Меню Рубрики

Анализ воды на минеральный состав

Конференция учащихся муниципальных

образовательных учреждений города Калуги «Старт в науку»

Качественный анализ состава минеральных вод, продаваемых на территории

Рыжова Валерия Евгеньевна, ученица 8 класса

МБОУ «Средняя общеобразовательная

Громова Юлия Сергеевна, учитель химии

МБОУ «Средняя общеобразовательная

1. Значение состава минеральных вод для жизнедеятельности организма.

Проведение аналитической работы. Анализ полученных данных.

Вода ( H 2O ) – химическое соединение водорода с кислородом; оксид водорода. Чистая вода – бесцветная жидкость без запаха и вкуса. Вода – самое распространенное в природе вещество, на ее долю приходится около 71 % поверхности Земли. Вода – это важнейшее составляющее живого вещества, без которого жизнь невозможна. Она составляет около 75% общей массы тела человека, а химический состав крови человека очень близок к химическому составу морской воды, где первоначально развивалась жизнь[2].

Актуальность работы: В наше время ритм жизни большинства людей очень велик, и часто мы не обращаем должного внимания на свое здоровье, переутомление организма наступает незаметно и наносит нам неожиданный удар. Пополнить баланс жидкости и ионов в организме можно при употреблении минеральной воды, которая, наряду с жидкостью (водой) содержит все необходимые для нормальной работы организма ионы: катионы и анионы. Мне стало интересно, действительно ли все те минеральные воды, которые продаются у нас в городе, содержат тот состав ионов, который заявлен на их этикетках.

Цель исследования: Провести качественный анализ минеральных вод, продаваемых на территории Калужской области на соответствие написанного на этикетке этих вод реальности.

Гипотеза: Возможно, что не все минеральные воды, купленные нами на территории Калуги, действительно имеют ионный состав, отраженный на их этикетке и не содержат посторонних примесей.

Методы исследования: качественный анализ (качественные реакции на анионы и катионы).

Практическая значимость: Полученные результаты помогут разобраться, соответствует ли указанные данные о минеральной воде на этикетке действительности.

Значение состава минеральных вод для жизнедеятельности организма

К огда организм получает сильную нагрузку , он в больших количествах теряет жидкость. Обезвоживание — стресс для организма . Оно приводит к таким последствиям как: быстрая утомляемость; головные боли; тошнота; потеря концентрации жизненно необходимых электролитов; увеличение риска получения теплового удара; отсутствие способности к продолжительной физической нагрузке; изменение водного баланса в организме; перегрузка сердечной мышцы; нарушение процесса выработки энергии в мышечной ткани и т.д.

При обезвоживании в организме включаются защитные механизмы, препятствующие выводу натрия (почечные выделения), а также уменьшающие потоотделение (при этом повышается температура тела, происходит сгущение крови и учащение сердцебиения). Это может привести к сосудистой недостаточности и тепловому удару. Пот, испаряющийся с поверхности кожи, содержит большое количество электролитов ( Na + , Mg 2+ , K + , Ca 2+ ), и при нагрузках организм теряет часть их.

Обычная вода не подходит для восполнения утраченных электролитов. Она притупляет чувство жажды, но не восполняет организм потерянными веществами, поэтому необходимо пить воду , содержащую в достаточном количестве минералы и соли. Обязательно необходимо обратить внимание на то, минеральная ли это вода или обычная питьевая.

Вода очищенная – вода, доведенная до содержания в ней количества примесей, не превышающего естественного фона или допустимой величины (ПДК).

Вода питьевая – вода, в которой бактериологические, органолептические показатели и показатели токсических химических веществ находятся в пределах норм питьевого водоснабжения.

Воды минерализованные – 1)воды, содержащие в заметном количестве минеральные вещества; 2) природные воды, содержащие соли, растворенные газы, органические вещества в количествах более 1 г/л.

Чаще всего минеральные воды бывают подземного происхождения, нередко обладают повышенными температурой и радиоактивностью.

Минерализация – это процесс постепенного накопления солей в водах.

Различают воды (по количеству растворимых солей):

Слабоминерализованные (0,5 – 5 г/л);

Среднеминерализованные (5 – 30 г/л);

Сильноминерализованные (более 30 г/л) [ 2 ] .

Существует и другая классификация минеральных вод:

Столовые минеральные воды (минерализация до 1 г/л);

Лечебно-столовые минеральные воды (минерализация от 1г/л до 5 г/л);

Лечебные минеральные воды (не менее 5г/л). Эти воды можно употреблять только после консультации с врачом. Неограниченное употребление вод с большой минерализацией приводит к нарушению солевого баланса в организме.

Лечебно-столовые минеральные воды содержат тот же состав веществ, который присутствует в организме человека, и их целебное действие заключается в восполнении нарушенного солевого баланса. Минеральные лечебно-столовые воды действуют на все гормональные системы и на нервную систему.

Некоторые виды минеральных вод и их состав

источник

Как провести тест (анализ) минеральной воды на качество в домашних условиях? Разновидности минеральных вод, их характеристики и требования к ним. Регламентирующие документы по минеральным водам. Что считается стандартами качества минеральной воды. Как проводится анализ минеральной воды в лабораторных условиях, методики анализа. Перед тем как провести тест (анализ) минеральной воды на качество, вам нужно разобраться в разновидностях этой жидкости и требованиях к её качеству. Только тогда вы можете по результатам анализов судить о качестве жидкости в бутылке.

Минеральная вода бывает естественного происхождения и искусственная. Первая изготавливается из жидкости, набранной из артезианских глубоководных скважин. Для производства такой воды разрешается использовать только зарегистрированные источники. Обычно о качестве такой жидкости можно судить по набору и сохранности минеральных компонентов. Существует несколько разновидностей минеральной воды:

  • Вода для лечения людей. Её можно принимать только по рекомендации врача. Степень минерализации такой жидкости составляет 8 г/л.
  • Лечебная столовая. Концентрация полезных минеральных соединений в данной разновидности жидкости должна быть в пределах 2-8 г/л.
  • Столовая вода. Такой вид можно пить регулярно. Уровень её минерализации должен составлять 1-2 г/л.
  • Столовая вода с минимальной степенью насыщения минералами. Их объём обычно не превышает 1 г/л.

Основное отличие искусственной воды в том, что она производится на заводе, но по составу и количеству соединений минералов такая вода не отличается от природной. При этом на этикетке должно быть указано, что вода произведена искусственным путём.

Также минеральная вода может быть газированной и негазированной. При этом газирование может происходить естественным или искусственным образом. Также по присутствию в воде катионов и анионов она может делиться на 31 вид, среди которых хлоридные, сульфатные, гидрокарбонатные и смешанные воды.

Качество минеральных вод, будь то столовая или лечебная вода, регламентируются ГОСТ Р 54316-2011. Стандартами качества такой воды считаются:

  1. Способ добычи. Природная минеральная вода добывается из скважины. Добытая вода очищается и фильтруется. Также существуют отдельные нормы на проведение процесса очистки и фильтрации. По стандартам жидкость должна быть кристально чистой, но допускается слабый осадок соединений минералов. Вкусовые качества и запах должны соответствовать составу жидкости.
  2. Стандартами накладывается ограничение на определённый перечень химических элементов. Так, в воде с минералами допускается содержание аммония в количестве не выше 2 мг/л, фенольных веществ в объёме 0,001 мг/л, нитратов до 50 мг/л, свинца до 0,3 мг/ л, нитритов до 2 мг/л. Также оговаривается концентрация мышьяка: для лечебной воды этот показатель не может превышать 3 мг/л, а в столово-лечебных не выше 1,5 мг/л.
  3. Концентрация двуокиси азота (газирование напитка) не может быть меньше 0,3 %. Также допускается производство негазированных вод.
  4. Требования к разливу. Вода продаётся в плотно укупоренных бутылках.

