Меню Рубрики

Анализ воды на азот аммонийный

Биогенный элемент, который активнейшим образом участвует в процессах биогидроценоза, — аммонийный азот.

В водоёмах можно наблюдать изменение содержания этого элемента: весной его становится меньше, зато летом, в связи с благоприятным температурным режимом, значительно увеличивается его концентрация, поскольку массированно разлагаются органические вещества.

И это кардинальным образом влияет на санитарное состояние водоёмов, что заставляет усиливать контроль за жизнеспособностью экосистемы. Предельно допустимой концентрацией в водоёмах, где ловят рыбу, считается та, где аммонийный азот не превышает 0,39 миллиграммов на литр.

Скопление белкового азота подвержено аммонификации, и этот процесс разлагает белки до аммонийного состояния. Сточные воды очищают при помощи этого источника азота, если в них имеется источник углеродного питания для клеток. Интенсивное использование наступает в периодах фазы их роста , а когда начинается окисление, аммонийный азот высвобождается в виде аммиака. Далее он окисляется до состояния нитритов и затем нитратов, или же повторно участвует в уже новом синтезе.

Для того чтобы аммонийный азот удалить из водоёма, применяется клиноптилолит, тогда вода восстанавливает свои качества. Ставятся градирни в тёплое время года, а зимой их заменяют ионообменные установки, благодаря которым вредные вещества удаляются из сточных вод. Постоянно проводятся анализы, берутся пробы на азот аммонийный в воде, который из взятой пробы отгоняется, а затем в полученном дистилляте определяется его количество.

Существует в природе ионообменный материал, который называется клиноптилолит (класс цеолитов). Именно с его помощью целесообразно восстанавливать чистоту воды. Азот аммонийный в воде растворяется не полностью, поэтому сначала нужно освободить её от всех взвешенных веществ, после чего подавать воду на клиноптилолитовые фильтры. Это довольно дорогая очистка, но зато самая эффективная — достигает девяноста семи процентов.

Регенерация потребует внесения раствора хлористого натрия — пяти- или десятипроцентного. Загрузку после этого нужно отмыть водой. Из раствора будет выделяться аммиак, который можно поглотить серной кислотой, чтобы образовался сульфат аммония, который очень хорош как удобрение. Азот аммонийный в сточных водах, а также азотосодержащие органические соединения удаляют различными видами перегонки, экстракции, адсорбции.

Этот метод хорош, если необходимо определение аммонийного азота. Другие его формы, которые встречаются в тех же удобрениях, — амидная, нитратная — именно этим методом определить нельзя. Сначала нужно извлечь азот аммонийный, в сточных водах, например, его предостаточно. Об этом методе написано выше. Далее навеску будущего удобрения нужно поместить в колбу и пролить раствором соляной кислоты (концентрация должна быть молярной — 0,05 моль на дм 3 ). Колбу необходимо встряхивать специальным аппаратом не менее получаса, после чего можно настаивать до пятнадцати часов.

Далее раствор снова взболтать и отфильтровать сквозь складчатый сухой фильтр. Тем же раствором соляной кислоты промыть содержимое фильтра как минимум трижды, затем объём фильтрата нужно довести до первоначального опять же раствором кислоты. Таким образом, во-первых, состоялось определение азота аммонийного в воде, а во-вторых — определение количества его в полученном удобрении. Последнее колеблется от сорока до ста пятидесяти миллиграммов на литр, а капролактама в этом же растворе содержится от восьми до восьмидесяти миллиграммов на литр. Если содержание аммонийного азота — менее двадцати миллиграммов, то опыт не удастся, и этот метод не применяется.

Самые характерные особенности производственных сточных вод — нестабильный химический состав, необходимый период адаптации для развития микрофлоры, избыток соединений органического и минерального происхождения азота. Перед произведением биологической очистки на очистных сооружениях сточные воды смешиваются с бытовыми и хозяйственными и таким образом усредняются. Азот аммонийный (формула NH4+) является обязательным компонентом сточных вод.

Источниками загрязнения могут являться сточные воды самых разных отраслей промышленности — от пищевой и медицинской до металлургической, коксохимической, микробиологической, химической и нефтехимической. Сюда же можно отнести все хозяйственно-бытовые стоки, навозные, сельскохозяйственные — с полей. В результате разлагаются белковые вещества и мочевина, а нитриты и нитраты анаэробно восстанавливаются.

На человеческий организм такие соединения влияют крайне отрицательно. Аммиак денатурирует белки, вступая с ними в реакцию. Тогда клетки и, соответственно, ткани организма перестают дышать, наблюдается поражение центральной нервной системы, печени, органов дыхания, нарушается работа сосудов. Если использовать регулярно воду с высоким содержанием аммония, страдает кислотно-щелочной баланс, начинается ацидоз.

Поэтому нельзя допускать использование выше нормы органических и минеральных удобрений в землепользовании, нужно постоянно бороться с излишним содержанием вредных веществ: например, азот аммонийный в почве обладает высокой растворимостью, поэтому и пища, и вода буквально отравлены им, его концентрации часто достигают токсического уровня. Особенно страдают от этого дети. Развивается метгемоглобинемия, кислородный режим в организме быстро разрушается, первым начинает страдать желудочно-кишечный тракт.

Единичные случаи заболевания метгемоглобинемией начинаются уже при содержании нитратов в воде до пятидесяти миллиграммов на литр, а когда концентрация их достигает девяноста пяти миллиграммов на литр, болезнь принимает массовый характер. В США, Франции, Нидерландах, ФРГ проведены детальные обследования, которые показали, что более пятидесяти миллиграммов нитратов на литр можно встретить в пятидесяти процентах случаев. Грунтовые и колодезные воды несут в десятки раз превышающую предел концентрацию нитратов — до полутора тысяч миллиграммов на литр, в то время как Всемирная организация здравоохранения установила предел в сорок пять миллиграммов. И это вода, которую пьют люди!

А уж сточные воды очищаются многими способами — и биологической фильтрацией, и окислением озоном, и гипохлоритами щёлочноземельных металлов, и аэрацией, и сорбцией, при которой используются цеолиты натриевой формы, и ионообменными смолами, и обрабатывают сильными щелочами, и флотацией, и восстанавливают аммоний металлическим магнием, и добавляют растворы хлорида магния с тринатрийфосфатом. Однако технологии очистки всегда намного отстают от технологий загрязнения.

В природных водах растворяется газ (NH3) аммиак, когда происходит биохимический распад органических соединений, в том числе и аммонийного азота. Тогда образуются и накапливаются другие соединения — аммоний-ион и азот аммонийный. Растворённый аммиак попадает в водоёмы с подземным или поверхностным стоком, со сточными водами, с атмосферными осадками. Если концентрация иона аммония (NH4+) превысит фоновое значение, это будет означать появление нового и близкого источника загрязнения. Это могут быть как животноводческие фермы или скопления навоза, так и бесхозно брошенные азотные удобрения, как отстойники промышленности, так и очистные коммунальные сооружения.

А соединения азота, углерода, фосфора, которые содержатся в сточных водах, попадая в водоёмы, приносят значительный ущерб экологии практически всех регионов России. Очистка сточных вод день ото дня становится всё более актуальной, поскольку концентрация вредных веществ, в том числе и азотных соединений, зачастую просто зашкаливает. Это сказывается не только на питьевой воде. Быстро накапливают нитраты практически все овощи и фрукты, они содержатся в траве и зерне, которые поедает скот.

