис. 3 Напорный гидроциклон

1—крышка; 2— труба; 3 — отверстие; 4— сливной патрубок; 5—внутренний винтовой поток; 6—внешний винтовой поток; 7 — воздушный столб

Фильтрование сточных вод применяют для их осветления непосредственно после отстаивания. Как правило, фильтры очищают воду от тонкодисперсных примесей даже при небольших концентрациях. Применяют зернистые, тканевые и намывные фильтры. Кроме того фильтры подразделяют на напорные и безнапорные. Бывают фильтры с плавающей загрузкой из полистирола.

Рис.4 Безнапорный фильтр очистки воды с плавающей загрузкой:

1 — корпус; 2 — опорная решетка; 3 — плавающая загрузка; 4 — распределительная решетка

Нефтеловушки в самом простом исполнении представляют собой отстойники, в которых выход очищенной воды происходит снизу, а нефтяная пленка собирается сверху.

Рис. 5 Схема нефтеловушки

Физико-химическая очистка обеспечивает отделение как твердых и взвешенных частиц, так и растворенных примесей. Она включает множество разных способов, важнейшими из которых являются экстракция, флотация, нейтрализация, окисление, сорбция, коагуляция, ионообменные методы и др.

Экстракция — процесс разделения примесей в смеси двух нерастворимых жидкостей (экстрагента и сточной воды). Например, в специальных колонках (пустотелых или заполненных насадками) стоки смешиваются с экстрагентом, отбирающим вредные вещества: так бензолом удаляется фенол.

Флотация — процесс всплывания примесей (чаще всего маслопродуктов) при обволакивании их пузырьками воздуха, подаваемого в сточную воду. В некоторых случаях между пузырьками и примесями происходит реакция. Разновидность метода — электрофлотация, при которой вода дополнительно обеззараживается за счет окислительно-восстановительных процессов у электродов.

Нейтрализация — обработка воды щелочами или кислотами, известью, содой, аммиаком и т. п. с целью обеспечения заданной величины водородного показателя рН. Самый простой способ нейтрализации сточных вод — смешение кислых и щелочных стоков, если они имеются на предприятии.

Рис.6 Схема электрофлотатора-фильтра:

1 — камера флокуляции; 2 — патрубки для подачи исходной воды; 3 — патрубки для подачи растворов реагентов; 4 — патрубки для отвода флотошлама; 5 — камера для сбора пены; 6 — пеносборное устройство; 7, 8, 9 — перегородки; 10 — мотор-редуктор; 11 — патрубки для отвода очищенной воды; 12 — камера сорбции; 13 — камера флотации; 14 — электроды; 15 — токоподводы; I — исходная вода; II — раствор реагента; III — флотошлам; IV — очищенная вода

Окисление — применяется как при водоподготовке, так и при обработке сточных вод для обеззараживания воды и уничтожения токсичных биологических примесей. Наиболее распространенный способ — хлорирование — чреват, как указывалось ранее, появлением диоксинов (особенно при вынужденном повышении дозы хлора летом или в период паводка, так называемом перехлорировании). Необходимо постепенно переходить на другие способы, например, на комбинацию — озонирование и хлорирование. Озонирование — дорого и более кратковременного действия, но оно перспективнее. В настоящее время отрабатываются комбинации реагентов с ультрафиолетовой обработкой воды. Во всяком случае, вода, применяемая для питья и содержащая характерный залах хлора, перед употреблением должна отстаиваться и кипятиться, как минимум.

Сорбция, как и при обработке газовых выбросов, способна обеспечивать эффективную очистку воды от солей тяжелых металлов, непредельных углеводородов, частичек красящих веществ и т. п. Лучшим сорбентом и здесь является активированный уголь, это относится и к различным минералам (шунгиту, цеолиту и др.), специально обработанным опилкам, саже, частичкам титана и др. На этих сорбентах работают многие бытовые фильтры для воды: «Родничок», «Роса» и др.

Коагуляция — обработка воды специальными реагентами с целью удаления нежелательных растворенных примесей. Широко распространена при водоподготовке. Обработка ведется соединениями алюминия или железа, при этом образуются твердые нерастворимые примеси, отделяемые обычными способами. Для сточных вод широко применяется электрокоагуляция, при которой вблизи электродов образуются ионы

Рис. 7 Конструкция осветлителя со взвешенным осадком коридорного типа: 1 — коридоры осветления; 2 — осадкоуплотнитель; 3 — слой взвешенного осадка; 4 — зона осветления; 5 — сборные желоба; 6 — осадкоприемные окна; 7 — трубы принудительного отвода осветленной воды; 8 — трубопровод распределения исходной воды в коридорах осветления; 9 — трубопровод сброса осадка; 10 — подача исходной воды в осветлитель

Ионообменные методы достаточно эффективны для очистки от многих растворов и даже от тяжелых металлов. Очистка производится синтетической ионообменной смолой и, если ей предшествует механическая очистка, позволяет получить выделенные из воды металлы в виде сравнительно чистых концентрированных солей.

Биологические методы очистки основаны на способности некоторых микроорганизмов использовать для своего развития органические вещества, содержащиеся в сточных водах в растворённом или коллоидном состояниях. Сооружения биологической очистки можно разделить на две основные группы. К первой относятся сооружения, в которых воспроизводится процесс биохимического распада органических веществ в почве (поля фильтрации, поля орошения, биологические фильтры, аэрофильтры), ко вторым — сооружения — воспроизводящие этот процесс в водной среде ( биологические пруды, циркуляционно-окислительные каналы, аэротенки, метантенки)

Рис. 8 Осветлитель-перегниватель: 1 — подающий лоток; 2 — центральная труба; 3 — отражательный щит; 4 — камера флокуляции; 5 — зона отстаивания (осветлитель); 6 — сборный периферийный лоток; 7 — отводящая труба осветленной воды; 8 — иловая труба; 9 — камера для сбраживания осадка (перегниватель); 10 — труба для удаления сброженного осадка; 11 и 12 — лоток и труба для удаления корки; 13 — илораспределительная труба

источник

Проблема очистки поды охватывает вопросы физических, химических и биологических ее изменений в процессе обработки с целью сделать ее пригодной для питья. При этом речь идет не только об устранении нежелательных и вредных свойств воды (очистка), но и об улучшении ее природных свойств путем обогащения недостающими ингредиентами. Поэтому более правильно рассматривать обработку воды как процесс улучшения ее качества.

Степень и способы улучшения качества воды и состав водоочистных сооружений зависят от свойств природной воды и от требований, которые предъявляются потребителем к качеству воды. Основными методами очистки воды для хозяйственно-питьевого водоснабжения являются осветление, обесцвечивание и обеззараживание.

Осветление воды, т.е. удаление из нее взвешенных веществ, может быть достигнуто: отстаиванием воды в отстойниках, центрифугированием в гидроциклонах, путем пропуска ее через слой ранее образованного взвешенного осадка в так называемых осветлителях, фильтрованием воды через слой зернистого или порошкообразного фильтрующего материала в фильтрах или фильтрованием через сетки и ткани.

Для достижения требуемого эффекта осветления воды в отстойниках, осветлителях и на фильтровальных аппаратах с зернистой фильтрующей загрузкой примеси воды необходимо подвергнуть коагулированию, т.е. воздействию солей многовалентных металлов. Попутно при этом происходит значительное обесцвечивание воды.

Обесцвечивание воды, т.е. устранение или обесцвечивание различных окрашенных коллоидов или истинно растворенных веществ может быть достигнуто коагулированием, применением различных окислителей (хлор и его производные, озон, перманганат калия) и сорбентов (активный уголь, искусственные смолы).

Обеззараживание воды производят для уничтожения содержащихся в ней болезнетворных бактерий и вирусов. Для этого чаще всего применяют хлорирование воды, но возможны и другие способы – озонирование, бактерицидное облучение и др.

Помимо указанных основных методов очистки воды могут применяться и другие специальные способы для очистки как хозяйственно-питьевой, так и производственной воды.

Сочетание необходимых технологических процессов и сооружений составляет технологическую схему улучшения качества воды. Используемые в практике водоподготовки технологические схемы можно классифицировать по следующим основным признакам: реагентные и безреагентные, по эффекту осветления, по числу технологических процессов и числу ступеней каждого из них, по характеру движения обрабатываемой воды.

Реагентные и безреагентные технологические схемы применяют для подготовки воды как для хозяйственно-питьевых целей, так и для промышленности. Безреагентные технологические схемы существенно различаются по конструкциям и размерам водоочистных сооружений и условиям их эксплуатации.

Процессы обработки воды с применением реагентов протекают (рис. 7.1, а) во много раз быстрее и иногда значительно эффективнее. Так, для осаждения основной массы взвешенных веществ в первом случае необходимо 2. 4 ч, а во втором – несколько суток. С использованием реагентов фильтрование осуществляется со скоростью 5. 12 м/ч (и более), а без реагентов (медленное фильтрование) – 0,1. 0,3 м/ч.

Рис. 7.1. Реагентные технологические схемы улучшения качества воды с отстойниками (а), осветлителями со слоем взвешенного осадка (б), микрофильтрами и контактными осветлителями (в):

1,11 – подача исходной и отвод обработанной воды; 2 – контактная камера; 3 – установка для углевания и фторирования воды; 4 – хлораторная; 5 – баки коагулянта; 6 – вертикальный смеситель; 7 – камера хлопьсобразования; 8 – горизонтальный отстойник со встроенными тонкослойными модулями; 9 – скорый фильтр; 10 – резервуар чистой воды; 12 – осветлитель со слоем взвешенного осадка и его рециркуляцией; 13 – микрофильтр; 14 – контактный осветлитель КО-3

При обработке воды с применением реагентов водоочистные сооружения значительно меньше по объему, компактнее и дешевле в строительстве, но сложнее в эксплуатации, чем сооружения безреагентной схемы. Поэтому безреагентные технологические схемы (с гидроциклонами, намывными и медленными фильтрами), как правило, применяют для водоснабжения небольших водопотребителей при цветности исходной воды до 50° платино-кобальтовой шкалы.

Безреагентные схемы (рис. 7.2) широко применяют для грубого осветления воды при водоснабжении некоторых промышленных объектов. Иногда для этих целей применяют одно отстаивание или одно фильтрование на скорых грубозернистых фильтрах либо процеживание через сетки.

Рис. 7.2. Безреагснтные технологические схемы улучшения качества воды с гидроциклом (а), акустическим (б) и медленным (в) фильтрами:

1,5 – подача исходной воды и отвод отработанной воды; 2 – гидроциклон; 3,4 – скорые фильтры I и II ступени; 6 – акустический фильтр; 7 – промежуточная емкость; 8 – двухпоточный двухслойный фильтр II ступени; 9 – медленный фильтр; 10 – резервуар чистой воды; 11 – насос; 12 – обработка осадка

По эффекту осветления различают технологические схемы для полного или глубокого осветления воды и для неполного осветления. В первом варианте очищенная вода соответствует требованиям питьевой воды ГОСТ 2874–82 «Вода питьевая» и СанПиН 4630–88. Во втором варианте содержание взвеси в очищенной воде во много раз больше – до 50. 100 мг/л.

Технологические схемы для глубокого осветления воды применяют как для хозяйственно-питьевых, так и для многих промышленных водопроводов, где к качеству технической воды предъявляют высокие требования. Схемы для неполного осветления воды обычно используют для подготовки технической воды, например для охлаждения.

По числу технологических процессов и числу ступеней каждого из них технологические схемы подразделяют на одно-, двух- и многопроцессные. Усовершенствованная технологическая схема, показанная на рис. 7.1, б, является двухпроцессной. Здесь два основных технологических процесса: обработка воды в слое взвешенного осадка (т.е. контактная коагуляция с осаждением) и фильтрование. Оба процесса осуществляются последовательно, а фильтрование – двукратно (в две ступени).

В том случае, когда один из основных технологических процессов осуществляется дважды или большее число раз, технологическая схема называется двух-, трех- или многоступенчатой. Например, в однопроцессной двухступенчатой технологической схеме с контактными осветлителями (рис. 7.1, в) основной технологический процесс – фильтрование – осуществляется дважды.

Очевидно, что число технологических процессов и количество ступеней каждого процесса диктуются требованиями к качеству воды, предъявляемыми потребителем, и зависят от степени загрязненности исходной воды. Так, для грубого осветления можно ограничиться одним процессом осаждения или только фильтрованием. При обработке высокомутных вод для хозяйственно-питьевых целей прибегают к осаждению в две ступени с последующим фильтрованием в одну ступень и т.п.

По характеру движения обрабатываемой воды технологические схемы подразделяют на самотечные (безнапорные) и напорные. На городских и крупных промышленных водопроводных станциях движение исходной воды от сооружения к сооружению осуществляется самотеком. При этом отметка зеркала воды в каждом последующем сооружении ниже отметки в предыдущем. Разность отметок определяет напор, требуемый для преодоления гидравлических сопротивлений внутри сооружения и в коммуникациях от одного сооружения к другому.

