Меню Рубрики

Анализы воды цветность прозрачность мутность

Будете ли вы плавать в мутной воде? А пить ее из скважины? Наверняка, вы предпочтете чистую прозрачную воду, в которой приятно понежиться и которую не опасно пить. Сегодня поговорим о том, что такое мутность воды. Пригодна ли она для использования, и какая опасность кроется в примесях? Как изучить качество? И как избавится от негативных явлений?

Под загрязнением воды принято понимать изменение ее свойств при воздействии химических или органических веществ. При обнаружении таковых использование живительной жидкости нужно приостановить, поскольку это может быть опасно для организма человека.

В лабораториях на очистительных станциях делают анализ на:

  • мутность и цветность воды;
  • запах и кислотность;
  • содержание органических элементов;
  • наличие тяжелых металлов;
  • химическое потребление кислорода и пр.

Загрязненная жидкость содержит неорганические и органические тонкодисперсные взвеси. Мутность воды — это показатель, характеризующий степень прозрачности.

О мутности говорят тогда, когда в воде чаще всего появляются твердые частицы песка, гальки, ила. Их смывают осадки, талые воды в реку, также они могут возникнуть в результате разрушения скважины.

Меньше всего примесей зимой. Больше всего — весной и летом, когда часто возникают паводки и наблюдается сезонный прирост планктона и водорослей.

В нашей стране мутность воды определяется путем сравнивания двух образцов: стандартной и взятой непосредственно из водоема. Используют фотометрический метод. Результат выражается в двух видах:

  • при использовании суспензии коалина — в мг/дм3;
  • при использовании формазина — ЕМ/дм3.

Последний принятый Международной организацией Стандартизации. Обозначается как ЕМФ (Единица мутности по формазину).

В России приняты такие нормы мутности воды. ГОСТ для питьевой — 2,6 ЕМФ, для обеззараживающей — 1,5 ЕМФ.

В любом водоканале есть лаборатория, в которой проводятся исследования качества воды, поставляемой в трубы. Замеры проводятся по несколько раз в день, чтобы не пропустить ни единого изменения. Рассмотрим основные методы определения мутности воды.

Суть любого метода состоит в том, чтобы через жидкость прошел луч света. В абсолютно прозрачной колбе он остается неизменным, лишь немного рассеивается и имеет незначительное отклонение угла. Если в воде присутствуют взвешенные частицы, они по-разному будут препятствовать прохождению луча света. Этот факт зафиксирует отражающий прибор.

На сегодняшний день мутность питьевой воды можно определять такими методами:

  1. Фотометрически. Есть два варианта исследования: турбидиметрический, который фиксирует ослабленные лучи, и нефелометрический, результатом которого является отражение рассеянного света.
  2. Визуально. Степень загрязнения оценивается по шкале, высотой 10-12 см, в специальной мутномерной пробирке.

Любые примеси, находящиеся в питьевой воде, имеют свои свойства. Они характеризуются по такому параметру, как гидравлическая крупность, которая выражается в скорости оседания на дно в неподвижной воде при температуре 10 °С. Приведем примеры взвешенных частиц в таблице.

Взвешенные частицы и их характеристики

Взвешенные вещества Размер, мм Гидравлическая крупность, мм/с Время оседания на глубину 1 м
Коллоидные частицы 2×10 -4 7×10 -6 4 года
Тонкая глина 1×10 -3 7×10 -4 0,5-2 месяца
Глина 27×10 -4 5×10 -3 2 суток
Ил 5×10 -2 1.7-0.5 10-30 минут
Мелкий песок 0,1 7 2,5 минуты
Средний песок 0,5 50 20 секунд
Крупный песок 1,0 100 10 секунд

Очевидно, что мутность воды — это один из самых важных факторов, влияющих на качество потребляемой жидкости. Даже небольшие изменения в стандартах свидетельствуют о наличии патогенной флоры, которая может привести к различным заболеваниям у человека. И как только человечество поняло, что чистота — залог здоровья, сразу возникла необходимость проверять воду.

Первыми людьми, придумавшими специальную технологию, чтобы в лабораторных условиях изучать жидкость, стали Уиппл и Джексон, а их прибор назвали «свечной турбидиметр Джексона». Он представлял собой колбу, которую держали над свечей. Внутрь помещалась вода для исследования, в которую наливали первую в мире суспензию на основе кизельгура. Жидкость наливалась медленно до тех пор, пока свет от свечи полностью не рассеивался. Затем смотрели на шкалу и переводили данные в джексоновские единицы мутности.

Несмотря на то что полимеров в те времена еще не было и для суспензий готовили материалы из природных ресурсов, этот метод хоть и давал погрешности, но использовали его очень долго.

Лишь в 1926 году ученые Кингсбери и Кларк химическим путем создали формазин. Это идеальное вещество для изучения мутности воды. Для приготовления суспензии необходимо взять литр дистиллированной воды, 5,00 г сульфата гидразина и 50,00 г гексаметилентетрамина.

Понадобятся пробирка высотой 10-12 см, лист черного картона.

  1. Наберите в пробирку воды.
  2. Колбу поставьте так, чтобы она стояла на черном фоне, а сбоку был источник света: солнце или лампа накаливания.
  3. Визуально определите степень мутности: прозрачная вода, слабо загрязненная, слабо мутная, мутная, очень мутная.

Понадобится: колба для анализа (высота 6 см, диаметр 2,5 см), экран для трубки, шприц, пипетка, образец шрифта (высота 3,5 мм, ширина линии 0,35 мм)

  1. В колбу наберите воду. Установите ее на штативе.
  2. Вниз под колбу положите образец шрифта. Это может быть просто буква.
  3. Вокруг трубки нужно создать экран для отражения света.
  4. Источник света поместите сверху прямо над трубкой.
  5. Пипеткой отбирайте воду до тех пор, пока не увидите букву.
  6. Замерьте высоту столба с водой. Данные должны быть с точностью до 10 мм.

Мутность воды — это важный фактор, определяющий степень загрязнения жидкости. В современном мире на всех очистительных станциях внимательно следят за этим показателем, чтобы правильно выбрать метод дальнейшей фильтрации воды. Проверить мутность можно и в домашних условиях, использовав методы качественного и количественного исследований.

источник

Физические свойства

  • Температура
  • Прозрачность
  • Мутность
  • Цветность
  • Содержание взвешенных частиц
  • Запах
  • Вкус

Температура воды.

Наиболее стабильную температуру имеют воды подземных источников. Как правило 5-10°С. Температура воды в водоемах зависит от времени года, климата, условий питания, сброса сточных вод и других факторов.

Взвешенные вещества.

Представляют собой частицы размерами от 100мкм до 1мм. Основной их особенностью является способность выделяться из воды под действием силы тяжести (осаждаться). Взвеси задерживаются при фильтровании воды через бумажные фильтры. О количестве взвеси в воде судят по увеличению массы фильтра. Точное количественное определения взвешенных веществ весовым способом отнимает много времени, поэтому при проведении экспресс- анализов о содержании взвешенных веществ судят по прозрачности и мутности воды.

Прозрачность.

Характеризуется максимальной высотой столба воды, через которую виден крест с толщиной линии 1мм или определенного размера шрифт. Прозрачность выражают в сантиметрах «по шрифту» или «по кресту».

Определяют в лабораторных условиях мутномером, нефелометром-калориметром или фотометрическим путем. Выражается в (мг/л). В отличии от подземных, вода поверхностных источников отличается большим разнообразием взвешенных и коллоидных частиц как по качественному, так и по количественному составу. Свойства взвеси зависят от условий питания, скорости течения и степени размываемости берегов. В зависимости от количества взвешенных частиц, воды поверхностных источников подразделяются на маломутные- до 50мг/л, средней мутности — от 50 до 250 мг/л, мутные — от250 до 2500 мг/л, высокомутные — более 2500 мг/л.

Цветность воды.

Чистые природные воды обычно бесцветны или имеют голубоватый оттенок. Вода, загрязненная органическими веществами в результате вымывания из почв и торфиников, приобретает желтый или коричневый цвет. Эти органические вещества принято объединять под общим названием гумусовые. Окраску природным водам придают в основном органические коллоидные соединения. Цветность вод подземных источников зависит от содержания закисного железа, соединений серы, марганца и других элементов. Иногда вода приобретает несвойственный ей цвет из-за сброса в водоем неочищенных сточных вод. Цветность измеряют в градусах платиново-кобальтовой шкалы путем сравнения цвета исследуемой воды с эталонными растворами. Природные воды по цветности подразделяются на малоцветные с цветностью до 35 град и цветные — более 35 град.

Привкусы и запахи воды.

Органолептические свойства воды поверхностных источников имеют главным образом биологическое происхождение, как результат жизнедеятельности и отмирания водных растений, плесневелых грибов, пленочных бактерий, а также, как следствие, при «цветении» воды. Загрязнение водоемов бытовыми, промышленными сточными водами, содержащими ароматические углеводороды, спирты, фенолы, альдегиды и прочие органические вещества, ухудшают органолептические свойства воды. С запахом тесно связан и вкус воды. Как правило, вещества, изменяющие запах воды, придают ей вкус или привкус. Кислый вкус вызывается органическими кислотами: яблочной, щавелевой, муравьиной, винной и др. Сладкий и горький привкусы обусловливаются наличием в воде низкомолекулярных органических соединений. Наиболее распространенной причиной ухудшения органолептических свойств подземной воды является присутствие в ней повышенных концентраций сероводорода, железа, марганца, сульфатов и хлоридов. Например, при содержании железа более 1 мг/л вода приобретает затхлый запах и неприятный вкус.. Соленый вкус в большинстве случаев вызывается растворенными солями.

источник

Мутность воды обусловлена содержанием взвешенных в воде мелкодисперсных примесей – нерастворимых или коллоидных частиц различного происхождения.

Мутность воды обусловливают и некоторые другие характеристики воды – такие, как:
– наличие осадка, который может отсутствовать, быть незначительным, заметным, большим, очень большим, измеряясь в миллиметрах;
взвешенные вещества, или грубодисперсные примеси, – определяются гравиметрически после фильтрования пробы, по привесу высушенного фильтра. Этот показатель обычно малоинформативен и имеет значение, главным образом, для сточных вод;
прозрачность, измеряется как высота столба воды, при взгляде сквозь который можно различать узнаваемый знак (отверстия на диске, стандартный шрифт, крестообразная метка и т.п.).