Водоёмы всегда в нескольких переходных формах содержат азот: аммонийных солей и аммиака, альбуминоидного азота (органического), нитритов (солей азотистой кислоты) и нитратов (солей азотной кислоты). Всё это образуется вместе с процессом минерализации азота, но в большей мере поступает со сточными водами. Теперь водоёмы необходимо чистить. Соединения азота приходят на очистные сооружения в виде азота нитратов, азота нитритов, аммонийного азота и азота, связанного органическими соединениями. Сточные воды хозяйственно-бытового плана имеют небольшую концентрацию таких веществ, большую часть отправляет в водоёмы промышленность.

В процессе очистки соотношение массовых концентраций всех форм азотных соединений постоянно изменяется. Состав сточных вод становится другим уже при транспортировке, потому что мочевина, которая содержится в бытовых и хозяйственных сточных водах, взаимодействуя с бактериями, распадается и образует аммоний-ион. Чем протяжённее сеть канализации, тем дальше зайдёт этот процесс. Иногда содержание аммоний-иона при входе на очистку составляет до пятидесяти миллиграммов на кубический дециметр, что очень и очень много.

Это азот, который находится в составе органических веществ — протеидов и протеинов, полипепсидов (высокомолекулярных соединений), аминокислот, карбамидов (низкомолекулярных соединений), аминов, амидов. Вся органика, в том числе и азотосодержащая, попадает в сточные воды, после чего азотные соединения подвергаются аммонизации. Органического азота в сточных водах много, иногда до семидесяти процентов всех азотных соединений. Но в результате аммонизации на канализационном пути к очистным сооружениям приходит органического азота не более пятнадцати процентов.

Далее происходит уже рукотворная биологическая очистка. Первый этап — нитрификация, то есть переделка соединений азота за счёт определённых видов микроорганизмов, которые азот аммония окисляют, в нитрат-ион и нитрит-ион. Нитрифицирующих бактерий можно не опасаться — они к внешним условиям очень восприимчивы и легко вытесняются. А вот нитраты, если попадают в водоём, приводят его к гибели, поскольку являются великолепной питательной средой для разнообразной микрофлоры. Именно поэтому из экосистемы нитраты необходимо выводить.

Если сточные воды проникают сквозь почву, то аммонийный азот под влиянием некоторых бактерий превращается сначала в нитриты, потом в нитраты. Преобладание и содержание разнообразных форм зависит от тех условий, которые складываются на момент поступления соединений с присутствием азота в почву, а затем в водоём.

Во время паводка концентрация органических форм его значительно увеличивается, поскольку органические остатки бывают смыты с поверхности почвы, а летом уменьшаются так же значительно, потому что служат «едой» для различных водных организмов. Нитриты — промежуточная форма окисления аммонийного азота, стремящегося стать нитратами. В природных водах нитратов обычно не так много, если не случилось смыва удобрений с полей.

источник

Аммонийный азот (ЫН 4) — один из биогенных элементов, активно участвующий в биогидроценозах. Содержание аммонийного азота в воде водоемов подвержено значительным сезонным колебаниям: весной уменьшается, летом увеличивается за счет усиления бактериального разложения органических веществ. В целом повышенное содержание аммония указывает на ухудшение санитарного состояния водоема, поэтому его контроль имеет важное значение для оценки состояния водной экосистемы. ПДК азота аммонийного для водоемов рыбохозяйственного назначения составляет 0,39 мг Жл.[ . ]

Белковый азот в результате аммонификации разлагается до аммонийного, который и используется при очистке сточных вод в качестве источника азота. Под БПК здесь понимается наличие в воде источника углеродного питания клеток. Наиболее интенсивно азот используется в период логарифмической фазы роста клеток, а в период окисления клеток азот высвобождается вновь в виде аммиака. Выделившийся аммонийный азот может окисляться до нитритов и нитратов либо повторно использоваться для нового цикла синтеза. Таким образом, для цикла превращений азота справедливы реакции (4.141) — (4.143).[ . ]

Удаление аммонийного азота с помощью клиноптилолита предполагается осуществить на станции восстановления качества воды у оз. В этом случае ионообменная установка будет дополнять работу существующей градирни в теплое время года и полностью заменять в холодные периоды. С этой целью будут построены 12 ионообменных колонн, из которых девять будут находиться в работе, а три — на регенерации. Общий вид одной колонны приведен на рис. 30.[ . ]

В их присутствии аммонийный азот отгоняют из анализируемой сточной воды и определяют его в полученном дистилляте ( рис. 4 ) .[ . ]

Для удаления аммонийного азота целесообразно применять природный ионообменный материал — клиноптилолит, относящийся к классу цеолитов. Перед подачей воды на клиноптилолитовые фильтры из нее удаляют взвешенные вещества. Эффект очистки 90-97 %. Для регенерации используют 5-10 % раствор хлористого натрия, после чего загрузку отмывают водой. Выделяющийся из раствора аммиак (при регенерации раствора отдувкой аммиака в щелочной среде) поглощают серной кислотой; образующийся при этом сульфат аммония может быть использован в качестве удобрения. Для удаления азотсодержащих органических соединений применяют различные виды перегонки, экстракцию, адсорбцию. Азеотропную дистилляцию используют для выделения анилина из анилиновой воды при содержании его в воде около 4 масс.%. Более 95 % анилина отделяется в виде гетероазеотропной смеси, органический анилиновый слой подвергают затем вакуум-ректификации с получением безводного анилина.[ . ]

Для извлечения аммонийного азота навеску удобрения помещают в колбу вместимостью 500 см и приливают 200 см» раствора соляной кислоты молярной концентрации 0,05 моль/дм . Колбу помещают на аппарат для встряхивания жидкости и встряхивают в течение 30 мин. Допускается настаивание полученного раствора в течение 12 — 15 ч. Полученный раствор взбалтывают и отфильтровывают через сухой складчатый фильтр в колбу вместимостью 500 см». Содержимое на фильтре промывают 2-3 порциями (по 30 — 50 см3 каждая) раствора соляной кислоты молярной концентрации 0,05 моль/дм3. Объем полученного в колбе фильтрата доводят до метки той же кислотой.[ . ]

При содержании аммонийного азота меньше 20 мг/л метод неприменим.[ . ]

Так, количество аммонийного азота в них может колебаться от 40 до 150 мг/л, а содержание капролактама — от 8 до 80 мг/л. Определенный период адаптации, необходимой для развития микрофлоры, нестабильный состав сточных вод и избыток соединений азота минерального и органического происхождения — характерные особенности сточных вод данных химических производств. Поэтому перед поступлением на очистные сооружения биологической очистки и смешиванием с хозяйственно-бытовыми сточными водами они должны обязательно усредняться.[ . ]

Хранят в закрытой стеклянной бутыли. Раствор стабилен в течение 1 мес.[ . ]

Определение аммонийного азота основано на образовании гексаметилентетраамина при взаимодействии солей аммония с формалином.[ . ]

Экспресс-метод анализа аммонийного азота в сточных водах. Основным источником загрязнения сточных вод нефтеперерабатывающих заводов аммиаком являются технологические конденсаты. В процессе переработки нефти и нефтепродуктов аммиак образуется из азотистых соединений нефти, особенно при наличии высоких температур и катализаторов.Кроме технологических конденсатов источниками аммиака служат сточные воды с холодильных1 установок (получение аммиачного холода), а также сероводородсодержащие и технологические сточные воды, куда аммиак подается для борьбы с коррозией. Эти технологические сточные воды содержат значительные количества сульфидов аммония,которые имеют высокую токсичность по отношению к бактериальной флоре установок биохимической очистки.[ . ]