При напорной технологической схеме движение обрабатываемой воды от сооружения к сооружению происходит под давлением выше атмосферного, поэтому отдельные сооружения могут быть расположены по одной отметке. Уместно отметить, что при использовании напорных технологических схем резервуары чистой воды и насосную станцию II подъема можно и не устраивать. Очищенная вода под напором насосов I подъема передается непосредственно в сеть потребителя. При безнапорном движении воды по очистным сооружениям необходимы две насосные станции и резервуары чистой воды (см. рис. 7.1).

Выбор той или иной технологической схемы улучшения качества воды диктуется не только качеством воды источника и требованиями потребителя, но и количеством потребляемой воды.

источник

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Нижегородский государственный архитектурно-строительный институт

Кафедра водоснабжения и водоотведения

по предмету: Водоснабжение и водоотведение

на тему: Технологические схемы очистки природных вод

Преподаватель: Кулемина С.В.

Студент гр. ЭУНз 07-1 Четверикова А.В.

2. Безреагентные методы очистки природной воды

3. Реагентные методы очистки природной воды

3.1 Двухступенчатая схема очистки

3.2 Одноступенчатая схема очистки

Очистка природных вод и водоподготовка — комплекс физических, химических и биологических процессов для снижения содержания в воде вредных примесей и обогащения ее недостающими ингредиентами, чтобы сделать ее пригодной для хозяйственно-питьевого, промышленного или сельскохозяйственного использования. В поверхностных и подземных природных водах обычно присутствуют во взвешенном состоянии песчаные и глинистые частицы, ил, планктон, коллоиды органического и минерального происхождения, в том числе: гуматы, кремне-кислота, гидроксид трехвалентного железа; в истиннорастворимом состоянии — минеральные соли натрия, магния, кальция, фтора, двухвалентного железа, хлориды, сульфаты, бикарбонаты и др. В воде нередко присутствуют также антропогенные загрязнения: соединения азота, фосфора, нефтепродукты, пестициды, СПАВ, токсичные вещества: мышьяк, стронций, бериллий, тяжелые металлы. Обычно в воде обнаруживаются также бактерии и вирусы. Раствор, в воде газы — кислород, диоксид углерода, сероводород — интенсифицируют процессы коррозии металлич. трубопроводов и оборудования. После хлорирования цветных вод, а также вод, загрязненных нефтепродуктами и планктоном, образуются канцерогенные хлорорганические соединения. В ряде случаев в воде обнаруживается метан, что иногда является взрывоопасным. Для очистки природной воды применяют реагентные и безреагентные методы. Безреагентные с медленными фильтрами отличаются простотой устройства и эксплуатации, дают значит, меньше отходов, загрязняющих окружающую среду, но имеют ограничения по цветности и мутности исходной воды. Методы обработки воды с применением реагентов интенсивнее и эффективнее. С использованием реагентов фильтрование осуществляется со скоростью 5—15 м/ч и выше, без реагентов (медленное фильтрование) — 0,1—0,2 м/ч.

Водоподготовка воды — процесс очистки воды из природных источников и подготовки ее для нужд потребителей. Водоподготовка включает в себя следующие основные методы очистки воды:

· Обезжелезивание и деманганация — очистка воды от железа и марганца

· Осветление и сорбция — очистка воды от взвешенных частиц, хлора, органики

· Умягчение воды — удаление из воды солей жесткости, тяжелых металлов

· Аэрирование воды — отдув растворенных газов, предварительное окисление железа

· Озонирование воды — стерилизация воды, окисление органики, металлов, газов

Как правило, в систему водоподготовки включается несколько стадий очистки воды, в зависимости от исходных загрязнений и требований к качеству воды на выходе с фильтров. На первых стадиях очистки удаляются взвешенные вещества, железо, затем воду умягчают или обессоливают. Так как система водоподготовки сложное техническое решение, очень важным является грамотный подбор системы и настройка работы, иначе фильтры могут выйти из строя через небольшой промежуток времени. Области применения систем водоподготовки охватывают почти все сферы жизнедеятельности человека, а именно:

· Промышленная водоподготовка — приготовление воды для технологических процессов, массовых потребителей.

· Водоподготовка коттеджа — очистка воды из скважины, колодца, поселкового водопровода.

· Водоподготовка в квартиру — приготовление питьевой воды, очистка от хлора.

· Водоподготовка в офис — приготовление питьевой воды.

· Очистка воды для школ, детских садов и больниц — приготовление питьевой воды и там где требуется наличие чистой воды, а требования к качеству постоянно растут.

2. Безреагентные методы очистки природной воды

Основой безреагентных методов является предварительное аэрирование воды, которое может осуществляться различными способами, и последующее фильтрование через зернистую загрузку, например через кварцевый песок.

К известным в настоящее время безреагентным методам очистки воды относятся: упрощённая аэрация и фильтрование, глубокая аэрация, отстаивание и фильтрование, «сухая» фильтрация.

На сегодняшний день среди методов очистки воды наиболее широкое применение нашли упрощённая аэрация с последующим фильтрованием и «сухая» фильтрация. Однако каждый из этих методов имеет свои недостатки. Применение метода упрощенной аэрации с последующим фильтрованием затруднено при повышенных концентрациях железа в исходной воде, а также при наличии в подземной воде гумусовых веществ или других органических соединений, образующих трудноокисляемые органоминеральные железистые соединения, практически не извлекаемые из воды при ее очистке данным методом обезжелезивания. К недостаткам метода «сухой» фильтрации можно отнести повышенный расход электроэнергии в процессе водоочистки (по сравнению с методом упрощённой аэрации), необходимость постоянного контроля за водовоздушным соотношением, повышение коррозионности очищенной воды вследствие избыточной концентрации в ней непрореагировавшего кислорода.

При очистке подземных вод содержащих сероводород, в основном, применяется метод аэрации с последующим окислением. В основном в роли окислителя используется хлор. При этом одним из основных продуктов окисления сероводорода является коллоидная сера, придающая воде характерную мутность, устойчивую опалесценцию и неприятный вкус. Анализ современных технологий очистки сероводородных вод показывает, что в подавляющем большинстве случаев этап очистки сероводородных вод от коллоидной серы предлагается осуществлять методом контактного осветления на фильтровальных сооружениях, благодаря чему водоочистка водоподготовка будет проходить еще быстрее. Однако необходимость применения больших доз коагулянта приводит к образованию и накоплению в процессе очистки воды огромного количества серосодержащих осадков гидроксидов металлов, обработка и утилизация которых трудоёмкая и дорогостоящая. Кроме того, даже реагентная обработка такой воды коагулянтами не всегда обеспечивает надёжное, глубокое удаление коллоидной серы до требуемых нормативов очистки воды.

3. Реагентные методы очистки природной воды

Реагентные методы очистки воды можно разделить на двухступенчатые (коагуляция — осветление — фильтрование) и одноступенчатые (контактная коагуляция — прямоточное фильтрование).

3.1 Двухступенчатая схема очистки

В основе очистки воды городского водоснабжения лежит двухступенчатая схема, в основе которой находится применение сернокислого алюминия и хлора. Аппаратное оформление двухступенчатой схемы очистки: смесители — камеры хлопьеобразования — отстойники (осветлители, флотаторы) — скорые фильтры.

Но с увеличением количества вредных примесей в воде, что связано с общей экологической ситуацией, данный способ очистки не справляется с поставленной задачей, именно поэтому к данной схеме следует добавить процедуру озонирования, сорбции и включить применение мембранных процессов.

Тогда процедура очистки воды в системах городского водоснабжения будет состоять из следующих этапов.

На подготовительном этапе следует провести озонирование, за счёт чего существенно сокращается уровень озона в воде и увеличивается эффект осветления, что немаловажно для процесса ультрафильтрации, которая проводится на завершающем этапе.

После проведения озонирования осуществляется коагуляция, в процессе которой регулируется величина показателя рН, затем проводится осветление воды на специальных аппаратах, после чего водная нагрузка увеличивается практически в два раза по сравнению с тонкослойным отстойником.

По завершении данного этапа, снова проводится озонирование воды, после чего проводится её фильтрация с использованием песчаных фильтров. Это основной этап в схеме очистки воды систем городского водоснабжения.

На завершающем этапе проводится ультрафильтрация, основанная на применении порошкообразного гранулированного угля, который способствует удалению болезнетворных микробов и вредных органических соединений, после чего осуществляется обеззараживание хлором. Без данного этапа вода не может считаться качественной и безвредной.

Все эти этапы позволяют сделать воду безопасной для использования в повседневной жизни, но, тем не менее, следует применять ещё и барьерный способ очистки воды собственными силами, основанный на применении фильтров, тем самым вода станет не только безопасной, но и полезной для здоровья.

3.2 Одноступенчатая схема очистки

Одноступенчатая схема прямоточного фильтрования включает коагуляцию — фильтрование. Коагуляция происходит непосредственно в фильтрующей загрузке. Аппаратное оформление: смесители — скорые фильтры. Область применения прямоточного фильтрования — невысокая мутность воды при дозе коагулянта до 20 мг/л. Ввиду эффективности контактной коагуляции при прямоточном фильтровании нормативная скорость фильтрования может достигать 25 м/ч (форсиров. 40 м/ч), экономия коагулянта — до 20%. Для маломутных высокоцветных вод нашел применение метод, включающий коагуляцию, крупно- и мелкозернистые фильтры. Конструкции смесителей обеспечивают практически мгновенное смешение реагентов с исходной водой. В отечественной практике успешно применяют фильтры с плавающей загрузкой, например, из пенополистирола, а также контактные осветлители. В качестве загрузки скорых фильтров используют песок, керамзит, антрацит, гранодиарит, габбро-диабаз, шунгизит, горелые породы, вулканич. шлаки, фосфорит, цеолит, дробленый гранит. Большое разнообразие фильтрующих материалов позволяет применять высокоэффективные многослойные фильтры. Обработка воды раствором коагулянта, подвергнутым магнитно-электрической активации, позволяет увеличить крупность взвешенных веществ и улучшить работу фильтров водопроводных станций. Обработку воды коагулянтами применяют для очистки воды от взвешенных веществ пестицидов, нефтепродуктов, снижения цветности и для интенсификации процесса реагентного умягчения воды.

источник

Навигация:
Главная → Все категории → Очистка сточных вод

Если при расчете необходимой степени очистки сточных вод концентрация взвешенных веществ должна быть снижена на 40-50%, а величина показателя БПКП0Лн – на 20-3 0%, то можно ограничиться механической очисткой.

Сточная вода, поступающая на очистную станцию, проходит через решетки, песколовки, отстойники и обеззараживается при использовании хлора.

Отбросы с решеток направляются в дробилку и в виде пульпы сбрасываются в канал перед или за решеткой. Возможен вариант вывоза отбросов на полигон. Осадок из песколовок перекачивается на песковые площадки. Из отстойников осадок направляется в метантенки с целью окисления органических веществ. Для обезвоживания сброженного осадка используются иловые площадки, дренажная вода с этих площадок перекачивается в канал перед контактным резервуаром.

При больших расходах сточных вод – от 50 тыс. м3/сут до 2-3 млн. м3/сут и более применяется технологическая схема, приведенная на рис. 9.2. Механическая очистка сточных вод производится на решетках, в песколовках и отстойниках.

Для интенсификации осаждения взвешенных веществ перед первичными отстойниками могут использоваться преаэраторы, в которые подается определенная часть избыточного активного ила в качестве биофлокулятора. Сырой осадок из первичных отстойников направляется в метантенки.

Биологическая очистка сточных вод по этой схеме осуществляется в аэротенке. Аэротенк представляет собой открытый резервуар, в котором находится смесь активного ила и осветленной сточной воды.

Рис. 9.1. Технологическая схема очистной станции с механической очисткой сточных вод:
1 – сточная вода; 2 – решетки; 3 – песколовки; 4 – отстойники; 5 – смесители; 6 – контактный резервуар; 7 – выпуск; 8 – дробилки; 9 – песковые площадки; 10 – метантенки; 11 – хлораторная; 12 – иловые площадки; 13 – отбросы; ё4 – пульпа; 15 – песчаная пульпа; 16 – сырой осадок; 17 – сброженный осадок; 18- Дренажная вода; 19 – хлорная вода

Для нормальной жизнедеятельности микроорганизмов активного ила в аэротенк должен поступать воздух, который подается воздуходувка-ми, установленными в машинном здании. Смесь очищенной сточной воды и активного ила из аэротенка направляется во вторичный отстойник, где 0саждается активный ил и основная его масса возвращается в аэротенк. В системе аэротенк — вторичный отстойник масса активного ила увеличивается за счет его прироста, поэтому часть его (избыточный активный ил) удаляется из вторичного отстойника и подается в илоуплотнитель, при этом объем ила уменьшается в 4-6 раз, а уплотненный избыточный ил перекачивается в метантенк. Очищенная сточная вода обеззараживается (обычно хлорируется) в контактном резервуаре и сбрасывается в водоем.