Мутность определяют фотометрически (турбидиметрически – по ослаблению проходящего света или нефелометрически – по светорассеянию в отраженном свете), а также визуально – по степени мутности столба высотой 10–12 см в мутномерной пробирке. В последнем случае пробу описывают качественно следующим образом: прозрачная; слабо опалесцирующая; опалесцирующая; слабо мутная; мутная; очень мутная (ГОСТ 1030). Указанный метод мы и приводим далее в качестве наиболее простого в полевых условиях.

Международный стандарт ИСО 7027 описывает также полевой метод определения мутности (а также прозрачности) воды с использованием специального диска, известного как диск Секки (рис. 7). Этот метод благодаря своей простоте получил распространение в образовательных учреждениях нашей страны. Диск Секки представляет собой диск, отлитый из бронзы (или другого металла с большим удельным весом), покрытый белым пластиком или белой краской и прикрепленный к цепи (стержню, нерастягивающемуся шнуру и т.п.). Диск обычно имеет диаметр 200 мм с шестью отверстиями, каждое диаметром 55 мм, расположенными по кругу диаметром 120 мм. При определении мутности с помощью диска его опускают в воду настолько, чтобы он был едва заметен. Измеряют максимальную длину погруженной цепи (шнура), при которой диск еще заметен. Измерения повторяют несколько раз, т.к. возможно мешающее влияние отражения света от водной поверхности. Для значений, меньших 1 м, результат приводят с точностью до 1 см; для значений больших, чем 1 м, – с точностью до 0,1 м. Данный метод удобен тем, что позволяет использовать для анализа мосты, наклоненные над водой деревья, обрывистые берега и др. В некоторых случаях анализ можно проводить и с берега, привязав шнур к длинной палке. Следует отметить, что некоторые детские коллективы при обследовании водоемов таким методом с успехом использовали вместо диска Секки белую эмалированную крышку от кастрюли соответствующего диаметра.


Рис. 7. Определение мутности (прозрачности) воды с помощью диска Секки.

Прозрачность, или светопропускание, воды обусловлена ее цветом и мутностью, т.е. содержанием в ней различных окрашенных и минеральных веществ. Прозрачность воды часто определяют наряду с мутностью, особенно в тех случаях, когда вода имеет незначительные окраску и мутность, которые затруднительно обнаружить приведенными выше методами. Прозрачность определяют приведенным выше методом с использованием диска Секки (см. «Мутность»), а также по высоте столба воды, который позволяет различать на белой бумаге стандартный шрифт. Последний метод, регламентированный ИСО 7027, мы и приводим ниже, т.к. он позволяет судить о прозрачности воды практически в любых условиях и на любом водоеме, независимо от его глубины, наличия мостов, погодных условий и др. Следует отметить, что на прозрачность воды может влиять не только наличие взвешенных частиц, но и окраска (цветность) воды.

Пробирка стеклянная высотой 10–12 см, лист темной бумаги (в качестве фона).

1. Заполните пробирку водой до высоты 10–12 см.
2. Определите мутность воды, рассматривая пробирку сверху на темном фоне при достаточном боковом освещении (дневном, искусственном). Выберите подходящее из приведенных в табл. 7.
Мутность не заметна (отсутствует)
Слабо опалесцирующая
Опалесцирующая
Слабо мутная
Мутная
Очень мутная

Метод количественного определения прозрачности основан на определении высоты водяного столба, при которой еще можно визуально различить (прочесть) черный шрифт высотой 3,5 мм и шириной линии 0,35 мм на белом фоне или увидеть юстировочную метку (например, черный крест на белой бумаге).

Используемый метод является унифицированным и соответствует ИСО 7027.

Проведению анализа могут мешать вещества, окрашивающие воду, а также пузырьки воздуха.

Ламинированный образец щрифта (высота 3,5 мм, ширина линии 0,35 мм) или юстировочная метка (2 шт.).
Пипетка для отбора воды, трубка для определения прозрачности (длина 600 мм; диаметр 25 мм), экран для трубки, шприц с соединительной трубкой.

Примечание. Для устойчивости трубку для определения прозрачности лучше закреплять в штативе.

Пробы следует отбирать в стеклянные бутылки, закрывать пробками и проводить определение по возможности сразу же после отбора. Если же хранение неизбежно, пробы следует хранить в прохладном темном помещении, но не дольше 24 ч., препятствовать контакту пробы с воздухом и избегать резкого изменения температуры. Если пробы хранятся при охлаждении, их необходимо перед анализом выдержать при комнатной температуре.

источник

Прозрачность (или светопропускание) воды обусловлена ее цветом и мутностью. Природные воды, особенно поверхностные, редко бывают прозрачными в связи с наличием в них взвешенных частичек глины, песка, ила, различных окрашенных органических соединений и минеральных веществ, фито- и зоопланктона и т.д.

Мерой прозрачности служит высота столба воды, при которой можно различать черный шрифт определенного размера и типа на белом фоне (лабораторный способ) или с помощью диска Секки в полевых условиях. Результаты измерений указывают в см с точностью до 0.5 см с указанием способа измерения.

Перед измерением прозрачности анализируемая вода взбалтывается. В случае, если вода сильно взмучивается выпавшей гидроокисью железа или вообще содержит большие количества взвесей, ее следует брать для анализа после отстаивания в течение 1-ой минуты.

Для измерения прозрачности с помощью шрифта используют стеклянный цилиндр с дополнительной шкалой в единицах длины (в см или мм). Пластинку со шрифтом помещают на дно цилиндра и постепенно приливают анализируемую пробу, предварительно перемешанную, до тех пор, пока буква не станет неразличимой. Исследуемая проба воды рассматривается при рассеянном дневном свете аналитиком с нормальным зрением (1), измерения повторяют не менее 6-ти раз и за окончательный результат принимают среднее значение единичных измерений.

В качестве стандарта используется шрифт с высотой букв 3,5 мм.

Для воды питьевого назначения прозрачность должна быть не менее 20 см, для воды культурно-бытового назначения – не менее 10 см.

Мутностьприродных вод вызвана присутствием тонкодисперсных примесей, обусловленных нерастворимыми или коллоидными неорганическими и органическими веществами различного происхождения. Качественное определение проводят описательно: слабая опалесценция, опалесценция, слабая, заметная и сильная муть.

Количественно мутность воды определяют турбидиметрически (по ослаблению проходящего через пробу света) путем сравнения проб исследуемой воды со стандартными суспензиями.

Чистая вода, взятая в малом объеме, бесцветна, в толстом слое – имеет голубой оттенок. Любые другие оттенки свидетельствуют о наличии в воде разных растворенных и взвешенных частиц. Цветность воды обусловлена присутствием окрашенных веществ: гумусовые вещества являются причиной желтого и бурого оттенка воды; коллоидные соединения железа придают оттенки от желтоватых до зеленых, окрашенные сточные воды – самые разнообразные оттенки. При цветении воды в водоемах в зависимости от вида водорослей вода приобретает разные оттенки: светло-зеленый, зеленовато-бурый, темно-бурый, сине-зеленый.

Высокая цветность воды ухудшает ее органолептические свойства и оказывает отрицательное влияние на развитие водной флоры и фауны в результате резкого снижения растворенного кислорода в водоеме, который идет на окисление соединений железа и гумусовых веществ. В промышленных лабораториях цветность воды необходимо определять для расчета коэффициента разбавления сточных вод перед сбросом их в поверхностные водоемы.

Пробы для определения цветности должны быть проанализированы не позднее, чем через 2-3 часа после их отбора, поскольку при длительном стоянии окраска воды изменяется. При большом содержании взвешенных веществ пробы предварительно фильтруют.

Определение цветности воды рекомендуется проводить фотометрическим методом, основанном на измерении ее оптической плотности при длинах волн 340 нм или 400 нм. Цветность воды выражают в градусах платиново-кобальтовой или дихромат-кобальтовой шкалы. Предельно допустимая величина цветности в водах, используемых для питьевых целей, составляет 35 градусов, в зонах рекреации – не более 70 градусов.

источник

Мутность — это потеря прозрачности воды, в следствие образования в воде органических и неорганических тонкодисперсных взвесей. Так написано в Википедии. Слишком сложно? Я расскажу проще.

Мутность — это когда в воде находятся в не растворенном (твердом) состоянии мелкие частицы. Они не достаточно велики, чтобы быть заметными невооруженным глазом, даже в обычный микроскоп они могут быть не видны. Например коллоиды — это частицы, размер которых не превышает 500 нанометров, но они достаточно велики, чтобы преломлять луч света, проходящий через колбу с водой. Мы видим, что вода не на 100% прозрачная и говорим — вода мутная.

Мутность поверхностной воды (реки, ручьи, пруды, озера, моря) обусловлена в основном жизнью в ней микроорганизмов и органическими веществами, часто взвесью песка. Такая вода легко поддается осветлению с помощью осветлительных колонн. Используются такие материалы: Filter AG, Сорбент АС, Сорбент МС, МФУ, Кварцевый песок,ОДМ-2Ф, активированные угли, словом, различные легкие насыпные материалы с развитой поверхностью для удаления взвесей.

Мутность воды взятой из подземных источников (колодец, абиссинка, скважина) или поселкового водопровода может быть также обусловлена:

  • взвесью глины, песка
  • органическими соединениями (например, гумусовыми веществами)
  • окисленными металлами
  • микроорганизмами

Причем, если мы получаем воду из подземного источника изначально мутную и эта муть быстро оседает при отстое воды — скорее всего это взвесь глины, песка. А если вода приходит совершенно прозрачная, но постояв в открытой емкости мутнеет — это признак окисления растворенных в воде металлов — железа, марганца. Разбираться с тем как окисляются металлы в воде мы будем в других статьях.

