Меню Рубрики

Что такое апав в анализе воды

Ответов в этой теме: 16
Страница: 1 2
«« назад || далее »»

[ Ответ на тему ]

Автор Тема: Норматив на АПАВ с сточной воде
Алвлад
Пользователь
Ранг: 596

19.10.2017 // 16:32:09 Здравствуйте, коллеги! Не могу найти норматив на АПАВ в сточной воде. Проверяющие ссылаются на приказ Минсельхоза 552, но там его нет. Подскажите, к каком документе он все же есть. Если не АПАВ, то может быть НПАВ или КПАВ или даже СПАВ.
Реклама на ANCHEM.RU
Администрация
Ранг: 246
Размещение рекламы
Юлия Хо
Пользователь
Ранг: 714

19.10.2017 // 17:04:30 Редактировано 2 раз(а)

Моя любимая тема) Нет их в 552. Я писала во ФЦАО, в Минприроды, в РПН, в ЦУРЭН. В итоге, ответили более- менее на мой взгляд адекватно только те, кто к 552 не имел отношения.
СПАВ не установлены ПДК. В журнале «Экология производства» №3 март 2017 г. на стр.19-20 дано разъяснение, что нормировать надо не группы ПАВ, а индивидуально каждое вещество из конкретных ПАВ. Какой по количеству перечень показателей должен охватить контролем обладатель хозбытовых сточных вод и контролирующие органы. Экономически не выгоден такой контроль ни для водопользователей, ни для лабораторий.

Проверяющие ссылаются на что именно? Попросите их указать позиции в 552. А вдруг и я , наконец, увижу.

Алвлад
Пользователь
Ранг: 596

19.10.2017 // 17:32:42 Вот как раз на разбор полетов едем. Надеюсь ответят хоть что-то Вообще ситуация с контролем неоднозначна. Воду анализировало ЦЛАТИ, у нас вопросы и к оформлению протокола и к применяемым методикам (в части их актуальности) и к указанным ими нормативами, хотя у нас есть согласованные НДС. В прошлый раз судились, так так там штрафы десятки миллионов.
По железу — мы пробу фильтруем, т.к. есть письмо МПР, они нет, в результате разница в три раза и превышение норматива, т.к. они «начальник, мы-дурак».
Причем на наш риторический вопрос, почему нас проверяют, когда мы в стадии реконструкции и тратим деньги на экологию неплохие, ответили, что тех кто не тратит и не имеет очистных и проверять нет смысла, ЛОГИКА.
Юлия Хо
Пользователь
Ранг: 714

19.10.2017 // 17:36:48 Если НДС согласовали — как вообще вопросы могут быть у них??
Алвлад
Пользователь
Ранг: 596

19.10.2017 // 17:37:45 Надеюсь, что поймут свою ошибку.
ТВК
Пользователь
Ранг: 475

19.10.2017 // 18:13:19 Редактировано 3 раз(а)

Алвлад пишет:
Не могу найти норматив на АПАВ в сточной воде. Проверяющие ссылаются на приказ Минсельхоза 552, но там его нет. Подскажите, к каком документе он все же есть. Если не АПАВ, то может быть НПАВ или КПАВ или даже СПАВ.

А почему не подходит Приложение N 5 к Правилам холодного водоснабжения и водоотведения (Постановление Правительства РФ от 29.07.2013 № 644)
ПЕРЕЧЕНЬ МАКСИМАЛЬНЫХ ДОПУСТИМЫХ ЗНАЧЕНИЙ НОРМАТИВНЫХ ПОКАЗАТЕЛЕЙ ОБЩИХ СВОЙСТВ СТОЧНЫХ ВОД И КОНЦЕНТРАЦИЙ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В СТОЧНЫХ ВОДАХ, УСТАНОВЛЕННЫХ В ЦЕЛЯХ
ПРЕДОТВРАЩЕНИЯ НЕГАТИВНОГО ВОЗДЕЙСТВИЯ НА РАБОТУ ЦЕНТРАЛИЗОВАННЫХ СИСТЕМ ВОДООТВЕДЕНИЯ

СПАВ анионные мг/дм3 10
СПАВ неионогенные мг/дм3 10

Наверное уже опоздала я.

