Меню Рубрики

Анализ воды на фосфат ионы

Цель работы : определение фосфат-ионов в пробах природных вод.

Фосфор является необходимым элементом для жизни. Являясь важнейшим биогенным элементом, именно фосфор чаще всего лимитирует развитие продуктивности водоемов. Поэтому поступление избытка соединений фосфора с водосбора в виде минеральных удобрений с поверхностным стоком полей (с гектара орошаемых земель может выносится 0,4–0,6 кг фосфора), со стоками ферм (0,01–0,05 кг/ сут . на одно животное), с недоочищенными или неочищенными бытовыми сточными водами (0,003–0,006 кг/ сут . на одного жителя), а также с некоторыми производственными расходами приводит к резкому неконтролируемому приросту растительной биомассы водного объекта. Особенно характерен данный процесс для малопроточных и непроточных водоемов. Происходит изменение трофического статуса водоема, сопровождающееся перестройкой всего водного сообщества и ведущее к преобладанию гнилостных процессов (и, соответственно, возрастанию мутности, солености, концентрации бактерий).

В природных и сточных водах фосфор может присутствовать в разных видах. В растворенном состоянии (иногда говорят — в жидкой фазе анализируемой воды) он может находиться в виде ортофосфорной кислоты (Н3РО4) и ее анионов в виде мет а- , пиро — и полифосфатов (эти вещества используют для предупреждения образования накипи, они входят также в состав моющих средств). Кроме того, существуют разнообразные фосфорорганические соединения — нуклеиновые кислоты, нуклеопротеиды, фосфолипиды и др., которые также могут присутствовать в воде, являясь продуктами жизнедеятельности или разложения организмов. К фосфорорганическим соединениям относятся также некоторые пестициды.

Минерализация приводит к превращению в ортофосфаты все, даже труднорастворимые , формы фосфатов в воде. Таким образом, определяется содержание общего фосфора в любой воде (этот показатель можно определять как для растворенных фосфатов, так и для нерастворимых соединений фосфора). Однако для природных вод, не содержащих или содержащих незначительное количество трудногидролизующихся фосфатов в твердой фазе, минерализации обычно не требуется, и получен­ный при анализе гидролизованной пробы результат с хорошим приближением может быть принят за содержание общего фосфора.

ПДК полифосфатов ( триполифосфат и гексаметафосфат ) в воде водоемов составляет 3,5 мг/л в пересчете на ортофосфат-анион РО4 3- , лимитирующий показатель вредности – органолептический.

Диапазон определяемых концентраций ортофосфатов в воде при визуально-колориметрическом определении – от 0,2 до 7,0 мг/л, при фотометрическом определении – 0,01–0,4 мг/л. Определение визуально-колориметрическим методом возможно и при концентрации ортофосфатов более 7,0 мг/л после соответствующего разбавления пробы чистой водой.

Метод основан на получении восстановленной фосфорномолибденовой гетерополикислоты – «молибденовой сини».

При взаимодействии фосфатов с молибдатом ( VI ) в кислой среде образуется фосфорно-молибденовая гетерополикислота Н7 Р( Мо2О7)6, которая восстанавливается аскорбиновой кислотой в присутствии сурьмяно-виннокислого калия до фосфорно-молибденового комплекса, окрашенного в голубой цвет.

Оптическую плотность образованного фосфорно-молибденового комплекса определяют на фотоэлектроколориметре при красном светофильтре. Содержание фосфора фосфатов в пробе определяют по показаниям прибора, пересчитанным по предварительно построенному градуировочному графику.

– колбы мерные вместимостью 50, 100 см 3 ;

– цилиндры мерные вместимостью 50, 100 см 3 ;

– колбы конические плоскодонные вместимостью 100 см 3 ;

– смесь аскорбиновой и серной кислот.

1. В коническую плоскодонную колбу вместимостью 100 см 3 отбирают 50,0 см 3 отфильтрованной исследуемой пробы воды. Объем отбирают пипеткой вместимостью 50 см 3 . К пробе добавляют 10,0 см 3 смешанного реактива, и раствор хорошо перемешивают.

2. Через 10 мин на фотоэлектроколориметре измеряют оптическую плотность раствора при красном светофильтре в кювете с толщиной оптического слоя 5 см , используя в качестве сравнения дистиллированную воду.

3. Если исследуемая проба воды окрашена или слегка мутная, отдельно измеряют ее оптическую плотность относительно дистиллированной воды при красном светофильтре в кювете с толщиной оптического слоя 5 см , добавив к пробе 10 см 3 смеси серной и аскорбиновой кислот вместо смешанного индикатора.

4. По градуировочной характеристике полученному значению оптической плотности ставят в соответствие значение концентрации фосфат-ионов в исходной пробе воды. Содержание фосфатов ( Сх ) в мг/дм 3 находят по формуле:

где С о – концентрация фосфат-ионов , найденная по градуировочной характеристике, мг/дм 3 ;

n – степень разбавления исходной пробы воды (в случае, если исследуемую пробу не разбавляли, n = 1).

Форма записи результатов определения фосфат иона в пробах природных вод представлена ниже.

Таблица. Форма записи результатов определения фосфат-иона в пробах природных вод

Содержание
фосфат-иона ,
найденного

по градуировочному
графику мг/дм3

источник

Аналитический центр более 20 лет занимается химическим анализом и разработкой новых методов анализа и диагностики веществ и материалов

В нашем распряжении самый современный приборный парк благодаря научно-техническому взаимодействию с крупнейшими мировыми разработчиками аналитического оборудования

Наши сотудники — это лучшие специалисты страны в области химического анализа, кандидаты и доктора наук

Аккредитация позволяет исследовать питьевую, природную, морскую, технологическую, талую воду и воду бассейнов

Обратившись к нам, Вы получите не только точные данные о присутствующих в воде загрязнителях, но и подробные рекомендации о способах очистки воды.

На основании анализа воды БЕСПЛАТНО подберем несколько вариантов систем водоочистки!

В нашей лаборатории Вы можете проверить качество воды из любого источника: колодца, скважины, водопровода, бассейна, родника, водоема. Для каждого источника есть оптимальный набор показателей, характеризующий возможность использования воды для тех или иных нужд. Чтобы правильно подобрать набор показателей, свяжитесь с нами по номеру +7 (495)149-23-57 или напишите на почту info@ion-lab.ru

Мы рекомендуем выбирать набор параметров в зависимости от того, какой у Вас источник водоснабжения, а также для каких целей планируете использовать воду. Для воды из городского водопровода, а также для воды, используемой в технических целях, подойдут наборы «Минимальный» или «Начальный». Для воды природных источников (скважины, колодцы, родники и т.д.) мы рекомендуем проверить воду на химический состав (наборы «Расширенный» или «Максимальный»), а также сделать анализ на микробиологию.