Сброженный осадок из метантенков направляется для механического обезвоживания на вакуум-фильтры или фильтр-прессы. Обезвоженный осадок может подвергаться термической сушке и использоваться в качестве удобрения.

Рис. 9.2. Технологическая схема очистной станции с биологической очисткой сточных вод в аэротенках:
1 – сточная вода; 2 – решетки; 3 – песколовки; 4 – преаэраторы; 5 – первичные отстойники; 6 – аэротенки; 7 – вторичные отстойники; 8 – контактный резервуар; 9 – выпуск; 10 – отбросы; 11 – дробилки; 12 – песковые площадки; 13 – илоуплотнители; 14 – песок; 15 – избыточный активный ил; 16 – циркуляционный активный ил; 17 – газгольдеры; 18 – котельная; 19 – машинное здание; 20 – метантеки; 21 – цех механического обезвоживания сброженного осадка; 22 – газ; 23 – сжатый воздух; 24 – сырой осадок; 25 – сброженный осадок; 26 – на удобрение; 27 – хлораторная установка; 28 – хлорная вода

На рис. 9.3 приведена технологическая схема биологической очистки сточных вод на биофильтрах. Такие схемы используются для расходов сточных вод порядка 10- 20 тыс. м3/сут.

Рис. 9.3. Технологическая схема очистной станции с биологической очисткой сточных вод на биофильтрах:
1 – сточная вода; 2 – решетки; 3 – песколовки; 4 – первичные отстойники; 5 – биофильтры; 6 – вторичные отстойники; 7 – контактный резервуар; 8 – выпуск; 9 – отбросы; 10 – дробилки; 11 – хлораторная установка; 12 – осадок из первичных отстойников; 13 – биопленка из вторичных отстойников; 14 – песок; 15 – бункер песка; 16- иловые площадки

После сооружений механической очистки (решетки, песколовки и первичные отстойники) вода поступает на биофильтры и затем во вторичные отстойники, в которых задерживается биологическая пленка (биопленка), выносимая водой из биофильтров, далее вода направляется в контактный резервуар, дезинфицируется и сбрасывается в водоем.

Проходя через фильтрующую загрузку биофильтра, загрязненная вода оставляет в ней взвешенные и коллоидные органические вещества, не осевшие в первичных отстойниках, которые создают биопленку, густо заселенную микроорганизмами. Микроорганизмы биопленки окисляют орга-нические вещества и получают необходимую для своей жизнедеятельности энергию. Таким образом, из сточной воды удаляются органические вещества, а в теле биофильтра увеличивается масса биологической пленки. Отработанная и омертвевшая пленка смывается протекающей сточной водой и выносится из биофильтра.

Для нормального хода процесса очистки в биофильтрах иногда необходимо осуществлять рециркуляцию осветленной во вторичных отстойниках воды, т.е. подавать перед биофильтрами и смешивать с водой из первичных отстойников. Необходимость рециркуляции определяется расчетом.

Физико-химическая очистка городских сточных вод применяется для очистки расходов – 10-20 тыс. м3/сут. На рис. 9.4 приведена технологическая схема физико-химической очистки сточных вод.

Рис. 9.4. Технологическая схема очистной станции с физико-химической очисткой сточных вод:
1 – сточная вода; 2 – решетки; 3 – песколовки; 4 – смеситель; 5 – камера хлопьеобразования; 6 – горизонтальные отстойники; 7 – барабанные сетки 8 – фильтры; 9 – контактный резервуар; 10 – выпуск в водоем; 11 – песок 12 – бункер песка; 13 – приготовление и дозирование реагентов; 14 – осадок 15 – осадкоуплотнители; 16 – центрифуги; 17 – хлораторная; 18 – шлам: 19 – отстоенная вода

Вода, прошедшая решетки и песколовки, направляется в смеситель, куда в определенных дозах подаются растворы реагентов – минеральных коагулянтов и органических флокулянтов. При введении в сточную воду минеральных коагулянтов образуются оксигидраты металлов, на которых собираются взвешенные, коллоидные и частично растворенные вещества, флокулянты укрупняют хлопья оксигидратов и улучшают их структурно-механические свойства. После камер хлопьеобразования осадки отделяются от очищенной воды в горизонтальных отстойниках. Для глубокой очистки от взвешенных веществ используются барабанные сетки и двухслойные фильтры или фильтры с восходящим потоком воды. Обеззараженная хлором вода сбрасывается в водоем. Осадок из отстойников уплотняется и обезвоживается на центрифугах.

Приведенные технологические схемы широко распространены как в отечественной, так и зарубежной практике, при этом имеются станции, работающие измененным схемам.

Технологические схемы очистки производственных сточных вод могут решаться при использовании самых разнообразных методов очистки, включая физико-химические методы, биологический метод и т.д. Это зависит от специфики загрязняющих сточные воды веществ, их концентрации и ПДК сброса в городскую канализацию. При разработке технологий очистки производственных сточных вод основной тенденцией должно быть максимальное повторно-оборотное использование очищенных вод на предприятиях. Атмосферные воды с промплощадок могут быть загрязнены такими же веществами, что и производственные, поэтому эти воды с промплощадок очищаются совместно с производственными.

Атмосферные сточные воды с территорий городов могут очищаться на отдельных очистных сооружениях при использовании, в основном, механических методов. За рубежом атмосферные воды очищаются на городских очистных сооружениях совместно с бытовыми сточными водами, однако, и за рубежом в настоящее время определилась тенденция очистки атмосферных вод на автономных очистных сооружениях.

Навигация:
Главная → Все категории → Очистка сточных вод

источник

.1 Природно-климатическая характеристика района

.2 Организация водоснабжения Первомайского района г. Новочеркасска

.3 Общая технологическая схема очистки воды

.1 Нормирование качества питьевой воды

.2 Анализ существующей схемы очистки питьевой воды г. Новочеркасска

.3 Химические и физические процессы происходящие при очистке воды

.4 Рекомендации по организации работы очистных сооружений

.5 Рекомендации по контролю качества питьевой воды

Список используемой литературы

Водоснабжение представляет собой комплекс мероприятий по обеспечению водой различных потребителей.

Комплекс сооружений, осуществляющих задачи водоснабжения, т.е. забор воды из природных источников, ее очистка, транспортирование и подача ее потребителю, называется системой водоснабжения.

Обеспечение населения чистой доброкачественной водой имеет большое гигиеническое значение, так как предохраняет людей от различных эпидемиологических заболеваний.

Подача достаточного количества воды в населенное место позволяет поднять общий уровень благоустройства. Для удовлетворения потребностей современных групповых городов в воде требуется громадное ее количество.

Выполнение этой задачи, а также обеспечение высоких санитарных качеств питьевой воды требуют тщательного выбора природных источников, их защиты от загрязнений, надлежащей очистки воды на водопроводных сооружениях.

В настоящее время в связи с общим ростом объемов потребляемой воды и недостаточностью в ряде районов местных природных источников воды все чаще возникает необходимость комплексного решения водохозяйственных проблем для наиболее рационального и экономичного обеспечения водой всех водопользователей и водопотребителей.

Перечисленные выше проблемы характерны и для г.Новочеркасска. Источником водоснабжения Первомайского района города является р.Дон.

В настоящий момент работает новый водозабор на р. Дон в районе ст. Старочеркасской — плавучая насосная станция. С плавучей насосной станции вода перекачивается на насосную станцию в х. Б. Мишкин в район сырой воды Насосная станция Б. Мишкин перекачивает воду на очистные сооружения питьевой воды г. Новочеркасска. Однако качество питьевой воды не всегда соответствует нормативным требованиям, актуальным остается вопрос о совершенствовании применяемых методов очистки. В данной работе проанализированы существующие схемы очистки на МУП «Водоканал» г. Новочеркасска и предложены современные методы очистки питьевой воды.

Работа составлена на основании материалов, собранных в период производственной практики на МУП «Горводоканал» г. Новочеркасска.

.1 Природно-климатическая характеристика района

.1.1Общие сведения о районе

Город Новочеркасск раскинулся на высоком холме, окруженном поймами степных рек Тузлов и Аксай, в 40 км северо-восточнее г.Ростова-на-Дону — центра Ростовской области (см. рис.1).

Рисунок 1. Обзорная карта Ростовской области.

В городе около 1000 промышленных предприятий организаций различных форм собственности и профессиональной направленности. В том числе такие крупные предприятия, как электровозостроительный завод, электродный завод, завод синтетических продуктов, ОАО «Магнит», крупнейшая на юге России Новочеркасская ГРЭС.

На современной территории Новочеркасска исторически сформировалась агломерация населенных пунктов, в состав которой входят: 1. Старый город (бывший Первомайский район); 2. Микрорайоны: Хотунок, Соцгород, Октябрьский, Молодежный, Донской, Восточный; 3. Поселки: Новоселовка, Рабочий городок, Новый городок, Яново-Грушевский.

Город состоит из двух крупных селитебно-промышленных образований, разделенных между собой поймой р. Тузлов. Южная часть — бывший Первомайский район — старый компактный город, локализованный в пределах урочища Бирючий Кут (Новочеркасский холм). Северная часть — бывший Промышленный район. Этот район, в отличие от старой части города, вытянулся с юга на север между автодорогой Новочеркасск — Шахты и поймой реки Тузлов. Население города составляет 200 тысяч человек. Территория города занимает площадь 9258 га, а площадь городских земель — 125 тыс. га.

По климатическим условиям район Новочеркасска находится в полуаридной зоне юга Европейской части России, в западной провинции недостаточного увлажнения с умеренно-континентальным климатом. Индекс континентальности составляет 86%, что свидетельствует о преобладании влияния суши на температуру воздуха, остальные 14% характеризуют влияние гидросферы. Континентальность климата выражается в большой амплитуде колебания летних и зимних суточных и дневных температур.

Среднегодовая температура воздуха в городе 8,9 0 С, в многолетнем периоде изменяется от 7,0 до 10,7 0 С. Среднемесячная многолетняя температура самого холодного месяца (января)-минус 4,8 0 С, самого теплого (июня)-плюс 22,8 0 С, амплитуда этой температуры достигает 27,6 0 С. Наиболее холодный период, когда среднесуточная температура воздуха понижается до -5 0 С и ниже, начинается с 5 января и длится до 15 февраля. Наиболее теплый период отмечается с 13 июля по 29 августа. Среднесуточная температура выше 0 0 С отмечается с 13 августа по 29 ноября.

Средняя месячная температура поверхности почвы имеет отрицательные значения только зимой; наибольшее ее значение (+29 0 С) наблюдается в июле, наименьшее (-5 0 С) — январе.

Ветровой режим города формируется под воздействием широтной циркуляции атмосферы (см. рис.2, табл. 1), особенно хорошо выраженной в холодный период. Уже с осени, вследствие остывания материка, образования антициклона над Казахстаном и Черноморской депрессии, преобладают ветры восточных румбов, относительное постоянство которых является характерной чертой ветрового режима г. Новочеркасска. В течение города наибольшая повторяемость таких ветров отмечается в ноябре (40%), наименьшая (около 20%) — В июле, когда до 19-22% увеличивается повторяемость западных ветров. Повторяемость ветров других направлений значительно меньше.

Влажность воздуха находится в прямой зависимости от температуры. Наибольшая относительная влажность воздуха зимой. В ноябре-декабре ее значения колеблются в среднем от 70 до 80 %, в январе-феврале достигает наибольших значений (80-90), весной понижаются до 60%, причем возможны «сухие» дни, когда относительная влажность может достигать опасных пределов (30-50%). Еще большие понижения влажности (до5%) в сочетании с высокой температурой (30 0 С и выше) и ветром характерны для засухи и суховеев.

Среднее многолетнее количество осадков в г.Новочеркасске составляет 550 мм в год.

Таблица 1. Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере города

Наименование характеристикВеличинаКоэффициент, зависящий от стратификации атмосферы, А200Коэффициент рельефа местности в городе1Средняя максимальная температура наружного воздуха наиболее жаркого месяца года, Т 0 с29,1Средняя температура наружного воздуха наиболее холодного месяца (для котельных, работающих по отопительному графику), Т0с-8Среднегодовая роза ветровС5СВ11В24ЮВ19Ю8ЮЗ16З11СЗ6Скорость ветра (по средним многолетним данным), повторяемость превышения которой составляет 5 %, м/с8

Рисунок 2. Роза ветров в г. Новочеркасске

1.1.3 Геологическое строение

Геоморфологические особенности и разнообразие рельефа города Новочеркасска определяется принадлежностью различных его районов к сложным тектоническим структурам в зоне регулярного сочленения Скифской плиты со складчатым сооружением Большого Донбасса.

В тектоническом отношении территория города располагается на стыке двух крупных региональных структур герцинского возраста — Ростовского выступа Украинского щита и южной границы герцинского складчатого сооружения Большого Донбасса. Пойма реки Тузлов в городской черте совпадает и орографически обусловлена положением погребенного Тузлово-Манычского разлома, западной ветвью глубинного Манычского грабена субширотного (СЗЗ) простирания. Северный промышленный район целиком занимает южную пограничную зону складчатого сооружения Донбасса с системой погребенных надвиговых тектонических структур.