После этого продукт должен пройти проверку для подтверждения его качества. Для этого проводится анализ образца, у которого проверяются его органолептические качества, состав, микробиологические показатели, проводится радиологический контроль. Также строго контролируется безвредность всех составляющих минеральной воды, проверяется физическая полноценность элементов.

Каждый из нас может доступными способами проверить качество воды из бутылок. Для этого нужно провести ряд небольших экспериментов:

  • Для первого анализа вам понадобится капнуть воду из бутылки на чистое стекло или зеркало и дать ей высохнуть. Если после этого на поверхности не останется никаких следов, то вода чистая. О присутствии избытка хлора будет говорить высохшее беловатое пятно, а о переизбытке солей скажут круговые разводы на месте капли.
  • Второй анализ требует отстоять в банке бутилированную воду. Для этого образец воды нужно налить в чистую трёхлитровую банку и поставить её в тёмное место на несколько дней. Качественная вода должна остаться такой же чистой и прозрачной, без запаха и осадка. Если вода помутнела, позеленела, появился осадок или неприятный запах, значит, в ней присутствовали бактерии. О наличии вредных химических веществ скажет масляная плёнка на поверхности воды.
  • Если минеральную воду без газа налить в кастрюлю тёмного цвета и прокипятить 10-15 минут, то после слива жидкости можно сделать выводы о качестве воды. При наличии на стенках посуды белого налёта, осадка или накипи можно сказать, что в воде переизбыток солей, оксида железа, кальция.

Анализ качественной минеральной воды по органолептическим показателям должен дать такие результаты: это бесцветная прозрачная жидкость с характерным вкусом и запахом растворённых минералов. При хранении такой жидкости допускается выпадение слабого осадка.

Тест минеральной воды может проводиться:

  • Экспресс-методом
  • Весовым методом

Первый метод проводится так. Сначала в чистый стакан набирается 100 мл воды из бутылки. Ей дают отстояться в течение 10 минут. Затем исследуют след от капли этой жидкости на стекле. Простая питьевая вода может дать контур из солей. У минеральной воды будет расплывчатый контур следа. При этом его внутренняя часть будет заполнена беловатым налётом. След капли у лечебно-столовых вод должен быть более плотно заполнен белым налётом, а у лечебных вод след будет полностью белый.

Весовой метод позволяет в лабораторных условиях определить концентрацию минеральных солей в граммах на каждый кубический дециметр.

Если вы хотите проверить качество минеральной воды, то самый достоверный анализ вы можете заказать только в лаборатории. Никакие домашние проверки не дадут вам полной картины. Чтобы провести анализ в нашей лаборатории, вам нужно связаться с нами по указанным на сайте телефонам.

источник

Химический, микробиологический анализы воды из скважин, и центрального водоснабжения, с примером допустимых показателей

Вода – это источник энергии и жизни человека, поэтому на всех этапах строительства, начиная с изысканий, обязательно проводят анализ воды из скважин, колодцев и водоемов, находящихся непосредственно на территории объекта. Состав воды подвержен постоянному воздействию внешних факторов, ведь не исключено, что ранее около водоема, скважины или колодца располагались промышленные предприятия, захоронения тяжелых металлов или несанкционированная свалка отходов. Определить годность воды к использованию в бытовых условиях может своевременный анализ воды.

Исследования помогают установить химический состав и свойства воды и выявить концентрацию всех вредных примесей. Это необходимо для обеспечения любого объекта строительства качественной питьевой водой, а также для расчетов и выбора подходящего очистительного и распределительного оборудования. От состава и свойств воды зависит расчетный срок службы прокладываемых коммуникаций и здоровье людей, использующих ее для питьевых или бытовых нужд. Именно по этой причине одним из основных этапов геоизысканий является обязательное проведение различных анализов воды из скважины, которое назначается застройщиками любых объектов, в том числе и промышленных.

Емкости, используемые для анализа воды

При этом стоит учесть, что подобные лабораторные исследования рекомендуется проводить систематически, так как химический состав воды подвержен изменениям под действием внешней среды.
Выделяют 3 основных вида показателей:

  • Физические показатели, которые позволяют оценить основные свойства воды, а именно ее вкус, цвет, мутность, температурные данные, запах и информацию о взвешенных частицах в составе.
  • Химические показатели. Они позволяют охарактеризовать состав воды за счет оценки концентрации основных ионов. Также в процессе исследования определяют основные показатели жесткости, уровень pH, число общей минерализации и содержание отдельных ионов, отвечающих за качество воды, фтора, железа, калия и т. д. Стоит отметить, что избыток железа влияет на цвет воды и вызывает образование осадка в трубах, который может негативно влиять на сантехническое оборудование и трубы. В то время как избыток меди влияет на вкусовые качества.
  • Бактериологические показатели также отвечают за качество воды и позволяют своевременно определить заражение различными микроорганизмами. Чаще всего бактерии попадают в жидкость под воздействием внешних факторов и человеческой жизнедеятельности. Например, заражение может произойти при попадании сточных вод, при контакте воды с животными и при загрязнении различными промышленными отходами.

Показатели качества воды определяются:

  • химическим анализом;
  • органолептическим исследованием, в результате которого определяется жесткость и наличие железа;
  • токсическим анализом, направленным на определение наличия опасных веществ;
  • микробиологическим исследованием, позволяющим определить содержание бактерий в скважине, водоеме или колодце.

Результаты проверки указывают на количество определенных веществ в разных единицах измерения. При знании норм можно самостоятельно оценить основные показатели. Если все в норме, то жидкость можно считать чистой и пригодной к использованию. В противном случае нужно проводить дополнительную фильтрацию. Обычно в результатах указывают предельно допустимую концентрацию (ПДК) примесей. Этот показатель говорит, что количество определенного вещества не несет негативного воздействия. ПДК прописываются в нормативных документах.

Исследование производят для установления точного химического состава воды, а также для оценки основных свойств. Характер исследования может отличаться в зависимости от поставленных задач. Химический анализ воды подразделяют на общий и специальный. Во время общего анализа воды определяется ее общая характеристика, необходимая для ее классификации, а также для получения информации о содержании отдельных солей и ионов. Данные результаты имеют широкое назначение.

Читайте также:  Анализ подземных и поверхностных вод

Согласно СанПиН 2.1.4.559-96, на сегодняшний день в результате исследования воды обязательно устанавливают концентрацию ионов кальция, магния, натрия, которые наряду с другими составляют основу шестикомпонентного анализа, также позволяющего определить содержание железа и уровень pH. Исследование не включает в себя определение газового состава.