Читайте также:  Анализ фильтров для питьевой воды

Чтобы лучше понять физический смысл понятия МУТНОСТЬ ВОДЫ посмотрите вот этот небольшой кинофильм советских времен:

А сейчас поговорим о методах анализа воды, как определяется мутность и что она означает в анализе воды.

Мутность воды определяется фотометром (как работает фотометрия ВИДЕО) посредством сравнения исследуемой воды со стандартными взвесями.

Традиционно в качестве стандартной взвеси использовалась взвесь каолина (глины), в таком случае говорят: «Мутность по каолину мг/л», имеется ввиду сколько миллиграмм каолина на литр (или кубический дециметр) было добавлено для получения идентичной мутности в сравнении с исследуемом образцом.

Сейчас чаще всего для определения мутности используют формазин (полимер) при этом мутность измеряют в ЕМ/литр (единицы мутности на литр)

В таком случае говорят: «…единицы мутности по формазину (ЕМФ)»

Разберем пример из практики:

У меня есть анализ от одного из клиентов. Вот ссылка на него: «исводцентр_анализ.doc» можете качнуть весь анализ, но я предлагаю сначала посмотреть на картинку:

повышенная мутность в анализе

  1. Мутность, ЕМФ — 37 по результату исследования. При норме 2.6. в последней колонке ГОСТ 3351-74 — это государственный стандарт на проведение органолептического исследования питьевой воды по цвету, запаху, вкусу и мутности.
  2. Дальше смотрите — Железо общее — 5.79мг/л при норме 0.3 мг/л. Много да?
  3. А теперь самое главное — Железо 2+ двухвалентное растворенное железо — 0.01 — практически нет.

Из этого я делаю вывод, что все железо, практически полностью окислилось в бутылке пока воду везли в лабораторию, пока вода ждала в лаборатории своей очереди на исследование. И железо перешло в трехвалентное состояние — коллоидное — очень мелкие частицы, которые не видно глазом, но прекрасно видно мутность воды.

Если в эту воду добавить пару капель коагулянта — коллоиды быстро слипнутся и взвесь осядет на дно. Так же можно просто подождать в воде заведутся аэробные железобктерии, которые «съедят» железо, в результате чего оно опять же выпадет в осадок в виде хлопьев.

Теперь, когда Вы знаете все о мутности воды Вам будет интересно посмотреть для закрепления материала, так сказать, вот этот короткий новостной ролик из архива:

источник

Цветность — природное свойство воды, обусловленное наличием в ней гуминовых веществ, которые вымываются в воду из почвы. Гуминовые вещества образуются в почве вследствие микробиологического разрушения чужеродных органических соединений и синтеза почвенными микроорганизмами нового органического вещества, присущего почве, которое называется гумусом. Гумус коричневого цвета, и поэтому гуминовые вещества придают воде окраску от желтой до коричневой. На количество этих веществ влияют геологические условия, водоносные горизонты, характер почвы, наличие болот и торфяников в бассейнах рек и т. д. Небольшое количество гуминовых веществ образуется непосредственно в поверхностных водоемах вследствие микробиологического разрушения водных растений (водорослей). Чем больше в воде гуминовых веществ, тем выше окрашивание воды и интенсивнее ее цветность.

Для измерения уровня цветности разработана хромово-кобальтовая шкала, имитирующая цветность природной воды. Эта шкала представляет собой растворы калия хромата, кобальта сульфата и серной кислоты в воде. Чем выше концентрация этих веществ, тем интенсивнее желто-коричневое окрашивание раствора и больше цветность. Для оценки цветности воды можно использовать и платиново-кобальтовую шкалу. Цветность воды измеряют в градусах путем сравнения ее интенсивности с окрашиванием растворов хромово-кобальтовой или платиново-кобальтовой шкалы. Раньше это сравнение осуществляли визуально, а в настоящее время используют спектрофотометры и фотоколориметры.

Практически бесцветной можно считать лишь такую воду, цветность которой не воспринимается глазом и не превышает 20 градусов. Только в этом случае не ограничивается ее использование и не будут вестись поиски иных возможностей для утоления жажды. Если большинство потребителей скажет, что вода желтоватая, то ее цветность по имитирующей шкале превышает 20 градусов. Именно поэтому в государственном стандарте на питьевую водопроводную воду отмечено, что ее цветность не должна превышать 20 градусов.

Кроме цветности, следует помнить и об окраске воды. Она связана с загрязнением воды веществами органического и неорганического происхождения, в частности красителями, которые могут попадать в водоемы со сточными водами предприятий легкой промышленности, некоторыми неорганическими соединениями железа, марганца, меди как природного, так и техногенного происхождения. Так, железо и марганец могут окрашивать воду в цвета от красного до черного, медь — от бледно-голубого до сине-зеленого, т. е. загрязненная стоками промышленных предприятий вода может иметь неестественный цвет.

Окраску определяют визуально или фотометрическим методом после удаления взвешенных веществ путем фильтрования или центрифугирования. Визуально изучают цвет, оттенок, интенсивность окраски воды. Для этого воду наливают в цилиндр с плоским дном. На расстоянии 4 см от дна размещают лист белой бумаги. Через столбик воды в цилиндре рассматривают лист и оценивают его цвет. Воду из цилиндра сливают до тех пор, пока цвет не будет восприниматься как белый, присущий всему листу бумаги. Измеряют высоту столбика, при котором исчезает окрашивание. Окраска воды не должна определяться в столбике высотой 20 см. Иногда, если окраска очень интенсивная, возникает потребность в разведении исследуемой воды дистиллированной водой. Интенсивность и характер окраски воды можно установить, измерив спектрофотометром или фотоколориметром ее оптическую плотность для световых волн различной длины.

Необычные цветность и окраска воды ограничивают ее употребление и заставляют искать новые источники водоснабжения. Однако вода новых источников может оказаться опасной в эпидемиологическом отношении и содержать токсические вещества. Кроме того, повышение окраски и цветности воды может свидетельствовать о ее загрязнении промышленными сточными водами. Вода с высокой цветностью может быть биологически активной за счет гу-миновых органических веществ. Убедительных данных о влиянии воды с высокой цветностью на здоровье человека в литературе нет. Но известно, что в результате действия гуминовых кислот на 50-100% повышается проницаемость стенок кишечника для катионов Ca, Mg, Fe, Mn, Zn, сульфатионов. И наконец, цветность является показателем эффективности очистки (обесцвечивания) воды на очистных сооружениях.

Мутность — природное свойство воды, обусловленное наличием в ней взвешенных веществ органического и минерального происхождения (глины, ила, органических коллоидов, планктона и т. п.).

Противоположная характеристика воды — прозрачность, то есть ее способность пропускать световые лучи. Чем больше в воде взвешенных веществ, тем выше ее мутность, то есть меньше прозрачность.

Для количественной оценки прозрачности воды был предложен метод Снеллена. Воду наливают в цилиндр с плоским дном. На расстоянии 4 см от дна размещают стандартный шрифт. Высота букв составляет 4 см, а толщина — 0,5 мм. Воду из цилиндра сливают до тех пор, пока через ее столбик можно будет прочитать буквы. Высота этого столбика (в сантиметрах) и характеризует прозрачность воды. Прозрачная, по мнению потребителя, вода в случае измерения по методу Снеллена имеет прозрачность не менее 30 см.

Для измерения уровня мутности воды была предложена имитирующая каолиновая шкала. Это набор суспензии белой глины (каолина) в дистиллированной воде. Содержание каолина в суспензиях колеблется от 0,1 до 0,5 мг/л. Мутность воды измеряют в миллиграммах на литр посредством сравнения ее оптической плотности с плотностью стандартных растворов каолина. Раньше эти сравнения производили визуально. Сегодня используют нефелометры, спектрофотометры и фотоколориметры.

Если воду, которую потребители оценили как прозрачную, оценить по имитирующей каолиновой шкале, то окажется, что ее мутность не превышает 1,5 мг/л. Если же преобладающее число потребителей считает, что вода непрозрачная, то ее мутность превышает 1,5 мг/л. Именно поэтому в государственном стандарте на питьевую водопроводную воду указано, что ее мутность не должна превышать 1 , 5 мг/л.

Мутность тесно связана с другими свойствами воды, прежде всего с цветностью, запахом и привкусом. Так, гуминовые вещества, определяющие цветность воды, делают ее мутной (за счет коллоидной фракции), придают ей естественный запах и привкус. Красноватый цвет свидетельствует о наличии в воде железа гидроксида (III). Такая вода мутная, со специфическим вяжущим привкусом.

Мутность влияет на микробиологические показатели качества воды. Большинство микроорганизмов сорбируется на поверхности или находится в середине взвешенных частиц, органические и неорганические вещества которых защищают бактерии и вирусы. Данные литературы свидетельствуют о том, что обеззараживание мутной воды хлором в течение 30 мин даже при остаточном, свободном активном хлоре на уровне 0,3-0,5 мг/л неэффективно относительно кишечных бактерий и вирусов (например, возбудителей гепатита А). В то же время осветление и обесцвечивание воды на очистных сооружениях, направленные на удаление взвешенных и гуминовых веществ, способствуют удалению 90% бактерий.

Установлено, что хлорированная мутная вода может быть опасной для здоровья вследствие образования хлорорганических соединений — токсичных и даже канцерогенных. Это хлорфенолы, хлорцианы, тригалометаны, хлорированные полициклические ароматические углеводороды, полихлорированные бифенилы.

Мутная, непрозрачная вода вызывает у человека чувство отвращения. Это ограничивает ее употребление и заставляет искать новые источники водоснабжения, вода в которых может оказаться опасной в эпидемиологическом отношении и содержать вредные вещества. Мутность воды свидетельствует о ее загрязнении органическими и неорганическими веществами, которые могут быть вредными для здоровья человека или образовывать вредные вещества во время реагентной обработки воды (например, хлорирования). Мутность является показателем эффективности осветления воды на очистных сооружениях. И, наконец, мутность является одним из факторов, влияющих на эффективность обеззараживания воды, то есть на эффективность очистки ее от патогенных бактерий и особенно энтеровирусов.

источник

Физические свойства

  • Температура
  • Прозрачность
  • Мутность
  • Цветность
  • Содержание взвешенных частиц
  • Запах
  • Вкус

Температура воды.