Читайте также:  Где делают анализ воды из колодца

Увеличение концентрации аммонийного азота в эвтрофных водоемах в середине леТй является результатом разложения цветущего фитопланктона или периодического поступления из гнполямнкона. В высокопродуктивных озерах при слабом перемешивании увеличивается содержание аммонийного азота у поверхности. а) 1 — мелкое эвтрофное озеро (например, оз. Верхнее); 4 — эвтрофное тропическое озеро (например, оз.[ . ]

Повышение среднего содержания аммонийного азота на 22,4%, показателя биохимического потребления кислорода — на 30,3%, понижение средней концентрации нитратов на 27%, органического углерода — на 13,1% говорит об усилении активной водой процессов электронного переноса, сопровождаемого дополнительной генерацией в воде активных форм кислорода, что приводит к окислению углеродсодержащих соединений и нитратов и образованию аммонийного азота.[ . ]

Для определения в сточных водах аммонийного азота следует предпочитать метод Крапивина, особенно в тех случаях, когда требуется быстро выполнить анализ, а также если в воде содержится большое количество азота аммиака (при содержании аммонийного азота менее 20 мг/л метод неприменим).[ . ]

Количество миллиграммов ка литр аммонийного азота вы-числют по формуле: х = (а — Ь) ■ 20, где а — число миллилитров титрованного раствора щелочи, пошедших на титрование 100 мл фильтрата; Ь — поправка в миллилитрах щелочи на кислотность 5 мл формалина.[ . ]

Чувствительность метода определения аммонийного азота о реактивом Несолера — 0,005 Шг в навеске.[ . ]

Содержание и преобладание различных форм азота зависит от условий поступления азотсодержащих соединений в воду, режима водоема. В паводковый период наблюдается увеличение концентрации органических форм азота вследствие смыва органических остатков с поверхности почвы, летом растворимые соединения азота потребляются водными организмами и содержание их в воде снижается. Нитриты (N0″“) являются промежуточной формой окисления аммонийного азота в нитраты (N07 ). Их содержание в природных водах обычно невелико. Концентрация нитратов в чистых водоемах также оценивается сотыми, десятыми долями мг/л. Но иногда, например при смыве удобрений, может достигать 10 мг/л и более. Аммонийные соединения обычно содержатся в воде в малых количествах (сотые, десятые доли мг/л).[ . ]

Содержание азотсодержащих соединений нитратов, аммонийного азота) в исследованных водах за период наблюдении определялось в концентрации, в несколько раз ниже предельно допустимой (ПДК — 45 мг/л) для питьевой воды. Анализ динамики изменения содержания азотсодержащих соединений в воде, обработанной прибором с активной водой, и в контрольной (после контакта с «плацебо») воде показал, что в течение срока наблюдений среднее отклонение опытных данных от контрольных составляло для нитратов — 1,46 мг/л, а для аммонийного азота — 0,035 мг/л, т.е. понижение концентрации нитратов и повышение количества аммонийного азота относительно их среднего содержания в воде является существенным и равно 27 и 22,4% соответственно (относительно контрольных величин). Отклонение от средних контрольных значений для показателей ВПК, органического углерода, перманганатной окисляемости составило 30,3%, 13,1% и 7% соответственно.[ . ]

В лаборатории треста Мосочиствод извлечение и связывание аммонийного азота производилось без добавления в иловую воду каких-либо химических реагентов. Если иловую воду, нагретую до 70—75° С, продувать воздухом, то за 1 ч можно получить 37,5% аммиака от полного его содержания в иловой воде; за 3 ч —61,2% и за 5 ч — 62,2%. Удаляемый аммиак поглощался обезвоженным (после метантенков) осадком с целью повышения его удобрительных качеств. При этом после однократного насыщения количество азота в осадке увеличивалось на 9,41% по сравнению с исходным; после повторного насыщения — на 13,7%.[ . ]

В почвенных пробах по вариантам опытов определяли содержание аммонийного азота (N1 ), нитратов (N03), подвижного фосфора (Р2О5), обменного калия (К20). Содержание питательных элементов определяли до внесения в почву удобрений и в основные фазы развития озимой пшеницы. Сбор почвенных проб для анализа производили послойно с помощью почвенного бура. Смешанный образец почвы для анализа в каждом слое составляли из трех индивидуальных проб. Повторность определения питательных элементов в опыте — трехкратная.[ . ]

По полученным данным строят калибровочную кривую для содержания аммонийного азота от 0,0025 до 0,1 мг/ во взятой навеске ( см. рис. 3 ) .[ . ]

Предел возможных значений погрешности определения массовой доли аммонийного азота при доверительной вероятности Р = 0.95 составляет, в %: ± 0,03 — при массовой доле аммонийного азота до 0,1%, ± 0,06 — от 0,1 до 0,4%.[ . ]

При проникании воды через почву под действием определенных бактерий аммонийный азот превращается в нитриты и далее в нитраты.[ . ]

Влияние аммиачной селитры и мочевины на содержание нитратного и аммонийного азота

Одним из перспективных методов удаления фенолов, сернистых соединений и аммонийного азота из технологического конденсата является применение озонной технологии. Проведены лабораторные исследования по очистке конденсата с применением высокоэффективного окислителя — озона. В процессе исследования отбирались пробы из жидкой фазы реактора и определялась концентрация фенола, ароматических углеводородов и сернистых соединений.[ . ]

Из таблицы 1 видно, что до затопления рисового поля в почве легкоподвижные формы азота представлены нитратами. Они образуются под воздействием нитрофици-рующих бактерий с наступлением теплых дней. При затоплении рисового поля большая часть нитратов легко вымывается, меньшая, попадая в нижележащие слои пахотного слоя, восстанавливается в аммонийную форму, в окислы азота и до газообразного азота, который улетучивается в атмосферу. Аммонийные формы азота в восстановленном слое адсорбируются почвенными коллоидами и прочно удерживаются ими в течение всего вегетационного периода риса. Только после сброса воды, к уборке риса, когда почва начинает просыхать, восстановительные процессы в ней затухают. При нарастании окислительных процессов аммонийный азот в окисленном слое переходит в нитраты. В условиях затопленного рисового поля аммонийные формы азота являются надежным источником питания риса.[ . ]

Все эти бактерии—автотрофы (см. п. 1.3.1) и строгие аэробы. Они используют энергию окисления аммонийного азота и нитритов для восстановления неорганического углерода, источником которого являются диоксид углерода и карбонаты.[ . ]

Удаление биогенных элементов. Биологически очищенная вода содержит значительные количества аммонийного азота и фосфора. Азот и фосфор способствуют усиленному развитию водной растительности, последующее непременное отмирание которой приводит к вторичному загрязнению водоема.[ . ]

При поступлении на очистные сооружения промышленных сточных вод, содержащих большое количество аммонийного азота и органические загрязнения, целесообразно использовать схему, которую иногда называют системой трех культур (рис. 4.12), состоящую из трех стадий (ступеней) очистки (аэрация, нитрификация и денитрификация). Каждая ступень имеет свой аэротенк, отстойник, систему возврата активного ила.[ . ]

После этого начинается третья стадия очистки — нитрификация. Наиболее характерно идет окисление аммонийного азота до нитритов и нитратов, почему Третью стадию очистки называют стадией нитрификации. Одновременно идет дальнейшая минерализация сорбированных компонентов органических загрязнений сточной жидкости. При продолжающейся непрерывно продувке воды воздухом «, качество ее улучшается, потребность в кислороде на окисление уменьшается. Продолжительность третьей стадии от 4 до 8 час.[ . ]