Краткое описание основных исследуемых в процессе химического анализа показателей:

  • Водородный коэффициент (pH) зависит от концентрации ионов.
  • Жесткость воды определяют исходя из концентрации в ней солей кальция и магния.
  • Щелочность базируется содержанием гидроксидов, анионов слабых кислот, бикарбонатов и карбонатов.
  • Хлориды связаны с присутствием в жидкости обычной соли. При наличии с хлоридами азотсодержащих веществ есть угроза загрязнения централизованного водоснабжения бытовыми отходами.
  • Сульфаты могут вызывать проблемы пищеварительной системы.
  • Элементы, содержащие азот, показывают присутствие в жидкости животной органики. К ним относится аммиак, нитриты, нитраты.
  • Фтор и йод. Оба вещества несут негативные последствия как при избытке, так и при дефиците. Первое вещество может вызвать рахит, заболевания зубов и крови. Второе – проблемы щитовидной железы.
  • Железо в составе воды может находиться в растворенном, не растворенном, коллоидном состоянии, а также в виде органических примесей и бактерий.
  • Марганец вместе с железом оставляют желтые потеки труб, аналогичные следы остаются и на чистом белье, а также вызывают характерный привкус. Это пагубно действует на печень.
  • Сероводород можно встретить в подземных водах, проводя анализ колодезной воды. Вещество относится к ядам, серьезно влияющим на здоровье людей. В воде, используемой для бытовых и питьевых нужд, присутствие сероводорода крайне опасно и запрещено.
  • Хлор – наиболее распространенное средство санитарной обработки водопроводной воды. Вещество оказывает пагубное воздействие на организм и является одной из причин генетических мутаций, тяжелых отравлений, онкологических болезней. Однако в воде часто наблюдается остаточный хлор, используемый для ее обеззараживания, в безопасной концентрации.
  • Натрий и калий – следствие растворения коренных пород.

Среди специальных анализов подземных вод важное место занимают:

  • Санитарный, направленный на определения уровня жесткости и кислотности, содержания солей и ионов NH4, NO2, NO3. Анализ выявляют в целях определения пригодности воды для питья и бытового использования и уровня ее загрязненности.
  • Бальнеологический анализ – кроме главных ионов, позволяет выявить уровень газовых компонентов, радиоактивность, число сульфатов, железо, мышьяк, литий и ряд иных показателей качества. Он считается наиболее полным и применяется для нормирования целебных источников минеральной воды, установленных требованиям ГОСТ Р 54316-2011, расположенных , например, в Карловых Варах, Ессентуках, Железноводске, Трускавце.
  • Технический анализ производят для того, чтобы оценить коррозионные и агрессивные свойства воды, а также определить ее пригодность для использования в нефтедобыче, для питания паровых котельных установок или в иной технической сфере.
  • Поисковый анализ питьевой воды используют наряду с техническим анализом для поиска агрессивных примесей и оценки способов ее дальнейшего использования.

Анализы воды из скважины проводят как в стационарных лабораторных условиях, так и с использованием полевых лабораторных установок непосредственно на объекте строительства. В полевых условиях часто используют исследовательские лаборатории и передвижные конструкции для анализа, разработанные учеными А. А. Резниковым (ПЛАВ), И. Ю. Соколовой и другими. Данный вид оборудования обычно состоит из упакованных смонтированных комплектов оборудования, посуды и реактивов, которые предназначены для исследований объемным, колориметрическим и нефелометрическим методами.

Химическая экспертиза воды имеет широкий спектр действия и применяется для:

  • анализа питьевой воды;
  • определения чистоты промышленных источников;
  • подбора фильтров на производстве.

Для точности результатов рекомендуют соблюдать следующие требования:

  • Емкость для пробы воды на анализ должна быть стерильной. Объем тары – 500 гр. Простерилизовать посуду может лаборатория, проводящая исследование, но процедуру несложно провести и дома. Для этой цели пробирку необходимо простерилизовать кипятком или паром. Также можно подержать емкость 10-15 мин в духовке или над открытым огнем.
  • Перед забором нужно продезинфицировать кран открытым пламенем и обтереть спиртом. После этих манипуляций нужно спустить воду на полной мощности в течение 5-7 мин. Запрещается притрагиваться к крышке и горловине тары.
  • Жидкость необходимо оградить от тепла и прямых солнечных лучей, так как такое воздействие способно нарушить качество, и результаты будут недостоверными. Лучше во время перевозки поместить пробирку в холодное место.
  • Образец нужно передать в лабораторию и приступить к определениям максимум через 3 часа после забора.

К образцу прилагают документацию, содержащую информацию о виде источника (колодец, скважина, природный водоем и т. д.), место пробы, правильную дату и время забора, а также точный юридический адрес источника.

Изображение результатов химического анализа

Качество воды из скважины и ее состав можно определить несколькими методиками. Каждая из них устанавливает определенный показатель. Химический состав воды из скважины, водоема или колодца обычно изображают в ионной, процент-эквивалентной или эквивалентной форме. Ионная форма позволяет выразить химический состав питьевой воды в виде отдельных ионов, содержащихся в ней. Они выражаются в миллиграммах (мг) или же в граммах (гр), изредка данные могут быть предоставлены как отношение к массе и объему исследуемой жидкости.

Вода в процессе визуального исследования

Сегодня все сертифицированные лаборатории, куда доставляются пробы, предоставляют результаты гидрохимических исследований в ионной форме, которая является основным изображением состава воды. Ионная форма считается основной и используется для дальнейших переходов. Если надо выполнить перевод результатов, изображенных в виде отношения к единице объема, к составу, отнесенному к единице массы, количество отдельных ионов нужно поделить на плотность, а в случае обратного перехода — помножить.

Эквивалентная форма изображения результатов и получила значительное распространение. Она дает развернутое представление о свойствах воды, позволяет определить содержание ионов и установить происхождение вод. Форма используется в аналитических целях и позволяет контролировать результаты.

Чистая водопроводная вода

Эквивалент иона представляет собой частное от деления ионной массы на валентность иона. В качестве примера можно рассмотреть содержание иона натрия в эквивалентном виде иона: Na+ = 23/1, а эквивалент иона С = 35,5/1, из этого следует вывод, что на 23 единицы массы иона Na+ приходится 35,5 единицы иона, выраженных в эквивалентах. Исходя из этого, нужно отметить, что для перехода от ионной формы к эквивалентному изображению результатов нужно разделить количество иона, выраженное в миллиграммах (мг) или граммах (гр), на величину эквивалента иона.

Вода с избыточным содержанием железа и меди

Процент-эквивалентная форма позволяет более наглядно показать ионно-солевой состав, соотношение между ионами, а также определяет черты сходства вод с различной величиной минерализации, что делает данную форму наиболее распространенной. Но изображение содержания солей в составе исследуемых жидкостей только в одной из вышеперечисленных форм не дает возможности установить абсолютное содержание ионов в воде. По этой причине желательно предоставить результаты исследований, изобразив их в эквивалентной и ионной формах.

