Меню Рубрики

Анализ воды на железо общее

Главными источниками соединений железа в поверхностных водах являются процессы химического выветривания горных пород, сопровождающиеся их механическим разрушением и растворением. В процессе взаимодействия с содержащимися в природных водах минеральными и органическими веществами образуется сложный комплекс соединений железа, находящихся в воде в растворенном, коллоидном и взвешенном состояниях. Значительные количества железа поступают с подземным стоком и со сточными водами предприятий металлургической, металлообрабатывающей, текстильной, лакокрасочной промышленности и сельскохозяйственными стоками.

Фазовые равновесия зависят от химического состава вод, рН , Е h (окислительно-восстановительного потенциала) и в некоторой степени от температуры. В рутинном анализе во взвешенную форму выделяются частицы размером более 0,45 мкм. Она представлена преимущественно железосодержащими минералами, гидратом оксида железа и соединениями железа, сорбированными на взвесях. Истинно растворенную и коллоидную формы обычно рассматривают совместно. Растворенное железо представлено соединениями, находящимися в ионной форме в виде гидроксокомплексов и комплексов с растворенными неорганическими и органическими веществами природных вод. В ионной форме мигрируют главным образом Fe ( II ), а Fe ( III ) в отсутствие комплексообразующих веществ не может в значительных количествах находиться в растворенном состоянии.

Железо обнаруживается в основном в водах с низкими значениями Eh .

В результате химического и биохимического (при участии железобактерий) окисления Fe ( II ) переходит в Fe ( III ), которое, гидролизуясь , выпадает в осадок в виде Fe (ОН)3 Как для Fe ( II ), так и для Fe ( III ) характерна склонность к образованию гидрооксокомплексов типа [ Fe (ОН)2 ] + , [ Fe 2 (ОН)2 ] 4+ , [ Fe 2 (ОН)3 ] 3+ , [ Fe (ОН)3] — и других, сосуществующих в растворе в разных концентрациях в зависимости от рН и в целом определяющих состояние системы железо-гидроксил. Основной формой нахождения Fe ( III ) в поверхностных водах являются его комплексные соединения с растворенными неорганическими и органическими соединениями, главным образом гумусовыми веществами . При рН 8,0 основной формой является Fe (ОН)3. Коллоидная форма железа наименее изучена, она представляет гидрат оксида Fe (ОН)3 и комплексы с органическими веществами.

Содержание железа в поверхностных водах суши составляет десятые доли милиграмма в 1 дм 3 , вблизи болот – единицы миллиграммов в 1 дм 3 . Повышенное содержание железа наблюдается в болотных водах, в которых оно находится в виде комплексов с солями гуминовых кислот – гуматами . Наибольшие концентрации железа (до нескольких десятков и сотен миллиграммов в 1 дм 3 ) наблюдаются в подземных водах с низкими значениями рН .

Являясь биологически активным элементом, железо в определенной степени влияет на интенсивность развития фитопланктона и качественный состав микрофлоры в водоеме.

Концентрация железа подвержена заметным сезонным колебаниям. Обычно в водоемах с высокой биологической продуктивностью в период летней и зимней стагнации заметно увеличение концентрации железа в придонных слоях воды. Осенне-весеннее перемешивание водных масс ( гомотермия ) сопровождается окислением Fe ( II ) в Fe ( III ) и выпадением последнего в виде Fe ( OH )3.

Содержание железа в воде выше 1-2 мг Fe /дм 3 значительно ухудшает органолептические свойства, придавая ей неприятный вяжущий вкус, и делает воду малопригодной для использования в технических целях.

ПДК железа составляет 0,3 мг Fe /дм 3 (лимитирующий показатель вредности – органолептический), ПДК – 0,1 мг /дм 3 (лимитирующий показатель вредности – токсикологический).

Железо образует 2 рода растворимых солей, образующих катионы F е 2+ и F е 3+ , однако в растворе железо может находиться и во многих других формах, в частности:

1) в виде истинных растворов ( аквакомплексов ) [ F е( H 2 O )6] 2+ , содержащих железо ( II ). На воздухе железо ( II ) быстро окисляется до железа ( III ), растворы которого имеют бурую окраску из-за быстрого образования гидроксосоединений (сами р астворы F е 2+ и F е 3+ практически бесцветны);

2) в виде коллоидных растворов из-за пептизации (распа да агрегированных частиц) гидроксида железа под воздействием органических соединений;

3) в виде комплексных соединений с органическими и неор­ ганическими лигандами . К ним относятся карбонилы , ареновые комплексы (с нефтепродуктами и др. углеводородами), гексациа ноферраты [ F е( С H )6] 4- и др.

В нерастворимой форме железо может быть представлено в виде различных взвешенных в воде твердых минеральных частиц различного состава.

При рН >3,5 железо ( III ) существует в водном растворе только в виде комплекса, постепенно переходящего в гидроксид . При рН >8 железо ( II ) тоже существует в виде аквакомплекса , претерпевая окисление через стадию образования железа ( III ):

F е( II ) Þ F е(Ш) Þ F еО (ОН)•Н2О

В качестве примера сложных превращений железа в раз­ ных его формах, присутствующих иногда в природных водах, приведем уравнения реакций, протекающих в болотных водах и объясняющих часто встречающийся красный цвет воды (феномен «красных рек»). В условиях пониженного значения рН , характер­ ного для болотных вод, протекают окислительные реакции с уча­ стием растворенного кислорода. В частности, встречающийся в природе практически нерастворимый в воде дисульфид же­ леза (минерал пирит) окисляется до сульфата железа ( II ):

Далее, также под воздействием кислорода, протекает окис­ ление сульфата железа ( II ):

4 F е 2+ +О 2 +4Н + =4 F е 3+ +2Н2О

Заключительной стадией процесса является реакция гид­ ролиза, приводящая к образованию красно-бурого осадка гидро­ксида железа ( III ):

источник

Если вам скажут, что проточная вода может не содержать железа, не верьте. Металл попадает в колодцы и скважины из растворенных горных пород (их частицы содержатся в грунте), из сточных вод сельскохозяйственных и промышленных предприятий, накапливается при прохождении жидкости через центральную систему водоснабжения (состояние труб зачастую оставляет желать лучшего). В такой ситуации анализ воды на железо становится насущной необходимостью.

При этом ВОЗ до сих пор не установила рекомендованных норм: по мнению ученых, железо не окажет негативного влияния на здоровье человека, даже если злоупотреблять «насыщенной» водой. Допустимый порог (0,3 мг/л) был обозначен СанПином на основании вкусовых, а не медицинских показателей.

Это интересно: в организме взрослого человека содержится около 5 граммов железа, которое входит в состав гемоглобина, миоглобина и различных ферментов. Без этого элемента невозможен нормальный процесс кроветворения. Часть железа «складирована» в печени и селезенке – этот резерв используется в случае истощения организма.

В воде содержится одно или несколько соединений железа:

  • Двухвалентное (растворенное);
  • Трехвалентное (в состоянии взвеси);
  • Органическое (соединенное с другими веществами);
  • Бактериальное (продукт жизнедеятельности некоторых микроорганизмов);
  • Коллоидное (с микроскопическими частицами).

Наличие «добавок» не всегда видно невооруженным глазом, зачастую выявить проблему может только экспресс-анализ воды на железо.