Наиболее стабильную температуру имеют воды подземных источников. Как правило 5-10°С. Температура воды в водоемах зависит от времени года, климата, условий питания, сброса сточных вод и других факторов.

Взвешенные вещества.

Представляют собой частицы размерами от 100мкм до 1мм. Основной их особенностью является способность выделяться из воды под действием силы тяжести (осаждаться). Взвеси задерживаются при фильтровании воды через бумажные фильтры. О количестве взвеси в воде судят по увеличению массы фильтра. Точное количественное определения взвешенных веществ весовым способом отнимает много времени, поэтому при проведении экспресс- анализов о содержании взвешенных веществ судят по прозрачности и мутности воды.

Прозрачность.

Характеризуется максимальной высотой столба воды, через которую виден крест с толщиной линии 1мм или определенного размера шрифт. Прозрачность выражают в сантиметрах «по шрифту» или «по кресту».

Определяют в лабораторных условиях мутномером, нефелометром-калориметром или фотометрическим путем. Выражается в (мг/л). В отличии от подземных, вода поверхностных источников отличается большим разнообразием взвешенных и коллоидных частиц как по качественному, так и по количественному составу. Свойства взвеси зависят от условий питания, скорости течения и степени размываемости берегов. В зависимости от количества взвешенных частиц, воды поверхностных источников подразделяются на маломутные- до 50мг/л, средней мутности — от 50 до 250 мг/л, мутные — от250 до 2500 мг/л, высокомутные — более 2500 мг/л.

Цветность воды.

Чистые природные воды обычно бесцветны или имеют голубоватый оттенок. Вода, загрязненная органическими веществами в результате вымывания из почв и торфиников, приобретает желтый или коричневый цвет. Эти органические вещества принято объединять под общим названием гумусовые. Окраску природным водам придают в основном органические коллоидные соединения. Цветность вод подземных источников зависит от содержания закисного железа, соединений серы, марганца и других элементов. Иногда вода приобретает несвойственный ей цвет из-за сброса в водоем неочищенных сточных вод. Цветность измеряют в градусах платиново-кобальтовой шкалы путем сравнения цвета исследуемой воды с эталонными растворами. Природные воды по цветности подразделяются на малоцветные с цветностью до 35 град и цветные — более 35 град.

Привкусы и запахи воды.

Органолептические свойства воды поверхностных источников имеют главным образом биологическое происхождение, как результат жизнедеятельности и отмирания водных растений, плесневелых грибов, пленочных бактерий, а также, как следствие, при «цветении» воды. Загрязнение водоемов бытовыми, промышленными сточными водами, содержащими ароматические углеводороды, спирты, фенолы, альдегиды и прочие органические вещества, ухудшают органолептические свойства воды. С запахом тесно связан и вкус воды. Как правило, вещества, изменяющие запах воды, придают ей вкус или привкус. Кислый вкус вызывается органическими кислотами: яблочной, щавелевой, муравьиной, винной и др. Сладкий и горький привкусы обусловливаются наличием в воде низкомолекулярных органических соединений. Наиболее распространенной причиной ухудшения органолептических свойств подземной воды является присутствие в ней повышенных концентраций сероводорода, железа, марганца, сульфатов и хлоридов. Например, при содержании железа более 1 мг/л вода приобретает затхлый запах и неприятный вкус.. Соленый вкус в большинстве случаев вызывается растворенными солями.

источник

Прозрачность воды по диску Секки, по кресту, по шрифту. Мутность воды. Запах воды. Цветность воды.

Прозрачность воды

В воде находятся взвешенные вещества, которые уменьшают ее прозрачность. Существуют несколько методов определения прозрачности воды.

  1. По диску Секки. Чтобы измерить прозрачность речной воды, применяют диск Секки диаметром 30 см, который опускают на веревке в воду, прикрепив к нему груз, чтобы диск уходил вертикально вниз. Вместо диска Секки можно применять тарелку, крышку, миску, положенные в сетку. Диск опускается до тех пор, пока он не будет виден. Глубина, на которую вы опустили диск, и будет показателем прозрачности воды.
  2. По кресту. Находят предельную высоту столба воды, через которую просматривается рисунок черного креста на белом фоне с толщиной линий равной 1 мм, и четырех черных кружочков диаметром равным 1 мм. Высота цилиндра, в котором проводится определение, должно быть не менее 350 см. На дне его расположена фарфоровая пластинка с крестом. Нижняя часть цилиндра должна быть освещена лампой в 300 Вт.
  3. По шрифту. Под цилиндр высотой 60 см и диаметром 3-3,5 см подкладывают стандартный шрифт на расстоянии 4 см от дна, исследуемую пробу наливают в цилиндр, так чтобы можно было прочитать шрифт, и определяют предельную высоту столба воды. Метод количественного определения прозрачности основан на определении высоты водяного столба, при которой еще можно визуально различить (прочесть) черный шрифт высотой 3,5 мм и шириной линии 0,35 мм на белом фоне или увидеть юстировочную метку (например, черный крест на белой бумаге). Используемый метод является унифицированным и соответствует ИСО 7027.
  • Мутность воды

    Повышенную мутность вода имеет за счет содержания в ней грубодисперсных неорганических и органических примесей. Определяют мутность воды весовым методом, и фотоэлектрическим колориметром. Весовой метод заключается в том, что 500-1000 мл мутной воды профильтровывают через плотный фильтр диаметром 9-11 см. Фильтр предварительно высушивается и взвешивается на аналитических весах. После фильтрования фильтр с осадком высушивают при температуре 105- 110 градусов в течение 1,5 — 2 часов, охлаждают и вновь взвешивают. По разности масс фильтра до и после фильтрования рассчитывают количество взвешенных веществ в исследуемой воде.

    В России мутность воды определяют фотометрическим путем сравнения проб исследуемой воды со стандартными суспензиями. Результат измерений выражают в мг/дм 3 при использовании основной стандартной суспензии каолина (мутность по каолину) или в ЕМ/дм 3 (единицы мутности на дм 3 ) при использовании основной стандартной суспензии формазина. Последнюю единицу измерения называют также Единица Мутности по Формазину (ЕМФ) или в западной терминологии FTU (formazine Turb >3 .

    В последнее время в качестве основной во всем мире утвердилась фотометрическая методика измерения мутности по формазину, что нашло свое отражение в стандарте ISO 7027 (Water quality — Determination of turbidity). Согласно этому стандарту, единицей измерения мутности является FNU (formazine Nephelometric Unit). Агентство по Охране Окружающей Среды США (U.S. EPA) и Всемирная Организация Здравоохранения (ВОЗ) используют единицу измерения мутности NTU (Nephelometric Turbidity Unit).

    Соотношение между основными единицами измерения мутности следующее:

    ВОЗ по показаниям влияния на здоровье мутность не нормирует, однако с точки зрения внешнего вида рекомендует, чтобы мутность была не выше 5 NTU (нефелометрическая единица мутности), а для целей обеззараживания — не более 1 NTU.

    Определение запаха воды

    Запахи в воде могут быть связаны с жизнедеятельностью водных организмов или появляться при их отмирании — это естественные запахи. Запах воды в водоеме может обуславливаться также попадающими в него стоками канализации, промышленными стоками — это искусственные запахи.Сначала дают качественную оценку запаха по соответствующим признакам:

    • болотный,
    • землистый,
    • рыбный,
    • гнилостный,
    • ароматический,
    • нефтяной и т.д.

    Силу запаха оценивают по 5 балльной шкале. Колбу с притертой пробкой заполняют на 2/3 водой и тотчас закрывают, интенсивно встряхивают, открывают и тотчас отмечают интенсивность и характер запаха.

    Определение цветности воды

    Качественную оценку цветности производят, сравнивая образец с дистиллированной водой. Для этого в стаканы из бесцветного стекла наливают отдельно исследуемую и дистиллированную воду, на фоне белого листа при дневном освещении рассматривают сверху и сбоку, оценивают цветность как наблюдаемый цвет, при отсутствии окраски вода считается бесцветной.

    источник

    Органолептические показатели – это параметры свойств воды, которые воспринимаются непосредственно органами чувств (зрением, обонянием, осязанием). К таким показателям относятся: цветность, мутность, вкус, запах. Цветность и мутность воды определяются путем сравнения образцов с эталонами качества. Гораздо сложнее определить показатели вкуса и запаха.

    Поскольку эти параметры не могут быть измерены формально, то их значения устанавливаются экспертным путем. По сути, это та же дегустация, где эксперты должны уловить едва заметные оттенки вкуса и запаха и сделать заключение как можно более объективным.

    Значение параметра определяется с помощью мутномеров или фотоэлектрокалориметров. Показатели мутности регламентирует ГОСТ 2874-82, в соответствии с которым в питьевой воде должно содержаться не более 1,5 мг/л частиц (2,6 ед. ЕМФ).

    Вода приобретает определенный оттенок, если в ней содержатся:

    • гумусовые, дубильные вещества;
    • белковые, жировые, углеводноподобные соединения;
    • органические кислоты и другие вещества, являющиеся продуктами жизнедеятельности растений и микроорганизмов;
    • соединения железа, марганца;
    • сточные воды производственных предприятий (относится к некоторым производствам);

    Показатель цветности воды определяется с помощью колориметров и спектрофотомеров, а значение выражается в градусах по платино-кобальтовой шкале.

    Привкус воды может иметь естественное или искусственное происхождение. Появлению привкуса в естественных условиях способствуют: железо, марганец, сероводород, метан. Об искусственном происхождении вкуса говорят в том случае, если в водоем сбрасываются загрязненные стоки промышленных предприятий.

    Читайте также:  Анализ эффективности очистки сточных вод

    Вкус воды обусловлен содержание определенных веществ:

    • соленый — хлорид натрия;
    • горький — сульфат магния;
    • кислый — избыток растворенной углекислоты (минеральные воды);
    • железистый — растворенные соли железа и марганца;
    • щелочной — поташ, сода, щелочи;
    • вяжущий — сульфат кальция, перманганат калия.