источник

Описание презентации по отдельным слайдам:

Работу выполнила: ученица 10 класса Басангова Ногала Руководитель: учитель химии Басангова М.А. МКОУ «Уланхольская средняя общеобразовательная школа Xl республиканская научно – практическая конференция школьников «Первые шаги в науку» Исследовательская работа по теме : Исследование состава и свойств минеральной воды

Цель исследования: определение экологической безопасности минеральной воды разных производителей, которые реализуют свою продукцию в магазинах посёлка Улан -Хол. Задачи исследования: изучить литературные источники по теме; изучить классификацию и назначение минеральной воды; изучить доступные методы качественного анализа минеральной воды; исследовать химический состав минеральной воды « Рычал — Су», «Ессентуки 17», «Меркурий»; приобрести навыки экспериментального исследования веществ методом качественного анализа; сравнив данные этикеток с данными экспериментального исследования методами качественного анализа. изучить требования к упаковке и маркировке и соответствие маркировки требованиям ГОСТ; изучить классификацию и назначение минеральной воды; выявить лечебные свойства воды и правила её использования.

Объект исследования: минеральная вода. Предмет исследования: качество и химический состав продукта, информация на этикетке. Гипотеза: на упаковке продукта отображается полная и достоверная информация для потребителя Проблемой исследования является противоречие между использованием минеральной воды в качестве экологически безопасной большинством населения и недостаточной изученностью её химического состава и свойств, технологии производства продукта. Актуальность исследования: так как в настоящее время как никогда остро стоят вопросы очистки воды, здоровья человека, фальсификации продуктов питания, значит, наши исследования будут иметь перспективы применения полученных знаний на практике в будущем. Практическая значимость работы заключается в том, что наработанный материал может быть использован для проведения классных часов, внеклассных занятий по химии и биологии.

Минеральная вода и её назначение «Воды таковы, каковы земли, через которые они проходят». Аристотель Минеральные воды — это прежде всего подземные (иногда поверхностные) воды, характеризующиеся повышенным содержанием биологически активных минеральных (реже органических) компонентов и (или) обладающие специфическими физико-химическими свойствами (химический состав, температура, радиоактивность и др.), благодаря которым они оказывают на организм человека лечебное действие.

Минеральная вода – вода, содержащая биологически активные минеральные и органические компоненты, обладающая специфическими физико-химическими свойствами. В этих водах одни вещества содержатся в виде недиссоциированных молекул, другие в виде ионов, в них могут присутствовать и коллоидные частицы.

Суточная потребность в некоторых минеральных веществах Категория населения Кальций, мг Фосфор, мг Магний, мг Дети и подростки До 1 года 1000 1500 — 1-3 лет 1000 1500 140 4-6 лет 1000 1500 220 7-10 лет 1200 2000 360 11-13 лет 1500 2500 400 14-17 лет 1400 2000 530 Взрослые 800 1600 500 Беременные 1500 3000 925 Кормящие матери 1900 3800 1250

Происхождение минеральных вод Состав любой минеральной воды непосредственно отражает различные геологические процессы, которые происходили в том районе, где есть источник. Поэтому можно сказать, что эта вода зафиксировала в своем составе историю преобразования Земли.

Классификация минеральных вод

Типы минеральной воды по содержанию солей (до 0,5г/л солей) Питьевая очищенная вода. Эта вода пригодна для повседневного применения, для питья, приготовления пищи, безопасна и безвредна, не обладает какими-либо лечебными свойствами. (не более 1г/л солей) Столовая вода. Это минеральная (натуральная) вода, пригодная для ежедневного применения. Содержание солей невысоко (2-8 г/л солей) Лечебно-столовая вода. Воды эти, не пригодны для приготовления пищи, но широко используются для питья. Они обладают лечебным действием (более 10г/л солей) Лечебная вода. Вода применяется исключительно в лечебных целях. Применяется по совету врача

Магниевая Рекомендуется при запорах, а также в стрессовых ситуациях. Противопоказана людям, склонным к расстройствам желудка. Кальциевая участвует в поддержании ионного равновесия в организме, хорошо влияет на мышечную, нервную системы, на свертываемость крови.

Экспериментальная часть В основе методики исследования качественного состава и свойств минеральной воды лежат качественные реакции неорганических соединений. Химические реакции, пригодные для качественного анализа, должны сопровождаться заметным внешним эффектом. Это может быть • выделение газа • изменение окраски раствора • выпадение осадка • растворение осадка • образование кристаллов характерной формы Химический облик и лечебные свойства минеральной воды определяют 6 основных ионов: три катиона — натрий (Na+), кальций (Са 2+), магний (Мg 2+ ) и три аниона — хлор (Сl-), сульфат (SO 4 2- ) и гидрокарбонат (НСО3 -)

Определение рН воды Вывод: рН воды = 7, это идеальный уровень рН для минеральной воды , в воде Рычал –Су рН № слайда 13

ОБНАРУЖЕНИЕ АНИОНОВ: SO 42-, CO 32- Вывод: Осадок есть — в растворе присутствуют данные анионы. Осадка нет – в растворе нет анионов первой группы.

Вывод: Осадок не исчез – это сульфат бария Осадок исчез – ион SO 42- отсутствует Вывод: Выделяется углекислый газ – есть ионы CO 32-

ОБНАРУЖЕНИЕ АНИОНОВ: Cl-, S2- Вывод: Осадка нет – нет анионов второй группы Осадок есть – есть анионы либо второй, либо первой группы CI- осадок белый;

Вывод: Осадок исчез – это был осадок первой группы анионов. Осадок не исчез – есть анионы второй группы ( Cl-, Br-, I-).

ОБНАРУЖЕНИЕ КАТИОНОВ Ca2+ Вывод: Наблюдается незначительное помутнение (белый осадок) – есть ионы Ca2+

Вывод: Выпадает осадок, есть ионы Mg2+. ОБНАРУЖЕНИЕ КАТИОНОВ Mg2+

Результаты качественного анализа минеральной воды № опыта Реагент Наблюдения Выводы «Есентуки -17» « Меркурий». «Рычал — Су» №1 Хлорид бария BaCl2 Небольшое помутнение Выпадает густой белый осадок Наблюдается выпадение небольшого осадка Проба минеральной воды «Меркурий и Рычал — Су» содержит анионы первой группы: SO2-4, CO32- Проба воды «Есентуки17» такжесодержит небольшое количество ионов данной группы. №2 Раствор азотной кислоты НNO3(разб) Осадок не исчезает Осадок не исчезает Осадок исчез Пробы воды «Меркурий иЕсентуки17» содержат SO42-,, а «Рычал -Су» SO42-,- отсутствует №3 15% раствор соляной кислотыHCL Выделяется углекислый газ в большом количестве Выделяется углекислый газ в небольшом количестве Выделяется углекислый газ в большом количестве Пробы содержат анионы CO32- Притом в воде «Меркурий и Рычал –Су» их больше

Читайте также:  Анализ почвы и воды вывод

№4 Раствор нитрата серебра AgNO3 Осадок есть – есть анионы либо второй, либо первой группы Осадок есть – есть анионы либо второй, либо первой группы Осадка нет – нет анионов второй группы Проба воды «Рычал -Су» не содержит анионы:Cl-, S2- Проба воды «Меркурий и Есентуки17» содержит анионы:Cl-, S2-,Br-, I-).Белый осадок указывает на наличие хлорид – ионов. №5 Раствор технической соды Na2СО3(разбавленный). Наблюдается незначительное помутнение Наблюдается незначительное помутнение Наблюдается незначительное помутнение Содержание ионов Ca2+,примерно одинаковое №6 Медная проволока с каплей исследуемой воды, внести в пламя горелки Пламя окрашивается в интенсивный желтыйцвет Цвет пламенине меняется Цвет пламени- жёлтый Вводе Рычал – Су присутствуют ионыК+,Na+ В водеЕсентуки17 присутствуют ионы натрия, калия, кальция, магния; В воде Меркурий присутствуют ионы кальция,аионы К+,Na+не обнаружены №7 Раствор гидроксида натрия Выпадает интенсивный белый осадок Выпадает белый осадок меньшей интенсивности Наблюдается незначительное помутнение В пробеЕсентуки17новмагния много, в пробеМеркурийих мало, а впробе Рычал- Суих ещё меньше

Вывод: в результате проведенных опытов, мы установили: анионный состав исследуемых минеральных вод соответствует анионному составу на этикетках. Не подтвердилось лишь содержание сульфат-иона в Рычал –Су. Катионный состав исследуемых минеральных вод соответствует катионному составу на этикетках.