Да, Вы можете самостоятельно отобрать воду для анализа, следуя инструкции. Или же заказать выезд специалиста, который приедет в назначенное время со всей необходимой тарой, отберет воду и доставит ее в лабораторию.

Да, конечно! Пункт приема проб расположен по адресу: Москва, ул. Добролюбова, 21А, корпус А, пом. 14 (в пешей доступности от метро Фонвизинская, Бутырская, Тимирязевская)

Стоимость выезда специалиста зависит от выбранного Вами набора показателей и удаленности. Более точная информация размещена в разделе Доставка и оплата

© 1997-2019 — Лаборатория ИОН. Все права защищены.

Для химического анализа необходимо заполнить водой чистую пластиковую тару (оптимально 1,5 л). Использовать бутылки из-под сладких, газированных или ароматизированных напитков, а также солёной или минеральной воды недопустимо.
Если выбранный Вами анализ включает определение содержания нефтепродуктов, необходимо заполнить дополнительную стеклянную тару объемом 0,2 л.
Если выбранный Вами анализ включает определение содержания сероводорода, необходимо заполнить дополнительную стеклянную тару объемом 0,5 л (необходимо использовать консервант).

При отборе воды из проточного источника, непосредственно перед отбором необходимо пролить воду сильной струёй в течение 3-5 минут. Перед отбором проб ёмкости и крышки необходимо 3 раза промыть изнутри водой, подлежащей анализу. Использование моющих средств недопустимо. Наполнять тару необходимо тонкой струёй по стенке сосуда «под горлышко». Это снижает насыщение воды кислородом и предотвращает протекание реакций.

Для микробиологического анализа необходимо использовать стерильный контейнер для биоматериалов объемом 150-200 мл.

Перед взятием пробы необходимо протереть водопроводный кран спиртовой салфеткой, уделив особое внимание месту выхода воды.
При отборе воды из водопровода, скважины или колонки необходимо пролить воду сильной струёй в течение 3–5 минут.
При отборе воды из колодца с помощью ведра необходимо обдать ведро кипятком для дезинфекции. Отбор пробы через поливочные шланги и предметы, контактирующие с почвой, не допускается.
Для отбора пробы необходимо надеть перчатки и вскрыть упаковку стерильного контейнера. Не касаясь внутренней поверхности ёмкости, отобрать образец воды (2/3 объема контейнера) и закрыть крышкой.

Рекомендуем доставлять пробу сразу после отбора.
Если сразу после отбора нет возможности доставить пробу в лабораторию, допускается хранение образцов при температуре 2–10 °C в течение 1 суток.

Съезд на ул. Руставели, на первом светофоре поворот налево на ул. Яблочкова.
Через 300 м поворот направо на ул. Гончарова, через 500 м поворот налево (напротив дома №6), через 200 метров вы на месте — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Поворот на ул. Руставели, на светофоре поворот направо на ул. Добролюбова, через 300м на светофоре поворот налево на ул. Гончарова, напротив дома №6 поворот направо, через 200 метров вы на месте — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Двигаясь по ул. Милошенкова, поворачиваем на ул. Добролюбова
Через 150 метров поворот направо, за домом 21АкБ поворот налево, через 100-120 метров вы на месте — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Ближайшее станция метро – Фонвизинская (600 м)
Последний вагон из центра. Выход в сторону улицы Фонвизина. Из стеклянный дверей направо. Перейти через пешеходный переход и идти через дворы в соответствии со схемой. Пункт назначения — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Анализ «Минимальный» содержит минимальный и обязательный перечень загрязнителей, часто встречающихся в питьевой воде, и включает 16 показателей:

  • органолептические: мутность, цветность, запах, привкус;
  • общехимические: рН, жесткость, окисляемость перманганатная, минерализация, электропроводность, щелочность общая, щелочность свободная;
  • катионы: железо, аммоний;
  • анионы: нитраты, карбонат, гидрокарбонат.

Данный набор рекомендуется для исследования воды хозяйственно-бытового назначения. Анализ «Минимальный» не обладает достаточной информативностью для подбора системы водоочистки, так как не позволяет получить полную картину о безопасности воды. Если Вы планируете использовать воду в питьевых целях, рекомендуем обратить внимание на наборы, содержащие большее число параметров.

  • Точность определения
  • Подходит для воды, применяемой в хоз-бытовом назначении
  • Срок выполнения — 3-4 рабочих дня
  • Не подходит для воды, применяемой в питьевых целях
  • Не подходит для корректного подбора фильтров
  • Не содержит определения опасных загрязнителей

Анализ «Начальный» предназначен для выявления наиболее часто встречающихся вредных веществ в питьевой воде и включает 23 параметра: мутность, цветность, запах, привкус, рН, жесткость, окисляемость, минерализация, электропроводность, щелочность свободная, щелочность общая, железо, марганец, калий, магний, кальций, фториды, хлориды, нитраты, сульфаты, карбонат, гидрокарбонат, аммоний Данный анализ рекомендуется для оценки качества воды из колодцев, скважин, родников. По протоколу анализа «Начальный» возможен подбор системы водоочистки и типа фильтрующей загрузки. В перечень определяемых параметров входят органолептические показатели, общие химические показатели, а также содержание катионов и анионов

  • Точность определений
  • Подходит для подбора водоочистного оборудования
  • Подходит для колодцев и скважин
  • Позволяет оценить эффективность фильтрующей загрузки в фильтре и всей системы в целом
  • Позволяет корректно и экономично настроить водоочистное оборудование
  • Не содержит перечень тяжелых металлов
  • Не содержит перечень всех опасных загрязнений
  • Срок выполнения исследований 5-6 рабочих дней

Анализ «Расширенный» содержит перечень наиболее часто встречающихся загрязнителей воды, вне зависимости от источника, и включает 31 показатель: мутность, цветность, запах, привкус, рН, жесткость, окисляемость, минерализация, электропроводность, щелочность общая, щелочность свободная, аммоний, алюминий, железо общее, магний, кальций, калий, натрий, марганец, медь, мышьяк, свинец, кадмий, цинк, стронций, фториды, хлориды, нитраты, сульфаты, гидрокарбонат, карбонат. Данный набор рекомендуется, в первую очередь, владельцам колодцев и скважин. Содержит перечень основных тяжелых металлов. Перед покупкой системы водоподготовки рекомендуем провести исследование воды с данным перечнем загрязнителей. Ориентируясь на полученную информацию, Вы сможете подобрать оборудование водоочистки с эффективностью до 98%, а так же корректно его настроить.