Следует отметить, чтц при концентрациях керосин-бензола 1000 и 2000 мг/л интенсивное снижение содержания аммонийного азота (рис. 36) происходит раньше, чем в контроле, что возможно является следствием чрезвычайно большого и затяжного развития при этих концентрациях бактерий, использующих аммонийный азот на построение бактериальных тел.[ . ]

Заслуживают внимания испытания природного ионита — клиноптилолита для удаления из биологически очищенных сточных вод аммонийного азота. При фильтрации через колонки, загруженные клиноптилолитом (1,9 м3 в каждой) со скоростью 14,7 м/ч удаление аммонийного азота составляло 90% при исходном содержании в сточных водах 16 мг/л. Регенерация клиноптилолита производилась смесью гидроокиси кальция и хлорида натрия (в соотношении по объему 1:20), образующийся аммиак из регенераита удалялся отдувкой.[ . ]

Конструкция коллектора зависит от требуемого диапазона применения. На рис. 8.1 изображена конструкция для определения концентрации аммонийного азота при содержании его до 50 мг/л. На рис. 8.2 изображен коллектор для определения концентрации аммонийного азота до 0,5 мг/л. В данной случае существенной является небольшая модификация конструкции, изображенной на рис. 8.1, способствующая большей чувствительности благодаря большей скорости потока пробы. Такая схема предпочтительна для анализа питьевой воды.[ . ]

Характерным для общего стока является большое содержание растворенных веществ, резкий запах, сильнощелочная реакция, значительное содержание аммонийного азота и осадка.[ . ]

На очистной станции газового завода ВПК жидкости после аэротенка снижалась с 150—400 до 10—30 мг/л, содержание летучих фенолов — с 40—60 до 0,07—0,2 мг/л, аммонийного азота— с 50—200 до 6—160 мг/л, количество нитратов достигло 80 мг/л.[ . ]

Скорость окисления органических веществ определяется их строением и характером протекающих процессов. Количество кислорода, расходуемое для окисления аммонийного азота до нитритов и нитратов (нитрификации), при определении БПК не учитывается. На скорость биохимического окисления органических примесей влияет присутствие тяжелых металлов, которые даже при небольших концентрациях вызывают замедление этого процесса. Поскольку окисление органических веществ происходит под воздействием микроорганизмов, необходимо создать благоприятные условия для их жизнедеятельности. Этими условиями являются определенная среда, оптимальная температура (20° С), отсутствие токсичных и бактерицидных соединений, наличие биогенных веществ. БПК бытовых сточных вод достигает нескольких сотен мг 02/л и зависит от нормы водоотведения. БПК производственных сточных вод может достигать нескольких тысяч мг/л. БПК полн в водоемах, исполь-зующихся для хозяйственно-бытового водоснабжения, не должно превышать 9 мг 02/л.[ . ]

Для очистной станции, выделяющей в сутки 2500 м3 сброженных осадков, годовое их количество составит 900 тыс. м3. В 1 м3 иловой воды из метантенков содержится не менее 500 г азота, а всего 450 т в год. При отпускной цене за 1 т аммонийного азота 40 руб. очистная станция могла бы получить чистый доход в сумме 18 тыс. руб/год, не считая дохода от повышенного урожая.[ . ]

Процессы глубокой доочистки часто называют третичной очисткой. Она проводится в специальных сооружениях, где образующийся при минерализации органических веществ азот является исходным для дальнейших превращений. К третичной очистке относится и доочистка сточных вод в биологических прудах с использованием высшей растительности. Однако в процессах нитрификации потребляется большое количество кислорода. Так, на окисление 1 мг аммонийного азота до нитритов необходимо 3,43 мг 02, а до нитратов — 4,57 мг 02 [73]. Поэтому сброс неочищенных или недостаточно очищенных сточных вод приводит к увеличению потребления кислорода, превышающего величину БПК.[ . ]

Наиболее благоприятным для процесса очистки в аэротенке считается соотношение в сточной воде БПКб :Р= 100:4:1. Так как в стоках некоторых производств практически отсутствуют азот и фосфор, то в процессе подготовки таких сточных вод к биологической очистке эти элементы добавляются в виде аммонийных солей и суперфосфата или тринатрийфосфата. Аммонийный азот легче усваивается микрофлорой ила, чем нитратный. Кроме того, лучше давать азот в восстановленной форме, чтобы избежать процесса денитрификации, приводящего к потере реагента, образованию газообразного азота и всплыванию ила.[ . ]

В свою очередь, растения на нитратном фоне также делят на две группы: одна получает молибден ( + Мо), другая — нет (—Мо). Таким образом, в опыте три варианта: контроль (источник азота—нитраты + молибден) и два опытных (источник азота—нитраты без молибдена; источник азота—аммонийный азот).[ . ]

В очистных сооружениях процесс нитрификации указывает не только на значительную минерализацию органических»веществ. но и на достаточное содержание кислорода; на окисление 1 мг аммонийного азота до нитритов расходуется 3,43 мг Ог, а до нитратов — 4,57 мг 02.[ . ]

В стоках промышленных предприятий содержится до 1 мг/л аммония, в бытовых стоках — 2-7 мг/л; с хозяйственно-бытовыми сточными водами в канализационные системы ежесуточно поступает до 10 г аммонийного азота (в расчете на одного жителя).[ . ]

Этот процесс осуществляется только в аэробных условиях. Энергия, выделяющаяся при этом, расходуется на синтез органического вещества клетки, так как ннтрозобактерии — автотрофные организмы. Окисление аммонийного азота начинается только после полного разложения биологически разлагаемых органических примесей. Наиболее энергичными окислителями аммиака являются бактерии рода Niírosomonas, представляющие собой подвижные клетки овальной формы с длинным жгутиком.[ . ]

Азотистые удобрения можно получать из иловой воды, выделяемой метантенками или образующейся при обезвоживании сброженных осадков. Иловая вода характеризуется высокой щелочностью и большим содержанием аммонийных солей. Обычно эту воду направляют на очистку. Между тем выделение из нее аммонийного азота для удобрения могло бы принести существенную пользу. По данным агрохимика Т. В. Казаковой, в 1 л иловой воды после метантенков содержится до 600—800 мг азота аммонийных солей.[ . ]

Измерения электрофоретической подвижности хлопьев активного ила показрли, что средняя подвижность прямо пропорциональна иловому индексу, который, в свою очередь, является логарифмической функцией отношения аммонийного азота к растворимым фосфатам. Последнее указывает на то, что на иловый индекс оказывают влияние метаболические процессы, протекающие в клетках, которые изменяют характер поверхности хлопьев активного ила.[ . ]

Опыты, выясняющие влияние винилацетата на развитие микроорганизмов, были поставлены при следующих концентрациях данного вещества: 10, 25, 50, 100, 250 и 500 мг/л. В опытных сосудах определялись основные химические анализы. Аммонийный азот определить не представилось возможным вследствие образования осадка при реакции. В связи с тем, что метод определения винилацетата не разработан, об изменении вещества в растворе судили по определению бромирующихся веществ.[ . ]

В результате десорбции ХПК снижается в среднем на 55—65 %, а ВПК на — 45—55 %. Так, при очистке технологического конденсата с установки каталитического крекинга ХПК снижается с 6850 до 2420 мг/л, а ВПК — с 4000 до 1700 мг/л. При этом концентрация сульфидов (в пересчете на Н28) снижается до 3 мг/л, а аммонийного азота — до 240 мг/л. Исходя из остаточной загрязненности, рекомендуется очищенные технологические конденсаты или использовать в процессах подготовки нефти, или сбрасывать в первую систему катализа для последующей биохимической очистки.[ . ]