Данные социологического опроса жителей посёлка Улан Хол Как часто вы покупаете минеральную воду. Утоляя жажду, вы пьете минеральную воду Укажите причину покупки минеральной воды Выбирая минеральную воду, вы отдаёте предпочтение какой либо Есентуки 17 Меркурий Архыз Рычал -Су Боржоми Другое

Интересуетесь ли вы записью состава воды на этикетке Если вы интересуетесь данными на этикетке, отметьте, на что вы обращаете внимание Выбирая минеральную воду, вы отдаете предпочтение Знаете ли вы, чем эти воды отличаются друг от друга по составу, свойствам и действию на организм

Ессентуки 17 уровень солей более 10 г/солей. Лечебная вода. Вода применяется исключительно в лечебных целях. Применять только по назначению врача Меркурий и Рычал — Су содержит от 2 до 8 г/л солей. Лечебно-столовая вода. Вода не пригодна для приготовления пищи, может использоваться для питья. Обладает лечебным действием Изучив классификацию минеральной воды и ее свойства, мы дали характеристику исследуемой нами минеральной воды.

1. По этикетке не всегда можно определить экологическую безопасность продукта. 2. Минеральную воду лечебно-столовую и лечебную необходимо употреблять по назначению врача. 3. При выборе минеральной воды обращать внимание на информацию: состав, место изготовления, срок хранения (в пластиковой бутылке не более 6месяцев), назначение воды. 4. Минеральная вода «Хабаз» является лечебно-столовой, значит употреблять постоянно без назначения врача нежелательно. 5. Минеральные воды «Аква Минерале» и «Обуховская» являются питьевой и столовой соответственно, их можно употреблять для питья и для приготовления пищи без рекомендаций врача. Выводы:

Мы узнали, что на этикетке должна быть информация: -наименование продукции (минеральная, минерализованная и т. п.); -тип (газированная, негазированная); -название воды; -сведения о минерализации воды; -наименование группы; -номер или название источника; -наименование, адрес производителя и его юридический адрес, наименования страны и места происхождения; -объем в литрах или миллилитрах; -торговая марка, товарный знак изготовителя; -назначение воды (столовая, лечебная, лечебно-столовая); -ГОСТ или номер технических условий (ТУ); -условия и сроки хранения; -информация о сертификации; -показания по лечебному применению

Занимаясь этим исследованием, мы познакомились с характеристиками минеральных вод, их классификацией, свойствами, значением для организма человека. Практически доказали качественный состав минеральной воды. Научились разбираться с информацией о воде на этикетках. Подтвердили гипотезу, что на упаковке продукта отображается достоверная информация для потребителя.

Чтобы скачать материал, введите свой E-mail, укажите, кто Вы, и нажмите кнопку

Нажимая кнопку, Вы соглашаетесь получать от нас E-mail-рассылку

Если скачивание материала не началось, нажмите еще раз «Скачать материал».

Высылаю Вам разработку исследовательской работы по теме » Исследование состава и свойств миниральной воды» так как в настоящее время как никогда остро стоят вопросы очистки воды, здоровья человека, фальсификации продуктов питания, значит, наши исследования будут иметь перспективы применения полученных знаний на практике в будущем.

Практическая значимость работы заключается в том, что наработанный материал может быть использован для проведения классных часов, внеклассных занятий по химии и биологии.

источник

Минерализация – суммарное содержание всех найденных при химическом анализе воды минеральных веществ; обычно выражается в мг/дм 3 (до 1000 мг/дм 3 ) и ‰ (промилле или тысячная доля при минерализации более 1000 мг/дм 3 ).

Минерализация природных вод, определяющая их удельную электропроводность, изменяется в широких пределах (табл. 7). Большинство рек имеет минерализацию от нескольких десятков миллиграммов в литре до нескольких сотен. Минерализация подземных вод и соленых озер изменяется в интервале от 40–50 мг/дм 3 до 650 г/кг (плотность в этом случае уже значительно отличается от единицы). Минерализация атмосферных осадков составляет от 3 до 60 мг/дм 3 .

Классификация природных вод по минерализации

Многие производства, сельское хозяйство, предприятия питьевого водоснабжения предъявляют определенные требования к качеству вод, в частности, к минерализации, так как воды, содержащие большое количество солей, отрицательно влияют на растительные и животные организмы, технологию производства и качество продукции, вызывают образование накипи на стенках котлов, коррозию, засоление почв.

В соответствии с гигиеническими требованиями к качеству питьевой воды суммарная минерализация не должна превышать величины 1000 мг/дм 3 . По согласованию с органами департамента санэпиднадзора для водопровода, подающего воду без соответствующей обработки (например, из артезианских скважин), допускается увеличение минерализации до 1500 мг/дм 3 ).

Минеральный состав воды интересен тем, что отражает результат взаимодействия воды как физической фазы и среды жизни с другими фазами (средами): твердой, т.е. береговыми подстилающими, а также почвообразующими минералами и породами; газообразной (с воздушной средой) и содержащейся в ней влагой и минеральными компонентами. Кроме того, минеральный состав воды обусловлен целым рядом протекающих в разный средах физико-химических и физических процессов – растворения и кристаллизации, пептизации и коагуляции, седиментации, испарения и конденсации и др. Большое влияние на минеральный состав воды поверхностных водоемов оказывают протекающие в атмосфере и в других средах химические реакции с участием соединений азота, углерода, кислорода, серы и др.

Можно выделить две группы минеральных солей, обычно встречающихся в природных водах (табл. 8).

Основные компоненты минерального состава воды

Компонент минерального состава воды

Предельно допустимая концентрация

Железо общее (сумма Fе 2+ и Fe 4+ )

Как видно из табл. 8, основной вклад в минеральный состав вносят соли 1-й группы (они образуют так называемые «главные ионы»), которые определяют в первую очередь. К ним относятся хлориды, карбонаты, гидрокарбонаты, сульфаты. Соответствующими катионами для названных анионов являются калий, натрий, кальций, магний. Соли 2-й группы также необходимо учитывать при оценке качества воды, т.к. на каждую из них установлено значение ПДК, хотя они вносят незначительный вклад в солесодержание природных вод.