  • Точность определений
  • Подходит для подбора водоочистного оборудования
  • Подходит для колодцев и скважин
  • Содержит перечень тяжелых металлов
  • Позволяет оценить эффективность фильтрующей загрузки в фильтре и всей системы в целом
  • Позволяет корректно и экономично настроить водоочистное оборудование
Читайте также:  Реагенты для анализа жесткости воды

Анализ «Максимальный» содержит полный перечень опасных для здоровья человека веществ, встречающихся в воде, поступающих из скважин или колодцев, включая ионы тяжелых металлов и органические вещества, а именно: мутность, цветность, запах, привкус, рН, жесткость, окисляемость, минерализация, электропроводность, щелочность общая, щелочность свободная, аммоний, натрий, калий, магний, кальций, алюминий, железо, марганец, литий, барий, бериллий, бор, ванадий, молибден, кобальт, цинк, никель, хром, стронций, кадмий, мышьяк, медь, свинец, кремний, серебро, титан, ртуть, гиброкарбонат, карбонат, нитрат, хлорид, сульфат, фосфат, фторид, нитрит, сероводород, сульфид, гидросульфид, хлор общий, хлор остаточный, хлор остаточный свободный, АПАВ, нефтепродукты, фенол, формальдегид, бензол, толуол, о-ксилол, п-ксилол, м-ксилол, стирол Данное исследование рекомендуется для клиентов, которые серьезно относятся к выбору питьевой воды. Протокол анализа «Максимальный» позволяет со 100% уверенностью сделать вывод о пригодности воды для питья и приготовления пищи. Результаты исследования позволяют выбрать схему водоочиски, а также оценить эффективность уже установленного оборудования.

Воды, применяемой в хозяйственно-бытовом назначении; оценки работы системы водоочистки.

пластиковая бутылка 1,5 — 2 л.

  • Точность определений
  • Подходит для подбора водоочистного оборудования
  • Подходит для любых источников воды
  • Позволяет оценить эффективность фильтрующей загрузки в фильтре и всей системы в целом
  • Включает полный перечень тяжелых металлов
  • Позволяет корректно и экономично настроить водоочистное оборудование
  • Содержит полный перечень опасных органических веществ

Помимо хичиеского анализа воды мы настоятельно рекомендуем провести микробиологическое исследование Вашей воды. Микробиологический анализ воды включает определение общего микробного числа (ОМЧ), количества общих колиформных и колиформных термотолерантных бактерий.

источник

Фосфор относится к числу биогенных элементов, имеющих особое значение для развития жизни в водных объектах. Соединения фосфора встречаются во всех живых организмах, они регулируют энергетические процессы клеточного обмена. При отсутствии соединений фосфора в воде рост и развитие водной растительно­сти прекращается, однако избыток их также приводит к негативным последст­виям, вызывая процессы эвтрофирования водного объекта и ухудшение качества воды.

Соединения фосфора попадают в природные воды в результате процессов жиз­недеятельности и посмертного распада водных организмов, выветривания и рас­творения пород, содержащих фосфаты, обмена с донными осадками, поступления с поверхности водосбора, а также с бытовыми и промышленными сточными во­дами. Загрязнению природных вод фосфором способствуют широкое применение фосфорных удобрений, полифосфатов, содержащихся в моющих средствах, флотореагентов и др.

Фосфаты в воде могут присутствовать в виде различных ионов в зависимости от величины рН. В водах соединения фосфора, как минеральные, так и органические могут при­сутствовать в растворенном, коллоидном и взвешенном состоянии. Переход со­единений фосфора из одной формы в другую осуществляется довольно легко, что создает сложности при определении тех или иных его форм. Обычно идентификация их осуществляется по процедуре, с помощью которой проводят химический анализ сточных вод . В том случае, когда анализируют фильтрованную пробу воды, говорят о раство­ренных формах, в противном случае — о суммарном содержании. Содержание взвешенных соединений фосфора находят по разности. Определение растворен­ных фосфатов (ортофосфатов) при анализе сточных вод осуществляется по реакции с молибдатом аммония и аскорбиновой кислотой с образованием молибденовой сини в исходной водной пробе, в то время как для определения полифосфатов в сточной воде требуется предварительно перевести их в фосфаты путем кислого гидролиза.

Для получения сравнимых результатов оп­ределения соединений фосфора и однозначной их интерпретации важно строгое соблюдение условий предварительной обработки проб и процедуры анализа сточных вод , в частности при определении растворенных форм проба должна быть отфильтрова­на как можно быстрее после отбора через фильтр с размером пор 0,45 мкм.

Концентрация фосфатов в незагрязненных природных водах может составлять тысячные, редко сотые доли мг/дм 3 . Повышение их содержания свидетельствует о загрязнении водного объекта. Концентрация фосфатов в воде подвержена се­зонным колебаниям, поскольку она зависит от интенсивности процессов фото­синтеза и биохимического разложения органических веществ Минимальные концентрации соединений фосфора наблюдаются весной и летом, максимальные — осенью и зимой

Уменьшение содержания фосфатов в воде связано с потреблением его водными организмами, а также переходом в донные отложения при образовании нераство­римых фосфатов

Предельно допустимая концентрация фосфатов (в пересчете на фосфор) в во­де водных объектов рыбохозяйственного назначения составляет

— для олиготрофных водных объектов 0,05 мг/дм;

— для мезотрофных — 0,15 мг/дм;

Предельно допустимая концентрация фосфатов для водных объектов хозяйст­венно-питьевого и культурно-бытового назначения не установлена, в них норми­руется только содержание полифосфатов Предельно допустимая концентрация полифосфатов составляет 3,5 мг/дм 3 в пересчете на фосфат-ион и 1,1 мг/дм 3 в пересчете на фосфор.

источник

ПНД Ф 14.1:2:4.112-97
Количественный химический анализ вод. Методика измерений массовой концентрации фосфат-ионов в питьевых, поверхностных и сточных водах фотометрическим методом с молибдатом аммония

Купить ПНД Ф 14.1:2:4.112-97 — бумажный документ с голограммой и синими печатями. подробнее

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО «ЦНТИ Нормоконтроль».