Читайте также:  Где делают анализ почвы и воды

Снижение содержания в водохранилищах НФПр объясняется процессами биохимического окисления, сорбции с взвешенными веществами и донного осаждения. Самоочищающая способность Волжской воды на речных участках от суммы органических соединений (в частности, по БПК5) оценивается в 30%, а по аммонийному азоту — в 30-40%.[ . ]

Газы могут образовываться в растворе в результате распада органических веществ в воде. Аммиак, выделяющийся из азотосодержащих соединений в результате биохимических процессов, присутствует в кислом растворе в виде радикала аммония, в щелочном же растворе он остается в виде газообразного аммиака. Один из способов удаления аммонийного азота из сточных вод основан на повышении pH с последующей отгонкой аммиака путем продувки воздухом. Другой газ, выделяемый из гниющих сточных вод и обнаруживаемый по специфическому запаху, — это сероводород Н Б. Группа БН-, также образующаяся в водных растворах в результате биохимических процессов, превращается в Н2Б в условиях, способствующих протеканию восстановительных реакций. Сероводород затем удаляется из раствора в виде газа. В канализационной системе это может привести к коррозии труб вследствие окисления Н25 до серной кислоты Н2504 в конденсационной влаге, присутствующей на внутренних поверхностях труб.[ . ]

источник

Методы определения азотсодержащих веществ

Water. Methods for determination of nitrogen-containing matters

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

1 ПОДГОТОВЛЕН Обществом с ограниченной ответственностью «Протектор» совместно с Закрытым акционерным обществом «Центр исследования и контроля воды»

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии, Техническим комитетом по стандартизации ТК 343 «Качество воды»

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 20 октября 2014 г. N 71-П)

За принятие проголосовали:

Краткое наименование страны по
МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Госстандарт Республики Беларусь

Госстандарт Республики Казахстан

4 Приказом Федерального агентства по техническому регулированию и метрологии от 11 ноября 2014 г. № 1535-ст межгосударственный стандарт ГОСТ 33045-2014 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2016 г.

5 Настоящий стандарт соответствует международному стандарту ISO 6777:1984* «Качество воды. Определение нитритов. Молекулярно-абсорбционный спектрометрический метод» («Water quality — Determination of nitrites. Molecular absorption spectrometric method», NEQ) в части раздела 7

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

6 ВЗАМЕН ГОСТ 4192-82, ГОСТ 18826-73

7 ИЗДАНИЕ (февраль 2019 г.) с Поправкой (ИУС 1-2017)

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Настоящий стандарт распространяется на питьевую (в том числе расфасованную в емкости), природную (поверхностную и подземную) и сточную воду и устанавливает следующие методы определения содержания минеральных азотсодержащих веществ:

— фотометрический метод определения содержания аммиака и ионов аммония (суммарно) с реактивом Несслера при массовой концентрации от 0,1 до 3,0 мг/дм без разбавления пробы. При необходимости определения более высоких концентраций пробу разбавляют, но не более чем в 100 раз (метод А);

— фотометрический метод определения содержания нитритов с использованием сульфаниловой кислоты при массовой концентрации от 0,003 до 0,3 мг/дм без разбавления пробы. При необходимости определения более высоких концентраций пробу разбавляют, но не более чем в 100 раз (метод Б);

— фотометрический метод определения азота нитритов с использованием 4-аминобензолсульфонамида при массовой концентрации от 0,25 до 10,0 мг/дм (метод В);

— фотометрический метод определения содержания азота нитратов с использованием фенолдисульфоновой кислоты при массовой концентрации от 0,1 до 6,0 мг/дм (метод Г);

— фотометрический метод определения содержания нитратов с использованием салициловокислого натрия при массовой концентрации от 0,1 до 2,0 мг/дм без разбавления пробы. При необходимости определения более высоких концентраций пробу разбавляют, но не более чем в 100 раз (метод Д).

Для определения нитритов арбитражным является метод Б, для нитратов — метод Д.

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ OIML R 76-1-2011 Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков

ГОСТ 61-75 Реактивы. Кислота уксусная. Технические условия

ГОСТ 83-79 Реактивы. Натрий углекислый. Технические условия

ГОСТ 1277-75 Реактивы. Серебро азотнокислое. Технические условия

ГОСТ 1770-74 (ISO 1042-83, ISO 4788-80) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 2493-75 Реактивы. Калий фосфорнокислый двузамещенный 3-водный. Технические условия

ГОСТ 3760-79 Реактивы. Аммиак водный. Технические условия

ГОСТ 3773-72 Реактивы. Аммоний хлористый. Технические условия

ГОСТ 4197-74 Реактивы. Натрий азотистокислый. Технические условия

ГОСТ 4198-75 Реактивы. Калий фосфорнокислый однозамещенный. Технические условия

ГОСТ 4199-76 Реактивы. Hатрий тетраборнокислый 10-водный. Технические условия

ГОСТ 4204-77 Реактивы. Кислота серная. Технические условия

ГОСТ 4217-77 Реактивы. Калий азотистокислый. Технические условия

ГОСТ 4238-77 Реактивы. Квасцы алюмоаммонийные. Технические условия

ГОСТ 4328-77 Реактивы. Натрия гидроокись. Технические условия

ГОСТ 4329-77 Реактивы. Квасцы алюмокалиевые. Технические условия

ГОСТ 4517-87 Реактивы. Методы приготовления вспомогательных реактивов и растворов, применяемых при анализе

ГОСТ 4525-77 Реактивы. Кобальт хлористый 6-водный. Технические условия

ГОСТ ИСО 5725-6-2003* Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике*
_________________
* В Российской Федерации действует ГОСТ Р ИСО 5725-6-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике».

ГОСТ 5845-79 Реактивы. Калий-натрий виннокислый 4-водный. Технические условия

ГОСТ 6552-80 Реактивы. Кислота ортофосфорная. Технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 9147-80 Посуда и оборудование лабораторные фарфоровые. Технические условия

ГОСТ 12026-76 Бумага фильтровальная лабораторная. Технические условия

ГОСТ ИСО/МЭК 17025-2009 Общие требования к компетентности испытательных и калибровочных лабораторий

ГОСТ 18190-72 Вода питьевая. Методы определения содержания остаточного активного хлора

ГОСТ 20298-74 Смолы ионообменные. Катиониты. Технические условия

ГОСТ 20015-88 Хлороформ технический. Технические условия

ГОСТ 24147-80 Аммиак водный особой чистоты. Технические условия

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 27068-86 Реактивы. Натрий серноватистокислый (натрия тиосульфат) 5-водный. Технические условия

ГОСТ 28311-89 Дозаторы медицинские лабораторные. Общие технические требования и методы испытаний

ГОСТ 29227-91 (ИСО 835-1-81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ 31861-2012 Вода. Общие требования к отбору проб

ГОСТ 31862-2012 Вода питьевая. Отбор проб**
__________________
** В Российской Федерации действует ГОСТ Р 56237-2014 (ИСО 5667-5:2006).

ГОСТ 31868-2012 Вода. Методы определения цветности

ГОСТ 32220-2013 Вода питьевая, расфасованная в емкости. Общие технические условия

(Поправка).

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3.2 Пробы воды, если они не могут быть проанализированы сразу, хранят при температуре от 2°С до 8°С не более 1 сут.

3.3 Пробы консервируют добавлением серной кислоты из расчета 1 см концентрированной серной кислоты на 1000 см воды (метод А) или добавлением хлороформа из расчета 2-4 см хлороформа на 1000 см воды (методы Б, В, Г и Д) и проводят определение не позднее чем через 2 сут.