    В соответствии с ГОСТ 3351-84, к основным вкусам относят: соленый, кислый, горький, сладкий. Всевозможные сочетания и оттенки основных вкусов называют привкусами.

    Так же как и привкус, запах воды может иметь естественное или искусственное происхождение.

    В естественных условиях образуются запахи:

    • земли;
    • рыбы;
    • болота;
    • гнили;
    • сероводорода;
    • тины и другие, которые обычно характерны для окружающей среды.

    Неестественным происхождением вызваны запахи:

    Привкус и запах воды определяется экспертами с помощью органов чувств. В качестве эталона берут вкус и запах дистиллированной воды. В испытаниях действует такое понятие, как «порог разбавления», посредством которого устанавливают количество разбавлений образца воды, необходимых для полного исчезновения запаха и вкуса. Наравне с этим методом используется также оценка органолептических свойств по 5-балльной шкале.

    «Дегустацию» проводят в помещении при температуре 20⁰ C и 60⁰ C (высокая тепература услиливает интенсивность исследуемых свойств). Условия и методы подобных исследований регулирует ГОСТ 2874-82.

    Угольный фильтр предназначен для дезодорации питьевой воды и улучшения ее органолептических показателей. Фильтрующим материалом служит активированный уголь, имеющий высокую сорбционную способность. Благодаря своей пористой структуре он эффективно поглощает всевозможные примеси: растворенные газы, хлор, органические соединения.

    Использование активированного угля в фильтрах является наиболее распространенным вариантом для очистки воды. Абсорбент обеспечивает повышение качества воды, улучшает ее вкус, цвет и запах. При этом требуется очень малое количество материала, что позволяет использовать его в фильтрах с минимальными размерами.

    Мы предлагаем фильтры с активированным углем марки 207C производства компании Sutcliffe Carbons (Великобритания). Уголь изготовлен из скорлупы кокоса и обладает всеми полезными свойствами этого южного растения.

    Активированный уголь, как и другие мелкозернистые материалы, имеет тенденцию слеживаться с течением времени. Для предупреждения этого эффекта нужно периодически промывать уголь обратным током воды, тем самым разрыхляя его.

    Период эксплуатации активированного угля зависит от его сорбционной способности и от того, какие вещества поглощаются. Поэтому срок службы угольных фильтров различный.

    источник

    Мутность — это потеря прозрачности воды, в следствие образования в воде органических и неорганических тонкодисперсных взвесей. Так написано в Википедии. Слишком сложно? Я расскажу проще.

    Мутность — это когда в воде находятся в не растворенном (твердом) состоянии мелкие частицы. Они не достаточно велики, чтобы быть заметными невооруженным глазом, даже в обычный микроскоп они могут быть не видны. Например коллоиды — это частицы, размер которых не превышает 500 нанометров, но они достаточно велики, чтобы преломлять луч света, проходящий через колбу с водой. Мы видим, что вода не на 100% прозрачная и говорим — вода мутная.

    Мутность поверхностной воды (реки, ручьи, пруды, озера, моря) обусловлена в основном жизнью в ней микроорганизмов и органическими веществами, часто взвесью песка. Такая вода легко поддается осветлению с помощью осветлительных колонн. Используются такие материалы: Filter AG, Сорбент АС, Сорбент МС, МФУ, Кварцевый песок,ОДМ-2Ф, активированные угли, словом, различные легкие насыпные материалы с развитой поверхностью для удаления взвесей.

    Мутность воды взятой из подземных источников (колодец, абиссинка, скважина) или поселкового водопровода может быть также обусловлена:

    • взвесью глины, песка
    • органическими соединениями (например, гумусовыми веществами)
    • окисленными металлами
    • микроорганизмами

    Причем, если мы получаем воду из подземного источника изначально мутную и эта муть быстро оседает при отстое воды — скорее всего это взвесь глины, песка. А если вода приходит совершенно прозрачная, но постояв в открытой емкости мутнеет — это признак окисления растворенных в воде металлов — железа, марганца. Разбираться с тем как окисляются металлы в воде мы будем в других статьях.

    Чтобы лучше понять физический смысл понятия МУТНОСТЬ ВОДЫ посмотрите вот этот небольшой кинофильм советских времен:

    А сейчас поговорим о методах анализа воды, как определяется мутность и что она означает в анализе воды.

    Мутность воды определяется фотометром (как работает фотометрия ВИДЕО) посредством сравнения исследуемой воды со стандартными взвесями.

    Традиционно в качестве стандартной взвеси использовалась взвесь каолина (глины), в таком случае говорят: «Мутность по каолину мг/л», имеется ввиду сколько миллиграмм каолина на литр (или кубический дециметр) было добавлено для получения идентичной мутности в сравнении с исследуемом образцом.

    Сейчас чаще всего для определения мутности используют формазин (полимер) при этом мутность измеряют в ЕМ/литр (единицы мутности на литр)

    В таком случае говорят: «…единицы мутности по формазину (ЕМФ)»

    Разберем пример из практики:

    У меня есть анализ от одного из клиентов. Вот ссылка на него: «исводцентр_анализ.doc» можете качнуть весь анализ, но я предлагаю сначала посмотреть на картинку:

    повышенная мутность в анализе

    1. Мутность, ЕМФ — 37 по результату исследования. При норме 2.6. в последней колонке ГОСТ 3351-74 — это государственный стандарт на проведение органолептического исследования питьевой воды по цвету, запаху, вкусу и мутности.
    2. Дальше смотрите — Железо общее — 5.79мг/л при норме 0.3 мг/л. Много да?
    3. А теперь самое главное — Железо 2+ двухвалентное растворенное железо — 0.01 — практически нет.

    Из этого я делаю вывод, что все железо, практически полностью окислилось в бутылке пока воду везли в лабораторию, пока вода ждала в лаборатории своей очереди на исследование. И железо перешло в трехвалентное состояние — коллоидное — очень мелкие частицы, которые не видно глазом, но прекрасно видно мутность воды.

    Если в эту воду добавить пару капель коагулянта — коллоиды быстро слипнутся и взвесь осядет на дно. Так же можно просто подождать в воде заведутся аэробные железобктерии, которые «съедят» железо, в результате чего оно опять же выпадет в осадок в виде хлопьев.

    Теперь, когда Вы знаете все о мутности воды Вам будет интересно посмотреть для закрепления материала, так сказать, вот этот короткий новостной ролик из архива:

    источник

    Мутность воды обусловлена ​​содержанием взвешенных в воде мелкодисперсных примесей — нерастворимых или коллоидных частиц различного происхождения.

    Мутность воды обусловливают и некоторые другие характеристики воды — такие, как:

    — Наличие осадка, который может отсутствовать, быть незначительным, заметным, большим, очень большим, достигая в миллиметрах;

    — Взвешенные вещества, или грубодисперсные примеси, — определяются гравиметрически после фильтрования пробы, по привеса высушенного фильтра. Этот показатель обычно малоинформативен и имеет значение, главным образом, для сточных вод;

    — Прозрачность, измеряется как высота столба воды, при взгляде сквозь который можно различать узнаваемый знак (отверстия на диске, стандартный шрифт, крестообразная метка и т.п.).

    Мутность определяют фотометрически (турбидиметрически — по ослаблению проходящего света или нефелометрическому — по Светорассеяние в отраженном свете), а также визуально — по степени мутности столба высотой 10-12 см в мутномерной пробирке. В последнем случае пробу описывают качественно следующим образом: прозрачная; слабо опалесцирующая; опалесцирующая; слабо мутная; мутная; очень мутная (ГОСТ 1030). Указанный метод мы и приводим далее в качестве наиболее простого в полевых условиях.

    Международный стандарт ИСО 7027 описывает также полевой метод определения мутности (а также прозрачности) воды с использованием специального диска, известного как диск Секки (рис. 7). Этот метод благодаря своей простоте получил распространение в образовательных учреждениях нашей страны. Диск Секки представляет собой диск, отлитый из бронзы (или другого металла с большим удельным весом), покрытый белым пластиком или белой краской и прикрепленный к цепи (стержня, нерастягивающуюся шнура и т.п.). Диск обычно имеет диаметр 200 мм с шестью отверстиями, каждое диаметром 55 мм, расположенными по кругу диаметром 120 мм. При определении мутности с помощью диска его опускают в воду так, чтобы он был едва заметен. Измеряют максимальную длину погруженной цепи (шнура), при которой диск еще заметен. Измерение повторяют несколько раз, так как возможно мешающее влияние отражения света от водной поверхности. Для значений, меньших 1 м, результат приводят с точностью до 1 см; для значений больших, чем 1 м, — с точностью до 0,1 м. Данный метод удобен тем, что позволяет использовать для анализа мосты, наклонены над водой дерева, обрывистые берега и др. В некоторых случаях анализ можно проводить и с берега, привязав шнур к длинной палке. Следует отметить, что некоторые детские коллективы при обследовании водоемов таким методом с успехом использовали вместо диска Секки белую эмалированную крышку от кастрюли подходящего диаметра.

    Рис. 7 Определение мутности (прозрачности) воды с помощью диска Секки.

    Прозрачность, или светопропускание, воды обусловлена ​​ее цветом и мутностью, т.е. содержанием в ней различных окрашенных и минеральных веществ. Прозрачность воды часто определяют наряду с мутностью, особенно в тех случаях, когда вода имеет незначительные окраску и мутность, которые трудно обнаружить приведенными выше методами. Прозрачность определяют приведенным выше методом с использованием диска Секки (см. «Мутность»), а также по высоте столба воды, который позволяет различать на белой бумаге стандартный шрифт. Последний метод, регламентированный ИСО 7027, мы и приводим ниже, т.к. он позволяет судить о прозрачности воды практически в любых условиях и на любом водоеме, независимо от его глубины, наличия мостов, погодных условий и др. Следует отметить, что на прозрачность воды может влиять не только наличие взвешенных частиц, но и окраску (цветность) воды.

    Пробирка стеклянная высотой 10-12 см, лист темной бумаги (в качестве фона).

    1 Заполните пробирку водой до высоты 10-12 см.

    2 Определите мутность воды, рассматривая пробирку сверху на темном фоне при достаточном боковом освещении (дневном, искусственном).