Реклама на ANCHEM.RU
Администрация
Ранг: 246
Размещение рекламы
ЦКП Оптико-спектральные исследования
Создан на базе Института спектроскопии РАН. Среди оснащения: Фурье-спектрометры, Фемтонанооптический лазерный спектрометрический комплекс, хромато-масс-спектрометр.
Алвлад
Пользователь
Ранг: 596

19.10.2017 // 18:26:11 Спасибо ,но эти нормативы только на поступающую сточную воду. нас проверяет МПР. их интересует только качество на сбросе.
ТВК
Пользователь
Ранг: 475

19.10.2017 // 19:24:44

А разве это не 20 Приказ Рыбводхоза?
Правда я не помню, есть там ПАВы, или только индивидуальные вещества.

Но для проверяемого эти нормативы — не сахар. Вы это знаете лучше меня.

А чем дело кончилось? На этом этапе.

Алвлад
Пользователь
Ранг: 596

19.10.2017 // 20:30:49

ТВК пишет:
А разве это не 20 Приказ Рыбводхоза?

Этот приказ отменен с апреля 2017, но в нем тоже не было. Сейчас нормативы рыбохозяйственные в приказе Минсельхоза № 552.
Чем все закончится у нас потом отпишусь.

ТВК
Пользователь
Ранг: 475

20.10.2017 // 8:44:41

Этот приказ отменен с апреля 2017. Сейчас нормативы рыбохозяйственные в приказе Минсельхоза № 552.

О, боже! Я надеялась, что только нормативка на методики меняется. Убрали НД на нормативы из ОА, вот и не в курсе последних событий.

Юлия Хо
Пользователь
Ранг: 714

20.10.2017 // 8:59:29 Методики поэтому и меняются. Из-за постоянных изменений в законодательстве.

Ответов в этой теме: 16
Страница: 1 2
«« назад || далее »»

источник

Среди многообразных загрязнений сточной воды особое место занимают поверхностно-активные вещества (ПАВ). Поверхностно-активные вещества (ПАВ) — вещества, способные накапливаться на поверхности соприкосновения двух фаз, понижая их поверхностное натяжение. Это органические соединения, молекулы которых состоят из двух частей: полярной (гидрофильной) и неполярной (гидрофобной).

Указывается, что различные ПАВ используются в весьма значительных масштабах, и их присутствие в сточных водах существенно влияет на токсичность последних. Известно, что многие ПАВ, содержащиеся даже в незначительных количествах в сточных водах, вызывают образование устойчивой пены в аэротенках, значительно уменьшает скорость оседания взвешенных твердых частиц в отстойниках. Большинство ПАВ затрудняют процессы биологического окисления органических загрязнений, тем самым, препятствуя биологической очистке сточных вод.
В зависимости от типа диссоциации различают анионные, катионные, неионогенные и амфолитные ПАВ.
В водном растворе молекула анионактивного ПАВ (АПАВ) ионизируется, высвобождая катионы и анионный мономер. Анионактивные ПАВ содержат в молекуле одну или несколько полярных групп и диссоциируют в водном растворе с образованием длинноцепочечных анионов, определяющих их поверхностную активность. Оптимальными поверхностно-активными свойствами обладают первичный додецилсульфат и прямоцепочечный додецилбензолсульфонат. Эти вещества термически стабильны, малотоксичны, не раздражают кожу человека и удовлетворительно подвергаются биологическому распаду в водоемах, за исключением алкиларилсульфонатов с разветвленной алкильной цепью.
Токсическое действие АПАВ определяется главным образом неполярной частью молекулы, при этом оно более выражено при наличии в последней ароматического кольца. В первую очередь оно зависит от способности ПАВ нарушать проницаемость биологических мембран. Особенно легко повреждаются мембраны эритроцитов, миелиновых оболочек нервов и эпителия кишечника. В связи с этим ПАВ обладают политропным действием, вызывают сдвиги в центрально нервной системе, системе крови, желудочно-кишечном тракте, выделительной системе — поражают печень и почки.
Способность АПАВ нарушать проницаемость кишечных мембран способствует усилению всасывания пищи, но также и некоторых токсических веществ, например, ДДТ, ФОС. Те же свойства АПАВ могут способствовать выведению токсических веществ из организма.
Анионные ПАВ, содержащиеся в сточных водах в больших концентрациях, не извлекаются на сооружениях биологической очистки полностью, тормозят работу сооружений (образуют пену, снижают эффект отстаивания и биологической очистки).
При санитарно-химическом контроле за содержанием АПАВ, если в водоем поступает одно известное вещество, то расчет ведут на него и учитывают величину соответствующего норматива. Если в водоем сбрасывается несколько АПАВ или состав их неизвестен, расчет ведут по додецилсульфату натрия — веществу, имеющему наименьший норматив 0,1 мг/л
Предельно допустимые концентрации в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования для большинства АПАВ 0,5 мг/л (Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования. ГН 2.1.5.689-98). Предельно допустимые концентрации АПАВ в питьевой воде 0,5 мг/л (Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. СанПиН 2.1.4.1074-01).
В ФГБУ «Центральная научно-производственная ветеринарная радиологическая лаборатория» проводится исследование воды на содержание АПАВ флуориометрическим методом на приборе Флюорат 02-3М.