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Документ устанавливает методику измерений массовой концентрации фосфат-ионов в питьевых, поверхностных и сточных водах фотометрическим методом

2 Приписанные характеристики показателей точности измерений

3 Средства измерений, вспомогательное оборудование, посуда и реактивы

5 Требования безопасности, охраны окружающей среды

6 Требования к квалификации операторов

7 Требования к условиям измерений

8 Подготовка к выполнению измерений

10 Обработка результатов измерений

11 Оформление результатов измерений

12 Контроль точности результатов измерений

13 Проверка приемлемости результатов, полученных в двух лабораториях

Приложение А (информационное). Бюджет неопределенности измерений (Таблица А.1)

Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку:

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ
В СФЕРЕ ПРИРОДОПОЛЬЗОВАНИЯ

И.о. директора ФБУ «Федеральный

центр анализа и оценки техногенного

_________________ С.А. Хахалин

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ИЗМЕРЕНИЙ МАССОВОЙ
КОНЦЕНТРАЦИИ ФОСФАТ-ИОНОВ В ПИТЬЕВЫХ,
ПОВЕРХНОСТНЫХ И СТОЧНЫХ ВОДАХ
ФОТОМЕТРИЧЕСКИМ МЕТОДОМ
С МОЛИБДАТОМ АММОНИЯ

Методика допущена для целей государственного
экологического контроля

МОСКВА 1997 г.
(издание 2011 г.)

Методика рассмотрена и одобрена федеральным бюджетным учреждением «Федеральный центр анализа и оценки техногенного воздействия (ФБУ «ФЦАО»).

Главный инженер ФБУ «ФЦАО», к.х.н.

«Федеральный центр анализа и оценки техногенного воздействия» (ФБУ «ФЦАО»)

Настоящий документ устанавливает методику измерений массовой концентрации фосфат-ионов в питьевых, поверхностных и сточных водах фотометрическим методом.

Диапазон измерений от 0,05 до 80 мг/дм 3 .

Если массовая концентрация фосфат-ионов в анализируемой пробе превышает 1 мг/дм 3 , то пробу необходимо разбавлять.

Мешающие влияния, обусловленные присутствием в пробе сульфидов, сероводорода, хроматов, арсенатов, нитритов и железа, устраняют специальной подготовкой пробы к анализу (п. 9.1).

Значения показателя точности измерений 1 — расширенной относительной неопределенности измерений по настоящей методике при коэффициенте охвата 2 приведены в таблице 1. Бюджет неопределенности измерений приведен в Приложении А.

1 В соответствии с ГОСТ Р 8.563-2009 (п. 3.4) в качестве показателя точности измерений использованы показатели неопределенности измерений).

Таблица 1 — Диапазон измерений, показатели неопределенности измерений

Диапазон измерений, мг/дм 3

Суммарная стандартная относительная неопределенность, u, %

Расширенная относительная неопределенность 2 , U при коэффициенте охвата k = 2, %

2 Соответствует характеристике погрешности при доверительной вероятности Р = 0,95.

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке качества проведения испытаний в лаборатории;

— оценке возможности использования настоящей методики в конкретной лаборатории.

При выполнении измерений должны быть применены следующие средства измерений, вспомогательное оборудование, посуда и реактивы.

3.1 Средства измерений, вспомогательное оборудование

Спектрофотометр или фотоэлектроколориметр, позволяющий измерять оптическую плотность при длине волны l = 690 нм.

Кюветы с толщиной поглощающего слоя 20 или 50 мм.

Весы лабораторные специального класса точности с ценой деления не более 0,1 мг, наибольшим пределом взвешивания не более 210 г по ГОСТ Р 53228-2008.

Государственные стандартные образцы (ГСО) состава раствора фосфат-ионов с массовой концентрацией 1 мг/дм 3 . Относительная погрешность аттестованных значений массовой концентрации не более 1 % при Р = 0,95.

Колбы мерные 2-50(100, 500, 1000)-2, ГОСТ 1770-74.

Колбы конические Кн-2-100-18 ТХС, ГОСТ 25336-82.

Стаканы для взвешивания СВ, ГОСТ 25336-82.

Бутыли из полимерного материала или стекла с притертыми или винтовыми пробками для отбора и хранения проб вместимостью 500 — 1000 см 3 .

1 Допускается использование других средств измерений утвержденных типов, обеспечивающих измерения с установленной точностью.

2 Допускается использование другого оборудования с метрологическими и техническими характеристиками, аналогичными указанным.

3 Средства измерений должны быть поверены в установленные сроки.

Калий сурьмяно-виннокислый (антимонилтартрат).

Сульфаминовая кислота, ТУ 6-09-2391-77.

Фильтры обеззоленные, ТУ 6-09-1181-89.

Бумага индикаторная универсальная, ТУ 6-09-1181-76.

1 Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

2 Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных.

Фотометрический метод определения массовой концентрации фосфат-ионов основан на их взаимодействии в кислой среде с молибдатом аммония и образованием фосфорно-молибденовой гетерополикислоты, которая восстанавливается аскорбиновой кислотой в присутствии сурьмяно-виннокислого калия до фосфорно-молибденового комплекса, окрашенного в голубой цвет. Максимум светопоглощения длине волны l = 690 нм.

При выполнении измерений необходимо соблюдать следующие требования техники безопасности.

5.1 При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76.

5.2 Электробезопасность при работе с электроустановками по ГОСТ Р 12.1.019-2009.

5.3 Организация обучения работающих безопасности труда по ГОСТ 12.0.004-90.

5.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.

5.5 Содержание вредных веществ в воздухе не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005-88.

Выполнение измерений может производить химик-аналитик, владеющий техникой фотометрического анализа, изучивший инструкцию по эксплуатации спектрофотометра или фотоэлектроколориметра и получивший удовлетворительные результаты при выполнении контроля процедуры измерений.

Измерения проводятся в следующих условиях: температура окружающего воздуха (20 ± 5) °С; атмосферное давление (84,0 — 106,7) кПа (630 — 800 мм рт.ст); относительная влажность (80 ± 5) %; напряжение сети (220 ± 22) В; частота переменного тока (50 ± 1) Гц.

При подготовке к выполнению измерений должны быть проведены следующие работы: отбор проб, подготовка прибора к работе, приготовление вспомогательных и градуировочных растворов, градуировка прибора, контроль стабильности градуировочной характеристики.

8.1 Отбор и хранение проб воды

8.1.1 Отбор проб питьевых вод производится в соответствии с требованиями ГОСТ Р 51593-2000 «Вода питьевая. Отбор проб».

Отбор проб поверхностных и сточных вод производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб», ПНД Ф 12.15.1-08 «Методические указания по отбору проб для анализа сточных вод».

8.1.2 Пробы воды отбирают в бутыли из полимерного материала или стекла, предварительно ополоснутые отбираемой водой. Объем отобранной пробы должен быть не менее 250 см 3 .

8.1.3 Пробу анализируют в день отбора или консервируют добавлением 2 — 4 см 3 хлороформа на 1 дм 3 воды и хранят при 3 — 5 °С не более 3 суток.