3.4 Отбор проб питьевой воды, расфасованной в емкости, сроки и условия хранения — по ГОСТ 32220.

4.1 При подготовке и проведении измерений необходимо соблюдать условия, установленные в руководствах по эксплуатации или в паспортах средств измерений и вспомогательного оборудования.

4.2 Измерения объемов воды и растворов проводят при температуре окружающей среды от 15°С до 25°С. Допускается готовить растворы других номинальных объемов при условии соблюдения соотношений между объемами растворов и аликвот или массами навесок реагентов, регламентированных в настоящем стандарте.

Растворы следует хранить при комнатной температуре, если условия хранения не оговорены отдельно.

4.3 Лаборатории, проводящие определения, а также компетентность испытателей, должны соответствовать требованиям ГОСТ ИСО/МЭК 17025.

5 Фотометрический метод определения содержания аммиака и ионов аммония (суммарно) с использованием реактива Несслера (метод А)

5.1 Сущность метода

Настоящий метод основан на способности аммиака и ионов аммония взаимодействовать с реактивом Несслера с образованием окрашенного в желто-коричневый цвет соединения с последующим фотометрическим определением и расчетом массовой концентрации определяемых компонентов в пробе исследуемой воды.

5.1.1 Мешающие влияния

Мешающее влияние остаточного активного хлора устраняют добавлением эквивалентного количества серноватистокислого натрия; жесткости — добавлением раствора виннокислого калия-натрия и большого количества железа; цветности и мутности — осветлением гидроокисью алюминия, сульфатом алюминия, сульфатом цинка или сульфатом меди с последующей фильтрацией осветленных растворов.

5.2 Средства измерений, вспомогательное оборудование, реактивы, материалы

Фотометр, спектрофотометр, фотоэлектроколориметр, фотометрический анализатор (далее — прибор), позволяющие измерять оптическую плотность раствора в диапазоне длин волн от 400 до 600 нм при допускаемой абсолютной погрешности измерения спектрального коэффициента пропускания не более ±2% в оптических кюветах с толщиной поглощающего свет слоя от 1 до 5 см.

Межгосударственные стандартные образцы (МСО) состава водных растворов ионов аммония массовой концентрации 1 г/дм , с допускаемой относительной погрешностью аттестованного значения при доверительной вероятности =0,95 не более ±2%.

Весы неавтоматического действия по ГОСТ OIML R 76-1 высокого или специального класса точности с ценой деления (дискретностью отсчета) 0,1 мг, с наибольшим пределом взвешивания 220 и 500 г.

pH-метр любого типа, обеспечивающий измерение pH с допускаемой абсолютной погрешностью ±0,05 единиц pH.

Колбы мерные 2-50-2, 2-100-2, 2-200-2, 2-1000-2 по ГОСТ 1770.

Цилиндры мерные 2-10, 2-100, 2-500, 2-1000 по ГОСТ 1770.

Пипетки градуированные 1-1-2-1; 1-1-2-2; 1-1-2-5; 1-1-2-10 или других типов и исполнений по ГОСТ 29227.

Дозаторы пипеточные переменного объема с метрологическими характеристиками по ГОСТ 28311.

Колбонагреватель любого типа или водяная баня любого типа.

Электропечь лабораторная муфельная, поддерживающая температуру от 80°С до 300°С с погрешностью не более ±20°С.

Холодильник бытовой любого типа, обеспечивающий температуру от 2°С до 8°С.

Колбы конические по ГОСТ 25336, вместимостью 100, 1000, 1500 см .

Чашки выпарительные по ГОСТ 9147, вместимостью 100 или 150 см .

Стаканы по ГОСТ 9147, вместимостью 500 и 1000 см .

Воронки стеклянные для фильтрования по ГОСТ 25336.

Стаканы лабораторные по ГОСТ 25336.

Колбы плоскодонные по ГОСТ 25336, вместимостью 500 и 250 см .

Установка для обыкновенной перегонки или перегонки с водяным паром.

Фильтр мембранный с диаметром пор 0,45 мкм.

Бумага фильтровальная лабораторная по ГОСТ 12026.

Фильтр обеззоленный «белая» и «синяя» лента.

Аммиак по ГОСТ 3760, 25%-ный водный раствор.

Аммоний хлористый по ГОСТ 3773, ч.д.а.

Натрий серноватистокислый (тиосульфат натрия) 5-водный по ГОСТ 27068, х. ч. или стандарт-титр (фиксанал) тиосульфата натрия.

Калий-натрий виннокислый 4-водный по ГОСТ 5845, ч.д.а.

Калий фосфорнокислый однозамещенный по ГОСТ 4198, х.ч. или ч.д.а.

Калий фосфорнокислый двузамещенный по ГОСТ 2493, х.ч. или ч.д.а.

Натрия гидроокись по ГОСТ 4328, х.ч. или ч.д.а.

Натрий тетраборнокислый по ГОСТ 4199, х.ч. или ч.д.а.

Натрий углекислый по ГОСТ 83, х.ч.

Квасцы алюмокалиевые по ГОСТ 4329 или квасцы алюмоаммонийные по ГОСТ 4238, ч.д.а.

Кислота серная по ГОСТ 4204, ч.д.а.

Реактив Несслера.

Вода, не уступающая по значениям массовой концентрации веществ, восстанавливающих КМnO , и удельной электрической проводимости значениям по ГОСТ 6709 (далее — дистиллированная вода).

Хлороформ (трихлорметан) по ГОСТ 20015.

Уголь активированный марки БАУ.

Катиониты по ГОСТ 20298.

Примечание — Допускается применять другие средства измерений, вспомогательные устройства с метрологическими и техническими характеристиками и реактивы по качеству не ниже указанных в настоящем стандарте.

5.3 Подготовка к проведению измерений

5.3.1 Приготовление безаммиачной воды

Дистиллированную воду проверяют на содержание аммиака и ионов аммония (к 5 см воды прибавляют 0,1 см реактива Несслера, приготовленного, например, по ГОСТ 4517, пункт 2.134). При обнаружении аммиака (появляется желтоватое окрашивание) дистиллированную воду пропускают через колонку с активированным углем, катионитом в Н -форме или кипятят в колбе до уменьшения объема на 1/3. Затем повторно проверяют на отсутствие аммиака и ионов аммония.

На безаммиачной дистиллированной воде (далее — дистиллированная вода) готовят реактивы и растворы, ее используют в анализе для разбавления пробы.

Читайте также:  Где делать анализ питьевой воды

5.3.2 Приготовление основного раствора массовой концентрации ионов аммония 1 мг/см (при отсутствии МСО по 5.2)

В мерную колбу вместимостью 1000 см вносят 2,965 г хлористого аммония, предварительно высушенного до постоянной массы при температуре от 100°С до 105°С, растворяют в небольшом количестве дистиллированной воды (5.3.1) и доводят до метки этой же водой.

Срок хранения раствора в емкости из темного стекла — не более 1 года.

Раствор пригоден к использованию, если нет помутнения, хлопьев, осадка.

5.3.3 Приготовление рабочего раствора массовой концентрации ионов аммония 0,05 мг/см

В мерную колбу вместимостью 100 см вносят 5 см основного раствора (5.3.2) или стандартного образца (СО) состава водных растворов ионов аммония номинальной массовой концентрацией 1 г/дм (5.2) и доводят до метки дистиллированной водой (5.3.1).

Раствор готовят в день использования.