В геологическом строении принимают участие отложения мелового, палеогенового, неогенового и четвертичного возраста. На дневную поверхность выходят отложения неогенового и четвертичного возраста, более древние отложения вскрыты единичными глубокими скважинами.

Неоген в пределах рассматриваемой территории несогласно перекрывает отложения палеогена и выходит на дневную поверхность в долинах рек Аксай, Тузлов, Грушевка, Аюта.

Наиболее древними породами, слагающими основание Новочеркасского холма, являются конские слои миоценового возраста.

На слегка размытой поверхности конских слоев залегает песчано-глинистая толща нижнего сармата, невыдержанной мощности 5-14 м.

Меотические генетически аллювиальные отложения несогласно залегают на нижнесарматских и прослеживаются по склонам холма со всех сторон. Меотические отложения представлены белыми, реже желтыми и серыми среднезернистыми речными отложениями древнего пра-Дона.

Отложения плиоцена широко развиты в городе и его окрестностях, они хорошо обнаружены по всей периферии Новочеркасского холма и представлены понтическими известняками-ракушечниками и скифскими глинами.

Понтические отложения имеют распространение по всем склонам холма и залегают на мэотических песках. Они представлены желто-бурыми известняками-ракушечниками, состоящими из ядер раковин кардит, сцементированных известковистым и глинистым цементом.

Пестроцветные скифские глины перекрывают понтические известняки и являются водоупором для четвертичных отложений. Мощность толщ глин колеблется в широких пределах в зависимости от форм рельефа.

Четвертичные отложения, пользуясь исключительно широким распространением по всей территории города и его окрестностям. Они характеризуются большим генетическим, стратиграфическим, литологическим разнообразием и представлены преимущественно глинистыми породами, в числе которых эолово-делювиальные, делювиальные, элювиальные, пролювиально-делювиальные, покровные суглинки, делювиально-аллювиальные и аллювиальные отложения голоцена, верхнего, среднего и нижнего плейстоцена.

Четвертичные покровные отложения пользуются наибольшим распространением в зоне влияния инженерных сооружений и представлены преимущественно делювиальными и элювиально-делювиальными лессовидными суглинками, реже супесями и легкими глинами, которые залегают плащеобразно на породах различного состава и возраста, чаще — на скифских глинах.

По периферии Новочеркасского холма распространены серые и серовато-бурые грубослоистые легкие суглинки, часто переходящие в супеси или даже в глинистые пески.

1.1.4 Геоморфологическая и ландшафтная характеристики

Природные ландшафты г. Новочеркасска находятся на юге Русской равнины и входят в состав Донецко-Южно-Ергеневской провинции, Донецкой и Нижнедонецкой геоморфологических областей.

По периферии с севера. Востока и юга Новочеркасского холма отчетливо прослеживается терраса, образованная понтическими известняками-ракушечниками. Ширина террасы до 200-300 м, высота 40-43 м над уровнем р.Тузлов; наиболее выдержана она в северной части холма. Переход от плато к речным долинам осуществляется путем сноса по склонам лессовидных суглинков и скифских глин и формированием делювиальных шлейфов протяженностью до 200-600 м.

Территория Новочеркасского холма расположена на восточной окраине субширотного языковидного останцевого неогенового плато. С трех сторон это плато ограничено поймами рек Тузлов и Аксай. Городская часть плато имеет форму плоской возвышенности, с запада ограниченного балками Куричьей и Кундрючьей.

В пределах старой селитебной части города находятся относительно крупные балки: Западенская, Куричья, Кундрючья, Епифановка с более или менее выположенными и задернованными склонами.

Северная часть города (бывший первомайский район) занимает левый пологий склон долины реки Тузлов, представляющей собой водораздельный участок между левыми притоками реки Тузлова — реками Грушевской и Кадамовской.

Территория Новочеркасска расположена на стыке трех орографических районов: Приазовской равнины, Донецкого кряжа и Нижнедонской равнины. Южная часть города приурочена к восточному окончанию языковидного выступа понтического плато правобережья поймы реки Дон. С севера плато ограничено долиной реки Тузлов, восточное окончание плато срезается поймой рек Тузлов и Аксай. Водораздельная линия холма лежит ближе к долине р.Тузлов.

Континентальная аккумуляционно-денудационная равнина, развитая в северной части промышленного района, на юге и западе переходит в террасированную равнину рек Тузлов и Грушевка.

Террасы долин рек Тузлова и Грушевки представлены практически ровными поверхностями, иногда с небольшими уклонами в сторону коренных склонов. Южный и Северный городские массивы разделены поймой реки Тузлов. Пойма реки Тузлов, хотя и входит в городскую территорию, не затронута промышленным и гражданским строительством, прирусловые, ее участки заняты дачными массивами и огородами.

.1.5 Гидрография и гидрогеология

Гидрографическая сеть города Новочеркасска представлена реками Аксай и Тузлов с притоками Грушевской и Кадамовской, балками Тангаши (приток р.Тузлов) и Западенской (приток р.Аксай).

Река Аксай — протока, правый рукав древней дельты р.Дон протяженностью 100 км, омывает юго-восточную и южную части города и имеет пологие, редко крутые, высотой до 2-3 м берега. В летние и зимние месяцы, особенно во время засух, река на отдельных участках пересыхает, сохраняя свое русло в виде отдельных плесов.

Река Тузлов — приток реки Аксай — имеет протяженность 187 км и берет начало в пределах Донецкого кряжа на высоте 200 м над уровнем Азовского моря. В пределах городской территории река Тузлов течет с запада на восток, разделяя южный и северный городские районы, впадает в р.Аксай в районе ст.Кривянской. Субширотное направление реки совпадает с региональным Тузлово-Манычским глубинным разломом. Тузлов — немноговодная река, относящаяся к категории малых рек равнинно-степного типа с весьма слабым течением в межень. Речная сеть в бассейне р. Тузлов развита умеренно, но неравномерно. Водный режим реки определяется, в основном, атмосферными осадками и характеризуется весенним половодьем и низкой летней меженью. Зимнее снегонакопление при сильном промерзании почвы обеспечивает высокое и продолжительное половодье. Подъем уровня начинается за 5-10 дней до момента вскрытия реки ото льда. Начало половодья относится в среднем ко второй половине февраля.

По берегам р.Тузлов на территории города Новочеркасска сконцентрированы выпуски нормативно очищенных сточных вод крупных промышленных предприятий города. Со сточными водами в реку сбрасываются различные органические и неорганические соединения, что приводит не только к загрязнению воды, но и к заилению русла, его кольматации и снижению дренирующей способности реки.

Река Грушевка — левый приток р.Тузлова, питание реки осуществляется, главным образом, за счет атмосферных осадков. Меньшее значение имеют в питании реки подземные воды, дренируемые балками. Водный режим реки определяется хорошо выраженным половодьем и низкими расходами воды в летне-осенний и зимний периоды. Берега реки пологие и заболоченные, в пределах речной поймы русло реки значительно меандрирует, имеется несколько стариц, связанных с запрудами для местного орошения. Водный режим других более мелких водотоков в общих чертах повторяет водный режим реки Тузлов.

Наиболее крупные балки Западенская и Тангаши имеют практически постоянный сток, особенно в среднем и нижнем течениях. Сток зарегулирован каскадом плотин и формируется преимущественно за счет грунтовых вод, городских сточных вод и фильтрационных потерь из прудов. Балки обычно с корытообразной долиной, шириной в устьевой части 200-280 м и глубиной от 3-5 и в верховьях и до 40 м в устье.

Все поверхностные стоки в различной степени загрязнены сбросами неочищенных шахтных вод, промышленными, бытовыми и ливневыми водами. Наиболее существенную нагрузку по загрязнению вод несут реки Грушевка и Тузлов, являющиеся основными водоприемниками сточных вод. Минерализация воды рек постоянно превышает предельно допустимые нормы. По химическому составу воды рек относятся к сульфатно-натриевым, за исключением р.Аксай выше устья р.Тузлов, где вода частично кальциевая.

Территория г. Новочеркасска относится к северной части Азово-Кубанского артезианского бассейна. Эта часть ограничена складчатой областью Донбасса и приурочена к Тузлово-Манычскому артезианскому бассейну второго порядка.

Климатические условия, геологическое строение территории, литолого-фациальные особенности и история геологического развития препятствовали накоплению в грунтовых породах пресных подземных вод. В связи с этим на характеризуемой территории отсутствуют водоносные горизонты, имеющие практическое значение для централизованного хозяйственно-питьевого водоснабжения. Район города характеризуется развитием порово-трещинных грунтовых и межпластовых вод с повышенной минерализацией, которые приурочены, в основном, к отложениям миоцена, плиоцена, плейстоцена и голоцена, дренируются системой понижений, в рельефе и часто выходят на дневную поверхность. Нижележащие водоносные горизонты мела и палеогена напорные и содержат высокоминерализованные воды. Они экранированы толщей майкопских глин мощностью до 25 м и не имеют гидравлической связи с вышележащими водоносными горизонтами. Водоносный комплекс верхнего миоцена представлен конским, сарматским, меотическим и понтическим водоносными горизонтами.

Конский водоносный горизонт имеет повсеместное распространение в основании Новочеркасского холма, обнажается на его склонах в районе ул. Советской, у железнодорожной площадки Студенческая, на юго-западе холма — в карьерах.

Водоносный горизонт нижнего сармата приурочен к песчано-глинистой толще, вскрыт скважинами на глубинах от 9 до 84 м, подстилается водоупорными темными сланцеватыми глинами, мощностью около 8 м, и выходит на поверхность в виде родников по правому склону долины р. Тузлов. Мощность водоносного горизонта колеблется от 3,3 до 28,8 и, дебит скважин — от 0,2 до л/сек. Воды повышенной минерализации (1-6 г/дм 3 ) сульфатно-хлоридно-натриевого состава используются населением для бытовых нужд, рядом предприятий — для технического водоснабжения.

Меотический водоносный горизонт залегает на нижнесарматских глинах на высоте 16-24 м над уровнем реки Тузлов, вскрывается скважинами на глубинах 14-67 м и проявляется в виде родников на коренных склонах правого берега реки. Водовмещающие породы — тонкозернистые пески с прослоями глин. В ряде случаев пески меотиса не имеют водоупора и практически безводны. Основная зона питания водоносного горизонта — полоса шириной 200 м, протягивающаяся с северо-запада до юго-запада по периферии Новочеркасского холма. При мощности пласта меотических песков 10-18 м мощностью обводненной зоны в основании пласта изменяется от 1,2 до 5 м. Воды хлоридно-сульфатные, кальциевые и натриевые с минерализацией 1,3-3,6 г/дм 3 , используются населением для сельскохозяйственных нужд.

Понтический водоносный горизонт дренируется реками Аксай, Тузлов, Грушевка. Водовмещающие породы — известняки, иногда содержат слабо дебитные безнапорные воды. Нижним водоупором являются понтические, верхним — скифские глины. Родники, выходящие из понтических известняков, имеют малые расходы и горько-соленый вкус. Практического интереса водоносный горизонт не представляет.

Четвертичный водоносный горизонт распространен почти повсеместно, подвержен наиболее сильному техногенному воздействию и представлен грунтовыми водами покровных суглинков Новочекасского холма, эолово-делювиальных суглинков бывшего Промышленного района и аллювиальных отложений террас и поймы рек Тузлов, Аксай, Грушевка.

Грунтовые воды аллювиальных отложений террас и поймы рек Тузлов, Грушевка, Аксай образуют единый водоносный горизонт мощностью 15-20 м, гидравлически связанный с вышележащим.

Грунтовые воды современных пойменных отложений рек Тузлов и Грушевка протягиваются полосой шириной от нескольких сот метров до 4 км. Они вскрыты скважинами на глубине от 1 до 3,5 м, характеризуются минерализацией от 1,5 до 6 г/дм 3 , дебитами скважин от 0,6 до 1,7 л/сек и коэффициентом фильтрации от 0,1 до 1 м/сутки, редко более. Используются населением для водопоя скота и полевых нужд.

Естественная дренированность территории бывшего Промрайона обусловлена неглубоким эрозионным врезом реки Тузлов и его притока Грушевки, суглинисто-глинистым составом покровных отложений, незначительными уклонами грунтового потока и не обеспечивает боковой отток.

.1.6 Характеристика гидрологического и гидрохимического режима поверхностных водотоков

Малые реки Новочеркасска — Грушевка, Кадамовка, Тузлов относятся к типу рек с четко выраженным половодьем, во время которого проходит до 50-70% городского стока. Наибольший объем стока наблюдается в марте, а наименьший — в сентябре и октябре.

Сток рек в значительной степени зарегулирован прудами, а также равномерным сбросом шахтных и сточных вод в районе г. Шахты. Река Аксай выше впадения в нее р.Тузлов имеет сравнительно равномерный сток за счет сброса донской воды, используемой Новочеркасской ГРЭС.