Определить наличие примеси можно самостоятельно. Первый тревожный звоночек – появление ярко выраженного металлического привкуса (при сильном превышении нормы этот вкус ощущается даже в кофе или чае). На стенках посуды и поверхности сантехники проступает желтоватый или рыжий налет, который сложно оттереть без абразивных средств. Белое белье после стирки приобретает грязноватый оттенок, а цветное быстро теряет яркость красок. При этом внешний вид воды может вовсе не вызывать подозрений.

Важно! Если вы обустроили скважину или колодец на участке, сделать анализ воды на железо нужно через 2-3 недели после начала ее эксплуатации. Впоследствии процедуру можно проводить раз в 2 года (либо при изменении цвета или вкуса воды).

Первичный анализ воды на железо в домашних условиях можно провести несколькими способами:

  • Смешать 25 мл воды и по 1 мл сульфосалициловой кислоты, аммиака и нашатырного спирта. Если через 15-20 минут раствор окрасится в ярко-желтый цвет, в нем есть примесь железа.
  • Смешать слабый раствор марганцовки с пробой воды. Тревожный «звоночек» – изменение цвета на желтовато-бурый оттенок.
  • Использовать экспресс-анализ воды на железо («набор аквариумиста»). Смешайте реагент с пробами жидкости по инструкции и определите степень загрязнения по интенсивности цвета.
  • Трехвалентное железо можно выявить простой процедурой – отстаиванием воды. Железо вступает в реакцию с кислородом и выпадает в виде красновато-бурого осадка.

Более подробный анализ воды на железо (общее либо двухвалентное) можно сделать в аккредитованных лабораториях. В идеале эту процедуру нужно проводить на месте – при транспортировке может начаться процесс окисления, что исказит результаты. Если такой возможности нет, нужно провести забор проб по всем правилам:

  • Используйте чистую пластиковую или стеклянную посуду объемом не менее 1,5 литра (можно взять бутылку от негазированной минералки).
  • Наполняйте емкость до самого верха и тщательно закручивайте пробку, чтобы перекрыть доступ воздуха.
  • Доставьте образцы в течение 2 часов. Этот срок критичен при выявлении ионов железа – именно они влияют на образование накипи.

Анализ на общее железо выявляет остаток металла в воде (то, что остается после реакции элемента с кислородом). Именно этот осадок отвечает за ржавые потеки на сантехнике и желтоватый налет на посуде.

В воде из скважин и колодцев чаще всего выявляется двухвалентное (растворенное) железо. Избавиться от него можно с помощью довольно сложной системы фильтров. На входе устанавливают ионообменные картриджи, в которых происходит процесс окисления металла и образование твердого осадка. Получившийся «песок» собирается в фильтре (картриджи нужно периодически менять). Более дорогая и эффективная система – фильтры с обратным осмосом – под высоким давлением прогоняет загрязненную воду через специальные мембраны, а все загрязнения и отходы утилизирует в канализацию.

От трехвалентного железа можно избавиться с помощью аэратора – открытого резервуара, в котором отстаивается вода. Для ускорения процесса окисления жидкость насыщают кислородом при помощи компрессора. Простым аналогом системы может стать обычное ведро: наберите воду, а через сутки аккуратно слейте примерно две трети.

Для бытовой очистки воды можно использовать активированный уголь. Заверните таблетки в вату и пропустите жидкость сквозь импровизированный фильтр.

Важно! Не забывайте, что домашние процедуры очистки могут носить лишь временный характер. Чтобы не подвергать здоровье риску, своевременно проводите анализ воды на железо и используйте профессиональные системы фильтрации.

источник

Аналитический центр более 20 лет занимается химическим анализом и разработкой новых методов анализа и диагностики веществ и материалов

В нашем распряжении самый современный приборный парк благодаря научно-техническому взаимодействию с крупнейшими мировыми разработчиками аналитического оборудования

Наши сотудники — это лучшие специалисты страны в области химического анализа, кандидаты и доктора наук

Аккредитация позволяет исследовать питьевую, природную, морскую, технологическую, талую воду и воду бассейнов

Обратившись к нам, Вы получите не только точные данные о присутствующих в воде загрязнителях, но и подробные рекомендации о способах очистки воды.

На основании анализа воды БЕСПЛАТНО подберем несколько вариантов систем водоочистки!

В нашей лаборатории Вы можете проверить качество воды из любого источника: колодца, скважины, водопровода, бассейна, родника, водоема. Для каждого источника есть оптимальный набор показателей, характеризующий возможность использования воды для тех или иных нужд. Чтобы правильно подобрать набор показателей, свяжитесь с нами по номеру +7 (495)149-23-57 или напишите на почту info@ion-lab.ru

Мы рекомендуем выбирать набор параметров в зависимости от того, какой у Вас источник водоснабжения, а также для каких целей планируете использовать воду. Для воды из городского водопровода, а также для воды, используемой в технических целях, подойдут наборы «Минимальный» или «Начальный». Для воды природных источников (скважины, колодцы, родники и т.д.) мы рекомендуем проверить воду на химический состав (наборы «Расширенный» или «Максимальный»), а также сделать анализ на микробиологию.

Да, Вы можете самостоятельно отобрать воду для анализа, следуя инструкции. Или же заказать выезд специалиста, который приедет в назначенное время со всей необходимой тарой, отберет воду и доставит ее в лабораторию.

Да, конечно! Пункт приема проб расположен по адресу: Москва, ул. Добролюбова, 21А, корпус А, пом. 14 (в пешей доступности от метро Фонвизинская, Бутырская, Тимирязевская)

Стоимость выезда специалиста зависит от выбранного Вами набора показателей и удаленности. Более точная информация размещена в разделе Доставка и оплата

© 1997-2019 — Лаборатория ИОН. Все права защищены.

Для химического анализа необходимо заполнить водой чистую пластиковую тару (оптимально 1,5 л). Использовать бутылки из-под сладких, газированных или ароматизированных напитков, а также солёной или минеральной воды недопустимо.
Если выбранный Вами анализ включает определение содержания нефтепродуктов, необходимо заполнить дополнительную стеклянную тару объемом 0,2 л.
Если выбранный Вами анализ включает определение содержания сероводорода, необходимо заполнить дополнительную стеклянную тару объемом 0,5 л (необходимо использовать консервант).

При отборе воды из проточного источника, непосредственно перед отбором необходимо пролить воду сильной струёй в течение 3-5 минут. Перед отбором проб ёмкости и крышки необходимо 3 раза промыть изнутри водой, подлежащей анализу. Использование моющих средств недопустимо. Наполнять тару необходимо тонкой струёй по стенке сосуда «под горлышко». Это снижает насыщение воды кислородом и предотвращает протекание реакций.

Для микробиологического анализа необходимо использовать стерильный контейнер для биоматериалов объемом 150-200 мл.

Перед взятием пробы необходимо протереть водопроводный кран спиртовой салфеткой, уделив особое внимание месту выхода воды.
При отборе воды из водопровода, скважины или колонки необходимо пролить воду сильной струёй в течение 3–5 минут.
При отборе воды из колодца с помощью ведра необходимо обдать ведро кипятком для дезинфекции. Отбор пробы через поливочные шланги и предметы, контактирующие с почвой, не допускается.
Для отбора пробы необходимо надеть перчатки и вскрыть упаковку стерильного контейнера. Не касаясь внутренней поверхности ёмкости, отобрать образец воды (2/3 объема контейнера) и закрыть крышкой.