5.3.4 Приготовление реактива Несслера

Применяют готовый реактив по 5.2 или готовят его по ГОСТ 4517 пункт 2.134 на безаммиачной дистиллированной воде (5.3.1).

Срок хранения раствора — не более 3 лет.

5.3.5 Приготовление раствора виннокислого калия-натрия

В мерную колбу вместимостью 1000 см , наполовину заполненную дистиллированной водой (5.3.1) вносят 500 г виннокислого калия-натрия и доводят до метки дистиллированной водой (5.3.1). Затем прибавляют 5-10 см реактива Несслера (5.3.4).

После осветления раствор не должен содержать ион аммония (контроль по качественной реакции раствора с реактивом Несслера — отсутствие окраски), в противном случае прибавляют еще 2-5 см реактива Несслера (5.3.4).

Срок хранения раствора — не более 6 мес.

5.3.6 Приготовление суспензии гидроокиси алюминия

В колбу вместимостью 1000 см вносят 125 г алюмокалиевых квасцов (5.2) и растворяют в 1000 см дистиллированной воды (5.3.1), нагревают до 60°С и постепенно прибавляют 55 см 25%-ного раствора аммиака (5.2) при постоянном перемешивании.

После отстаивания осадок переносят в большой стакан и промывают декантацией дистиллированной водой (5.3.1) до отсутствия реакции на аммиак. Контроль промывки осуществляют по качественной реакции промывной воды с реактивом Несслера (5.3.4). Промывку проводят до исчезновения окраски при контроле.

Срок хранения — не более 1 года.

5.3.7 Приготовление основного раствора серноватистокислого натрия молярной концентрации 0,1 моль/дм

В мерной колбе вместимостью 1000 см , наполовину заполненной дистиллированной водой, растворяют 25,0 г серноватистокислого натрия, добавляют 0,2 г углекислого натрия и доводят объем раствора в колбе до метки дистиллированной водой. В случае применения стандарт-титра (фиксанала) раствор готовят в соответствии с инструкцией по приготовлению.

Срок хранения раствора в емкости из темного стекла в защищенном от прямых солнечных лучей месте — не более 3 мес.

5.3.8 Приготовление рабочего раствора серноватистокислого натрия молярной концентрации 0,01 моль/дм

В мерную колбу вместимостью 1000 см вносят 100 см основного раствора серноватистокислого натрия молярной концентрации 0,1 моль/дм (5.3.7), добавляют 0,2 г углекислого натрия и доводят объем раствора в колбе до метки дистиллированной водой по 5.3.1.

Срок хранения раствора в емкости из темного стекла — не более 3 мес.

5.3.9 Приготовление раствора тетраборнокислого натрия молярной концентрации 0,025 моль/дм

9,5 г 10-водного тетраборнокислого натрия растворяют в мерной колбе вместимостью 1000 см в дистиллированной воде по 5.3.1.

Срок хранения раствора — не более 3 мес.

5.3.10 Приготовление раствора гидроокиси натрия молярной концентрации 0,1 моль/дм

В мерной колбе вместимостью 1000 см , наполовину заполненной дистиллированной водой по 5.3.1, растворяют 4 г гидроокиси натрия и доводят объем раствора до метки дистиллированной водой по 5.3.1.

Срок хранения раствора в емкости из полимерных материалов — не более 3 мес.

5.3.11 Приготовление боратного буферного раствора со значением pH 9,5

В мерной колбе вместимостью 1000 см к 500 см раствора тетраборнокислого натрия молярной концентрации 0,025 моль/дм (5.3.9) приливают 88 см раствора гидроокиси натрия молярной концентрации 0,1 моль/дм (5.3.10) и разбавляют до 1 дм дистиллированной водой по 5.3.1.

Срок хранения раствора — не более 3 мес.

5.3.12 Приготовление фосфатного буферного раствора со значением pH 7,4

В мерной колбе вместимостью 1000 см растворяют 14,3 г безводного однозамещенного фосфорнокислого калия и 68,8 г безводного двузамещенного фосфорнокислого калия в дистиллированной воде по 5.3.1.

Срок хранения раствора — не более 3 мес.

5.3.13 Приготовление раствора серной кислоты молярной концентрацией 1 моль/дм

В мерную колбу вместимостью 1000 см , заполненную на 150-200 см дистиллированной водой по 5.3.1, вносят небольшими порциями при перемешивании 27,3 см серной кислоты и доводят объем раствора до метки дистиллированной водой (5.3.1).

Срок хранения раствора — не более 1 года.

5.3.14 Приготовление раствора гидроокиси натрия массовой долей 40%

В фарфоровом стакане вместимостью 500 см в 60 см дистиллированной воды по 5.3.1 осторожно при перемешивании порциями растворяют 40 г гидроокиси натрия.

Срок хранения раствора в емкости из полимерных материалов — не более 1 года.

5.3.15 Приготовление градуировочных растворов

5.3.15.1 В мерные колбы вместимостью 50 см каждая вносят 0,0; 0,1; 0,2; 0,5; 1,0; 1,5; 2,0; 3,0 см рабочего раствора (5.3.3) и доводят до метки дистиллированной водой (5.3.1).

Массовая концентрация ионов аммония в приготовленных градуировочных растворах составляет соответственно 0,0; 0,1; 0,2; 0,5; 1,0; 1,5; 2,0; 3,0 мг/дм .

Градуировочный раствор, не содержащий ионов аммиака, является холостой пробой для градуировки.

Градуировочные растворы готовят в день использования.

5.3.15.2 Подготовка градуировочных растворов к измерениям

В каждую колбу с градуировочными растворами (5.3.15.1) прибавляют 1 см раствора виннокислого калия-натрия (5.3.5), перемешивают, затем прибавляют 1 см реактива Несслера (5.3.4) и снова перемешивают. Через 10 мин проводят градуировку по 5.3.17.

5.3.16 Подготовка прибора

Подготовку прибора к работе проводят в соответствии с руководством (инструкцией) по эксплуатации прибора.

5.3.17.1 Измеряют оптическую плотность подготовленных градуировочных растворов и холостой пробы (5.3.15.2) три раза при длине волны от 400 до 425 нм в оптической кювете с выбранной толщиной поглощающего слоя, используя в качестве раствора сравнения дистиллированную воду (5.3.1).

Для каждого градуировочного раствора и холостой пробы рассчитывают среднеарифметическое значение полученных значений оптической плотности.

где — массовая концентрация ионов аммония в i -м градуировочном растворе, мг/дм ;

— среднеарифметическое значение оптической плотности i -ого градуировочного раствора за вычетом среднеарифметического значения оптической плотности для холостой пробы, ед.опт.пл.;

— число градуировочных растворов.

Примечание — В случае, если компьютерная (микропроцессорная) система сбора и обработки информации прибора рассчитывает угловой коэффициент b , то коэффициент градуировочной характеристики (К) устанавливают равным 1/ b .

где — массовая концентрация ионов аммония в i-м градуировочном растворе, мг/дм ;

— среднеарифметическое значение оптической плотности i -гo градуировочного раствора за вычетом среднеарифметического значения оптической плотности холостой пробы, ед.опт.пл.

Результаты контроля признают удовлетворительными, если выполняется условие

где — значение коэффициента градуировочной характеристики i -го градуировочного раствора, рассчитанного по формуле (2);

К — значение коэффициента градуировочной характеристики, рассчитанного по формуле (1) при градуировке прибора;

N — норматив контроля приемлемости градуировочной характеристики, равный 10%.

Если условие (3) не выполняется, то установление градуировочной характеристики повторяют. Градуировку также проводят после ремонта прибора и смены реактивов.