Река Аксай. Река Аксай является не только источником технического и питьевого водоснабжения промышленных предприятий и населения города, но и водоприемником сточных вод. В верхней части притока река принимает сточные воды ОАО «НчГРЭС», ОАО «Новочеркасский рыбокомбинат», коллекторно-дренажные воды казачьего фермерского хозяйства «Мелиоратор», в районе устья р.Тузлов — сток этой реки. Кроме того, в реку впадают, в основном с правого берега, несколько временных водотоков с городской территории и Западенская балка.

По химическому составу и степени загрязнения воды р.Аксай существенно различаются выше и ниже устья р. Тулов (см. табл. 2). По химическому составу вода ниже устья р. узлов более загрязнена, так как наблюдается превышение ПДК в содержании взвешенных веществ, а также в 2001 году содержание азота нитритного превышает ПДК в 2 раза и составляет 7 мг/дм 3 . В устье р. Тузлов еще наблюдается высокое содержание меди.

.2 Организация водоснабжения Первомайского района г. Новочеркасска

Водоснабжение представляет собой комплекс мероприятий по обеспечению водой различных потребителей.

Комплекс сооружений, осуществляющих задачи водоснабжения, т.е забор воды из природных источников, ее очистка, транспортирование и подача ее потребителю, называется системой водоснабжения.

Обеспечение населения чистой доброкачественной водой имеет большое гигиеническое значение, так как предохраняет людей от различных эпидемиологических заболеваний.

Подача достаточного количества воды в населенное место позволяет поднять общий уровень благоустройства. Для удовлетворения потребностей современных групповых городов в воде требуется громадное ее количество.

Выполнение этой задачи, а также обеспечение высоких санитарных качеств питьевой воды требуют тщательного выбора природных источников, их защиты от загрязнений, надлежащих очистки воды на водопроводных сооружениях.

В настоящее время в связи с общим ростом объемов потребляемой воды и недостаточностью в ряде районов местных природных источников воды все чаще возникает необходимость комплексного решения водохозяйственных проблем для наиболее рационального и экономического обеспечения водой всех водопользователей и водопотребителей.

В настоящий момент работает новый водозабор на р. Дон в районе ст. Старочеркасск — плавучая насосная станция. С плавучей насосной станции вода перекачивается на насосную станцию в х.Б. Мишкин в районе сыр. воды. Насосная станция Б. Мишкин перекачивает воду на ВОС-1 — в Р.С.В.

Старый водозабор в районе г. Аксай находится в резерве.

Общие сведения о предприятии.

Производственные подразделения ПУ «Водоканал» расположены на двух промплощадках, находящихся в г. Новочеркасске.

На территории площадки расположены следующие производственные службы и сооружения: Управление ПУ «Водоканал», складские помещения, гаражи, ремонтные службы автотранспорта, производственные мастерские, насосная станция, два резервуара питьевой воды объемом до 1500 м3, автозаправочная станция и склад ГСМ, лабораторный корпус.

Ремонтными службами предприятия выполняются работы по прокладке к ремонту водоводов центральной части города и текущий ремонт запорной и другой арматуры. Ремонтные службы автотранспорта предприятия занимаются текущим ремонтом и обслуживанием автотранспорта. В состав ремонтных служб автотранспорта входят: аккумуляторная, ремонтно-механический участок, токарный участок, сварочный участок и электроучасток. Территория станции подготовки питьевой воды расположена на выезде из города с левой стороны автодороги Новочеркасск-Ростов. Во время ввода в эксплуатацию станции подготовки (1951 год) ее территория находилась в окружении земель, на которых не располагалась жилая зона. С расширением производственной, жилой и садоводческой зоны города территория станции оказалась окружена с запада, юга и востока дачными участками садоводческих товариществ. С севера, через автодорогу Новочеркасск-Ростов территория станции граничит с производственными строениями. Санитарно-защитная зона станции подготовки питьевой воды составляет 300 м согласно СН 245-71. Основной продукцией ПУ «Водоканал» является вода питьевого качества, подготавливаемая на очистных сооружениях станции водоподготовки и отвечающая требованиям ГОСТ 2874-82. Питьевая вода подается на нужды потребителей Первомайского района г. Новочеркасска. Службами предприятия оказываются услуги по прокладке водоводов питьевой воды, ремонту существующих водоводов и проведению сантехнических работ. Кроме того, ремонтные службы МУП «Горводоканал» занимаются текущим ремонтом и техническим обслуживанием насосных станций, основных водоводов и сооружений, входящих в состав предприятия. Мобильность проведения ремонтных, монтажных и эксплуатационных работ обеспечивается наличием в составе предприятия специализированных мастерских и собственного автопарка, обеспеченного службами эксплуатации и текущего ремонта.

.3 Общая технологическая схема очистки воды

Рис. 3 Детальное описание схемы: резервуары сырой воды: 1 реагентное хозяйство; 2 смесители; 3 камеры реакций (хлопьеобразования); 4 отстойники; 5 фильтры; 6 хлораторная; 7 резервуары чистой воды

Площадка очистных сооружений расположена вблизи шоссе Ростов-Новочеркасск.

Водопроводная очистная станции была построена в 2 очереди. Первая очередь была завершена в 1951 году — производительность 1й очереди — 12,5 тыс. м 3 /сут. Вторая очередь в 1961 году — производительность — 30,0 тыс.м 3 /сут Проектная производительность очистных сооружений составляет — 42,5 тыс. м 3 /сут.

Неочищенная вода из резервуаров технической воды поступает в два смесителя, где происходит смешение воды с реагентами. В данном случае это коагулянт Полиоксихлорид алюминия (АКВА-АУРАТ-30), флокулянт — полиакриламид (АК-631) и хлор. Время пребывания воды в смесителе 1-2 минуты. Из смесителя вода поступает в камеры хлопьеобразования или камеры реакций, где происходит образование хлопьев коагулянта. Камеры реакций вихревого типа — 6 штук. Время пребывания воды в них — 10 минут.

Далее вода поступает в 6 отстойников горизонтального типа. Время пребывания воды — 30-40 минут. Осадок выводится на иловые площадки.

Затем вода по трубопроводу подается на 12 скорых фильтров с кварцево-песчаной загрузкой.

После этого вода поступает в резервуары чистой воды. Перед резервуарами чистой воды подается вторичный хлор. Происходит процесс обеззараживания фильтрованной воды.

гидрологический вода качество очистка

.1 Нормирование качества питьевой воды

Вода играет огромную роль в биосфере. Она составляет важнейшую часть живого вещества, без которого жизнь невозможна. Доброкачественная питьевая вода в достаточном количестве обеспечивает организм необходимым количеством влаги для поддержания его нормальной жизнедеятельности. Без воды человек может прожить всего 5 -6 дней. Физиологическая потребность человека в воде при отсутствии физических нагрузок в регионах с умеренным климатом составляет 2,5- 3.0 л/сут или 1000 л/год и 60 000 — 70 000 л за 60-70 лет жизни. При физических нагрузках эта потребность возрастает до 8-10 л/сут. Вода хорошего качества требует для производства и обработки пищевых продуктов и напитков, изготовления лекарственных средств, личной гигиены, поддержания санитарного состояния жилищ.

Огромное значение для жизни людей имеет нормирование в сфере водопотребления. Водопотребление- использование воды на нужды населения, промышленности и сельского хозяйства с изъятием ее из водных объектов. Нормы качества воды устанавливают по показателям качества воды для конкретных видов водопользования (ГОСТ 27065 — 86).

В этой связи разработаны ПДК загрязняющего вещества в водоемах хозяйственно — питьевого и культурно — бытового водопользования. Эти ПДК определяют концентрацию загрязняющих веществ в воде, которая не должна оказывать прямого или косвенного влияния на организм человека в течение всей его жизни и на здоровье последующих поколений, а также не должна ухудшать гигиенические условия водопользования.

Показатели, обеспечивающие экологическое благополучие водных объектов и необходимые условия для охраны здоровья населения и водопользования, зафиксированы в нормах охраны вод (ГОСТ 17.1.1.01-77). Эти нормы предусматривают создание водоохранного комплекса — системы сооружений и устройств для поддержания требуемого количества и качества воды в заданных створах и пунктах водных объектов. Для этих же целей создаются водоохранные зоны — территории, на которых устанавливается особый режим, способствующий предотвращению истощения, загрязнения и засорения водных объектов. Важная роль в этих зонах принадлежит водоохранным лесам, которые регулируют гидрологический режим рек, уменьшают эрозию почв.

Естественная водообеспеченность (поверхностные и подземные воды) должна быть такой, чтобы в городах, имеющих канализацию, на каждого жителя приходилось по 170 — 250 л воды в сутки (крупнейших городах с населением свыше 1 млн жителей — до 350 л/сут), а при отсутствии канализации — 40 — 60 л/сут.

Требования, предъявляемые к источникам водоснабжения

Пригодность того или иного источника для целей водоснабжения определяется на основании данных его санитарного обследования с учетом результатов гидрогеологических, гидрологических, топографических изысканий.

Вода источников водоснабжения не должна содержать нежелательных примесей, которые не могут быть удалены современными методами обработки, а концентрация загрязнений, поддающихся устранению, должна соответствовать эффективности применяемых методов обработки.

Согласно ГОСТ 2874 — 73 в воде источников водоснабжения нормируется содержание хлоридов (не более 350 мг/л) и сульфатов (не более 500 мг/л) при общем солесодержании не более 1000 мг/л по плотному остатку. По согласованию с органами санитарно- эпидемиологической службы в исключительных случаях допускается использование воды источников с солесодержанием до 1500 мг/л. Кроме того, в воде источников водоснабжения нормируется содержание веществ, токсичных для человека.

При несоответствии качества воды требованиям ГОСТ 2761 — 57 по тем или иным показателям, а также при содержании кишечных палочек более 10 000 в 1 л должна быть обеспечена дополнительная обработка воды, гарантирующая требуемое качество питьевой воды. Качество питьевой воды регламентируется ГОСТ 2874 — 73.

Нормирование концентрации тех или иных веществ обусловлено необходимостью обеспечения благоприятных органолептических свойств питьевой воды, безвредности ее химического состава и безопасности воды в санитарном отношении. Несоответствие хотя бы одного из этих нормативов требованиям ГОСТ 2874- 73 дает основания для признания непригодности воды для питьевых целей.

Согласно ГОСТ 2874-73, интенсивность специфических привкусов и запахов, появляющихся после хлорирования или любой другой реагентной обработки воды, должна быть не более 1 балла, т.е. запах и привкус может быть обнаружен только опытным аналитиком. Безопасность воды в санитарно- эпидемиологическом отношении гарантируется при условии соблюдения требований ГОСТ 2874-73 по бактериологическим показателям. Общее количество бактерий в 1 мл неразбавленной питьевой воды не должны отсутствовать организмы, различаемые невооруженным глазом.

Качество воды зависит от наличия в ней различных веществ неорганического и органического происхождения (в том числе микроорганизмов). Эти вещества могут находиться в воде в растворенном и нерастворенном (различной дисперсности) состоянии.

Качество воды характеризуется ее температурой, содержанием в ней взвешенных веществ, ее цветностью, запахом, привкусом, жесткостью, содержанием отдельных химических элементов и соединений, активной реакцией и другими показателями.

Качество воды источников водоснабжения и воды питьевой регламентируется ГОСТами: «Источники централизованного хозяйственно- питьевого водоснабжения. Правила выбора и оценки качества», «Вода питьевая» и др.

Содержание в воде взвешенных веществ характеризует содержание в ней нерастворимых веществ. Определяется путем фильтрования исследуемой воды через бумажный фильтр. Прирост в весе высушенных фильтров показывает содержание в воде взвешенных веществ. Обычно их измеряют в мг/л (миллиграммов сухого вещества, содержащегося в 1 л воды).

Взвешенные вещества состоят из частиц песка и глины, смываемых дождевыми и талыми водами в реки или вымываемых из русл, а также из органических взвесей.

Содержание в воде нерастворимых веществ может характеризоваться мутностью. Мутность воды определяется на специальных приборах -мутномерах. Принцип определения мутности основан на сравнении мутностей исследуемой воды с эталонной мутностью. Мутность выражается в мг/л.

Косвенной характеристикой содержания в воде нерастворенных веществ является прозрачность. Ее измеряют в стеклянном цилиндре с сантиметровой шкалой. Прозрачность выражается в сантиметрах слоя воды, через который еще виден нанесенный черной краской на белой пластинке условный знак в виде двух крестообразно расположенных линий толщиной 1 мм («крест») или специальный стандартный шрифт.

Наличие в воде растворенных газов, минеральных солей, органических веществ и микроорганизмов может придавать ей неприятные запах и привкус. Запах и привкус оценивают по условной пятибалльной шкале.

Наличие в воде солей кальция и магния характеризуется жесткостью воды, измеряемой в миллиграмм-эквивалентах на 1 л воды (мг-экв/л). Жесткость вычисляется путем деления количества вещества в мг/л, обусловливающего жесткость, на его эквивалентный вес.