Читайте также:  Государственный анализ воды в спб

Рекомендуем доставлять пробу сразу после отбора.
Если сразу после отбора нет возможности доставить пробу в лабораторию, допускается хранение образцов при температуре 2–10 °C в течение 1 суток.

Съезд на ул. Руставели, на первом светофоре поворот налево на ул. Яблочкова.
Через 300 м поворот направо на ул. Гончарова, через 500 м поворот налево (напротив дома №6), через 200 метров вы на месте — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Поворот на ул. Руставели, на светофоре поворот направо на ул. Добролюбова, через 300м на светофоре поворот налево на ул. Гончарова, напротив дома №6 поворот направо, через 200 метров вы на месте — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Двигаясь по ул. Милошенкова, поворачиваем на ул. Добролюбова
Через 150 метров поворот направо, за домом 21АкБ поворот налево, через 100-120 метров вы на месте — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Ближайшее станция метро – Фонвизинская (600 м)
Последний вагон из центра. Выход в сторону улицы Фонвизина. Из стеклянный дверей направо. Перейти через пешеходный переход и идти через дворы в соответствии со схемой. Пункт назначения — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Анализ «Минимальный» содержит минимальный и обязательный перечень загрязнителей, часто встречающихся в питьевой воде, и включает 16 показателей:

  • органолептические: мутность, цветность, запах, привкус;
  • общехимические: рН, жесткость, окисляемость перманганатная, минерализация, электропроводность, щелочность общая, щелочность свободная;
  • катионы: железо, аммоний;
  • анионы: нитраты, карбонат, гидрокарбонат.

Данный набор рекомендуется для исследования воды хозяйственно-бытового назначения. Анализ «Минимальный» не обладает достаточной информативностью для подбора системы водоочистки, так как не позволяет получить полную картину о безопасности воды. Если Вы планируете использовать воду в питьевых целях, рекомендуем обратить внимание на наборы, содержащие большее число параметров.

  • Точность определения
  • Подходит для воды, применяемой в хоз-бытовом назначении
  • Срок выполнения — 3-4 рабочих дня
  • Не подходит для воды, применяемой в питьевых целях
  • Не подходит для корректного подбора фильтров
  • Не содержит определения опасных загрязнителей

Анализ «Начальный» предназначен для выявления наиболее часто встречающихся вредных веществ в питьевой воде и включает 23 параметра: мутность, цветность, запах, привкус, рН, жесткость, окисляемость, минерализация, электропроводность, щелочность свободная, щелочность общая, железо, марганец, калий, магний, кальций, фториды, хлориды, нитраты, сульфаты, карбонат, гидрокарбонат, аммоний Данный анализ рекомендуется для оценки качества воды из колодцев, скважин, родников. По протоколу анализа «Начальный» возможен подбор системы водоочистки и типа фильтрующей загрузки. В перечень определяемых параметров входят органолептические показатели, общие химические показатели, а также содержание катионов и анионов

  • Точность определений
  • Подходит для подбора водоочистного оборудования
  • Подходит для колодцев и скважин
  • Позволяет оценить эффективность фильтрующей загрузки в фильтре и всей системы в целом
  • Позволяет корректно и экономично настроить водоочистное оборудование
  • Не содержит перечень тяжелых металлов
  • Не содержит перечень всех опасных загрязнений
  • Срок выполнения исследований 5-6 рабочих дней

Анализ «Расширенный» содержит перечень наиболее часто встречающихся загрязнителей воды, вне зависимости от источника, и включает 31 показатель: мутность, цветность, запах, привкус, рН, жесткость, окисляемость, минерализация, электропроводность, щелочность общая, щелочность свободная, аммоний, алюминий, железо общее, магний, кальций, калий, натрий, марганец, медь, мышьяк, свинец, кадмий, цинк, стронций, фториды, хлориды, нитраты, сульфаты, гидрокарбонат, карбонат. Данный набор рекомендуется, в первую очередь, владельцам колодцев и скважин. Содержит перечень основных тяжелых металлов. Перед покупкой системы водоподготовки рекомендуем провести исследование воды с данным перечнем загрязнителей. Ориентируясь на полученную информацию, Вы сможете подобрать оборудование водоочистки с эффективностью до 98%, а так же корректно его настроить.

  • Точность определений
  • Подходит для подбора водоочистного оборудования
  • Подходит для колодцев и скважин
  • Содержит перечень тяжелых металлов
  • Позволяет оценить эффективность фильтрующей загрузки в фильтре и всей системы в целом
  • Позволяет корректно и экономично настроить водоочистное оборудование

Анализ «Максимальный» содержит полный перечень опасных для здоровья человека веществ, встречающихся в воде, поступающих из скважин или колодцев, включая ионы тяжелых металлов и органические вещества, а именно: мутность, цветность, запах, привкус, рН, жесткость, окисляемость, минерализация, электропроводность, щелочность общая, щелочность свободная, аммоний, натрий, калий, магний, кальций, алюминий, железо, марганец, литий, барий, бериллий, бор, ванадий, молибден, кобальт, цинк, никель, хром, стронций, кадмий, мышьяк, медь, свинец, кремний, серебро, титан, ртуть, гиброкарбонат, карбонат, нитрат, хлорид, сульфат, фосфат, фторид, нитрит, сероводород, сульфид, гидросульфид, хлор общий, хлор остаточный, хлор остаточный свободный, АПАВ, нефтепродукты, фенол, формальдегид, бензол, толуол, о-ксилол, п-ксилол, м-ксилол, стирол Данное исследование рекомендуется для клиентов, которые серьезно относятся к выбору питьевой воды. Протокол анализа «Максимальный» позволяет со 100% уверенностью сделать вывод о пригодности воды для питья и приготовления пищи. Результаты исследования позволяют выбрать схему водоочиски, а также оценить эффективность уже установленного оборудования.

Воды, применяемой в хозяйственно-бытовом назначении; оценки работы системы водоочистки.

пластиковая бутылка 1,5 — 2 л.

  • Точность определений
  • Подходит для подбора водоочистного оборудования
  • Подходит для любых источников воды
  • Позволяет оценить эффективность фильтрующей загрузки в фильтре и всей системы в целом
  • Включает полный перечень тяжелых металлов
  • Позволяет корректно и экономично настроить водоочистное оборудование
  • Содержит полный перечень опасных органических веществ

Помимо хичиеского анализа воды мы настоятельно рекомендуем провести микробиологическое исследование Вашей воды. Микробиологический анализ воды включает определение общего микробного числа (ОМЧ), количества общих колиформных и колиформных термотолерантных бактерий.

источник

Ржавые потеки на раковине, унитазе или пластиковом трубопроводе свидетельствуют о том, что в воде присутствует железо, которое, окисляясь на воздухе, оставляет после себя следы соответствующего цвета.

Железо присутствует в природной воде изначально и человек употребляет его с водой. Плохо это или хорошо, когда «хорошо» переходит в «плохо», как определить этот предел количественно – ответы на эти и другие вопросы вы узнаете из этой статьи.

Врачи давно обратили внимание на то обстоятельство, что причиной усталости и плохого настроения, как правило, является дефицит железа в организме.

Дефицит этого важного для здоровья микроэлемента наблюдается у людей обоих полов в разные периоды жизни. Поэтому если вы замечаете, что у вас часто меняется настроение, и для этого нет видимых причин, то необходимо начать прием железосодержащих продуктов или препаратов.