8.1.4 При отборе проб составляется сопроводительный документ, в котором указывается:

цель анализа, предполагаемые загрязнители;

должность, фамилия отбирающего пробу, дата.

8.2 Подготовка прибора к работе

Подготовку спектрофотометра или фотоэлектроколориметра к работе проводят в соответствии с инструкцией по эксплуатации.

8.3 Приготовление вспомогательных растворов

3 г молибдата аммония помещают в стакан, растворяют в небольшом количестве дистиллированной воды, переносят в мерную колбу вместимостью 100 см 3 и доводят до метки дистиллированной водой. В случае появления мути раствор следует отфильтровать. Раствор хранят в полиэтиленовой бутыли.

2,16 г аскорбиновой кислоты помещают в стакан, растворяют в небольшом количестве дистиллированной воды, переносят в мерную колбу вместимостью 100 см 3 и доводят до метки дистиллированной водой.

Раствор хранят в холодильнике в течение 3-х недель.

0,34 г антимонилтартрата калия помещают в стакан, растворяют в небольшом количестве дистиллированной воды, переносят в мерную колбу вместимостью 500 см 3 и доводят до метки дистиллированной водой.

Читайте также:  Реагенты для анализа воды в аквариуме

В мерную колбу вместимостью 500 см 3 наливают 400 см 3 дистиллированной воды и осторожно приливают 70 см 3 концентрированной серной кислоты. После охлаждения, раствор доводят до метки дистиллированной водой.

В колбе с притертой пробкой смешивают 125 см 3 раствора серной кислоты (п. 8.3.4), 50 см 3 раствора молибдата аммония (п. 8.3.1), 50 см 3 раствора аскорбиновой кислоты (п. 8.3.2) и 25 см 3 раствора антимонилтартрата калия (п. 8.3.3).

Смешанный реактив готовят непосредственно перед использованием.

10 г сульфаминовой кислоты растворяют в 90 см 3 дистиллированной воды.

8.4. Приготовление градуировочных растворов

Раствор готовят из ГСО в соответствии с прилагаемой к образцу инструкцией. В 1 см 3 раствора должно содержаться 0,01 мг фосфат-ионов. Раствор готовят в день проведения анализа.

Раствор готовят соответствующим разбавлением градуировочного раствора 1. В 1 см 3 раствора должно содержаться 0,001 мг фосфат-ионов. Раствор готовят в день проведения анализа.

8.5 Построение градуировочных графиков

Для построения градуировочных графиков необходимо приготовить образцы для градуировки с массовой концентрацией фосфат-ионов 0,05 — 1,0 мг/дм 3 . Условия анализа, его проведение должны соответствовать п.п. 7 и 9.

Состав и количество образцов для градуировки приведены в таблице 2. Погрешность, обусловленная процедурой приготовления образцов для градуировки, не превышает 2,5 %.

Таблица 2 — Состав и количество образцов для градуировки

Массовая концентрация фосфат-ионов в градуировочных растворах, мг/дм 3

Аликвотная часть растворов, см 3 , помещаемых в мерную колбу вместимостью 50 см 3

Раствор 1 с массовой концентрацией 0,01 мг/см 3

Раствор 2 с массовой концентрацией 0,001 мг/см 3

Раствор из мерной колбы переносят в коническую колбу и добавляют реактивы по п. 9.

Анализ образцов для градуировки проводят в порядке возрастания их массовой концентрации. Для построения градуировочного графика каждую искусственную смесь необходимо фотометрировать 3 раза с целью исключения случайных результатов и усреднения данных.

При построении градуировочного графика по оси ординат откладывают значения оптической плотности, а по оси абсцисс — величину концентрации вещества в мг/дм 3 .

8.6 Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочной характеристики проводят не реже одного раза в квартал, а также при смене партий реактивов, после поверки или ремонта прибора. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведенных в таблице 2).

Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия:

где X — результат контрольного измерения массовой концентрации фосфат-ионов в образце для градуировки;

С — аттестованное значение массовой концентрации фосфат-ионов;

uI(TOE) — стандартное отклонение результатов измерений, полученных в условиях промежуточной прецизионности, %.

Значения uI(TOE) приведены в Приложении А.

Если условие стабильности градуировочной характеристики не выполняется только для одного образца для градуировки, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины и повторяют контроль с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график.

9.1 Устранение мешающих влияний

9.1.1 Сильнокислые и сильнощелочные пробы предварительно нейтрализуют.

9.1.2 Определению мешают сульфиды и сероводород в концентрациях, превышающих 3 мг/дм 3 S 2- . Их мешающее влияние можно устранить, прибавляя несколько миллиграммов калия марганцевокислого на 100 см 3 пробы и встряхивая 1 — 2 мин, раствор должен оставаться розовым. После этого прибавление реактивов проводят в обратном порядке: сначала приливают раствор аскорбиновой кислоты, перемешивают, затем прибавляют смешанный реактив.

9.1.3 Определению мешают хроматы в концентрациях, превышающих 2 мг/дм 3 Это мешающее влияние устраняется прибавлением реактивов в обратном порядке (по п. 9.1.2).

9.1.4 Определению мешают арсенаты. Их содержание определяют отдельно и вычитают из найденного содержания фосфат-ионов.

9.1.5 Определению мешают нитрит-ионы. Для устранения их мешающего влияния нитритов в смешанный реактив добавляют 10 см 3 10 %-го раствора сульфаминовой кислоты.

9.1.6 Определению мешает железо (III) в концентрации, превышающей 1 мг/дм 3 . Для устранения мешающего влияния железа в пробу вводят эквивалентное количество трилона Б.

К 50 см 3 пробы, профильтрованной на месте или в тот же день в лаборатории через плотный бумажный фильтр (синяя лента), или к меньшему объему, доведенному до 50 см 3 дистиллированной водой, прибавляют 5,0 см 3 смешанного реактива и через короткое время 0,5 см 3 раствора аскорбиновой кислоты (как указано в п. 9.1.2 в присутствии некоторых мешающих веществ реактивы приливают в обратном порядке). Смесь перемешивают. Через 15 мин измеряют оптическую плотность полученного раствора при длине волны 690 нм по отношению к холостому раствору (холостой раствор готовится на дистиллированной воде с добавлением соответствующих реактивов).

Содержание фосфат-ионов в мг/дм 3 находят по градуировочному графику.

Массовую концентрацию фосфат-ионов X, (мг/дм 3 ) рассчитывают по формуле:

где С — массовая концентрация фосфат-ионов, найденная по градуировочному графику, мг/дм 3 :

50 — объем, до которого была разбавлена проба, см 3 ;

V — объем, взятый для анализа, см 3 .