Соотношение концентрации в воде главных ионов (в мг-экв/л) определяет типы химического состава воды. В зависимости от преобладающего вида анионов (>25 % эквивалента при условии, что суммы мг-экв анионов и катионов принимаются равными 50 % соответственно каждая) различают воды гидрокарбонатного класса (концентрация НСО3 >25 % экв. анионов), сульфатного (SО4 >25 % экв.), хлоридного (С1 >25 %, экв.). Иногда выделяют также воды смешанных, или промежуточных, типов. Соответственно, среди катионов выделяются группы кальциевых, магниевых, натриевых или калиевых вод.

Минерализация воды имеет важнейшее значение при характеристике химического состава вод. При этом проводят анализы воды на содержание минеральных компонентов в различные периоды: для поверхностных вод – в зимнюю межень, весеннее половодье (пик), летне-осеннюю межень, летне-осенний паводок; для вод заболоченных участков – в зимнюю межень; весеннее половодье, для почвенных вод – в зимнюю межень, весеннее половодье и летне-осеннюю межень.

Концентрации растворенных в воде минеральных солей, определяют, как правило, химическими методами – титриметрическим, колориметрическим. Концентрации некоторых компонентов (например, катионов натрия, калия) в воде можно оценить расчетными методами, имея данные о значениях концентраций других катионов и анионов.

Жесткость. Жесткость воды представляет собой свойство природной воды, зависящее от наличия в ней главным образом растворенных солей кальция и магния. Из всех солей, относящихся к солям жесткости, выделяют гидрокарбонаты, сульфаты и хлориды. Суммарное содержание растворимых солей кальция и магния называют общей жесткостью. Общая жесткость подразделяется на карбонатную, обусловленную концентрацией гидрокарбонатов (и карбонатов при рН 8,3) кальция и магния, и некарбонатную – концентрацию в воде кальциевых и магниевых солей сильных кислот. Поскольку при кипячении воды (точнее при температуре более 60 0 С) гидрокарбонаты переходят в карбонаты, которые выпадают в осадок, карбонатную жесткость называют временной или устранимой. Остающаяся после кипячения жесткость (обусловленная хлоридами или сульфатами) называется постоянной.

Жесткость воды — одно из важнейших свойств, имеющее большое значение при водопользовании. Если в воде находят ионы металлов, образующие с мылом нерастворимые соли жирных кислот, то в такой воде затрудняется образование пены при стирке белья или мытье рук, в результате чего возникает ощущение жесткости. Жесткость воды пагубно сказывается на трубопроводах при использовании воды в тепловых сетях, приводит к образованию накипи. По этой причине в воду приходится добавлять специальные «смягчающие» химикаты.

В естественных условиях ионы кальция, магния и других щелочноземельных металлов, обусловливающих жесткость, поступают в воду в результате взаимодействия растворенного диоксида углерода с карбонатными минералами и других процессов растворения и химического выветривания горных пород. Источником этих ионов являются также микробиологические процессы, протекающие в почвах на площади водосбора, в донных отложениях, а также сточные воды различных предприятий.

Жесткость воды колеблется в широких пределах. Ввиду того, что солями жесткости являются соли разных катионов, имеющие разную молекулярную массу, концентрации солей жесткости, или жесткость воды, измеряется в единицах эквивалентной концентрации – количеством г-экв/л или мг-экв/л. Вода с жесткостью менее 4 мг-экв/дм 3 считается мягкой, от 4 до 8 мг-экв/дм 3 – средней жесткости, от 8 до 12 мг-экв/дм 3 – жесткой и выше 12 мг-экв/дм 3 – очень жесткой. Общая жесткость колеблется от единиц до десятков, иногда сотен мг-экв/дм 3 , причем карбонатная жесткость составляет до 70–80 % от общей жесткости.

Обычно преобладает жесткость, обусловленная ионами кальция (до 70 %); однако в отдельных случаях магниевая жесткость может достигать 50–60 %. Жесткость морской воды и океанов значительно выше (десятки и сотни мг-экв/дм 3 ). Жесткость поверхностных вод подвержена заметным сезонным колебаниям, достигая обычно наибольшего значения в конце зимы и наименьшего в период половодья.

Высокая жесткость ухудшает органолептические свойства воды, придавая ей горьковатый вкус и оказывая действие на органы пищеварения.

Допустимая величина общей жесткости для питьевой воды и источников централизованного водоснабжения составляет не более
7 мг-экв/л (в отдельных случаях – до 10 мг-экв/л), лимитирующий показатель вредности – органолептический.

Предлагаемый метод определения общей жесткости как суммарной массовой концентрации катионов кальция и магния основан на реакции солей кальция и магния с реактивом – трилоном Б (двунатриевой солью этилендиаминтетрауксусной кислоты):

где R – радикал этилендиаминтетрауксусной кислоты.

Анализ проводят в аммиачном буферном растворе при рН 10,0-10,5 титриметрическим методом в присутствии индикатора хрома темно-синего кислотного.

Общую жесткость (Сож) в мг-экв/л вычисляют по формуле:

где: VTP – объем раствора трилона Б, израсходованного на титрование, мл;

Н – концентрация титрованного раствора трилона Б с учетом поправочного коэффициента, г-экв/л;

VA – объем воды, взятой на анализ, мл;

1000 – коэффициент пересчета единиц измерения из г-экв/л в мг-экв/л.

Определение общей жесткости воды

Баня водяная; ножницы; палочка стеклянная; пипетка на 2 мл или на
5 мл с резиновой грушей (медицинским шприцем) и соединительной трубкой; пипетка-капельница; склянка с меткой «10 мл».

Вода дистиллированная; раствор буферный аммиачный; раствор индикатора хром темно-синего кислотного; раствор трилона Б (0,05 г-экв/л).

О приготовлении растворов см. приложение 3.

1. В склянку налейте 10 мл анализируемой воды.

2. Добавьте в склянку пипетками 6-7 капель раствора буферного аммиачного и 4-5 капель раствора индикатора хрома темно-синего кислотного.

3. Герметично закройте склянку пробкой и встряхните для перемешивания.

4. Постепенно титруйте содержимое склянки раствором трилона Б до перехода окраски в точке эквивалентности из винно-красной в ярко-голубую. Периодически встряхивайте склянку для перемешивания пробы. Определите объем раствора, израсходованный на титрование общей жесткости (Vож, мл).

5. Рассчитайте величину общей жесткости (Сож) в мг-экв/л по формуле: Cож = Vож × 5.

Примечание. После изменения окраски пробу необходимо выдержать еще 0,5 мин. для полного протекания реакции, после чего принять решение об окончании титрования (окраска раствора может несколько восстановиться. В этом случае необходимо добавить еще некоторое количество раствора трилона Б).

Кальций. Главными источниками поступления кальция в поверхностные воды являются процессы химического выветривания и растворения минералов, прежде всего известняков, доломитов, гипса, кальцийсодержащих силикатов и других осадочных и метаморфических
пород.

Читайте также:  Анализ почвы воды и воздуха

Растворению способствуют микробиологические процессы разложения органических веществ, сопровождающиеся понижением рН.

Большие количества кальция выносятся со сточными водами силикатной, металлургической, стекольной, химической промышленности и со стоками с сельскохозяйственных угодий, особенно при использовании кальцийсодержащих минеральных удобрений.

Характерной особенностью кальция является склонность образовывать в поверхностных водах довольно устойчивые пересыщенные растворы CaCO3. Ионная форма (Ca 2+ ) характерна только для маломинерализованных природных вод. Известны довольно устойчивые комплексные соединения кальция с органическими веществами, содержащимися в воде. В некоторых маломинерализованных окрашенных водах до
90-100 % ионов кальция могут быть связаны гумусовыми кислотами.