    Не нашли то, что искали? Воспользуйтесь поиском:

    Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10008 — | 7152 — или читать все.

    193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

    Отключите adBlock!
    и обновите страницу (F5)

    очень нужно

    источник

    Запах скошенной травы, сена

    Запахи естественного происхождения, не подходящие под предыдущие определения

    Запахи второй группы (искуственного происхождения) называют по определяющим запах веществам: хлорный, бензиновый и т.д.

    Вкус и привкус

    Интенсивность вкуса и привкуса определяется также по 6-балльной шкале (табл.4)

    Таблица 4. Характеристика вод по интенсивности вкуса

    Оценка вкуса и привкуса, баллы

    Интенсивность вкуса и привкуса

    Характер проявления вкуса и привкуса

    Вкус и привкус не ощущается

    Вкус и привкус сразу ощущается потребителем, но обнаруживаются при тщательном тестировании

    Вкус и привкус замечаются, если обратить на это внимание

    Вкус и привкус легко замечаются и вызывают неодобрительный отзыв о воду

    Вкус и привкус обращают на себя внимание и заставляют воздержаться от питья

    Вкус и привкус настолько сильны, что делают воду непригодной к употреблению

    Для питьевой воды допускаються значения показателй вкуса и привкуса не более 2 баллов.

    Качественную характеристику оттенков вкусовых ощущений — привкуса — выражают описательно: хлорный, рыбный, горьковатый и так далее. Наиболее распространенный соленый вкус воды чащу всего обусловлен растворенным в воде хлоридом натрия, горький — сульфатом магния, кислый — избытком свободного диоксида углерода и т.д.

    Показатель качества воды, характеризующий интенсивность окраски воды и обусловленный содержанием окрашенных соединений, выражается в градусах платино-кобальтовой шкалы и определяется путем сравнения окраски испытуемой воды с эталонами.

    Цветность природных вод обусловлена главным образом присутсвием гумусовых веществ и соединений трехвалентного железа, колеблется от единиц до тысяч градусов (табл.5)

    Таблица 5. Характеристика вод по цветности

    Единицы измерения, градус платино-кобальтовой шкалы

    Взвешенные твердые примеси, присуствующие в природных водах, состоят из частиц глины, песка, ила, суспедированных органических и неорганических веществ, планктона и различных микроорганизмов. Взвешенные частицы влияют на прозрачность воды.

    Содержание в воде взвешенных примесей, измеряемое в мг/л, дает представление о загрязненности воды частицами, в основном, условным диаметром более 10 (в -4 степени) мм.

    Водородный показатель (рН)

    Величина рН воды — один из важнейших показателей качества вод для определения тсабильности воды, ее накипеобразующих и коррозионных свойств, прогнозирования химических и биологических процессов, происходящих в природных водах. В зависимости от рН воду рационально делить на семь групп (табл.6)

    Таблица 6. Классификация вод по рН

    От величины рН зависит развитие и жизнедеятельность многих организмов, агрессивное действие воды на металлы и бетон. Величина рН воды также влияет на процессы превращения различных форм биогенных элементов, изменяет токсичность загрязняющих веществ.

    В соответсвии с требованиями к составу и свойствам питьевой воды, величина рН не должна выходить за пределы интервала значений 6,0-9,0. Контроль уровня рН особенно важен на всех стадиях водоочистки, так как его «уход» в ту или иную сторону может не только существенно сказаться на запахе, привкусе и внешнем виде воды, но и повлиять на эффективность водоочистных мероприятий.

    При низком рН вода обладает высокой коррозионной активностью, а при высоких уровнях (рН>11) вода приобретает характерную мылкость, неприятный запах, вызывает раздражение глаз и кожи.

    Минерализация — суммарное содержание всех найденных при химическом анализе воды минеральных веществ. Минерализация природных вод, определяющая их удельную электропроводность, изменяется в широких пределах. Большинство рек имеет минерализацию от нескольких десятков миллиграммов в литре до нескольких сотен. Их удельная электропроводимость варьируется от 30 до 1500 мкСм/см. Минерализация подземных вод и соленых озер изменяется в интервале от 40-50 мг/л до сотен г/кг (плотность в этом случае уже значительно отличается от единицы). Удельная электропроводимость атмосферных осадков с минерализацией от 3 до 60 мг/л составляет значения 10-120 мкСм/см.

    Таблица 7. Характеритика вод по минерализации

    Предел пресных вод — 1 г/л — установлен в связи с тем, что при минерализации более этого значения вкус воды неприятен — соленый или горько-соленый.

    Предел — граница между солоноватыми и солеными водами — принят на том основании, что при минерализации около 25 г/л температура замерзания воды и температура наибольшей плотности морской воды совпадают, и при этом меняются некоторые свойства воды.

    Граница 50 г/л между солеными водами и рассолами обусловлена тем, что соленость больше этого значения не бывает в морях; Такая соленость характерна только для соленых озер и некоторых подземных вод.

    Таблица 8. Характеристика вод по общей минерализации (наиболее распространеннная градация)

    В соответствии с гигиеническими требованиями к качеству питьевой воды суммарная минерализация не должна превышать 1000 мг/л. Вода содержащая большое количество солей, отрицательно влияет на растения и человека, вызывает образование накипи на стенках котлов, коррозию, засоление почв. Регулярное употребление высокоминерализированной воды приведет к болезням пищеварения, обмена веществ, повышеной сухости кожи.

    Жесткость воды обуславливается наличием в воде ионов кальция, магния, стронция, бария, железа, марганца. Но общее содержание в природных водах ионов кальция и магния несравнимо больше содержания всех других перечисленных ионов — и даже их суммы. Поэтому под жесткостью понимают сумму количеств ионов кальция и магния — общая жесткость, складывающаяся из значений карбонатной (временной, устраняемой кипячением) и некарбонатной (постоянной) жесткости. Первая вызвана присутствием в воде гидрокарбонатов кальция и магния, вторая — наличием сульфатов, хлоридов, силикатов, нитратов и фосфатов этих металлов. Однако при значении жесткости воды более 9 ммоль/л нужно учитывать содержание в воде стронция и других щелочноземельных металлов.

    По стандарту ИСО 6107-1-8: 1996, включающему более 500 терминов, жесткость определяется как способность воды образовать пену мылом. Содержание в питьевой воде кальция и магния играет важнейшую роль для человеческого организма. Недостаточность кальция в организме негативно сказывается на функии сердечной мышцы и на активности некоторых ферментов. А недостаток содержания кальция в крови ведет к понижению возбуждаемости нервной системы и, как следствие, к возникновению судорог. Кальций необходим для формирования костных тканей, в том числе зубов. Соли магния тоже необходимы человеку, поскульку входят в ряд жизненно важных ферментов. Дефицит магния проводит к коронарной болезни сердца; с другой стороны, повышенное содержание магния угнетающе действуют на нервную систему, поражая двигательные нервные окончания.

    По значению общей жесткости природные воды делят на группы (табл.9)

    Таблица 9. Классификация воды по жесткости

    В естественных условиях ионы кальция и магния определяющие жесткость, поступают в воду в результате взаимодействия растворенного диоксида углерода с карбонатными минералами и других процессов растворенияи химического выветривания горных пород. Источником этих ионов являются также микробиологические процессы, протекающие в почвах. Обычно преобладает жесткость, обусловленая ионами кальция (до 70%); однако в отдельных случаях магниевая жесткость может достигать 50-60%. Жесткость морской воды и океанов значительно выше (десятки ммоль/л). Жесткость поверхностных вод подвержена заметным сезонным колебаниям, достигая обычно наибольшего значения в конце зимы и наименьшего — в период половодья.

    Росстандартом в качестве единицы жесткости воды установлен моль на кубический метр (моль/м 3). Один моль на кубический метр соответствует массовой концентрации эквивалентов ионов кальция 20,04 г/м 3 (мг/л) или ионов магния 12,153 г/м 3 (мг/л). Т.е., 1 моль/м 3 = 1 ммоль/л = 1 мг-экв/л — 1 мг-экв/дм 3 . В зарубежных странах широко используются такие единицы жесткости, как немецкий градус (do, dH), французский градус (fo), американский градус (ppm CaCO³).

    Основные единицы жесткости воды и их соотношение:

    Прим.1 Опалесценция «[опал + лат. -escenua суффикс, означающий слабое действие] — физ. явление рассеяния света мутной средой, обусловленное ее оптической неоднородностью; наблюдается, напр. , при освещении большинства коллоидных растворов, а также у веществ в критическом состоянии
    Опалесценция критическая — резкое усиление рассеяния света чистыми веществами (газами или жидкостями) в критических состояниях, а также растворами при достижении ими критических точек смешения.

    Повышенная жесткость воды негативно отражается на здоровье человека. В быту появление накипи приводит к уменьшению срока слыжбы водонагревателей, ухудшаются моющие свойства мыла и стиральных порошков, из-за горьковатого привкуса ухудшаются вкусовые свойства воды.

    Порог вкуса для иона кальция лежит в диапазоне 2-6 ммоль/л, в зависимости от соответствующего аниона. Порог вкуса для магния и того ниже, наилучшие вкусовые свойства имеет вода с жсткостью 1,6-3,0 ммоль/л.

    Всемирная организация здравоохранения (ВОЗ) не регламентирует величину жесткости по показаниям влияния на здоровье. В материалах ВОЗ говориться о том, что несмотря на выявленную статистическим путем зависимость между жесткостью питьевой воды и сердечно-сосудистыми заболеваниями, этих данных недостаточно для вывода о причинном характере этой связи. Однозначно не доказано и то, что мягкая вода оказывает отрицательный эффект на баланс минеральных веществ в организме человека.

    Читайте также:  Анализ фильтров для очистки воды

    Растворенный кислород

    Поступление кислорода в водоем происходит путем растворения его при контакте с воздухом (абсорбции), а также в результате фотосинтеза водными растениями, т.е. в результате физико-химических и биохимических процессов. Содержание растворенного кислорода зависит от температуры, атмосферного давления, степени турбулизации воды*, минерализации воды и др. В поверхностных водах содержание растворенного кислорода может колебаться от 0 до 14 мг/л и подвержено значительным сезонным суточным колебаниям. В зимний и летний периоды количество кислорода в воде различается. Дефицит кислорода чаще наблюдается в водных объектах с высокими концентрациями загрязняющих органических веществ и в водоемах, содержащих большое количество биогенных и гумусовых веществ. ПДК растворенного в воде кислорода для рыбохозяйственных водоемов — 6 мг/л (для ценных пород рыбы) и 4 мг/л (для остальных пород рыбы).