источник

ПАВ — что это, зачем, и стоит ли их бояться?

ПАВ (Поверхностно Активные Вещества) — это, как правило, химические вещества, которые содержатся в любом чистящем средстве, даже в обычном мыле. Как раз благодаря ПАВам чистящее средство чистит.

Проблема в том, что грязь, особенно жир, очень сложно смыть водой. Попробуйте помыть жирные руки водой. Вода будет стекать, не смывая жир. Молекулы воды не липнут к молекулам жира и не забирают их с собой. Стало быть, задача в том, чтобы прикрепить молекулы жира к молекулам воды. Именно это и делают ПАВы. Молекула ПАВ представляет собой сферу, один полюс которой — липофильный (соединяется с жирами), а другой — гидрофильный (вступает в связь с молекулами воды). То есть, одним концом частица ПАВ прикрепляется к частице жира, а другим концом — к частицам воды.

Как ПАВ влияют на наше здоровье?

Большая часть влаги человеческого тела имеет также жировую основу. Т.е. например защитный слой кожи (липиды — жиры, которые защищают кожу от попадания в организм различных бактерий) является жировой пленкой и естественно разрушается ПАВами. А зараза нападает на то место, которое наименее защищено, что конечно же вредно для здоровья человека. Специалисты утверждают, что после применения моющего средства защитный слой кожи должен успеть восстановиться в течение 4 часов до, как минимум 60%. Это установленные ГОСТом нормы гигиены. Однако далеко не все моющие средства обеспечивают такую восстановимость кожи. А обезжиренная и обезвоженная кожа быстрей стареет.

Кроме того, небиоразлагаемые ПАВы могут накапливаться в мозге, печени, сердце, жировых отложениях (особенно много) и продолжать разрушение организма длительное время. А поскольку без моющих средств практически никто не обходится, то ПАВы постоянно пополняются в нашем организме обеспечивая непрерывный вред телу. ПАВы также влияют на репродуктивную функцию у мужчин, аналогично радиоактивному излучению.

Проблема усугубляется тем, что наши очистные сооружения плохо справляются с удалением ПАВов. Поэтому вредные ПАВы возвращаются через водопровод к нам почти в той же концентрации, в которой мы их выливаем в сток. Исключение составляют только средства с биоразлагаемыми ПАВами.

— Анионные ПАВ. Основным достоинством является относительно невысокая стоимость, эффективность и хорошая растворимость. Но они наиболее агрессивны по отношению к организму человека.
— Катионные ПАВ. Обладают бактерицидным свойством.
— Неионогенные ПАВ. Основным достоинством является благоприятное действие на ткань и главное — 100% биоразлагаемость.
— Амфолитные ПАВ. В зависимости от среды (кислотность/щелочность) проявляют себя либо как катионные, либо как анионные ПАВы.

Как ПАВы влияют на окружающую среду?

Один из основных негативных эффектов ПАВ в окружающей среде — понижение поверхностного натяжения. Например в океане изменение поверхностного натяжения приводит к снижению показателя удерживания CO2 и кислорода в массе воды. А это негативно влияет на водную флору и фауну.

Кроме того, почти все ПАВ, используемые в промышленности и домашнем хозяйстве, попадая на частички земли, песка, глины, при нормальных условиях могут высвобождать ионы тяжёлых металлов, удерживаемые этими частичками, и тем самым повышать риск попадания данных веществ в организм человека.

Что такое биоразлагаемое ПАВ?

Одним из основных критериев экологической безопасности товаров бытовой химии является биоразлагаемость ПАВ, которые входят в их состав. ПАВ делятся на те, которые быстро разрушаются в окружающей среде и те, которые не разрушаются и могут накапливаться в организмах в недопустимых концентрациях.

Причем различают первичную биоразлагаемость, которая подразумевает структурные изменения ПАВ микроорганизмами, приводящие к потере поверхностно-активных свойств, и полную биоразлагаемость — конечную биодеградацию ПАВ до диоксида углерода и воды. Только такие, полностью биоразлагаемые, ПАВ являются безопасными.