Помимо того, что железо влияет на трудоспособность и настроение человека, оно имеет ряд других преимуществ:

  1. Железо является наиважнейшим элементом, участвующим в процессе формирования гемоглобина. Учитывая, что ежедневно происходит потеря большого количества железа в виде пота, мочи и кровотечений (например, менструальные выделения или порезы во время бритья), становится понятным, что это сказывается на качестве и количестве крови. Кроме того, железо участвует в транспортировки кислорода в клетки организма, что важно для правильного функционирования органов.
  2. Если в организме чувствуется недостаток железа, то мышцы становятся слабыми и дряблыми. Для спортсменов железо является важной составляющей эффективной тренировки. Железо помогает мышцам восстановиться в кратчайшие сроки.
  3. Мозг, так же как и мышцы, зависит от количества получаемого организмом железа. Если его недостаточно, то кровь не получает необходимого количества кислорода, от чего в первую очередь страдают мозговые клетки. Если же кислорода достаточно, то улучшается память, появляется стремление к новым знаниям. Врачи убеждены, что дефицит железа может повлиять на психическое здоровье человека.
  4. Крепкий иммунитет напрямую зависит от железа. Частые заболевания простудой и гриппом, сопровождающиеся упадком сил и вялостью, свидетельствуют о том, что организму не хватает этого микроэлемента. Чем ниже уровень железа, тем чаще приходится бороться за свое здоровье.
  5. Модницы давно поняли, что невозможно считаться красивой без ухоженных волос, чистой кожи и крепких ногтей. И если кератин временно делает волосы блестящими, то кожа и ногти будут выглядеть тусклыми и безжизненными без необходимого для их красоты железа.
  6. Железо помогает тем, кто хочет избавиться от лишнего веса либо желает держать его под контролем. Если его недостаточно, то организм не будет тратить энергию на сжигание жира, и ни диеты, ни тренировки не приведут к нужному результату.

Поэтому важно вовремя выявить этот избыток и устранить его. Как это сделать самостоятельно — читайте далее.

При высоком содержании в воде серной и соляной кислоты на вымытой посуде остаются зеленые или бурые пятна. Также о неудовлетворительном качестве воды говорит ее запах: рыбный, землистый или древесный. Это значит, что в своем составе она содержит органические соединения.

Если на серебряной посуде и на раковине остаются темноватые пятна, то вода из вашего крана содержит сероводород.

Возникновение пены при наливании воды в алюминиевую посуду говорит об избыточной концентрации щелочных соединений в ней.

Довольно часто встречающийся признак загрязненной воды – ее металлический привкус, показывающий высокое содержание в ней железа. А вода с красноватым и бурым оттенком свидетельствует о том, что ваш водопровод ржавый и старый, поэтому в трубах происходит окисление воды железом.

Мутная и грязная вода означает, что в ней содержится большое количество воздуха или метана.

Во многих городах существуют СЭС или мобильные лаборатории, изучающие качество воды, имеющие возможность проводить экспресс анализ воды на железо. Вы можете связаться с такой лабораторией и заказать анализ воды в вашем доме. Вам будет дан полный и точный ответ по этому вопросу.

В аккредитованных лабораториях проводится анализ воды на железо по ГОСТ 4011, который регламентирует порядок определения в воде двухвалентного железа (которое окисляется до ржавчины F2O3) и на общее железо.

Анализ воды на железо из скважины лучше всего производить непосредственно на месте, так как хранение и транспортировка образцов для анализа может привести к окислению железа при доступе воздуха и к выпадению окисла в осадок.

Если необходимо выполнить анализ воды на железо в лаборатории, отбираются пробы. Для проведения анализа потребуется не менее полутора литров воды, которые должны быть отобраны в чистую стеклянную или пластиковую тару. Очень важно, чтобы тара была чистой и не содержала остатков (даже запаха) жидкостей, которые в ней хранились. Хорошей посудой для отбора проб для анализа будет пластиковая бутылка от негазированной минеральной воды. Образец доставляется в лабораторию в течении двух часов.

Наиболее существенным в практическом значении является анализ воды на железо-ионы, потому что именно они влияют на образование накипи на посуде и нагревательных ТЭНах. И потеки ржавчины на сантехнике, в большей степени, зависят от активного железа, которое окисляется в воздушной среде.

Польза железа в воде для организма неоспорима, поэтому полностью избавляться от него с помощью фильтрации так же не стоит. Идеально очищенную с помощью обратного осмоса воду для этого специально минерализуют. Остаток железа в воде определяет анализ воды на общее железо.

Смягчать воду для бытовых нужд, безусловно, нужно (борьба с накипью, солями тяжелых металлов и азотными соединениями), но к содержанию в воде железа следует относиться бережно. Выдержать паритет в этом вопросе поможет своевременный и качественный анализ воды на железо, произведенный аккредитованной лабораторией.

источник

Цель работы: оптическим методом анализа, используя ФЭК, определить концентрацию Fe 2+ , Fe 3+ , общее содержание железа в исследуемой пробе воды и контрольном растворе.

В природных водах железо может находиться в растворенном, коллоидном и взвешенном состоянии, может входить в состав минеральных и органических соединений. В подземных водах преобладают соединения двухвалентного железа Fe(HCO3)2, FeSO4, образующиеся при растворении железосодержащих пород. Эта форма содержания железа устойчива в присутствии растворенного CO2 и в отсутствии кислорода. При выходе подземных вод на поверхность наблюдается окисление Fe 2+ в Fe 3+ , сопровождающееся образованием трудно растворимого Fe(OH)3 : 4Fe 2+ + 3 O2 + 6 H2O = 4 Fe(OH)3

Гидроксид железа (III) может содержаться в поверхностных водах в виде коллоидного раствора, но под влиянием растворенных электролитов он коагулирует. Поэтому содержание железа в поверхностных водах незначительно(сотые или десятые доли мг/л). Воды северных районов (болотистые) содержат органическую форму железа – гуматы, обусловливающие их цветность.

Содержание железа в питьевой воде не должно превышать 0,3 мг/л, т.к. при большей концентрации появляется неприятный (железистый) привкус и бурый оттенок. Нежелательно железо во многих производственных водах. Так, при содержании железа в охлаждающей воде наблюдается массовое развитие железобактерий, вызывающих обрастание и закупорку труб. Вода, используемая для питания паровых котлов, не должна содержать железа более 100 мкг/л. Концентрация железа выше 1 мг/л губительны для рыб.

Выбирая метод обезжелезивания, следует предварительно определить форму содержания железа.

Концентрацию железа в воде определяют колориметрическим методом.

Читайте также:  Гомель где сделать анализ воды

Качественное определение железа.

Растворы солей железа (II) окрашены в бледно – зеленый цвет.

Рассмотренная реакция наиболее характерна для Fe 2+

Растворы солей железа (III) имеют желтую окраску.

1. Роданид аммония NH4SCN или калия KSCN дает с ионами Fe 3+

кроваво – красное окрашивание роданидов железа.

Fe 3+ + 3 SCN — = Fe(SCN)3 или [Fe(SCN)6] 3-

Интенсивность окраски пропорциональна концентрации ионов Fe 3+ . Состав продуктов реакции зависит от концентрации роданида.

Это одна из важнейших и наиболее чувствительных реакций на Fe 3+ . Роданидным методом можно определить 0,05 – 2,00 мг Fe 3+ в 1 л воды. Предел обнаружения 0,05 мг/л.