В речных водах содержание кальция редко превышает 1 г/дм 3 . Обычно же его концентрации значительно ниже.

Концентрация кальция в поверхностных водах подвержена заметным сезонным колебаниям. В период понижения минерализации (весной) ионам кальция принадлежит преобладающая роль, что связано с легкостью выщелачивания растворимых солей кальция из поверхностного слоя почв и пород.

ПДКвр кальция составляет 180 мг/дм 3 .

Довольно жесткие требования по содержанию кальция предъявляются к водам, питающим паросиловые установки, поскольку в присутствии карбонатов, сульфатов и ряда других анионов кальций образует прочную накипь. Данные о содержании кальция в водах необходимы также при решении вопросов, связанных с формированием химического состава природных вод, их происхождением, а также при исследовании карбонатно-кальциевого равновесия.

Метод определения массовой концентрации катиона кальция (ГОСТ 1030) аналогичен методу определения общей жесткости с реактивом трилоном Б с той разницей, что анализ проводится в сильнощелочной среде (рН 12-13) в присутствии индикатора мурексида.

Массовую концентрацию кальция рассчитывают по результатам титрования по такой же формуле. Определению кальция мешают карбонаты и диоксид углерода, удаляемые из пробы при ее подкислении.

Баня водяная; ножницы; палочка стеклянная; пипетка на 2 мл или на
5 мл со шприцем и соединительной трубкой; пипетка-капельница
(0,5 мл); склянка с меткой «10 мл».

Бумага индикаторная универсальная; вода дистиллированная; индикатор мурексид в капсулах (по 0,03 г); раствор буферный аммиачный; раствор гидроксида натрия (10 %); раствор соляной кислоты (1:100); раствор трилона Б (0,05 г-экв/л).

О приготовление растворов см. приложение 3.

1. В склянку с меткой «10 мл» налейте до метки анализируемую воду.

2. Далее из раствора удаляется гидрокарбонат-анион. Для этого в склянку прибавьте по каплям раствор соляной кислоты (1:100) при интенсивном перемешивании стеклянной палочкой до достижения величины рН раствора 4-5 (при перемешивании удаляется и большая часть диоксида углерода, мешающего определению).

Величину рН контролируйте с помощью бумаги индикаторной универсальной.

3. К пробе прибавьте пипеткой-капельницей 13-14 капель (около 0,5 мг) раствора гидроокиси натрия и содержимое одной капсулы (0,02-0,03 г) индикатора мурексида. Раствор перемешайте стеклянной палочкой.

4. Затем проведите титрование раствором трилона Б из пипетки на 5 мл на черном фоне до перехода окраски в точке эквивалентности из оранжевой в сине-фиолетовую. Определите объем раствора трилона Б, израсходованный на титрование кальция (VКА, мл).

5. Рассчитайте массовую концентрацию кальция (СКА) в мг-экв/л по уравнению:

Примечание. После изменения окраски пробу необходимо выдержать еще 0,5 мин. для полного протекания реакции, после чего принять решение об окончании титрования (окраска раствора может несколько восстановиться. В этом случае необходимо добавить еще некоторое количество раствора трилона Б).

Магний. В поверхностные воды магний поступает в основном за счет процессов химического выветривания и растворения доломитов, мергелей и других минералов. Значительные количества магния могут поступать в водные объекты со сточными водами металлургических, силикатных, текстильных и других предприятий.

В речных водах содержание магния обычно колеблется от нескольких единиц до десятков миллиграммов в 1 дм 3 .

Содержание магния в поверхностных водах подвержено заметным колебаниям: как правило, максимальные концентрации наблюдаются в меженный период, минимальные — в период половодья.

ПДКвр ионов Мg 2+ составляет 40 мг/дм 3 .

Для определения содержания магния в незагрязненных поверхностных и грунтовых природных водах, как и в большинстве речных вод, можно применять расчетный метод по разности результатов определения общей жесткости и концентрации катиона кальция. Для анализа загрязненных вод на содержание магния необходимо применять прямое определение магния.

Массовую концентрацию катиона магния (Смг) в мг/л определяют расчетным методом, производя вычисления по формуле:

где СОЖ и СКА – результаты определения общей жесткости (мг-экв/л) и массовой концентрации катиона кальция (мг/л) соответственно; 0,05 – коэффициент пересчета концентрации катиона кальция в миллиграмм-эквивалентную форму; 12,16 – эквивалентная масса магния.

Полученный результат округлите до целых чисел (мг/л).

Карбонаты и гидрокарбонаты. Основным источником гидрокарбонатных и карбонатных ионов в поверхностных водах являются процессы химического выветривания и растворения карбонатных пород типа известняков, мергелей, доломитов, например:

Некоторая часть гидрокарбонатных ионов поступает с атмосферными осадками и грунтовыми водами. Гидрокарбонатные и карбонатные ионы выносятся в водоемы со сточными водами предприятий химической, силикатной, содовой промышленности и т.д.

По мере накопления гидрокарбонатных и особенно карбонатных ионов последние могут выпадать в осадок:

В речных водах содержание гидрокарбонатных и карбонатных ионов колеблется от 30 до 400 мг HCO3 — /дм 3 , в озерах – от 1 до 500 мг HCO3 — /дм 3 , в морской воде – от 100 до 200 мг/дм 3 , в атмосферных осадках – от 30 до 100 мг/дм 3 , в грунтовых водах – от 150 до
300 мг/дм 3 , в подземных водах – от 150 до 900 мг/дм 3 .

Как отмечалось выше (в разделе «Щелочность и кислотность»), карбонаты и гидрокарбонаты представляют собой компоненты, определяющие природную щелочность воды. Их содержание в воде обусловлено процессами растворения атмосферного СО2, взаимодействия воды с находящимися в прилегающих грунтах известняками и, конечно, жизненными процессами дыхания всех водных организмов.

Определение карбонат- и гидрокарбонат-анионов является титриметрическим и основано на их реакции с водородными ионами в присутствии фенолфталеина (при определении карбонат-анионов) или метилового оранжевого (при определении гидрокарбонат-анионов) в качестве индикаторов. Используя эти два индикатора, удается наблюдать две точки эквивалентности: в первой точке (рН 8,0-8,2) в присутствии фенолфталеина полностью завершается титрование карбонат-анионов, а во второй (рН. 4,1-4,5) – гидрокарбонат-анионов. По результатам титрования можно определить концентрации в анализируемом растворе основных ионных форм, обуславливающих потребление кислот (гидроксо-, карбонат- и гидрокарбонат-анионов), а также величины свободной и общей щелочности воды, т.к. они находятся в стехиометрической зависимости от содержания гидроксол-, карбонат- и гидрокарбонат-анионов. Для титрования обычно используют титрованные растворы соляной кислоты с точно известным значением концентрации 0,05 г-экв/л либо 0,1 г-экв/л.