100% биоразлагаемостью обладают только некоторые неионогенные ПАВ, в первую очередь получаемые на основе биологического сырья, а не нефтепродуктов.

В 1995 году компания ECOVER совместно с французской фирмой Agro-Industrie Recherches et Développements (ARD) принимали участие в европейском исследовательском проекте, целью которого было научиться синтезировать ПАВ из сельскохозяйственных отходов, например, соломы и пшеничных отрубей. Проект был успешно завершен еще в 1999 году, а производство в промышленных масштабах началось в 2008 году.

Сейчас био-ПАВ лежат в основе всей линейки средств для мытья посуды марки ECOVER. Результаты тестов подтверждают, что подобные ПАВ обладают сильным чистящим действием, полностью биоразлагаемы и характеризуются низкой токсичностью. Это похоже на сказку, в которой солома превращалась в золото, но здесь речь идет о реальной истории.

источник

Методы определения содержания поверхностно-активных веществ

Drinking water. Methods for determination of surfactants content

МКС 13.060.50
ТН ВЭД 220100000
220110000

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

1 ПОДГОТОВЛЕН Обществом с ограниченной ответственностью «Протектор» совместно с группой компаний «Люмэкс», Закрытым акционерным обществом «Центр исследования и контроля воды»

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Техническим комитетом по стандартизации ТК 343 «Качество воды»)

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 15 ноября 2012 г. N 42)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Госстандарт Республики Беларусь

Госстандарт Республики Казахстан

4 Настоящий стандарт соответствует международному стандарту ISO 7875-1:1996* Water quality — Determination of surfactants — Part 1: Determination of anionic surfactants by measurement of the methylene blue index (MBAS) (Качество воды. Определение поверхностно-активных веществ. Часть 1. Определение анионных поверхностно-активных веществ измерением индекса метиленового синего).
________________
* Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить, перейдя по ссылке на сайт http://shop.cntd.ru. — Примечание изготовителя базы данных.

Степень соответствия — неэквивалентная (NEQ).

Настоящий стандарт подготовлен на основе применения ГОСТ Р 51211-98 «Вода питьевая. Методы определения содержания поверхностно-активных веществ.

5 Приказом Федерального агентства по техническому регулированию и метрологии от 29 ноября 2012 г. N 1615-ст межгосударственный стандарт ГОСТ 31857-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2014 г.

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

ВНЕСЕНА поправка, опубликованная в ИУС N 7, 2015 год

Поправка внесена изготовителем базы данных

Настоящий стандарт распространяется на питьевую воду, в том числе расфасованную в емкости, природные (поверхностные и подземные) воды, в том числе источники питьевого водоснабжения (далее — питьевая вода) и устанавливает следующие методы определения массовой концентрации поверхностно-активных веществ:

— флуориметрический метод определения содержания анионных поверхностно-активных веществ (АПАВ) в питьевой воде в диапазоне массовой концентрации 0,025-2,0 мг/дм без разбавления пробы (метод 1). Метод может применяться для определения более высоких содержаний АПАВ после разбавления анализируемой пробы воды, но не более, чем в 100 раз;

— флуориметрический метод определения содержания катионных поверхностно-активных веществ (КПАВ) в питьевой воде в диапазоне массовой концентрации 0,01-2,0 мг/дм без разбавления пробы (метод 2);

— спектрофотометрический метод определения содержания анионных поверхностно-активных веществ в питьевой воде в диапазоне массовой концентрации 0,015-0,25 мг/дм (метод 3). Метод может применяться для определения более высоких содержаний АПАВ после разбавления анализируемой пробы воды, но не более чем в 100 раз.

Метод 3 является арбитражным при определении АПАВ.