Однако она не всегда надежна, так как ряд веществ, в частности ионы F — , образуют более прочные комплексы, которые мешают появлению окраски. (Кнест.[Fe(SCN)6] 3- = 5,9 ∙ 10 — 4 , Кнест .[FeF4] — = 4,8 ∙ 10 — 16 )

Качественные определения с приближенной количественной оценкой.

Ход работы: В пробирку наливают 10 мл исследуемой воды, 2 капли концентрированной HCl, несколько кристаллов персульфата аммония (NH4)2S2O8 и 0,2 мл 50%-ного NH4SCN. После внесения каждого реактива содержимое пробирки перемешивают. Приближенную массовую концентрацию общего содержания железа в воде определяют в соответствии с таблицей №1.

Окрашивание при рассмотрении сбоку

Окрашивание при рассмотрении сверху вниз

Едва заметное желтовато – розовое

Очень слабое желтовато – розовое

Очень слабое желтовато – розовое

Слабое желтовато – розовое

Слабое желтовато – розовое

Светло желтовато – розовое

Светло – желтовато – розовое

Сильное желтовато – розовое

Светло – желтовато – красное

Результаты опытов записать в виде таблицы:

источник

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Методы измерения массовой концентрации

Methods for determination

Настоящий стандарт распространяется на питьевую воду и устанавливает колориметрические методы измерения массовой концентрации общего железа.

1.1. Пробы воды отбирают по ГОСТ 2874 и ГОСТ 24481.

1.2. Объем пробы воды для измерения массовой концентрации железа должен быть не менее 200 см 3 .

1.3. Способы консервирования, сроки и условия хранения проб воды, предназначенных для измерения массовой концентрации общего железа, — по ГОСТ 24481.

(Измененная редакция, Изм. № 2).

Метод основан на взаимодействии ионов железа в щелочной среде с сульфосалициловой кислотой с образованием окрашенного в желтый цвет комплексного соединения. Интенсивность окраски, пропорциональную массовой концентрации железа, измеряют при длине волны 400-430 нм. Диапазон измерения массовой концент­рации общего железа без разбавления пробы 0,10-2,00 мг/дм 3 . В этом интервале суммарная погрешность измерения с вероятно­стью Р=0,95 находится в пределах 0,01-0,03 мг/дм 3 .

Фотоколориметр любого типа с фиолетовым светофильтром ( = 400 — 430 нм).

Кюветы с толщиной рабочего слоя 2-5 см.

Весы аналитические лабораторные, класс точности 1, 2 по ГОСТ 24104.

Колбы мерные 2-го класса, вместимостью 50, 100, 1000 см 3 по ГОСТ 1770.

Пипетки мерные без делений вместимостью 50 см 3 и пипетки мерные с ценой наименьшего деления 0,1-0,05 см 3 , вместимостью 1, 5 и 10 см 3 2-го класса по нормативно-техническому документу.

Колбы стеклянные лабораторные конические номинальной вместимостью 100 см 3 , типа Кн по ГОСТ 25336.

Аммоний хлористый по ГОСТ 3773.

Аммиак водный по ГОСТ 3760, 25 %-ный раствор.

Квасцы железоаммонийные по нормативно-техническому документу.

Кислота соляная по ГОСТ 3118.

Кислота сульфосалициловая по ГОСТ 4478.

Вода дистиллированная по ГОСТ 6709.

Все реактивы, используемые для анализа, должны быть квали­фикации химически чистые (х. ч.) или чистые для анализа (ч.д.а).

2.3.1. Приготовление основного стандартного раствора железо-аммонийных квасцов

0,8636 г железоаммонийных квасцов FeNH 4 ( SO 4 )2 × 12 H 2 O взвешивают с точностью, не превышающей 0,0002 г по шкале весов, растворяют в мерной колбе вместимостью 1 дм 3 в небольшом количестве дистиллированной воды, добавляют 2,00 см 3 соляной кислоты плотностью 1,19 г/см 3 и доводят до метки дистиллированной водой. 1 см 3 раствора содержит 0.1 мг железа.

Срок и условия хранения раствора — по ГОСТ 4212.

2.3.2. Приготовление рабочего стандартного раствора железоаммонийных квасцов

Рабочий раствор готовят в день проведения анализа разбавле­нием основного раствора в 20 раз. 1 см 3 раствора содержит 0,005 мг железа.

2.3.3. Приготовление раствора сульфосалициловой кислоты

20 г сульфосалициловой кислоты растворяют в мерной колбе вместимостью 100 см 3 в небольшом количестве дистиллированной воды и доводят этой водой до метки.

2.3.4. Приготовление раствора хлористого аммония молярной концентрации 2 моль/дм 3

107 г NH 4 Cl растворяют в мерной колбе вместимостью 1 дм 3 в небольшом количестве дистиллированной воды и доводят этой во­дой до метки.

2.3.5. Приготовление раствора аммиака (1:1)

100 см 3 25 %-ного раствора аммиака приливают к 100 см 3 дистиллированной воды и перемешивают.

При массовой концентрации общего железа не более 2,00 мг/дм 3 отбирают 50 см 3 исследуемой воды (при большей массовой концентрации железа пробу разбавляют дистиллированной водой) и помещают в коническую колбу вместимостью 100 см 3 . Если проба при отборе не консервировалась кислотой, то к 50 см 3 добавляют 0,20 см 3 соляной кислоты плотностью 1,19 г/см 3 . Пробу воды на­гревают до кипения и упаривают до объема 35-40 см 3 . Раствор охлаждают до комнатной температуры, переносят в мерную колбу вместимостью 50 см 3 , ополаскивают 2-3 раза по 1 см 3 дистилли­рованной водой, сливая эти порции в ту же мерную колбу. Затем к полученному раствору прибавляют 1,00 см 3 хлористого аммония, 1,00 см 3 сульфосалициловой кислоты, 1,00 см 3 раствора аммиака (1:1), тщательно перемешивая после добавления каждого реакти­ва. По индикаторной бумаге определяют значение рН раствора, которое должно быть 9. Если рН менее 9, то прибавляют еще 1-2 капли раствора аммиака (1:1) до рН 9.

Объем раствора в мерной колбе доводят до метки дистиллиро­ванной водой, оставляют стоять 5 мин для развития окраски. Из­меряют оптическую плотность окрашенных растворов, используя фиолетовый светофильтр ( = 400-430 нм) и кюветы с толщиной оптического слоя 2, 3 или 5 см, по отношению к 50 см 3 дистилли­рованной воды, в которую добавлены те же реактивы. Массовую концентрацию общего железа находят по градуировочному гра­фику.

Для построения градуировочного графика в ряд мерных колб вместимостью 50 см 3 наливают 0,0; 1,0; 2,0; 5,0. 10,0; 15,0; 20,0 см 3 рабочего стандартного раствора, доводят до метки дистиллирован­ной водой, перемешивают и анализируют, как исследуемую воду. Получают шкалу растворов, соответствующих массовым концент­рациям железа 0,0; 0,1; 0,2; 0,5; 1,0; 1,5; 2,0 мг/дм 3 .

Строят градуировочный график, откладывая по оси абсцисс массовую концентрацию железа, а по оси ординат — соответствующие значения оптической плотности. Построение градуировочного графика повторяют для каждой партии реактивов и не реже одного раза в квартал.

Массовую концентрацию железа (X) в анализируемой пробе, мг/дм 3 с учетом разбавления вычисляют по формуле

,

где с — концентрация железа, найденная по градуировочному графику, мг/дм 3 ;

V — объем воды, взятый для анализа, см 3 ;

50 — объем, до которого разбавлена проба, см 3 .