5.3.17.4 Контроль стабильности градуировочной характеристики

Стабильность градуировочной характеристики контролируют с каждой серией проб. Для контроля используют два или три градуировочных раствора по 5.3.15.

Проводят измерение контрольных градуировочных растворов по 5.3.17.1.

Градуировочную характеристику считают стабильной при выполнении условия

где — массовая концентрация ионов аммония в градуировочном растворе, полученная при контрольном измерении, мг/дм ;

С — массовая концентрация ионов аммония в градуировочном растворе, полученная по процедуре приготовления, мг/дм ;

— норматив контроля стабильности градуировочной характеристики, равный 10%.

Если условие (4) не выполняется, то проводят повторное измерение для этого градуировочного раствора (свежеприготовленного). Если градуировочная характеристика вновь нестабильна, выясняют причины нестабильности, устраняют их и повторяют контроль с использованием не менее двух других свежеприготовленных градуировочных растворов. При повторном обнаружении нестабильности устанавливают новую градуировочную характеристику.

5.3.18 Подготовка пробы исследуемой воды

5.3.18.1 Устранение мешающих влияний

При содержании в пробе исследуемой воды активного остаточного хлора в количестве более 0,5 мг/дм добавляют эквивалентное количество раствора серноватистокислого натрия по 5.3.8 (определяют в отдельной аликвоте пробы исследуемой воды по ГОСТ 18190).

Мутную или цветную воду (при цветности выше 20°, например, по ГОСТ 31868) подвергают коагуляции гидроокисью алюминия следующим образом: на 250-300 см исследуемой воды прибавляют 2-5 см суспензии гидроокиси алюминия (5.3.6), встряхивают вручную, после осветления отбирают прозрачный слой для анализа. При необходимости воду с коагулянтом фильтруют через обеззоленный фильтр «синяя лента», предварительно промытый горячей дистиллированной водой (5.3.1) до отсутствия в фильтрате ионов аммония. Контроль промывки осуществляют по качественной реакции промывной воды с реактивом Несслера (5.3.4). Промывку проводят до исчезновения окраски при контроле. При фильтровании пробы первые порции фильтрата от 30 до 50 см отбрасывают.

5.3.18.2 Подготовка проб с отгонкой

5.3.18.2.1 Отгонку аммиака из исследуемой пробы (раздел 3) выполняют, как правило, для проб сточных вод. Отгонку аммиака из исследуемой пробы (раздел 3), содержащей легко гидролизуемые органические соединения, проводят при значении pH 7,4, добавляя к пробе фосфатный буферный раствор (5.3.12). В присутствии цианатов и большинства азотсодержащих органических соединений используют боратный буферный раствор со значением pH 9,5 (5.3.11). При необходимости анализа сточных вод предприятий, образующих в процессе производства фенолы (сбрасывающие содержащие фенол сточные воды), к пробе добавляют раствор гидроокиси натрия массовой долей 40% до значения pH 9,5 (5.3.14). Если присутствуют вещества, гидролизующиеся в щелочной среде, то отгонку проводят дважды: сначала при значении pH 7,4, собирая отгон в разбавленный раствор серной кислоты, потом подщелачивают этот отгон до сильнощелочной реакции и отгоняют повторно, собирая отгон в раствор борной кислоты или дистиллированную воду (5.3.1).

5.3.18.2.2 Если проба содержит большое количество взвешенных веществ или нефтепродуктов, ее предварительно фильтруют через фильтр «белая лента». Мешающие влияния (5.1.1) устраняют по 5.3.18.1.

5.3.18.2.3 В колбу для отгона помещают 400 см анализируемой пробы или отгона при pH 7,4, или меньший объем, доведенный до 400 см дистиллированной водой по 5.3.1. Затем, в зависимости от предполагаемых загрязнений, приливают 25 см буферного раствора со значением pH 9,5 (5.3.11), или 20 см раствора гидроокиси натрия с массовой долей 40% (5.3.14). В приемник наливают 50 см раствора борной кислоты и устанавливают объем жидкости так, чтобы конец холодильника был погружен в нее, добавляя при необходимости дистиллированную воду по 5.3.1. Отгоняют примерно 300 см жидкости, отгон количественно переносят в мерную колбу вместимостью 500 см , добавляют водный раствор серной кислоты молярной концентрации 1 моль/дм (5.3.13) до значения pH 6,0, и разбавляют до метки дистиллированной водой по 5.3.1. Далее пробу готовят по 5.3.18.3.

5.3.18.3 К 50 см исследуемой (раздел 3), осветленной (5.3.18.1) или подготовленной (5.3.18.2) пробы (или к меньшему объему, содержащему не более 0,15 мг NH и разбавленному дистиллированной водой по 5.3.1 до 50 см ) прибавляют 1 см раствора виннокислого калия-натрия (5.3.5), перемешивают, затем прибавляют 1 см реактива Несслера (5.3.4) и снова перемешивают. Через 10 мин проводят определение по 5.4.

5.4 Проведение измерений

Измеряют оптическую плотность аликвоты подготовленной пробы исследуемой воды (5.3.18.3), как при построении градуировочной характеристики (5.3.17.1) с последующим расчетом массовой концентрации аммиака и ионов аммония (5.5). В качестве холостой пробы используют дистиллированную воду, подготовленную аналогично пробе исследуемой воды (5.3.18.3).

5.5 Обработка результатов измерений

5.5.1 При наличии компьютерной (микропроцессорной) системы сбора и обработки информации порядок обработки результатов определяется руководством (инструкцией) по эксплуатации прибора.

где К — коэффициент градуировочной характеристики, рассчитанный по формуле (1), мг/(дм · ед.опт.пл.);

А — измеренное значение оптической плотности пробы анализируемой воды за вычетом измеренного значения оптической плотности холостой пробы, ед.опт.пл.;

V — объем аликвоты пробы, взятой для анализа, см ;

f — коэффициент разбавления пробы анализируемой воды, при этом если пробу не разбавляли, то принимают равным 1, если разбавляли, то f рассчитывают по формуле

где — вместимость мерной колбы, использованной при разбавлении пробы анализируемой воды, см ;

— объем аликвоты пробы анализируемой воды, взятый для разбавления, см .

Примечание — При расчете учитывают объемы кислоты, добавленной в пробу (раздел 3).

Для проб, подготовленных по 5.3.18.2, значение X , мг/дм , рассчитывают по формуле:

где — вместимость мерной колбы, использованной при подготовке пробы анализируемой воды для измерения (в данном случае равен 50 см ), см ;

5.5.3 При необходимости представления результата в пересчете на массовую концентрацию аммонийного азота результат, полученный по формуле (5) или (7), умножают на коэффициент 0,78.

где R — значение предела воспроизводимости по таблице 1, %.

При невыполнении условия (9) для проверки приемлемости в условиях воспроизводимости каждая лаборатория должна выполнить процедуры согласно ГОСТ ИСО 5725-6 (пункты 5.2.2; 5.3.2.2)*.
________________
* В Российской Федерации — согласно Рекомендации МИ 2881-2004 «Государственная система обеспечения единства измерений. Методики количественного химического анализа. Процедуры проверки приемлемости результатов анализа».

5.6 Метрологические характеристики

Метод обеспечивает получение результатов измерения с метрологическими характеристиками, не превышающими значений, приведенных в таблице 1, при доверительной вероятности Р= 0,95.

Таблица 1

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений, полученными в условиях повторяемости при Р =0,95) r , %

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами определений, полученными в условиях воспроизводимости при Р= 0,95) R, %

источник