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 1770-74 (ИСО 1042-83, ИСО 4788-80) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 2603-79 Реактивы. Ацетон. Технические условия

ГОСТ 3118-77 Реактивы. Кислота соляная. Технические условия

ГОСТ 4198-75 Реактивы. Калий фосфорнокислый однозамещенный. Технические условия

ГОСТ 4199-76 Реактивы. Натрий тетраборнокислый 10-водный. Технические условия

ГОСТ 4204-77 Реактивы. Кислота серная. Технические условия

ГОСТ 4328-77 Реактивы. Натрия гидроокись. Технические условия

ГОСТ ИСО 5725-6-2003 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике*
__________________
* В Российской Федерации действует ГОСТ Р ИСО 5725-6-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ ИСО/МЭК 17025-2009 Общие требования к компетентности испытательных и калибровочных лабораторий

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 28311-89 Дозаторы медицинские лабораторные. Общие технические требования и методы испытаний

ГОСТ 29227-91 (ИСО 835-1-81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ 31861-2012 Вода. Общие требования к отбору проб

ГОСТ 31862-2012 Вода питьевая. Отбор проб

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3.1 Сущность метода

Метод основан на экстракции из пробы воды хлороформом ионных пар анионных поверхностно-активных веществ (АПАВ) с красителем акридиновый желтый и определении концентрации АПАВ по интенсивности флуоресценции полученного экстракта.

3.3 Отбор проб

Пробы питьевой воды отбирают по ГОСТ 31861 и ГОСТ 31862 в емкости из стекла.

Объем пробы воды для определения массовой концентрации АПАВ должен быть не менее 100 см .

Срок хранения пробы от момента отбора пробы до проведения измерений не должен превышать одних суток при комнатной температуре.

Фильтровать пробу не допускается.

Для воды, расфасованной в емкости, сроки и температурные условия хранения должны соответствовать требованиям, указанным в нормативном документе* на готовую продукцию.
_______________
* В Российской Федерации — требованиям ГОСТ Р 52109-2003 «Вода питьевая, расфасованная в емкости. Общие технические условия», который переоформляется в межгосударственный стандарт.

3.4 Порядок подготовки к проведению измерений

3.4.1 Стеклянную посуду моют без применения составов, содержащих поверхностно-активные вещества.

3.4.2 Приготовление раствора красителя массовой концентрации 0,1 г/дм

В мерную колбу вместимостью 100 см вносят навеску 10,0 мг акридинового желтого, доводят объем до метки дистиллированной водой и тщательно перемешивают. Раствор при наличии осадка следует отфильтровать через фильтр «красная лента». Раствор пригоден для использования в течение 1 мес при хранении в стеклянной емкости в темноте при комнатной температуре.

3.4.3 Приготовление раствора соляной кислоты с объемной долей 1%

В стакан из термостойкого стекла вносят 250 см дистиллированной воды и медленно, при перемешивании, добавляют 5 см соляной кислоты и затем разбавляют дистиллированной водой до 500 см . Срок хранения — не более 6 мес.

3.4.4 Приготовление раствора гидроокиси натрия с массовой долей 5%

В стакан вносят 250 см дистиллированной воды и медленно добавляют 25 г гидроокиси натрия при тщательном перемешивании. После полного растворения гидроокиси натрия добавляют еще 225 см дистиллированной воды. Раствор пригоден для использования в течение 3 мес при хранении в емкости из полимерного материала при комнатной температуре.

3.4.5 Приготовление растворов АПАВ

3.4.5.1 Раствор АПАВ массовой концентрации 100 мг/дм готовят из государственного стандартного образца состава АПАВ путем растворения содержимого ампулы (0,1 г) в 1000 см дистиллированной воды. Раствор пригоден для использования в течение 1 мес при хранении при комнатной температуре.

3.4.5.2 Градуировочный раствор АПАВ массовой концентрации 1,0 мг/дм готовят разбавлением 1,0 см раствора АПАВ концентрации 100 мг/дм в мерной колбе вместимостью 100 см , доводя объем до метки дистиллированной водой.

Раствор используют в день приготовления.

3.4.6 Подготовка прибора к измерениям и его градуировка

3.4.6.1 Подготовку прибора к работе проводят в соответствии с руководством (инструкцией) по эксплуатации прибора.

Возбуждение флуоресценции проводится в интервале длин волн 430-470 нм, регистрация флуоресценции — в интервале 500-550 нм. При наличии технической возможности длины волн возбуждения и регистрации флуоресценции выбирают в указанном диапазоне таким образом, чтобы обеспечить достижение наибольшего значения градуировочного коэффициента при градуировке прибора (см. 3.4.6.6).

3.4.6.2 Градуировку прибора осуществляют измерением интенсивности флуоресценции экстрактов градуировочного раствора и холостой пробы.