За окончательный результат анализа принимают среднее арифметическое результатов двух параллельных измерений, допус­тимое расхождение между которыми не должно превышать 25 % при массовой концентрации железа на уровне предельно допусти­мой. Результат округляют до двух значащих цифр.

Сходимость результатов анализа ( А) в процентах вычисляют по формуле

,

где Р1 — больший результат из двух параллельных измерений;

Р 2 — меньший результат из двух параллельных измерений.

Разд. 2. (Измененная редакция, Изм. № 2).

Метод основан на реакции ортофенантролина с ионами двух­валентного железа в области рН 3-9 с образованием комплекс­ного соединения, окрашенного в оранжево-красный цвет. Интен­сивность окраски пропорциональна концентрации железа. Восста­новление железа до двухвалентного проводится в кислой среде гидроксиламином. Окраска развивается быстро при рН 3,0-3,5 в присутствии избытка фенантролина и устойчива в течение не­скольких дней. Диапазон измерения массовой концентрации общего железа без разбавления пробы 0,05-2,0 мг/дм 3 . В этом ин­тервале суммарная погрешность измерения с вероятностью Р = 0,95 находится в пределах 0,01-0,02 мг/дм 3 .

(Измененная редакция, Изм. № 2).

3.2. Аппаратура, материалы и реактивы

Фотоэлектроколориметр различных марок.

Кюветы с толщиной рабочего слоя 2-5 см.

Колбы мерные 2-го класса точности по ГОСТ 1770, вмести­мостью 50 и 1000 см 3 .

Пипетки мерные без делений, вместимостью 10, 25 и 50 см 3 и пипетки мерные с делениями 0,1-0,01 см 3 вместимостью 1, 2 и 5 см 3 2-го класса точности по нормативно-техническому документу.

Колбы плоскодонные по ГОСТ 25336, вместимостью 150-200 см 3 .

Аммоний уксуснокислый по ГОСТ 3117.

Гидроксиламин солянокислый по ГОСТ 5456.

Квасцы железоаммонийные по нормативно-техническому доку­менту.

Кислота соляная по ГОСТ 3118.

Кислота уксусная по ГОСТ 61.

Вода дистиллированная по ГОСТ 6709.

Аммиак водный по ГОСТ 3760, 25 %-ный раствор.

Все реактивы, используемые для анализа, должны быть ква­лификации чистые для анализа (ч. д. а.).

3.3.1. Приготовление раствора ортофенантролина

0,1 г моногидрата ортофенантролина ( C 12 Н8 N 2 × H 2 O ), взвешен­ного с погрешностью не более 0,01 г, растворяют в 100 см 3 дистил­лированной воды, подкисленной 2-3 каплями концентрированной соляной кислоты. Реактив сохраняют на холоде в темной склян­ке с притертой пробкой. 1 см 3 этого реактива связывает в ком­плекс 0,1 мг железа.

3.3.2. Приготовление 10%-ного раствора солянокислого гидроксиламина

10 г солянокислого гидроксиламина ( NH 2 OH × HCl ), взвешенного с погрешностью не более 0,1 г, растворяют в дистиллированной воде и доводят объем до 100 см 3 .

3.3.3. Приготовление буферного раствора

250 г уксуснокислого аммония ( N Н4С2Н3 O 2 ), взвешенного с погрешностью не более 0,1 г, растворяют в 150 см 3 дистиллированной воды. Добавляют 70 см 3 уксусной кислоты и доводят объем до 1 дм 3 дистиллированной водой.

(Измененная редакция, Изм. № 2).

3.3.4. Приготовление основного стандартного раствора железоаммонийных квасцов — по п. 2.3.1.

3.3.5. Приготовление рабочего стандартного раствора железоаммонийных квасцов — по п. 2.3.2.

3.3.4; 3.3.5. (Измененная редакция, Изм. № 2).

Определению мешают цианиды, нитриты, полифосфаты; хром и цинк в концентрации, превышающей в 10 раз массовую концен­трацию железа; кобальт и медь в концентрации более 5 мг/дм 3 и никель в концентрации 2 мг/дм 3 . Предварительное кипячение воды с кислотой превращает полифосфаты в ортофосфаты, добавлением гидроксиламина устраняется мешающее влияние окислителей. Мешающее влияние меди уменьшается при рН 2,5-4.

При отсутствии полифосфатов исследуемую воду тщательно перемешивают и отбирают 25 см 3 (или меньший объем, содержа­щий не более 0,1 мг железа, разбавленный, до 25 см 3 дистиллиро­ванной водой) в мерную колбу вместимостью 50 см 3 . Если при отборе пробы вода была подкислена, то ее нейтрализуют 25 %-ным раствором аммиака до рН 4-5, контролируя потенциометрически или по индикаторной бумаге. Затем добавляют 1 см 3 солянокислого раствора гидроксиламина, 2,00 см 3 ацетатного буферного раствора и 1 см 3 раствора ортофенантролина. После прибавления каждого реактива раствор перемешивают, затем доводят объем до 50 см 3 дистиллированной водой, тщательно перемешивают и оставляют на 15-20 мин для полного развития окраски.

Окрашенный раствор фотометрируют при сине-зеленом светофильтре ( = 490-500 нм) в кюветах с толщиной оптического слоя 2, 3 или 5 см по отношению к дистиллированной воде, в которую добавлены те же реактивы.

Массовую концентрацию железа находят по градуировочному графику.

В присутствии полифосфатов 25 см 3 исследуемой пробы помещают в плоскодонную колбу вместимостью 100-150 см 3 , прибав­ляют 1 см 3 концентрированной соляной кислоты, нагревают до кипения и упаривают до объема 15-20 см 3 . После охлаждения раствора его переносят в мерную колбу вместимостью 50 см 3 , добавля­ют дистиллированную воду до объема примерно 25 см 3 и доводят 25 %-ным раствором аммиака до рН 4-5, контролируя потенциометрически или по индикаторной бумаге.

Далее прибавляют реактивы и проводят анализ, как указано выше (при отсутствии полифосфатов).

Для построения градуировочного графика в мерные колбы вместимостью 50 см 3 вносят 0,0; 0,5; 1,0; 2,0; 3.0; 4,0; 5,0; 10,0; 20,0 см 3 рабочего стандартного раствора, содержащего в 1 см 3 0,005 мг железа, доводят объем дистиллированной водой приблизительно до 25 см 3 и анализируют так же, как и исследуемую воду. Получают шкалу стандартных растворов с массовой концентрацией же­леза 0,0; 0,05; 0,1; 0,2; 0,3; 0,4; 0,5; 1,0 и 2,0 мг/дм 3 . Фотометрируют в тех же условиях, что и пробу. Строят градуировочный график, откладывая по оси абсцисс массовую концентрацию общего железа в мг/дм 3 а на оси ординат — соответствующие значения оптической плотности.

(Измененная редакция, Изм. № 2).

3.5. Массовую концентрацию общего железа вычисляют по п. 2.5.

(Измененная редакция, Изм. № 2).

Метод основан на взаимодействии ионов двухвалентного железа с 2,2-дипиридилом в области рН 3,5-8,5 с образованием окрашенного в красный цвет комплексного соединения. Интенсивность окраски пропорциональна массовой концентрации железа. Восстановление трехвалентного железа до двухвалентного проводится гидроксиламином. Окраска развивается быстро и устойчива в течение нескольких дней. Диапазон измерения массовой концент­рации общего железа без разбавления пробы 0,05-2,00 мг/дм 3 .