    Скорость потребления кислорода увеличивается с повышением температуры, количества организмов и веществ, подвергающихся химическому и биохимическому окислению.

    Концентрация кислорода в воде определяет направление и скорость процессов химического и биохимического окисления органических и неорганических соединений. Понижение содержания кислорода до 2 мг/л вызывает массовую гибель рыбы в водоемах. Неблагоприятно сказывается на состоянии водных объектов и чрезмерное насыщение воды кислородом в результате процессов фотосинтеза, если это происходит в водоемах с застойной водой.

    Содержание кислорода в водоемах с различной степенью загрязненности:

    Таблица 10. Уровень загрязнения воды и класс качества

    Растворенный кислород
    Очень чистые, I лето, мг/л зима, мг/л % насыщения
    Чистые, II 9 14-13 95
    Умеренно загрязненные, III 8 12-11 80
    Загрязненные, IV 7-6 10-9 70
    Грязные, V 5-4 5-4 60
    Очень грязные, VI 3-2 5-1 30

    *Турбулизация приводит к нарушению поверхностного натяжения воды. При этом разрывается поверхностная пленка и облегчается выход газов из воды. Благодаря турбулентному движению происходит перемешивание частиц воды и непрерывное обновление поверхности соприкосновения воды с паром. Это ускоряет выход газа из воды и переход его в пар. Турбулизация движения воды создается потоком пара, пересекающим струи воды.

    Вопросы контроля качества воды внесли в понятие биогенных элементов широкий смысл: к ним относят соединения (точнее, компоненты воды), которые, во-первых, являются продуктами жизнедеятельности различных организмов; во-вторых, являются «строительным материалом» для живых организмов. В первую очередь к ним относятся соединения азота (нитраты, нитриты, органические и неорганические аммонийные соединения), фосфора (ортофосфаты, полифосфаты, органические эфиры фосфорной кислоты и др.).

    Соединение серы интересны в этой связи,в меньшей степени, так как сульфаты уже расматривали в аспекте компонента минерального состава воды, а сульфиды и гидросульфиты, если приутствуют в природных водах, то в очень малых концентрациях и могут быть обнаружены по запаху.

    Нитраты являются солями азотной кислоты. Повышенное содержание нитратов в воде может служить индикатором загрязнения водоема в результате распространения фекальных либо химических загрязнений (сельскохозяйственных, промышленных). Согласно СанПин 2.1.4.1074-01 для питьевой воды ПДК нитратов составляет 45 мг/л. Питьвая вода и продукты питания, содержание повышенное количество нитратов, могут вызывать заболевания, в первую очередь у младенцев (так называемая метгемоглобинемия), а также людей, страдающих сердечно-сосудистыми заболеваниями. Допустимое суточное потребление по рекомендациям ВОЗ — 5 мг/кг массы. В этом случае особенно опасны грунтовые воды и питаемые ими колодцы, поскольку в открытых водоемах нитраты частично потребляются водными растениями. Вместе с тем, растения не так чувствительны к увеличению содержания в воде азота, как фосфора.

    Фосфаты и общий фосфор

    Фосфор является необходимым элементом для жизни, однако его избыток приводит к ускорению эвтрофикации водоемов**. Большие количества форсфора могу попадать в водоемы в результате естесственных и антропогенных процессов — поверхностной эрозии почв, неправильного или избыточного применения минеральных удобрений и др.

    ПДК полифосфатов в воде водоемов составляет 3,5 мг/л в пересчете на фосфат-ион РО4 -3 , лимитирующий показатель вредности — органолептический.

    Биохимическая потребность в кислороде (БПК)

    БПК — показатель качества воды, характеризующий суммарное содержание в воде органических веществ. Природными источниками органических веществ являются разрушающиеся останки организмов растительного и животного происхождения, как живших в воде, так и попавших в водоем с листвы, по воздуху, с берегов и т.п. Кроме природных, существуют также техногенные источники органических веществ.

    В естественных условиях находящиеся в воде органические вещества разрушаются бактериями с образованием двуокиси углерода. При этом на окисление потребляется растворенный в воде кислород. Таким образом, в процессе биохимического окисления органических веществ в воде происходит уменьшение концентрации кислорода, и эта убыль косвенно является мерой содержания в воде органических веществ.

    Чаще определяют биохимическое потребление кислорода за пять суток — БПК5, и, как правило, этот показатель в поверхностных водоемах находится в пределах 0,5-4,0 мг/л.

    Таблица 11. Характеристика вод по БПК5

    Степень загрязнения (класс чистоты) БПК5, мг О2 /дм 3
    Очень чистая
    Чистая 1,1-1,9
    Умеренно загрязненная 2,0-2,9
    Загрязненная 3,0-3,9
    Грязная 4,0-10,0
    Очень грязная Более 10,0

    Особенностью биохимического окисления органических веществ в воде является сопутствующий ему процесс нитрификации (окисление азотосодержащих соединений нитрофицирующими бактериями), искажающий характер потребления кислорода.

    Норматив на БПК для водоемов хозяйственно-питьевого водопользования — 3 мг/л, для водоемов культурно-бытового водопользования — 6 мг/л.

    Катионы аммония являются продуктом микробиологического разложения белков животного и растительного происхождения. Образовавшийся таким образом аммоний вновь вовлекается в процесс синтеза белков. По этой причине аммоний и его соединения в небольших концентрациях обычно присутствуют в природных водоемах.

    Аммонийные соединения в больших количествах входят в состав минеральных и органических удобрений, кроме того, аммонийные соединения в значительных количествах присутсвуют в нечистотах (фекалиях). По этим причинам повышенное содержание аммонийного азота в поверхностных водах обячно является признаком хозяйственно-фекальных загрязнений.

    ПДК аммиака и ионов аммония в воде водоемов составляет 2,6 мг/л. Согласно СанПин 2.1.45.1074-01 ПДК аммония в питьевой воде составляет 2,0 мг/л. По данным ВОЗ, сожержание аммония не должно превышать 0,5 мг/л. Постоянный прием внутрь воды с повышенным содержанием аммония вызывает хронический ацидоз и изменения в тканях.

    Нитритами называются соли азотистой кислоты. Нитрит-анионы являются промежуточными продуктами биологического разложения азотсодержащих органических соединений. Благодаря способности превращаться в нитраты, нитриты, как правило, отсутствуют в поверхностных водах. ПДК нитритов (по NO 2- ) в воде водоемов составляет 3,3 мг/л, для питьевой воды – 2,0 мг/л.

    Фтор (фториды)

    Фтор в виде фторидов может содержаться в природных и грунтовых водах. Избыток фтора в организме вызывают разрушение зубной эмали, осаждает кальций, что приводит к нарушениям кальциевого и фосфорного обмена. По этим причинам определение фтора в питьевой воде, а также грунтовых водах (например, воде колодцев и артезианских скважин) и воде водоемов хозяйственно-питевого назначения, является очень важным. ПДК фтора в питьевой воде для разных климатических районов составляет от 0,7 до 1,5 мг/л.

    Железо общее

    Железо — один из самых распространенных элементов в природе. Его содержание в земной коре составляет около 4,7 % по массе, поэтому железо, с точки зрения его распространенности в природе, принято называть макроэлементом.

    В природной воде железо содержится в виде соединений, в которых железо может быть двух- или трехвалентным. В свою очередь, соединения железа могут образовывать истинные или коллоидные растворы. На воздухе двухвалентное железо быстро окисляется до трехвалентного, растворы которого имеют бурую окраску.

    Таким образом, поскольку соединения железа в воде могут существовать в различных формах, точные результаты могут быть получены только при определении суммарного железа во всех его формах, так называемого «общего железа», хотя иногда возникает необходимость определить железо в его индивидуальных формах.

    Двухвалентное железо (Fe 2+ ) почти всегда находится в воде в растворенном состоянии, хотя возможны случаи при определенных уровнях рН, когда гидроксид железа (II) выпадает в осадок. Реакция окисления (Fe 2+ ) ⇔ (Fe 3+ ) широко распространена в природе. Трехвалентное железо (Fe 3+ ) — гидроксид железа (III), Fe(OH)3 — нерастворим в воде. Органическое железо встречается в воде в разных формах и в составе разных комплексов. Органические соединения железа, как правило, растворимы или имеют коллоидную структуру и очень трудно поддаются удалению.

    Железобактерии встречаются практически везде. Их «визитной карточкой» можно считать ржавую слизь, покрывающие трубу водопровода.

    Некоторые виды бактерий (например, Gallionella ferruginea, вид стебельчатых, лентоподобных бактерий) «питаюся» растворенным железом в процессе своей жизнедеятельности. При этом происходит преобразование двухвалентного железа в трехвалентное, которое сохраняется в желеобразной оболочке вокруг бактерии, при отмирании железобактерии откладываются в вышеупомянутой слизи.

    Коллоидное железо — это нерастворимые, невидимые глазу частицы размером менее 1 микрона. Из-за малогог размера их очень сложно удалить фильтрованием с помощью гранулированных фильтрующих материалов. Крупные органические молекулы (такие как танины и лигнины) также попадают в эту категорию. Коллоидные частицы из-за своего малого размера и высокого поверхностного заряда, отталкивающего частицы друг от друга и препятсвующие их укрупнению, создают в воде суспензии, которые не выпадают в осадок, а находятся во взвешенном состояни. Коллоидное железо характерно для поверхностных вод (коллоиды Fe(OH)3 ).

    Некоторые органические молекулы способны связывать железо в сложные растворимые комплексы, называемые хелатами. Так, прекрасными хелатообразующими агентами являются фульво- и гуминовые кислоты, играющие важную роль в почвенном ионообмене.