Если проба была предварительно разбавлена, при расчете учитывают коэффициент разбавления.

При необходимости за результат измерений Хср принимают среднее арифметическое значение двух параллельных определений Х1 и Х2

для которых выполняется следующее условие:

где r — предел повторяемости, значения которого приведены в таблице 3.

Таблица 3 — Значения предела повторяемости при вероятности Р = 0,95

Диапазон измерений, мг/дм 3

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r, %

При невыполнении условия (4) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6-2002.

Результат измерений в документах, предусматривающих его использование, может быть представлен в виде: X ± = 0,01 × U × X, мг/дм 3 ,

где X — результат измерений массовой концентрации, установленный по п. 10, мг/дм 3 ;

U — значение показателя точности измерений (расширенная неопределенность измерений с коэффициентом охвата 2).

Значение U приведено в таблице 1.

Допускается результат измерений в документах, выдаваемых лабораторией, представлять в виде: Х ± 0,01 × Uл · X, мг/дм 3 , Р = 0,95, при условии Uл 3 .

Процедуру измерений признают удовлетворительной, при выполнении условия:

При невыполнении условия (7) контрольную процедуру повторяют. При повторном невыполнении условия (7) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

12.3 Оперативный контроль процедуры измерений с использованием образцов для контроля

Оперативный контроль процедуры измерений проводят путем сравнения результата отдельно взятой контрольной процедуры Кк с нормативом контроля К.

Результат контрольной процедуры Кк рассчитывают по формуле

где Сср — результат анализа массовой концентрации фосфат-ионов в образце для контроля — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (4);

С — аттестованное значение образца для контроля.

Норматив контроля К рассчитывают по формуле

где sI(TOE) — стандартное отклонение промежуточной прецизионности, соответствующие массовой концентрации фосфат-ионов в образце для контроля, мг/дм 3 .

Процедуру измерений признают удовлетворительной, при выполнении условия:

При невыполнении условия (10) контрольную процедуру повторяют. При повторном невыполнении условия (10) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 4.

Таблица 4 — Значения предела воспроизводимости при Р = 0,95

Диапазон измерений, мг/дм 3

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6-2002.

Таблица А.1 — Бюджет неопределенности измерений

Стандартная относительная неопределенность 3 , %

Приготовление градуировочных растворов, u1, %

Степень чистоты реактивов и дистиллированной воды, и2, %

Подготовка проб к анализу, и3, %

Стандартное отклонение результатов измерений, полученных в условиях повторяемости 4 , иr (sr), %

Стандартное отклонение измерений полученных в условиях воспроизводимости, uR(sR), %

Суммарная стандартная относительная неопределенность, ис, %

Расширенная относительная неопределенность, (Uomн.) при k = 2, %

1 Оценка (неопределенности) типа А получена путем статистического анализа ряда наблюдений.

2 Оценка (неопределенности) типа В получена способами, отличными от статистического анализа ряда наблюдений.

3 Соответствует характеристике относительной погрешности при доверительной вероятности Р = 0,95.

4 Согласно ГОСТ Р ИСО 5725-3-2002 учтено при расчете стандартного отклонения результатов измерений, получаемых в условиях воспроизводимости.

2 приписанные характеристики показателей точности измерений. 1

3 средства измерений, вспомогательное оборудование, посуда и реактивы.. 2

5 требования безопасности, охраны окружающей среды.. 3

6 требования к квалификации операторов. 3

7 требования к условиям измерений. 3

8 подготовка к выполнению измерений. 3

10 обработка результатов измерений. 6

11 оформление результатов измерений. 7

12 контроль точности результатов измерений. 7

13 проверка приемлемости результатов, полученных в двух лабораториях. 9

источник

Настоящий документ устанавливает методику измерений массовой концентрации фосфат-ионов в питьевых, поверхностных и сточных водах фотометрическим методом.

Диапазон измерений от 0,05 до 80 мг/дм 3 .

Если массовая концентрация фосфат-ионов в анализируемой пробе превышает 1 мг/дм 3 , то пробу необходимо разбавлять.

Мешающие влияния, обусловленные присутствием в пробе сульфидов, сероводорода, хроматов, арсенатов, нитритов и железа, устраняют специальной подготовкой пробы к анализу (п. 9.1).

Значения показателя точности измерений 1 — расширенной относительной неопределенности измерений по настоящей методике при коэффициенте охвата 2 приведены в таблице 1. Бюджет неопределенности измерений приведен в Приложении А.

1 В соответствии с ГОСТ Р 8.563-2009 (п. 3.4) в качестве показателя точности измерений использованы показатели неопределенности измерений).

Таблица 1 — Диапазон измерений, показатели неопределенности измерений

Суммарная стандартная относительная неопределенность, u, %

Расширенная относительная неопределенность 2 , U при коэффициенте охвата k = 2, %

2 Соответствует характеристике погрешности при доверительной вероятности Р = 0,95.

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке качества проведения испытаний в лаборатории;

— оценке возможности использования настоящей методики в конкретной лаборатории.

При выполнении измерений должны быть применены следующие средства измерений, вспомогательное оборудование, посуда и реактивы.

3.1 Средства измерений, вспомогательное оборудование

Спектрофотометр или фотоэлектроколориметр, позволяющий измерять оптическую плотность при длине волны l = 690 нм.

Кюветы с толщиной поглощающего слоя 20 или 50 мм.

Весы лабораторные специального класса точности с ценой деления не более 0,1 мг, наибольшим пределом взвешивания не более 210 г по ГОСТ Р 53228-2008.

Государственные стандартные образцы (ГСО) состава раствора фосфат-ионов с массовой концентрацией 1 мг/дм 3 . Относительная погрешность аттестованных значений массовой концентрации не более 1 % при Р = 0,95.

Колбы мерные 2-50(100, 500, 1000)-2, ГОСТ 1770-74.

Колбы конические Кн-2-100-18 ТХС, ГОСТ 25336-82.

Стаканы для взвешивания СВ, ГОСТ 25336-82.

Бутыли из полимерного материала или стекла с притертыми или винтовыми пробками для отбора и хранения проб вместимостью 500 — 1000 см 3 .

1 Допускается использование других средств измерений утвержденных типов, обеспечивающих измерения с установленной точностью.

2 Допускается использование другого оборудования с метрологическими и техническими характеристиками, аналогичными указанным.

3 Средства измерений должны быть поверены в установленные сроки.

Аскорбиновая кислота, ГОСТ 4815-76.

Калий сурьмяно-виннокислый (антимонилтартрат).

Сульфаминовая кислота, ТУ 6-09-2391-77.