Различают карбонатную жесткость, обусловленную наличием в воде двууглекислых солей кальция и магния, и некарбонатную жесткость, обусловленную наличием в воде других солей кальция и магния. Суммарную жесткость называют общей жесткостью.

Важной санитарной оценкой качества воды является содержание в ней бактерий группы кишечной палочки (Coli) , являющейся типичным представителем кишечной микрофлоры, но не являющейся болезнетворной. Присутствие кишечной палочки свидетельствует о загрязнении воды фекальными стоками и возможности попадания в нее болезнетворных бактерий (бактерий брюшного тифа, дизентирии). Поэтому при бактериологических анализах определяют коли-титр или коли-индекс. Коли — индекс — количество кишечных палочек, содержащихся в 1 л воды.

.2 Анализ существующей схемы очистки питьевой воды г. Новочеркасска

Методы очистки воды зависят от качества воды в источнике водоснабжения, потребляемого расхода и требований, предъявляемых к качеству воды потребителями. Во второй графе табл. 4 указаны допускаемые величины показателей качества воды для различных водопотребителей.

При очистке речной воды, используемой для хозяйственно-питьевых целей в ряде отраслей промышленности, наиболее широко применяют осветление, обесцвечивание и обеззараживание воды (дезинфекцию). При осветлении и обесцвечивании из воды удаляют взвешенные и гумусовые вещества, а при обеззараживании уничтожают бактерии.

Для некоторых производств требуется вода невысокой прозрачности. В этом случае может оказаться достаточным удаление из воды лишь грубодисперстных взвешенных веществ. Это достигается процеживанием воды через решетки и сетки, устанавливаемые в водозаборных сооружениях.

Удаление более мелких взвешенных веществ осуществляется простым механическим отстаиванием воды в отстойниках или отстаиванием ее в отстойниках с предварительным коагулированием.

Более глубоко и более эффективно происходит осветление воды при коагулировании и пропуске ее через «взвешенный слой» хлопьев, ранее отделенных от воды. Сооружение, в котором происходит очистка воды этим способом, называется осветлением.

Для глубокого осветления воды обычно применяют ее фильтрование через песчаные фильтры.

Коагулирование с последующим отстаиванием и фильтрованием, а затем хлорирование воды применяют также для устранения цветности и снижение окисляемости воды.

Обеззараживание воды производят хлорированием, озонированием, ультрафиолетовыми лучами и т.д.

Для снижения жесткости (умягчения), обессоливания и дегазации воды применяют химические и физико-химические методы обработки воды. Их применяют одновременно с отстаиванием и фильтрованием.

В третьей графе табл. 4 указаны основные методы обработки воды для улучшения ее качества по отдельным показателям.

Таблица 2 Методы обработки воды для улучшения ее качества

Показатели качества воды Допустимые величины показателя качества для различных водопотребителей и влияния этого показателя на водопроводные сооруженияВозможные методы обработки воды и другие мероприятия для изменения показателя качества воды или устранения его влияния ТемператураОптимальная величина для питьевой воды от 7 до 11градусов, предельно допустимая для воды, используемой при охлаждении теплообменных аппаратов, обуславливается экономичностью их работы и технологическими требованиямиОхлаждение в градирнях, брызгальных бассейнах, водоемах-охлладителяхПривкус и запахДля питьевой воды при температуре ее 20 градусов не более 2 баллов (см. ГОСТ 2874-54 и ГОСТ 3351-46Обработка хлором или раствором хлором извести, озоном, активированным углем. При наличии фенольных запахов хлорирование с предварительной аммонизацией (обработка аммиаком)Содержание взвешенных веществДля питьевой воды не более 2мг/л (прозрачность по шрифту не менее 30 см), для питания паровых котлов и для некоторых видов производств, где вода соприкасается с продукцией (производство тканей, кинопленки), не более 5 мг/лЕстественное отстаивание, отстаивание с предварительным коагулированием взвешенных веществ, фильтрование.ЦветностьДля питьевой воды в среднем за год не более 20 градусов Коагулирование с последующим отстаиванием и фильтрованием, Хлорирование, озонирование.ОкисляемостьНе более 5-8 мг/л О2 (большая величина указывает на возможное загрязнение источниками сточными водами). Вызывает вспенивание воды в паровых котлах. Проверка состояния источника, установление зоны санитарной охраныРсстворенный остаток (сухой)В воде источника, используемого для питьевых целей, не более 1000 мг/л Для питания паровых котлов, а также для некоторых предприятий (производство синтетического каучука, капрона, кинопленки, конденсаторной бумаги) допускаемая величина во много раз меньше и должна определяться экономическими собраниямиЧастичное обессоливание одним из следующих методов: испарение с последующей дистилляцией пара, ионный обмен, электрохимическое обессоливание Частичное или полное обессоливание теми же методамиЖесткостьДля питьевой воды не более 7 мг-экв/л и в особых случаях не более 14 мг-экв/л. Для паровых котлов и некоторых предприятий (крашение тканей, производство волокна) Жесткость не должна быть более 0,005-0,02 мг-экв/л В системах оборотного водоснабжения, содержащих теплообменные аппараты и охлаждающие устройства (градирни, брызгальные бассейны), ограничивается карбонатная жесткость добавочной водыУмягчение одним из следующих методов: термическим, реагентным, ионитовым или комбинацией из перечисленных методов Обработка кислотой, фосфатами, углекислотой дымовых газовАктивная реакция (ph)Для питьевой воды в пределах 6,5-9,5. Малые значения рН обычно вызывают коррозию труб, что может ухудшить вкус воды Для воды промышленных водопроводов определяются технологическими требованиями с учетом других показателей качества воды (температура, общая щелочность, содержание кальция и растворенный остаток)Подщелачивание известью или другой щелочью (содой, едким натром) Стабилизация одним из следующих методов: подщелачивание, фосфатирование, подкисление, обработка дымовыми газами Содержание железаДля питьевой воды не более 0,3 мг/л. Для некоторых предприятий (крашения тканей, производство кинопленки, триплекса) определяется технологическими требованиямиОбезжелезивания одним из следующих методов: аэрация с последующим отстаиванием и фильтрованием, коагулирование с последующим отстаиванием и фильтрованием, известкование с последующим отстаиванием и фильтрованием, катионированиеСодержание сульфатов и хлоридовДля питания паровых котлов и для некоторых предприятий (гидрометаллургическая переработка цветных металлов, производство синтетического каучука, капрона) определяется в зависимости от общей степени минерализации водыЧастичное или полное обессоливание одним из следующих методов: испарение с последующей дистилляцией пара, ионный обмен, элнктрохимическое обессоливаниеСодержание фтораДля питьевой воды не менее 0,5 мг/л инее более 1,5 мг/лОбработка фтористым или кремнефтористым натрием (при недостатке фтора в воде), обесфторивание воды магнезиальным методом или фильтрование ее через слой активированной окиси алюминияСодержание аммиака, нитритовНаличие их является сигналом о возможном загрязнении источника бытовыми сточными водами Обследование источника, устранение причин загрязнения загрязнения, установление зоны санитарной охраныСодержание кремнекислотыНаличие ее препятствует использованию воды для питания котлов высокого давления (из-за отложения силикатной накипи на стенках котлов и на лопостях турбин)Обескремнивание воды магнезиальны ми методами или в цикле полного обессоливания воды Содержание свободной углекислотыМожет вызвать коррозию бетонных сооружений и водопроводных трубАэрация, обработка известью, фильтрование через фильтр с мраморной крошкой или полуобоженным доломитомСодержание растворенного кислородаУсиливает коррозию металла котлов, теплообменной аппаратуры, теплосетей и водопроводных трубТермическая или вакуумная деаэрация, обработка сульфитом натрия, сернистым газом или гидразингидратом. Фильтрование через сталестружечные фильтрыСодержание сероводородаПридает воде неприятный запах. Вызывает коррозию труб и их зарастание в результате развития серобактерийАэрация, хлорированиеОбщее число ччч бактерийДля питьевой воды не более 100 колоний бактерий в 1 см3 водыОбеззараживание одним из следующих методов: хлорирование, озонирование, обработка ультрафиолетовыми лучамиСодержание кишечной палочкиДля питьевой воды не более 3 палочек в 1лОбеззараживание теми же методами

Смесители вертикального вихревого типа были предложены ВНИИ ВОДГЕО.

Высота смесителей 8,0 м, а высота конической части 3,0 м. Смесители имеют прямоугольную в плане форму с пирамидальным днищем.

В смесителе происходит быстрое и полное смешение воды с реагентами.

Работа смесителя основана на принципе турбулизации потока из-за значительного изменения живого сечения и изменения его скорости.

Вода подается по трубе снизу, а растворы коагулянта, флокулянта и хлор вводятся сверху вниз по патрубкам на некотором расстоянии друг от друга. Перемешивание осуществляется благодаря изменению скорости движения воды при переходе ее в конической части смесителя от узкого сечения к широкому. Отвод воды производится из верхней части смесителя через кольцевой желоб и по двум трубопроводам диаметром 500 мм.

Скорость в узком сечении конической части смесителя порядка 1 м/с, в цилиндрической части около 25 мм/с, время пребывания воды в смесителе 1,5-2 минуты, угол конусности 45.

Для того, чтобы не происходил перелив воды при высоком уровне устраивают боковой карман на дне которого расположен выпуск канализации.

Такого перелива воды на станции не происходит. Существует другая проблема — заниженный уровень воды в сооружении. Лотки для сбора воздуха не достаточно покрыты водой вследствие чего происходит засос воздуха, который выходит на последующих сооружениях.

Реагенты вводятся вниз на расстоянии 1,5-2 м друг от друга. Причем первым в воду вводится хлор.

Камеры хлопьеобразования предназначены для создания благоприятных условий для второй, завершающей стадии процесса коагуляции — хлопьеобразования, чему способствует плавное перемешивание потока. По принципу действия камеры хлопьеобразования делится на гидравлические и механические (флокуляторы). В практике чаще применяют следующие камеры гидравлического типа: водоворотные, вихревые, перегородчатые. Выбор типа камеры хлопьеобразования зависит от качества исходной воды и конструкции отстойников.

На очистных сооружениях водопровода установлены 6 камер реакции вихревого типа.

На поверхности воды в камерах хлопьеобразования под действием воздуха находящегося в воде образуется пена. Эта пена удаляется при понижении уровня воды камере хлопьеобразования в трубы с отверстиями, отводящими воду в карман отстойника.

Удаление осадка из камер хлопьеобразования осуществляется путем промывки, а также отводом его по специальному трубопроводу.

Промывка камер хлопьеобразования ведется одновременно с промывкой отстойников 1 или 2 раза в год. Перекрывается подача, открывается канализация и осадок вместе с водой уходит. Оставшийся осадок и загрязнения с боковых стенок смывают водой из шлангов.

Осветление воды в отстойниках при ее движении с небольшой скоростью основано на принципе осаждения примесей под действием силы тяжести. Плотность этих частиц больше плотности воды. Осаждение взвешенных веществ происходит с различными скоростями и зависит от их формы, размеров, плотности, шероховатости поверхности частиц и температуры воды. В начале процесс отстаивания протекает наиболее эффективно. После осаждения самых плотных частиц процесс отстаивания замедляется, и дальнейшее отстаивание воды ввиду незначительного дополнительного эффекта экономически не оправдано из-за увеличения габаритов и стоимости отстойников.

По направлению движения воды различают отстойники горизонтальные, вертикальные и радиальные.

На водопроводных очистных сооружениях 6 горизонтальных отстойников. Они представляют собой прямоугольных вытянутые по ходу движения воды железобетонные резервуары, в которых вода движется в горизонтальном направлении от одного торца сооружения к другому. обрабатываемая вода поступает через распределительный лоток и при помощи дырчатой перегородки направляется в объем сооружения. Пройдя через отстойник осветленная вода собирается с другой стороны перфорированной трубой. Дно отстойника устроено с уклоном к грязевому приемнику. В отстойнике различают рабочую зону, где происходит осаждение взвесей (зона осаждения) и нижнюю часть отстойника, где собирается выпавший осадок, т.е. зона накопления и уплотнения осадка.

Отстойники на ВОС имеют прямоугольную форму и размеры 23,0?9,0 м. Средняя глубина воды в них 3,5 м. Емкость новых отстойников 960 м3, старых — 720 м3.

Отстойники периодически — 1-2 раза в год очищают от накопившегося в них осадка. На время очистки отстойники выключают из работы. открываются канализационный выпуск, опорожняют сооружение, затем водой из шлангов сливают оставшийся осадок. Специального устройства для удаления осадка без остановки сооружения на станции не предусмотрено. Расход воды ан удаление осадка при промывке не определяется и зависит от количества загрязнений.

Вся продукция отличается высоким качеством изготовления в соответствии с самой передовой технологией.

Высокая прочность и долговечность.

Простота монтажа и демонтажа.

Равномерное распределение воздуха или воды.

Минимальные потери напора в системе.

Восстановление диспергирующего слоя.

Устойчивость к гидро — и аэродинамическим ударам.

Контроль качества и испытания.