В этом интервале суммарная погрешность измерения с вероятностью Р=0,95 находится в пределах 0,01-0,03 мг/дм 3 .

(Измененная редакция, Изм. № 2).

4.2. Аппаратура, материалы, реактивы

Фотоэлектроколориметр любой марки.

Кюветы с толщиной оптического слоя 2-5 см.

Колбы мерные 2-го класса точности по ГОСТ 1770, вместимостью 50, 100 и 1000 см 3 .

Пипетки мерные без делений, вместимостью 25 см 3 н пипетки мерные с делениями 0,1-0,01 см 3 , вместимостью 1, 5 и 10 см 3 2-го класса точности по нормативно-техническому документу.

Читайте также:  График выполнения анализов сточных вод

Аммоний уксуснокислый по ГОСТ 3117.

Гидроксиламин солянокислый по ГОСТ 5456.

2,2-дипиридил ( -дипиридил).

Квасцы железоаммонийные по нормативно-техническому доку­менту.

Кислота уксусная по ГОСТ 61.

Спирт этиловый ректификованный по ГОСТ 18300, высшего сорта.

Вода дистиллированная по ГОСТ 6709.

Все реактивы, используемые для анализа, должны быть квалификации химически чистые (х. ч.) или чистые для анализа (ч. д. а.).

(Измененная редакция, Изм. № 2).

4.3.1. Приготовление основного стандартного раствора железоаммонийных квасцов — по п. 2.3.1.

4.3.2. Приготовление рабочего стандартного раствора железоаммонийных квасцов — по п. 2.3.2.

4.3.1; 4.3.2. (Измененная редакция, Изм. № 2).

4.3.3. Приготовление 10 %-ного раствора солянокислого гидроксиламина — по п. 3.3.2.

4.3.4. Приготовление ацетатного буферного раствора — по п. 3.3.3.

4.3.5. Приготовление 0,1 %-ного раствора 2,2-дипиридила.

0,1 г 2,2-дипиридила, взвешенного с погрешностью не более 0,01 г, растворяют в 5,00 см 3 этилового спирта и разбавляют в 100 см 3 дистиллированной воды.

Для определения массовой концентрации общего железа исследуемую воду тщательно перемешивают и отбирают 25 см 3 (или меньший объем, содержащий не более 0,1 мг железа) в мерную колбу вместимостью 50 см 3 . Прибавляют 1 см 3 раствора гидроксиламина солянокислого, 2,00 см 3 ацетатного буферного раствора, 1,00 см 3 раствора 2,2-дипириднла и доводят до метки дистиллированной водой. После добавления каждого реактива содержимое колбы перемешивают. Раствор оставляют на 15-20 мин для пол­ного развития окраски. Окрашенный раствор фотометрируют, применяя зеленый светофильтр ( =540 нм) и кюветы с толщиной оптического слоя 2-5 см, по отношению к дистиллированной во­де, в которую добавлены те же реактивы.

Массовую концентрацию железа находят по градуировочному графику.

Для построения градуировочного графика в мерные колбы вместимостью 50 см 3 вносят 0,0; 2,0; 5,0; 10,0; 15,0; 20,0 см 3 рабо­чего стандартного раствора железоаммонийных квасцов. Добав­ляют дистиллированной воды до объема примерно 25 см 3 . Далее растворы проводят через весь ход анализа так же, как исследуемую воду. Получают шкалу стандартных растворов с массовой концентрацией железа 0,0; 0,2; 0,5; 1,0; 1,5; 2,0 мг/дм 3 . Оптиче­скую плотность измеряют в тех же условиях, что и пробы. Строят градуировочный график, откладывая по оси абсцисс массовую кон­центрацию железа в мг/дм 3 , а по оси ординат — соответствующие значения оптической плотности.

Массовую концентрацию общего железа вычисляют по п. 2.5.

4.3.5; 4.4; 4.5. (Измененная редакция, Изм. № 2).

1. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 09.10.72 № 1855

3. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

источник

Железо (лат. Ferrum) — химический элемент VIII группы периодической системы элементов Д. И. Менделеева, атомный номер 26, атомная масса 55,847. Блестящий серебристо-белый пластичный металл, плотностью 7,874 г/см 3 , tплав. = 1535 o С.

Железо — один из семи металлов, известных человечеству с глубокой древности. О происхождении названия см. книгу проф. Химического факультета МГУ Н.А. Фигуровского «Открытие элементов и происхождение их названий».

По распространенности в литосфере железо находится на 4-м месте среди всех элементов и на 2-м месте после алюминия среди металлов. Его кларк (процентное содержание по массе) в земной коре составляет 4,65 %. Железо входит в состав более 300-х минералов, но промышленное значение имеют только руды с содержанием не менее 16% железа: магнетит (магнитный железняк) — Fe3O4 (72,4% Fe), гематит (железный блеск или красный железняк) — Fe2O3 (70% Fe), бурые железняки (гётит, лимонит и т.п.) с содержанием железа до 66,1% Fe, но чаще 30-55%.

Железо давно и повсеместно применяется в технике, причем не столько в силу своего широкого распространения в природе, сколько в силу своих свойств: оно пластично, легко поддается горячей и холодной ковке, штамповке и волочению. Однако чистое железо обладает низкой прочностью и химической стойкостью (на воздухе в присутствии влаги окисляется, покрываясь нерастворимой рыхлой ржавчиной бурого цвета). В силу этого в чистом виде железо практически не применяется. То, что мы в быту привыкли называть «железом» и «железными» изделиями на самом деле изготовлено из чугуна и стали — сплавов железа с углеродом, иногда с добавлением других так называемых легирующих элементов, придающих этим сплавам особые свойства.

Главными источниками соединений железа в природных водах являются процессы химического выветривания и растворения горных пород. Железо реагирует с содержащимися в природных водах минеральными и органическими веществами, образуя сложный комплекс соединений, находящихся в воде в растворенном, коллоидном и взвешенном состоянии (см. «Типы железа»). Значительные количества железа поступают с подземным стоком и со сточными водами предприятий металлургической, металлообрабатывающей, текстильной, лакокрасочной промышленности и с сельскохозяйственными стоками. В питьевой воде железо может присутствовать также вследствие применения на муниципальных станциях очистки воды железосодержащих коагулянтов, либо из-за коррозии «черных» (изготовленных из чугуна или стали) водопроводных труб.

Содержание железа в поверхностных пресных водах составляет десятые доли миллиграмма. Основной его формой в поверхностных водах являются комплексные соединения трехвалентных ионов железа с растворенными неорганическими и органическими соединениями, главным образом с солями гуминовых кислот — гуматами. Поэтому повышенное содержание железа наблюдается в болотных водах (единицы миллиграммов), где концентрация гумусовых веществ достаточно велика. При рН = 8.0 основной формой железа в воде является гидрат оксида железа Fe(OH)3, находящийся во взвешенной коллоидной форме. Наибольшие же концентрации железа (до нескольких десятков миллиграмм в 1 дм 3 ) наблюдаются в подземных водах с низкими значениями рН и с низким содержанием растворенного кислорода, а в районах залегания сульфатных руд и зонах молодого вулканизма концентрации железа могут достигать даже сотен миллиграммов в 1 литре воды. В подземных водах железо присутствует в основном в растворенном двухвалентном виде. Трехвалентное железо при определенных условиях также может присутствовать в воде в растворенном виде как в форме неорганических солей (например, сульфатов), так и в составе растворимых органических комплексов.