Фильтры обеззоленные, ТУ 6-09-1181-89.

Бумага индикаторная универсальная, ТУ 6-09-1181-76.

1 Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

2 Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных.

Фотометрический метод определения массовой концентрации фосфат-ионов основан на их взаимодействии в кислой среде с молибдатом аммония и образованием фосфорно-молибденовой гетерополикислоты, которая восстанавливается аскорбиновой кислотой в присутствии сурьмяно-виннокислого калия до фосфорно-молибденового комплекса, окрашенного в голубой цвет. Максимум светопоглощения длине волны l = 690 нм.

При выполнении измерений необходимо соблюдать следующие требования техники безопасности.

5.1 При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76.

5.2 Электробезопасность при работе с электроустановками по ГОСТ Р 12.1.019-2009.

5.3 Организация обучения работающих безопасности труда по ГОСТ 12.0.004-90.

5.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.

5.5 Содержание вредных веществ в воздухе не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005-88.

Читайте также:  Расход спирта на анализ воды

Выполнение измерений может производить химик-аналитик, владеющий техникой фотометрического анализа, изучивший инструкцию по эксплуатации спектрофотометра или фотоэлектроколориметра и получивший удовлетворительные результаты при выполнении контроля процедуры измерений.

Измерения проводятся в следующих условиях: температура окружающего воздуха (20 ± 5) °С; атмосферное давление (84,0 — 106,7) кПа (630 — 800 мм рт.ст); относительная влажность (80 ± 5) %; напряжение сети (220 ± 22) В; частота переменного тока (50 ± 1) Гц.

При подготовке к выполнению измерений должны быть проведены следующие работы: отбор проб, подготовка прибора к работе, приготовление вспомогательных и градуировочных растворов, градуировка прибора, контроль стабильности градуировочной характеристики.

8.1 Отбор и хранение проб воды

8 .1.1 Отбор проб питьевых вод производится в соответствии с требованиями ГОСТ Р 51593-2000 «Вода питьевая. Отбор проб».

Отбор проб поверхностных и сточных вод производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб», ПНД Ф 12.15.1-08 «Методические указания по отбору проб для анализа сточных вод».

8 .1.2 Пробы воды отбирают в бутыли из полимерного материала или стекла, предварительно ополоснутые отбираемой водой. Объем отобранной пробы должен быть не менее 250 см 3 .

8 .1.3 Пробу анализируют в день отбора или консервируют добавлением 2 — 4 см 3 хлороформа на 1 дм 3 воды и хранят при 3 — 5 ° С не более 3 суток.

8 .1.4 При отборе проб составляется сопроводительный документ, в котором указывается:

цель анализа, предполагаемые загрязнители;

должность, фамилия отбирающего пробу, дата.

8.2 Подготовка прибора к работе

Подготовку спектрофотометра или фотоэлектроколориметра к работе проводят в соответствии с инструкцией по эксплуатации.

8.3 Приготовление вспомогательных растворов

3 г молибдата аммония помещают в стакан, растворяют в небольшом количестве дистиллированной воды, переносят в мерную колбу вместимостью 100 см 3 и доводят до метки дистиллированной водой. В случае появления мути раствор следует отфильтровать. Раствор хранят в полиэтиленовой бутыли.

2,16 г аскорбиновой кислоты помещают в стакан, растворяют в небольшом количестве дистиллированной воды, переносят в мерную колбу вместимостью 100 см 3 и доводят до метки дистиллированной водой.

Раствор хранят в холодильнике в течение 3-х недель.

0,34 г антимонилтартрата калия помещают в стакан, растворяют в небольшом количестве дистиллированной воды, переносят в мерную колбу вместимостью 500 см 3 и доводят до метки дистиллированной водой.

В мерную колбу вместимостью 500 см 3 наливают 400 см 3 дистиллированной воды и осторожно приливают 70 см 3 концентрированной серной кислоты. После охлаждения, раствор доводят до метки дистиллированной водой.

В колбе с притертой пробкой смешивают 125 см 3 раствора серной кислоты (п. 8.3.4), 50 см 3 раствора молибдата аммония (п. 8.3.1), 50 см 3 раствора аскорбиновой кислоты (п. 8.3.2) и 25 см 3 раствора антимонилтартрата калия (п. 8.3.3).

Смешанный реактив готовят непосредственно перед использованием.

10 г сульфаминовой кислоты растворяют в 90 см 3 дистиллированной воды.

8.4. Приготовление градуировочных растворов

Раствор готовят из ГСО в соответствии с прилагаемой к образцу инструкцией. В 1 см 3 раствора должно содержаться 0,01 мг фосфат-ионов. Раствор готовят в день проведения анализа.

Раствор готовят соответствующим разбавлением градуировочного раствора 1. В 1 см 3 раствора должно содержаться 0,001 мг фосфат-ионов. Раствор готовят в день проведения анализа.

8.5 Построение градуировочных графиков

Для построения градуировочных графиков необходимо приготовить образцы для градуировки с массовой концентрацией фосфат-ионов 0,05 — 1,0 мг/дм 3 . Условия анализа, его проведение должны соответствовать п.п. 7 и 9.

Состав и количество образцов для градуировки приведены в таблице 2. Погрешность, обусловленная процедурой приготовления образцов для градуировки, не превышает 2,5 %.

Таблица 2 — Состав и количество образцов для градуировки

Массовая концентрация фосфат-ионов в градуировочных растворах, мг/дм 3

Аликвотная часть растворов, см 3 , помещаемых в мерную колбу вместимостью 50 см 3

Раствор 1 с массовой концентрацией 0,01 мг/см 3

Раствор 2 с массовой концентрацией 0,001 мг/см 3

Раствор из мерной колбы переносят в коническую колбу и добавляют реактивы по п. 9.

Анализ образцов для градуировки проводят в порядке возрастания их массовой концентрации. Для построения градуировочного графика каждую искусственную смесь необходимо фотометрировать 3 раза с целью исключения случайных результатов и усреднения данных.

При построении градуировочного графика по оси ординат откладывают значения оптической плотности, а по оси абсцисс — величину концентрации вещества в мг/дм 3 .

8.6 Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочной характеристики проводят не реже одного раза в квартал, а также при смене партий реактивов, после поверки или ремонта прибора. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведенных в таблице 2).

Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия:

(1)

где X — результат контрольного измерения массовой концентрации фосфат-ионов в образце для градуировки;

С — аттестованное значение массовой концентрации фосфат-ионов;

u I(TOE) — стандартное отклонение результатов измерений, полученных в условиях промежуточной прецизионности, %.

Значения u I(TOE) приведены в Приложении А.