Определение гидрокарбонат-анионов основано на реакции:

Присутствие карбонат-аниона в концентрациях, определяемых аналитически, возможно лишь в водах, рН которых более 8,0-8,2. В случае присутствия в анализируемой воде гидроксо-анионов при определении карбонатов протекает также реакция нейтрализации:

Определение гидрокарбонат-анионов основано на реакции:

Таким образом, при титровании по фенолфталеину в реакции с кислотой участвуют анионы ОН — и СО3 2- , а при титровании по метиловому оранжевому – ОН — , СО3 2- и НСО3 — .

Величина карбонатной жесткости рассчитывается с учетом эквивалентных масс участвующих в реакциях карбонат- и гидрокарбонат-анионов.

При анализе карбонатных природных вод правильность получаемых результатов зависит от величины потребления кислоты на титрование по фенолфталеину и метилоранжу. Если титрование в присутствии фенолфталеина обычно не вызывает трудностей, т.к. происходит изменение окраски от розовой до бесцветной, то в присутствии метилового оранжевого, при изменении окраски от желтой до оранжевой, определить момент окончания титрования иногда довольно сложно. Это может привести к значительной ошибке при определении объема кислоты, израсходованной на титрование. В этих случаях, для более четкого выявления момента окончания титрования, определение полезно проводить в присутствии контрольной пробы, для чего рядом с титруемой пробой помещают такую же порцию анализируемой воды (во второй склянке), добавляя такое же количество индикатора.

В результате титрования карбоната и гидрокарбоната, которое может выполняться как параллельно в разных пробах, так и последовательно в одной и той же пробе, для расчета значений концентраций необходимо определить общее количество кислоты (V) в миллилитрах, израсходованной на титрование карбоната (VK) и гидрокарбоната (VГК). Следует иметь в виду, что при определении потребления кислоты на титрование по метилоранжу (Vмо) происходит последовательное титрование и карбонатов, и гидрокарбонатов. По этой причине получаемый объем кислоты Vмо содержит соответствующую долю, обусловленную присутствием в исходной пробе карбонатов, перешедших после реакции с катионом водорода в гидрокарбонаты, и не характеризует полностью концентрацию гидрокарбонатов в исходной пробе. Следовательно, при расчете концентраций основных ионных форм, обусловливающих потребление кислоты, необходимо учесть относительное потребление кислоты при титровании по фенолфталеину (Vф) и метилоранжу (Vмо). Рассмотрим несколько возможных вариантов, сопоставляя величины Vф и Vмо.

1. Vф = 0. Карбонаты, а также гидроксо-анионы в пробе отсутствуют, и потребление кислоты при титровании по метилоранжу может быть обусловлено только присутствием гидрокарбонатов.

2. Vф ¹ 0, причем 2Vф Vмо. В данном случае в исходной пробе гидрокарбонаты отсутствуют, но присутствуют не только карбонаты, но и другие потребляющие кислоту анионы, а именно – гидроксо-анионы. При этом содержание последних эквивалентно составляет Vон = 2Vф – Vмо. Содержание карбонатов можно рассчитать, составив и решив систему уравнений:

5. VФ = Vмо. В исходной пробе отсутствуют и карбонаты, и гидрокарбонаты, и потребление кислоты обусловлено присутствием сильных щелочей, содержащих гидроксо-анионы.

Присутствие свободных гидроксо-анионов в заметных количествах (случаи 4 и 5) возможно только в сточных водах.

Массовые концентрации анионов (не солей!) рассчитываются на основе уравнений реакций потребления кислоты карбонатами (Ск) и гидрокарбонатами (Сгк) в мг/л по формулам:

где Vк и Vгк – объем раствора соляной кислоты, израсходованной на титрование карбоната и гидрокарбоната соответственно, мл; Н – точная концентрация титрованного раствора соляной кислоты (нормальность), г-экв/л; VA – объем пробы воды, взятой для анализа, мл; 60 и 61 – эквивалентная масса карбонат- и гидрокарбонат-аниона соответственно, в соответствующих реакциях; 1000 – коэффициент пересчета единиц измерений.

Результаты титрования по фенолфталеину и метилоранжу позволяют рассчитать показатель щелочности воды, который численно равен количеству эквивалентов кислоты, израсходованной на титрование пробы объемом 1 л. При этом потребление кислоты при титровании по фенолфталеину характеризует свободную щелочность, а по метилоранжу – общую щелочность, которая измеряется в мг-экв/л. Показатель щелочности используется в России, как правило, при исследовании сточных вод. В некоторых других странах (США, Канаде, Швеции и др.) щелочность определяется при оценке качества природных вод и выражается массовой концентрацией в эквиваленте СаСО3.

Следует иметь в виду, что при анализе сточных и загрязненных природных вод получаемые результаты не всегда корректно отражают величины свободной и общей щелочности, т.к. в воде, кроме карбонатов и гидрокарбонатов, могут присутствовать соединения некоторых других групп (см. «Щелочность и кислотность»).

Пипетка на 2 мл или на 5 мл с резиновой грушей (медицинским шприцем) и соединительной трубкой; пипетка-капельница, склянка с меткой «10мл».

Раствор индикатора метилового оранжевого 0,1 %-ный; раствор индикатора фенолфталеина; раствор соляной кислоты титрованный (0,05 г-экв/л).

О приготовлении растворов см. приложение 3.

1. Титрование карбонат-аниона

1. В склянку налейте до метки (10 мл) анализируемую воду.

2. Добавьте пипеткой 3-4 капли раствора фенолфталеина.

Примечание. При отсутствии окрашивания раствора либо при слабо-розовом окрашивании считается, что карбонат-анион в пробе отсутствует (рН пробы меньше 8,0-8,2).

3. Постепенно титруйте пробу с помощью мерного шприца с наконечником либо мерной пипетки раствором соляной кислоты (0,05 г-экв/л) до тех пор, пока окраска побледнеет до слабо-розовой, и определите объем раствора соляной кислоты, израсходованный на титрование по фенолфталеину (Уф, мл).

2. Титрование гидрокарбонат-аниона

4. В склянку налейте до метки (10 мл) анализируемую воду либо используйте раствор после определения карбонат-аниона.

5. Добавьте пипеткой 1 каплю раствора метилового оранжевого.

Примечание. Для более четкого определения момента окончания титрования определение полезно проводить в присутствии контрольной пробы, для чего рядом с титруемой пробой помещают такую же порцию анализируемой воды (во второй склянке), добавляя такое же количество индикатора.

6. Постепенно титруйте пробу с помощью мерного шприца с наконечником раствором соляной кислоты (0,05 г-экв/л) при перемешивании до перехода желтой окраски в розовую, определяя общий объем раствора, израсходованного на титрование по метилоранжу
(Vмо, мл). При использовании раствора после определения карбонат-аниона необходимо определить суммарный объем, израсходованный на титрование карбоната и гидрокарбоната.

Обязательно перемешивайте раствор при титровании!

Момент окончания титрования определяйте по контрольной пробе.

3. Определение ионных форм, обусловливающих потребление кислоты на титрование

В зависимости от соотношения между количествами кислоты, израсходованными на титрование по фенолфталеину (Vф) и метилоранжу (Vмо), по табл. 9 выберите подходящий вариант для вычисления ионных форм, обусловливающих потребление кислоты при титровании. Раствор после титрования карбонат-аниона оставьте для дальнейшего определения в нем массовой концентрации гидрокарбонат-аниона.

Определение ионных форм, обусловливающих потребление кислоты
на титрование

источник