Производственная и научная деятельность фирмы осуществляется на базе собственных разработок и изобретений. Все производимое оборудование запатентовано и сертифицировано. На все проводимые работы имеются лицензии.

Система дренажных фильтров «ПОЛИДЕФ» размещается под фильтрующей загрузкой в виде параллельно расположенных лучей по всей площади емкости. Расстояние от низа луча не должно превышать 120 мм по СНиП 2.04.02-84*. Расстояние по осям дренажных лучей должно быть в пределах 250-350 мм.

Прошедшая предочистку вода поступает сверху в емкость фильтра. В процессе фильтрования вода проходит фильтрующий слой, задерживающий механические загрязнения, затем поступает через пористый слой и отверстия труб в дренажно — распределительную систему и далее в резервуар чистой воды. Пористый слой предотвращает вынос фильтрующегося материала через отверстия труб вместе с отфильтрованной водой.

Промывка фильтра производится обратным током профильтрованной воды путем ее подачи под напором в дренажно — распределительную систему. Вода с большой скоростью (=60м/ч) проходит через отверстие каркаса, пористый слой и далее через фильтрующую загрузку, взвешивая и поднимая ее. Налипшие на зернах фильтрующей загрузки загрязнения в процессе хаотического движения зерен оттираются и вымываются промывной водой в сборные лотки и далее в систему отвода грязной промывной воды. Вследствие большого сопротивления движению воды через проходные отверстия достигается равномерность распределения промывной воды по площади фильтра.

Использование дренажно — распределительных систем «ПОЛИДЕФ» исключает вынос загрузки, улучшает отвод промывной воды, позволяет отказаться от поддерживающих слоев, устраняет грязевые скопления на поверхности и повышает полезную производительность работы фильтра до 10%.

На водопроводных очистных сооружениях имеются три резервуара чистой воды. Два из них — емкостью по 1500 м 3 и один — 2000 м 3 . Общий объем РЧВ — 5000 м 3 . РЧВ на станции имеют цилиндрическую форму с купольным перекрытием. Они заглублены на половину своей высоты и обсыпаны землей с целью теплоизоляции. В верхней части на резервуарах имеются люки, которые опломбированы, с целью соблюдения санитарно-гигиенических требований. Наружная часть перекрытия резервуаров покрыта рубероидом и заасфальтирована. В резервуарах обеспечены циркуляция и обмен всей воды в течение пяти суток. Полная емкость каждого резервуара разделяется на регулирующую (из которой вода идет на город) и запасную — пожарную. Воду из которых могут забирать только пожарные насосы.

Резервуары чистой воды оборудованы вентиляционными трубами, снабженными сетками. Резервуары оборудуют подводящими, отводящими, переливными и спускными трубами, защищая их от замерзания воды в них. Для регулирования подачи воды в резервуар установлено автоматическое устройство. Уровень воды измеряется специальным уровнеметром на расстоянии. Контроль за содержанием активного хлора производится ежедневно в лаборатории. Пробу воды титруют азотно-кислым серебром при добавлении 1 мл K 2 CrO 4 .

Фильтрование — один из методов осветления воды — отделение твердых частиц от жидкости. При этом из раствора могут быть выделены не только диспергированные частицы, но и коллоиды. При фильтровании жидкость, содержащая примеси, пропускается через фильтрующий материал, проницаемый для жидкости и непроницаемый для твердых частиц. Это осуществляется на фильтрах. На водопроводных очистных сооружениях установлены 12 скорых фильтров размерами: 5,5*4,25 = 23,4 м2 (старых — 4 шт.) и 5,95*4,2 = 25,0 м2 (новых фильтров — 8 штук).

Общая площадь фильтров 92 м2.

Высота слоя воды над поверхностью загрузки при фильтровании 2 м.

Фильтрующий слой состоит из отсортированного речного песка (кварцевого) + цеолит. Крупность загрузки не определена. При фильтровании протекает процесс сорбции агрегативно неустойчивых примесей воды на поверхности зерен фильтрующего слоя. Глубина проникания загрязнений в толщу фильтрующего слоя тем больше, чем больше скорость фильтрования, крупнее зерна фильтрующего слоя и чем меньше размеры частиц взвеси, задерживаемых фильтрами.

Важным элементом фильтра, обеспечивающим успех работы сооружения, является распределительная система.

Она собирает и отводит профильтрованную воду без выноса зерен фильтрующего или поддерживающего слоев, а при промывке равномерно распределять воду по площади фильтра.

На водопроводных очистных сооружениях распределительная система большого сопротивления. На дне фильтра уложена труба d = 400 мм, от которой в обе стороны отходят лучи «ПОЛИДЕФ».

При фильтровании быстро происходит загрязнение фильтра, за счет чего идет уменьшение скорости фильтрования и ухудшение качества фильтра.

Промывку фильтра производят 2 раз в сутки, т.е. через 12 часов, а в паводок, когда вода наиболее загрязнена, промывку осуществляют через каждые 6-8 часов.

Промывают скорые фильтры чистой профильтрованной водой, подаваемой под напором в распределительную систему. Промывная вода, двигаясь с большой скоростью и значительным гидродинамическим давлением через фильтрующий материал снизу вверх, расширяет и взвешивает его. Зерна расширившейся загрузки, хаотично двигаясь, ударяются друг от друга, налипшие загрязнения оттираются и попадают в промывную воду. Промывная вода вместе с загрязнениями переливается через кромки сборных желобов и отводится в водосток. Желоба выполнены из стали. Одной из трудностей эксплуатации является быстрый выход из строя желобов. Металлические желоба ржавеют, за счет чего дно и края становятся неровными. Происходит неравномерная подача воды, приводящая к размыву загрузки.

На всех трубопроводах фильтра установлены автоматизированный задвижки диаметром 350 и 400 мм. Пульты управления ими находятся возле каждого фильтра.

На водопроводных очистных сооружениях производится постоянный контроль за качеством фильтра. Контроль осуществляется путем химических анализов в лаборатории. Пробы берутся через каждые три часа, а если вода наиболее загрязнена — через каждый час. На станции есть специальный баки для хранения промывной воды. Их общая емкость 200 м3. Эти баки заполняются водой в течении 30 мин. Вода на фильтр подается двумя центробежными насосами.

На водопроводных очистных сооружениях осуществляется повторное использование промывной воды. Для этого предусмотрен оборотный резервуар, емкостью 200 м3. При промывке, которая длится около 15 мин, грязная вода 2-мя фекальными насосами перекачивается в оборотный резервуар, откуда она перекачивается в смеситель. Удаление осадка производится путем промывки.

Для улучшения работы фильтров на станции произведена реконструкция с заменой распределительного коллектора, фильтрующего материала (кварцевого песка) + ОДМ и дренажно-распределительной систем

Дренажные фильтры «ПОЛИДЕФ» предназначены для устройства сборно -распределительных систем в напорных и безнапорных фильтрах на станциях водоподготовки и сооружениях до очистки сточных вод, а так же для устройства дренажей на иловых и шламовых площадках.

Прочная, жесткая конструкция фильтра получена за счет применения в качестве несущего каркаса перфорированной полимерной трубы. Фильтрующий слой нанесен методом пневмоэкструзии в виде пористого волокнистого материала с размерами пор 150…300 мкм. Исполнение дренажных фильтров «ПОЛИДЕФ» полностью полимерное.

Материалы, применяемые для изготовления фильтров, разрешены Минздравом РФ для использования хозяйственно-питьевом водоснабжении.

Таблица 3 Основные характеристики и технические данные дренажных фильтров

2.1 Длина элемента мм 500…20002.2 Внутренний диаметр мм 56/98/140 2.3 Наружный диаметр мм 75/122/1722.4 Вес одного элемента длиной 1м кг 1,25/3,0/5,42.5 Диаметр нити напыленного волокна мкм 200…4002.6 Скважность каркаса 0,3…0,452.7 Пропускная способность л/см 3…52.8 Потери напора в элементе при распределении воды м.в.ст. 0.98…2,92.9 Соединение резьбовое. Размер резьбы М57 3/М104 4 (шаг, угол профиля)2.10 Минимальный размер частиц песказадерживаемых дренажным элементом мм 0,32.2 Химическая стойкость стоек к большинству кислот, щелочей и агрессивных газов2.3 Эксплуатационный и температурный режим Преимущества дренажных фильтров.

Вся продукция отличается высоким качеством изготовления в соответствии с самой передовой технологией.

Ø Высокая прочность и долговечность.

Ø Простота монтажа и демонтажа.

Ø Равномерное распределение воздуха или воды.

Ø Минимальные потери напора в системе.

Ø Восстановление диспергирующего слоя.

Ø Устойчивость к гидро — и аэродинамическим ударам.

Ø Контроль качества и испытания.

Производственная и научная деятельность фирмы осуществляется на базе собственных разработок и изобретений. Все производимое оборудование запатентовано и сертифицировано. На все проводимые работы имеются лицензии.

.3 Химические и физические процессы, происходящие при очистке воды

В процессе осветления воды происходит коагуляция примесей воды — это процесс укрупнения мельчайших коллоидных и дисперсионных частиц вследствие их взаимного слипания под действием сил молекулярного притяжения. Коагуляция завершается образованием видимых невооруженным глазом агрегатов — хлопьев и отделением их от жидкой среды.

Частицы примесей природной воды при столкновении друг с другом или с частицами контактной массы обычно отталкиваются, так как они обладают определенной агрегативной устойчивостью. Она обусловлена электростатическими силами отталкивания, определяемыми наличием вокруг частиц двойного электролитического слоя, состоящего из противоположно заряженных ионов. Чтобы вызвать коагуляцию примесей воды, к ней добавляют химические реагенты — коагулянты — соли алюминия или железа. При введении в обрабатываемую воду сернокислотного алюминия происходит диссоциация его молекул:

Образовавшиеся ионы алюминия частично адсорбируются коллоидными и взвешенными частицами, а частично гидролизуется с образованием гидроокиси алюминия. В первом случае нарушается агрегативная устойчивость примесей воды, происходит их взаимное слипание при контакте друг с другом или с частицами контактной массы. Во втором случае формируются хлопья гидроокиси алюминия, на поверхности которых сорбируются дисперсные и коллоидные вещества (примеси). Отдельные хлопья при контакте укрупняются, а затем выпадают в осадок ила, задерживаются в толще фильтрующей загрузки.

Процесс коагуляции в значительной степени зависит от следующих факторов: правильного выбора дозы коагулянта, концентрации водородных ионов в воде, щелочности и температуры воды, условий перемешивания (в КХО), быстроты смешивания коагулянта с водой и содержания в воде естественных взвесей.

Для улучшения процесса коагуляции в воду могут вводиться флокулянты — химические вещества, способствующие образованию крупных флокул. В качестве флокулянтов используется полиакриламид или активированная кремневая кислота.

Действие полиакриламида на укрупнение хлопьев объясняется следующим: он представляет собой полимер амида и солей акриловой кислоты:

При диссоциации в водном растворе в цепочке полимера могут образовываться отрицательно заряженные группы R-COO. Положительные группы получаются в результате гидротации амидов с образованием . В воде, содержащей коллоидные загрязнения, их частицы собираются молекулами полиакриламида. При этом частицы загрязнений оказываются связанными цепочками полимера.

Это приводит к образованию крупных быстроосаждающихся хлопьев — флоккул. Но для образования хлопьев необходимо чтобы молекулы ПАА и взвешенные частицы сближались настолько, чтобы начали действовать силы молекулярного притяжения. Для этого необходимо вводить флокулянт в воду после введения коагулянта.

Для обеззараживания воды применяют хлорирование. Под действием хлора большинство бактерий погибает в результате окисления веществ, входящих в состав протоплазмы клеток. Хлорирование является также хорошим средством борьбы с развитием в воде мельчайших водорослей.

При хлорировании в результате гидролиза хлора образуется хлорноватистая и соляная кислоты.

Хлорноватистая кислота HOCl — соединение не стойкое, диссоциирующее с образованием гипохлоритного иона OCl- . При этом окислительное действие оказывают как хлорноватистые кислота, так и гипохлоритный ион.

.4 Рекомендации по организации работы очистных сооружений

Оксихлориды алюминия во многих странах мира уже давно применяются для очистки природных и сточных вод. В 1935 году опубликована первая работа, в которой предложено проводить флокуляцию загрязненного сахарного раствора с помощью оксихлорида алюминия.

Интенсивные работы по получения и применению ОХА для очистки природных вод проводятся в Японии, Италии, Франции, Англии и других странах. Уже впервые работы по получению ОХА в качестве коагулянтов в нашей стране показали целесообразность его производства и применения.

Физико-химические свойства водных растворов хлорида и оксихлоридов алюминия

С увеличением содержания соли плотность, вязкость и кислотность растворов увеличивается. Вязкость в растворах хлорида алюминия заметно выше, чем в растворах оксихлоридов. Это свидетельствует о том, что в растворах АlCl3 имеет место комплексообразование. Максимум электропроводности по мере увеличения основности оксихлорида сдвигается в область более концентрированных растворов.