Если условие стабильности градуировочной характеристики не выполняется только для одного образца для градуировки, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины и повторяют контроль с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график.

9 .1.1 Сильнокислые и сильнощелочные пробы предварительно нейтрализуют.

9 .1.2 Определению мешают сульфиды и сероводород в концентрациях, превышающих 3 мг/дм 3 S 2- . Их мешающее влияние можно устранить, прибавляя несколько миллиграммов калия марганцевокислого на 100 см 3 пробы и встряхивая 1 — 2 мин, раствор должен оставаться розовым. После этого прибавление реактивов проводят в обратном порядке: сначала приливают раствор аскорбиновой кислоты, перемешивают, затем прибавляют смешанный реактив.

9.1.3 Определению мешают хроматы в концентрациях, превышающих 2 мг/дм 3 Это мешающее влияние устраняется прибавлением реактивов в обратном порядке (по п. 9.1.2).

9 .1.4 Определению мешают арсенаты. Их содержание определяют отдельно и вычитают из найденного содержания фосфат-ионов.

9 .1.5 Определению мешают нитрит-ионы. Для устранения их мешающего влияния нитритов в смешанный реактив добавляют 10 см 3 10 %-го раствора сульфаминовой кислоты.

9 .1.6 Определению мешает железо (III) в концентрации, превышающей 1 мг/дм 3 . Для устранения мешающего влияния железа в пробу вводят эквивалентное количество трилона Б.

К 50 см 3 пробы, профильтрованной на месте или в тот же день в лаборатории через плотный бумажный фильтр (синяя лента), или к меньшему объему, доведенному до 50 см 3 дистиллированной водой, прибавляют 5,0 см 3 смешанного реактива и через короткое время 0,5 см 3 раствора аскорбиновой кислоты (как указано в п. 9.1.2 в присутствии некоторых мешающих веществ реактивы приливают в обратном порядке). Смесь перемешивают. Через 15 мин измеряют оптическую плотность полученного раствора при длине волны 690 нм по отношению к холостому раствору (холостой раствор готовится на дистиллированной воде с добавлением соответствующих реактивов).

Содержание фосфат-ионов в мг/дм 3 находят по градуировочному графику.

Массовую концентрацию фосфат-ионов X , (мг/дм 3 ) рассчитывают по формуле:

(2)

где С — массовая концентрация фосфат-ионов, найденная по градуировочному графику, мг/дм 3 :

50 — объем, до которого была разбавлена проба, см 3 ;

V — объем, взятый для анализа, см 3 .

Если проба была предварительно разбавлена, при расчете учитывают коэффициент разбавления.

При необходимости за результат измерений Хср принимают среднее арифметическое значение двух параллельных определений Х1 и Х2

(3)

для которых выполняется следующее условие:

где r — предел повторяемости, значения которого приведены в таблице 3.

Таблица 3 — Значения предела повторяемости при вероятности Р = 0,95

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r, %

При невыполнении условия (4) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6-2002.

Результат измерений в документах, предусматривающих его использование, может быть представлен в виде: X ± = 0,01 × U × X, мг/дм 3 ,

где X — результат измерений массовой концентрации, установленный по п. 10, мг/дм 3 ;

U — значение показателя точности измерений (расширенная неопределенность измерений с коэффициентом охвата 2).

Значение U приведено в таблице 1.

Допускается результат измерений в документах, выдаваемых лабораторией, представлять в виде: Х ± 0,01 × U л · X , мг/дм 3 , Р = 0,95, при условии U л U , где U л — значение показателя точности измерений (расширенной неопределенности с коэффициентом охвата 2), установленное при реализации методики в лаборатории и обеспечиваемое контролем стабильности результатов измерений.

При представлении результата измерений в документах, выдаваемых лабораторией, указывают:

— количество результатов параллельных определений, использованных для расчета результата измерений;

— способ определения результата измерений (среднее арифметическое значение или медиана результатов параллельных определений).

Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:

— оперативный контроль процедуры измерений;

— контроль стабильности результатов измерений на основе контроля стабильности среднего квадратического отклонения (СКО) повторяемости, СКО промежуточной (внутрилабораторной) прецизионности и правильности.

Периодичность контроля исполнителем процедуры выполнения измерений и алгоритмы контрольных процедур, а также реализуемые процедуры контроля стабильности результатов измерений регламентируют во внутренних документах лаборатории.

Ответственность за организацию проведения контроля стабильности результатов анализа возлагают на лицо, ответственное за систему качества в лаборатории.

Разрешение противоречий между результатами двух лабораторий проводят в соответствии с 5.3.3 ГОСТ Р ИСО 5725-6-2002.

12.2 Оперативный контроль процедуры измерений с использованием метода добавок

Оперативный контроль процедуры измерений проводят путем сравнения результата отдельно взятой контрольной процедуры Кк с нормативом контроля К.

Результат контрольной процедуры Кк рассчитывают по формуле

(5)

где — результат анализа массовой концентрации фосфат-ионов в пробе с известной добавкой — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (4)

Хср — результат анализа массовой концентрации фосфат-ионов в исходной пробе — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (4)

Норматив контроля К рассчитывают по формуле

(6)

где — стандартные отклонения промежуточной прецизионности, соответствующие массовой концентрации фосфат-ионов в пробе с известной добавкой и в исходной пробе соответственно, мг/дм 3 .

Процедуру измерений признают удовлетворительной, при выполнении условия:

При невыполнении условия (7) контрольную процедуру повторяют. При повторном невыполнении условия (7) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

12.3 Оперативный контроль процедуры измерений с использованием образцов для контроля

Оперативный контроль процедуры измерений проводят путем сравнения результата отдельно взятой контрольной процедуры Кк с нормативом контроля К.

Результат контрольной процедуры Кк рассчитывают по формуле

(8)

где Сср — результат анализа массовой концентрации фосфат-ионов в образце для контроля — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (4);

С — аттестованное значение образца для контроля.

Норматив контроля К рассчитывают по формуле

где s I(TOE) — стандартное отклонение промежуточной прецизионности, соответствующие массовой концентрации фосфат-ионов в образце для контроля, мг/дм 3 .

Процедуру измерений признают удовлетворительной, при выполнении условия:

При невыполнении условия (10) контрольную процедуру повторяют. При повторном невыполнении условия (10) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 4.

Таблица 4 — Значения предела воспроизводимости при Р = 0,95

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6-2002.

Таблица А.1 — Бюджет неопределенности измерений

Стандартная относительная неопределенность 3 , %

Приготовление градуировочных растворов, u1, %

Степень чистоты реактивов и дистиллированной воды, и2, %

Подготовка проб к анализу, и3, %

источник