Содержащая железо вода (особенно подземная) сперва прозрачна и чиста на вид. Однако даже при непродолжительном контакте с кислородом воздуха железо окисляется, придавая воде желтовато-бурую окраску. Уже при концентрациях железа выше 0.3 мг/л такая вода способна вызвать появление ржавых потеков на сантехнике и пятен на белье при стирке. При содержании железа выше 1 мг/л вода становится мутной, окрашивается в желто-бурый цвет, у нее ощущается характерный металлический привкус. Все это делает такую воду практически неприемлемой как для технического, так и для питьевого применения. По органолептическим признакам (См. раздел «Органолептические показатели качества воды») предел содержания железа в воде практически повсеместно установлен на уровне 0.3 мг/л (а по нормам ЕС даже 0.2 мг/л). Здесь необходимо подчеркнуть, что это ограничение именно по органолептическим соображениям. По показаниям вредности для здоровья такой параметр не установлен (см. ниже).

Пути поступления в организм.

Основной путь поступления железа в организм человека — с пищей. По оценкам ВОЗ доля воды в общем объеме естественного поступления железа в организм среднестатистического человека не превышает 10%. У людей определенных профессий (шахтеров, занятых на разработках железных руд и в меньшей степени у сварщиков) возможно попадание соединений железа с пылью при дыхании, что может вызывать профессиональные заболевания.

Из продуктов питания наиболее богаты железом печень, мясо и почки животных, яичный желток, рыба, а также сушеные белые грибы, бобовые (горох, фасоль, соя), гречка, зелень шпината и петрушки, айва, чернослив, абрикосы, другие овощи и фрукты.

При этом надо отметить, что железо — трудно усваиваемый элемент и с точки зрения его поступления в организм усвояемость железа становится даже более важным показателем, чем его абсолютное содержание в том или ином продукте. Так, из продуктов животного происхождения, где железо содержится в так называемой гемовой (дословно — «относящийся к крови») форме, усваивается от 10% (рыба) до 20-30% (телятина) железа. Из продуктов же растительного происхождения (где железо в содержится в негемовой двухвалентной форме) этот показатель ниже — от 1% (рис, шпинат) до 6% (соевые бобы). Железо же в трехвалентной форме практически не усваивается. Таким образом, средняя усвояемость железа из продуктов питания составляет около 10% (порядка 6% у мужчин и 14% — у женщин).

Всасыванию железа способствует витамин С — аскорбиновая кислота (восстанавливающая нерастворимое трехвалентное железо до растворимого двухвалентного), витамины группы В, микроэлементы медь и кобальт.

Препятствуют усвоению железа высокое содержание в пище (и, можно предполагать, воде) кальция и фосфатов, с которыми железо образует нерастворимые соединения; фосфатин и фитин, содержащиеся в зерновых продуктах (например, в хлебе и дрожжевом тесте); чай (железо образует трудно растворимые комплексы с дубильными веществами); избыток жиров; молоко и т.п.

Потенциальная опасность для здоровья.

Как уже упоминалось выше, при систематическом вдыхании воздуха, содержащего железосодержащую пыль (например, оксид железа), возможно возникновение профессиональных заболеваний. Так, в легких шахтеров, занятых на разработках красного железняка, может накапливаться до 45 грамм железа. Это приводит к возникновению такого профессионального заболевания из разряда пневмокониозов (от греческих pneumon — легкие и konia — пыль — хронических профессиональных заболеваний легких, обусловленных длительным вдыханием производственной пыли) как сидероз (от греческого sideros — железо), чреватого развитием пневмосклероза.

Что же касается вредного воздействия железа при его поступлении в организм с пищей и водой, то Всемирная Организация Здравоохранения (ВОЗ) не предлагает какой-либо рекомендуемой величины по показания здоровья, так как нет достаточных данных о негативном воздействии железа на организм человека. При уровне установленного ВОЗ переносимого суточного потребления (ПСП) железа, равном 0.8 мг/кг массы тела человека, безопасное для здоровья суммарное содержание железа в воде составляет 2 мг/л. Это означает, что употребляя ежедневно на протяжении всей жизни такую воду, можно не опасаться за последствия для здоровья (другое дело, что вода с 2 мг/л железа будет иметь весьма «неаппетитный» вид).

В российской прессе регулярно проскакивают упоминания о вредном воздействии железа на организм, причем в концентрациях уже выше 0.3 мг/л. В качестве последствий упоминаются неприятности со здоровьем, начиная от аллергических реакций (см., например, статью «Ржавая вода. Проблемы и решения»), что, кстати, вполне не исключено — аллергия может быть на что угодно, до «увеличения риска инфарктов и негативного влияния на репродуктивную функцию организма. сухости и зуда» (см. там же в «Дайджесте» статью «Вода столичная. «). Безусловно, в больших количествах железо, как и любое другое химическое вещество, способно вызвать в организме человека нарушения и даже патологии. Учитывая однако, что железо очень трудно усваиваемый элемент, особенно в неорганической форме (в которой оно в основном и содержится в воде), представляется, что «перебрать» его достаточно трудно. Так что, гораздо более близкой к истине нам кажется точка зрения ВОЗ.

Железо относится к числу эссенциальных (жизненно важных) для человека микроэлементов, участвуя в процессах кроветворения, внутриклеточного обмена и регулирования окислительно-восстановительных процессов.

Организм взрослого человека содержит 4-5 г железа, которое входит в состав важнейшего дыхательного пигмента гемоглобина (55-70% от общего содержания), вырабатываемого костным мозгом и ответственного за перенос кислорода от легких к тканям, белка миоглобина (10-25%), необходимого для накопления кислорода в мышечной ткани, а также в состав различных дыхательных ферментов (около 1% общего содержания), например, цитохромов, катализирующих процесс дыхания в клетках и тканях. Кроме того, 20-25% железа храниться в организме как резерв, сосредоточенный в печени и селезенки в виде ферритина — железо-белкового комплекса, служащего «сырьем» для получения всех вышеперечисленным многообразных соединений железа. В плазме крови содержится не более 0.1% от общего содержания железа.

Выделяется железо из организма в основном через стенки толстого кишечника и незначительно через почки. За сутки выводится примерно 6-10 мг железа. Отсюда и суточная потребность человека в железе (речь, конечно идет об усредненных цифрах. У женщин, например, потребность в железе выше, чем у мужчин — 15-18 мг). Однако, учитывая низкую усвояемость железа (см. выше), с пищевым рационом человек должен получать в норме 60-100 мг железа в сутки.

В целом, обмен железа в организме зависит от функционирования печени. При нарушениях в ее работе, а также при бедном железом рационе (например, при искусственном вскармливании детей, особенно чрезвычайно бедными железом коровьим и козьим молоком) возможно развитие железодефицитной анемии или, по-простому говоря, «малокровия». Это заболевание характеризуется бледностью кожи и слизистых, одутловатостью лица и сопровождается общей слабостью, быстрой физической и психической утомляемостью, отдышкой, головокружениями, шумом в ушах.
При нарушении клеточного метаболизма может развиваться и обратное явление — избыточное накопление железа в организме. При этом содержание железа в печени может достигать 20-30 г, а также наблюдаться повышенная его концентрация в поджелудочной железе, почках. миокарде, иногда в щитовидной железе, мышцах и эпителии языка.

источник