В растворах ОХА, где кислотность среды заметно ниже, вклад ионного механизма в перенос тока возрастает с увеличением основности оксихлорида. А поскольку электропроводность зависит от концентрации ионов, ответственных за перенос тока, повышение концентрации оксихлорида способствует увеличению электропроводности.

По данным Танабе, состав основного хлорида, полученного различными методами, отвечает по формуле Аl2+n (ОН)3n Cl3. В зависимости от способа получения этих соединений изменяется скорость нейтрализации их соляной кислотой, что указывает на различное содержание ОН — в комплексных ионах, находящихся в равновесии в растворе.

Этим же автором изучался состав растворов основного хлорида алюминия с помощью электрофореза на бумаге. Исследованиям подвергались оксихлориды общей формулы Аl2+n (ОН)3n Cl3 в присутствии буферных растворов с рН 3-7. Путь перемещения ионов уменьшается с ростом рН. При рН >5 он растет с увеличением, а при рН + .

Температура кипения растворов 5/6-оксихлорида с увеличением концентрации от 1 до 15% массы (по Аl2О3) изменяется незначительно от 99,9 до 100,7 °С. При длительном кипячении растворов Al2(ОН)3 Сl разлагается с образованием

Аl(ОН)3, а при длительном хранении (больше месяца) растворы начинают опалесиировать.

Товарный продукт 5/6-оксихлорида алюминия может поставляться как в виде растворов различной концентрации, так и в виде стекловидных пластин или порошка с зернистостью примерно 1 мм и насыпным весом 1 г/cм 3 . Твердый продукт негигроскопичен и хорошо растворим в воде. Содержание Аl2О3 в нем — 42%.

Остальные основные хлориды алюминия существуют только в растворах. Каждому из них отвечает определенный интервал рН. Однако свойства этих растворов подробно не изучались.

Формы существования оксихлоридов алюминия в водных растворах

В работах предпринята попытка с помощью различных методов физико-химического исследования (радиометрия, УФ, КРС и др.) определить состав продуктов гидролиза и некоторые количественные характеристики системы АlCl3 — вода в состоянии равновесия. Исследованию подвергались растворы ОХА различного состава Аl(ОН)Cl2, Al(ОН)2Сl, Al2(ОН)3Сl, получаемые при взаимодействии алюминия с водным раствором АlCl3, а также самого хлорида алюминия в широком диапазоне концентраций — от 1·10 -3 до 2 мол/л.

Результаты спектроскопических исследований примерно одинаковы. Спектральные кривые молекулярных растворов исследуемых объектов во всех случаях индивидуальны. Накладка происходит лишь при смешении растворов оксихлоридов различной основности. Так, спектральные кривые растворов АlCl3 + Al(ОН)2Cl и Al(ОН)Cl2 полностью идентичны.

В растворах оксихлоридов присутствует в основном хлорид-ионы и алюминийсодержащие катионы, которые ответственны за перенос тока.

С увеличением рН растворов гидролиз осложняется ассоциативными процессами. Согласно криоскорическим измерениям, каждый из оксихлоридов характеризуется вполне определенной температурной депрессией. В растворах АlCl3 отношение близко к 4 (4 сорта частиц), для растворов Al(ОН)Cl2 оно равно 2, в растворах Al(ОН)2Cl — 1 и для 5/6-оксихлорида — 0,25.Низкая температурная депрессия для растворов высокоосновных оксихлоридов свидетельствуют не об отсутствии электролитных свойств, а о нарастающем процессе ассоциации частиц.

С помощью концентрационной зависимости функции Бьеррума были рассчитаны ступенчатые константы гидролиза в растворах АlCl3 для стадий образования 1/3 — 2/3 и 5/6-оксихлоридов и равновесные концентрации каждой из форм. Полученные данные свидетельствуют о том, что равновесные концентрации всех трех продуктов гидролиза сравнительно мало зависят от аналитической концентрации АlCl3. При этом наблюдается довольно хорошее постоянство константы гидролиза для стадий Al(ОН)Cl2? Al(ОН)2Cl? Al2(ОН)3Сl. Резкое де изменение концентрационной константы гидролиза для стадии АlCl3? Al(ОН)Cl2 связано с существенными изменениями коэффициентов активности при быстром изменении истинной концентрации АlCl3, в равновесных растворах с ростом его аналитической концентрации.

Таким образом, полученные данные свидетельствуют об одновременном существовании в хлоридных растворах алюминия нескольких гидролизованных форм, находящихся в динамическом равновесии друг с другом. Соотносительное

содержание этих форм является функцией состава и рН раствора. Именно поэтому многие методы, в частности спектральные, кондуктометрические, показывают плавный характер изменения состава продуктов гидролиза в растворах, которые удобно выражать одной общей формулой [Al(ОН)3-хClх]n, где х, в зависимости от кислотности и концентрации раствора, может принимать любые значения от 1 до 3. Приведённые данные не противоречат мнению о том, что оксихлориды алюминия — это соединения переменного состава, находящиеся в различной степени гидратации.

Основные технологические параметры

В настоящее время на ОСВ применяется новый реагент для очистки воды оксихлорид алюминия (ОХА).

Для использования оксихлорида алюминия на ВОС-1 была проведена реконструкция существующего склада коагулянта [Al 2 (SO 4 ) 3 ] и замена существующих насосов подачи рабочего раствора коагулянта на новые.

Существующий склад коагулянта разделяется на две части кирпичной стеной. В одной части будет хранится сульфат алюминия, во второй оксихлорид алюминия.

Проектируемый склад рассчитан на хранение жидкого товарного оксихлорида алюминия 10-18% концентрации и приготовление жидкого 10% ОХА из сухого реагента 30% активности.

Доставка жидкого ОХА на очистные сооружения предусматривается в автоцистерне марки КО-505-А, оборудованной насосом. Из автоцистерны насосом жидкий ОХА подается в 4 емкости по 16 м 3 каждая (поз. 1…4), которые имеются на ВОС-1.

Настоящим проектом предусматривается антикоррозийная защита внутренней поверхности этих емкостей.

Для их установки в складе необходимо воспользоваться существующими проемами ворот, которые в дальнейшем закладываются кирпичом.

Доставка сухого реагента ОХА, расфасованного в мешки весом 25 кг, осуществляется автотранспортом, а его хранение предусмотрено в существующем складе пустой тары.

Потребление товарного жидкого коагулянта ОХА 10% активности составляет 3,8 м 3 /сут; 114 м 3 /мес.

Приготовление 10% раствора ОХА из сухого коагулянта предусматривается в двух гуммированных вертикальных аппаратах с мешалками емкостью по 2 м 3 (поз. 8,9).

Из склада коагулянта ОХА 10% активности подается насосами-дозаторами ДП2500/10 (поз. 6,7-1 раб., 1 рез.) в 3 существующие растворно — расходные емкости объемом по 12 м 3 , где готовится 1-2% раствор ОХА. Из растворно-расходных емкостей раствор ОХА насосами — дозаторами ДП2500/10 (поз. 12…15-2 раб., 2рез.) подается в два существующих вихревых смесителя.

Приготовление растворов оксихлорида алюминия, подвод затворной жидкости к насосам — дозаторам предусматривается от проектируемого хоз — питьевого водопровода.

Для этого настоящим проектом предусмотрен водопровод, запитанный от существующей сети хозяйствено- питьевого водопровода на собственные нужды очистных сооружений.

Монтаж оборудования и трубопроводов склада оксихлорида алюминия и подключение их к существующему оборудованию реагентного хозяйства похволяет производить эти работы без остановки процесса очистки воды и уменьшения производительности очистных сооружений.

Внутренние сети растворов коагулянта запроектированы из полиэтиленовых напорных труб по ГОСТ 18599-83 диаметром

Сети хозяйственно — питьевого водопровода запроектированы из полиэтиленовых напорных труб по ГОСТ 18599-83 диаметром

.5 Рекомендации по контролю качества питьевой воды

Основными технологическими приемами, обеспечивающими благоприятные органолептические свойства воды и ее безопасность в санитарно-эпидемиологическом отношении, являются осветление, обесцвечивание и обеззараживание воды. В отдельных случаях комплекс сооружений по осветлению, обесцвечиванию и обеззараживанию дополняется установками по кондинционированию ионного состава воды (обесфторивание, фторирование, обезжелезивание, умягчение), если качество воды источника по отдельным показателям не соответствует требованиям стандартов.

Качество воды оценивается комплексом различных показателей, определяемых санитарно-химическим и гидробиологическим анализом.

Повседневный контроль качества воды обеспечивается значительно меньшим числом анализов. Характер и число показателей, по которым осуществляется повседневный контроль, может значительно изменяться в зависимости от вида водоисточника, методов обработки воды и требований, предъявляемых к воде потребителем.

Необходимость и частота определения того или иного показателя зависят от цели, с которой выполняется анализ. Основные показатели, быстро изменяющиеся в процессе очистки, например мутность и цветность, по которым нормируется качество воды, определяются часто. Для их определения на крупных станциях применяются автоматические регулирующие приборы. Если на очистной станции предусмотрено кондиционирование ионного состава воды, постоянно контролируется показатель, по которому осуществляется кондиционирование. Часто определяются и показатели, характеризующие санитарное состояние воды. Все перечисленные показатели дают возможность оценить эффективность работы очистной станции и каждого из сооружений, входящих в её состав. Постоянный контроль этих показателей позволяет технологу оперативно управлять процессом очистки.

При обработке воды её качество зависит и от остаточных концентраций применяемых реагентов. Концентрации алюминия, ПАА, железа и других соединений строго нормируются в питьевой воде. Определение остаточных концентраций хлора и озона проводится непрерывно автоматическими регистрирующими приборами, а в случае невозможности такого контроля определение проводят 1 раз в час. Столь частое выполнение этих анализов диктуется необходимостью поддержания определённой остаточной концентрации окислителя для достижения требуемого бактерицидного эффекта. Кроме того, по этим показателям контролируется доза окислителя. Однако для исходной воды данные полного санитарно-химического анализа ещё не могут дать полного представления о свойствах воды. Как правило, качество воды контролируется на всех этапах ее обработки, поэтому перед каждым сооружением и после него должны быть предусмотрены приспособления для отбора проб.Заключение

Для Новочеркасска — крупного промышленного центра юга России, характерен высокий уровень потребления воды, при этом возрастают требования к ее качеству. Подготовка питьевой воды на МУП Водоканал г.Новочеркасска осуществляется по общепринятым методикам, с использованием методов механического отстаивания, коагуляции, флокуляции, хлорирования, фильтрации. Но эти методы очистки оказывают отрицательное воздействие на окружающую среду. И по этому необходимо внедрять современные методы очистки питьевой воды. Оксихлорид алюминия является одним из коагулянтов современного поколения, который отличается высокой эффективностью процесса очистки воды от взвешенных веществ при относительно щадящем воздействии на окружающую среду.

При обработке воды её качество зависит от остаточных концентраций применяемых реагентов. Концентрации алюминия, ПАА, железа и других соединений строго нормируются в питьевой воде. Определение остаточных концентраций хлора и озона проводится непрерывно автоматическими регистрирующими приборами, а в случае невозможности такого контроля определение проводят 1 раз в час. Столь частое выполнение этих анализов диктуется необходимостью поддержания определённой остаточной концентрации окислителя для достижения требуемого бактерицидного эффекта. Кроме того, по этим показателям контролируется доза окислителя.

Список используемой литературы

1. Отчет по производственной практике

. Дикаревский В.С., Курчатов А.М. и др. Отведение и очистка поверхностных сточных вод. — Л.: Стройиздат, 1990

. Канализация населенных мест и промышленных предприятий.- М.: Стройиздат, 1981

. Методические указания по разработки нормативов предельно допустимого сброса вредных веществ в поверхностные водные объекты.- М., 1999.

. Правила охраны поверхностных вод (основные положения). — 1991.

. СанПиН 4630-88.Охрана поверхностных вод от загрязнений.- М., 1988.

. СНиП 2.04.01-85.Внутренний водопровод и канализация зданий.- М., 1986.

. Обобщенный перечень предельно допустимых концентраций (ПДК) и ориентировочно безопасных уровней воздействия(ОБУВ) вредных веществ для воды рыбохозяйственных и коммунально — бытовых водоемов.- М.: Мединор, 1995.

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

источник

4-ая схема очистки воды. «Джентельменский набор» Цена
Полный набор фильтров. Схема включает в себя: механический фильтр, систему аэрации воды, фильтр обезжелезивания, систему умягчения воды, угольный фильтр и финишная очистка — УФ лампа для обеззараживания воды. Схема предназначена для «плохой воды».
Читайте также:  Раз в год анализ сточных вод

Популярные записи

График выполнения анализов сточных вод
Гравиметрические методы анализа сточных вод
Гравиметрический метод анализа нефтепродуктов в воде
Гравиметрический метод анализа питьевой воды
Гравиметрический метод анализа сточных вод
Группы сточных вод их анализ
И начинает уставать вода анализ
И с тургенев вешние воды анализ