    Основной формой железа в поверхностных водах являются комплексные соединения трехвалентных ионов железа с растворенными неорганическими и органическими соединениями, главным образом с солями гуминовых кислот — гуматами. В болотных водах, где много гумусовых веществ, всегда много железа. При рН = 8,0 основной формой железа в воде является гидроксид железа Fe(OH)3, находящаяся во взвешенной коллоидной форме. В подземных водах железо присутсвует в основном в растворенном двухвалентном виде. Трехвалентное железо при определенных условиях также может присутсвовать в воде в растворенном виде как в форме неорганических солей (например, сульфатов), так и в составе растворимых органических комплексов.

    Согласно СанПин 2.1.4.1074-01 содержание железа не должно превышать 0,3 мг/л (а по нормам Европейского сообщества даже 0,2 мг/л). При уровне установленного ВОЗ переносимого суточного потребления (ПСП) железа, равном 0,8 мг/кг массы тела человека, безопасное для здоровья суммарное содержание железа в воде составляет 2 мг/л. Избыток железа, в первую очередь, оказывает токсичное влияние на печень, селезенку, головной мозг; может усиливать протекание воспалительных процессов.

    Дефицит железа в организме приводит к анемии, патологиям сердечной мышцы и скелетных мышц, а также может быть причиной снижения иммунитета. Железо незаменимо в процессах кроветворения и внутриклеточного обмена.

    Тяжелые металлы

    Понятие «Тяжелые металлы» не относится к строго определенным. Разные авторы в составе группы тяжелых металлов указывают разные химические элементы. В экологических публикациях в эту группу включают около 40 элементов с атомной массой более 50 атомных единиц.

    Н.Ф.Реймерс относит к тяжелым металлы с плотностью более 8 г/см 3 , выделяя при этом подгруппу благородных металлов. Таким образом, к собственно «тяжелым» отнесены медь, никель, кадмий, кобальт, висмут, ртуть и свинец.

    Группа специалистов, работающая под патронажем Европейской экономической комиссии ООН и занимающаяся мониторингом выбросов в окружающую природную среду тяжелых металлов, включает в эту группу также цинк, мышьяк, селен, сурьму.

    Есть и другие классификации. Тяжелые металлы по характеру биологического воздействия можно подразделить на токсиканты и микроэлементы, имеющие принципиально различный характер влияния на живые организмы. Токсиканты оказывают отрицательное воздействие на организмы при любой концентрации, в то время как микроэлементы имеют область недостаточности, вызывющей отрицательный эффект, и область необходимых для жизни концентраций, при превышении которых снова возникает отрицательный эффект. Типичными токсикантами являются: кадмий, свинец, ртуть; микроэлементами — марганец, медь, кобальт.

    Медь. Является микроэлементом, содержится в организме человека, главным образом,в виде комплексных органических соединений и играет важную роль в процессах кроветворения. Отравления соединениями меди могут приводить к расстройствам нервной системы, нарушению функций печени, почек и д.т. ПДК меди в воде водоемов хозяйственно-питьевого или культурно-бытового назначения составляет 1,0 мг/л, лимитирующий показатель вредности — органолептический.

    Цинк. Является микроэлементом и входит в состав некоторых ферментов. Отрицательное воздействие соединений цинка может выражаться в ослаблении организма, повышенной заболеваемости, астмоподобных явлениях и др. ПДК цинка в воде водоемов составляет 1,0 мг/л, лимитирующий показатель вредности — общесанитарный.

    Кадмий. Соединения кадмия очень ядовиты. Действуют на многие системы организма — органы дыхания и желудочно-кишечный тракт, центральную и периферическую нервные системы. ПДК кадмия в воде водоемов составляет 0,001 мг/л, лимитирующий показатель вредности — санитарно-токсикологический.

    Ртуть. Относится к ультрамикроэлементам и постоянно присутствует в организме, поступая с пищей. Соединения ртути вызывают глубокие нарушения функцийцентральной нервной системы (ЦНС), сердца, сосудов, нарушение иммунной системы орагнизма и другие. ПДК ртути в воде водоемов составляет 0,0005 мг/л, лимитирующий показатель вредности — санитарно-токсикологический.

    Свинец. Соединения свинца — яды, действующие на все живое, но вызывающие изменения особенно в нервной системе, крови и сосудов. Органические соединения свинца (тетраметилсвинец, тетраэтилсвинец) — сильные нервные язы, являются активными ингибиторами обменных процессов. Для всех соединений свинца характерно кумулятивное действие. ПДК свинца в воде водоемов составляет 0,03 мг/л, лимитирующий показатель вредности — санитарно-токсикологический.

    Спектр органических примесей очень широк:

    Группа растворенных примесей:

    • гуминовые кислоты и их слои;
    • гуматы натрия, калия аммония;
    • некоторые примеси промышленного происхождения;
    • часть аминокислот и белков;

    Группа нерастворенных примесей:

    • фульвокислоты (соли) и гуминовые кислоты и их соли;
    • гуматы кальция, магния и железа;
    • жиры различного происхождения;
    • частицы различного происхождения, в том числе микроорганизмы.

    Содержание органических веществ в воде оченивается по методикам определения окисляемости воды, содержания органического углерода, биохимической потребности в кислороде, а также поглощения в ультрафиолетовой области.

    Величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых одним из самых сильных окислителей при определенных условиях, называется окисляемостью. Существует несколько видов окисляемости воды: перманганатная, бихроматная, иодатная, цериевая (методики определения двух последних применяются редко).

    Окислители могут действовать и на неорганические примеси, например, на ионы Fe 2+ , S 2- , NO -2 , но соотношение между этими ионами и органическими примесями в поверхностных водах существенно сдвинуто в сторону органических примесей, т.е. «органики» в решающей степени больше.

    В подземных водах (артезианских) это соотношение — обратное, т.е.органических примесей гораздо меньше, чем указанных ионов. Практически их нет совсем. К тому же неорганческие примеси могут определяться непосредственно индивидуально.

    Для природных малозагрезненных вод рекомендовано определять перманганатную окисляемость (перманганатный индекс); в более загрязненных водах определяют, как правило, бихроматную окисляемость (ХПК).

    Окисляемость перманганатная определяется мгО/л, если учитывается масса ионов кислорода в составе перманганата калия, пошедшего на окисление «органики», или мг KMnO4/л, если оценивается количество перманганата калия, пошедшего на окисление «органики».

    Таблица 12. Характеристика вод по перманганатной окисляемости

    Величина окисляемости Единица измерения, мг О/л
    Очень малая до 4
    Малая более 4 до 8
    Средняя более 8 до 12
    Высокая более 12 до 20
    Очень высокая более 20

    Интегральные показатели качества воды — индексы качества

    Каждый из показателей качества воды в отдельности хотя и несет информацию о качестве воды, все же не может служить мерой качества воды, т.к. не позволяет судить о значениях других показателей. Вместе с тем, результатом оценки качества воды должны быть некоторые интегральные показатели, которые охватывали бы основные показатели качества воды (либо те из них, по которым зафиксированно неблагополучие).

    Гидрохимический индекс загрязнения воды

    В простейшем случае, при наличии результатов по нескольким оцениваемым показателям, может быть рассчитана сумма приведенных концентраций компонентов, т.е. отношение их фактических концентраций к ПДК.

    Сумма приведенных концентраций может рассчитываться только для химических веществ с одинаковыми лимитирующим показателем вредности — огранолептическим и санитарно-токсикологическим.

    При наличии результатов анализов по достаточному количеству показателей можно определять классы качества воды, которые являются интегральной характеристикой загрязненности поверхностных вод. Классы качества определяются по индексу загрязнения воды (ИЗВ).

    Значение ИЗВ рассчитываются для каждого пункта отбора проб (створа). Далее по таблице, в зависимости от значения ИЗВ, определяют класс качества воды.

    Таблица 13. Характеристики интегральной оценки качесвта воды

    ИЗВ Класс качества воды Оценка качества (характеристика) воды
    Менее и равно 0,2 I Очень чистые
    Более 0,2-1 II Чистые
    Более 1-2 III Умеренно грязные
    Более 2-4 IV Загрязненные
    Более 4-6 V Грязные
    Более 6-10 VI Очень грязные
    Свяше 10 VII Чрезвычайно грязные

    В число 7 основных, так называемых «лимитируемых» показателей, при расчете ИЗВ в обязательном порядке входят концентрация растворенного кислорода и значение БПК5, а также значения еще четырех показателей, являющихся для данного водоема (воды) наиболее не благополучными или имеющих наибольшие приведенные концентрации.

    Для рассчета ИЗВ показатели выбираются независимо от лимитирующего признака вредности, однако при равенстве приведенных концентраций предпочтение отдается веществам, имеющим санитарно-токсикологический признак вредности (как правило, такие вещества обладают относительно большей вредностью).

    Задачи интегральной оценки качества воды практически совпадают с задачами гидрохимического мониторинга, т.к. для окончательного вывода о классе качества воды необъодимы результаты анализов по целому ряду показателей в течение продолжительного периода.

    Микробиологические показатели

    Уровень загрязненности и класс качества водных объктов иногда устанавливают в зависимости от микробиологических показателей.

    Таблица 14. Оценка качесвта вод по микробиологическим показателям

    Класс чистоты Характеристика класса чистоты воды Число сапрофитных бактерий, 1000 клеток/мл Отношение общего числа бактерий к числу сапрофитных бактерий
    I Очень чистая Менее 0,5 Менее 0,5 До 1000
    II Очень чистая От 0,5 до 1,0 От 0,5 до 5,0 Более 1000
    III Умеренно загрязненная Более 1,0 до 3,1 Более 5,0 до 10,0 От 1000 до 100
    IV Умеренно загрязненная Более 3,1 до 5,0 Более 10,0 до 50,0 Менее 100
    V Грязная Более 5,0 до 10,0 Более 50,0 до 1000 Менее 100
    VI Очень грязная Более 10,0 Более 1000 Менее 100

    ** Эвтрофикация (др.-греч. εὐτροφία — хорошее питание) — насыщение водоёмов биогенными элементами, сопровождающееся ростом биологической продуктивности водных бассейнов.

    источник