3.4.6.3 Для приготовления экстракта градуировочного раствора в делительную воронку вместимостью 50 см помещают 5,0 см раствора АПАВ массовой концентрации 1,0 мг/дм по 3.4.5.2, добавляют 4,0 см дистиллированной воды, 1,0 см раствора соляной кислоты по 3.4.3, 1,0 см раствора красителя по 3.4.2, 5,0 см хлороформа и проводят экстракцию в течение 1 мин путем интенсивного встряхивания делительной воронки. После разделения фаз 2,5-3,0 см экстракта (нижнего слоя) помещают в кювету прибора и измеряют интенсивность флуоресценции градуировочного раствора или используют приготовленный экстракт для градуировки по 3.4.6.5.

Следует избегать попадания водной фазы в экстракт.

3.4.6.4 Экстракт холостой пробы готовят, используя вместо стандартного раствора АПАВ дистиллированную воду. В делительную воронку помещают 9,0 см дистиллированной воды, 1,0 см раствора соляной кислоты по 3.4.3, 1,0 см раствора красителя и 5,0 см хлороформа. После разделения фаз 2,5-3,0 см экстракта (нижнего слоя) помещают в кювету прибора и измеряют интенсивность флуоресценции или используют приготовленный экстракт для градуировки по 3.4.6.5.

Следует избегать попадания водной фазы в экстракт.

3.4.6.5 Если прибор снабжен компьютерной (микропроцессорной) системой сбора и обработки информации, то градуировочную характеристику устанавливают в соответствии с руководством (инструкцией) по эксплуатации прибора, используя экстракт градуировочного раствора по 3.4.6.3 и экстракт холостой пробы по 3.4.6.4.

где — массовая концентрация АПАВ в градуировочном растворе ( 1 мг/дм );

— интенсивность флуоресценции экстракта градуировочного раствора по 3.4.6.3, отн.ед.;

— интенсивность флуоресценции экстракта холостой пробы по 3.4.6.4, отн.ед.

3.5 Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочной характеристики проводят с каждой серией измерений (испытаний) с использованием контрольного образца. Контрольным образцом является свежеприготовленный раствор АПАВ массовой концентрации от 0,025 до 2 мг/дм , полученный путем разбавления государственного стандартного образца или раствора АПАВ по 3.4.5.1. Подготовку контрольного образца к измерениям проводят по 3.4.6.3. Измеряют интенсивность флуоресценции экстракта контрольного образца по 3.4.6.3 и, используя установленную по 3.4.6.5 или 3.4.6.6 градуировочную характеристику, по измеренному значению интенсивности флуоресценции находят массовую концентрацию АПАВ в контрольном образце согласно 3.7.1 или 3.7.2. Градуировочную характеристику признают стабильной, если выполняется условие

где — измеренное значение массовой концентрации АПАВ в контрольном образце, мг/дм ;

— действительное значение массовой концентрации АПАВ в контрольном образце, мг/дм ;

— границы интервала, в которых погрешность измерений АПАВ находятся с доверительной вероятностью 0,95, по таблице 1.

Если условие стабильности не выполняется, то проводят повторное измерение этого контрольного образца, заново подготовив его к измерениям по 3.4.6.3. Результаты повторных измерений считают окончательными.

При этом если условие стабильности градуировочной характеристики не выполняется, то градуировку прибора проводят заново. Градуировку также проводят после ремонта или долгого простоя прибора и смене партий реактивов.

3.6 Порядок проведения измерений

3.6.1 Используя универсальную индикаторную бумагу, определяют рН пробы воды, отобранной по 3.3. рН пробы должен быть в пределах 3-8 ед. Если рН отличается от указанного значения, его корректируют добавлением раствора гидроокиси натрия по 3.4.4 или раствора соляной кислоты по 3.4.3. Помещают 5,0 см пробы воды и 4,0 см дистиллированной воды в делительную воронку вместимостью 50 см . Затем в делительную воронку с пробой добавляют 1,0 см раствора соляной кислоты по 3.4.3, 1,0 см раствора красителя по 3.4.2, 5,0 см хлороформа и проводят экстракцию в течение 1 мин путем интенсивного встряхивания делительной воронки. После разделения фаз отбирают в кювету 2,5-3,0 см экстракта (нижнего слоя) и измеряют интенсивность флуоресценции или массовую концентрацию АПАВ при помощи прибора.

3.6.2 При ожидаемом содержании АПАВ менее 0,1 мг/дм рекомендуется увеличение объема пробы до 20 см . В этом случае пробу помещают в делительную воронку вместимостью 50 см , устанавливают значение рН в пределах 3-8 ед. по 3.6.1, добавляют 2,0 см раствора соляной кислоты по 3.4.3, после чего пробу обрабатывают по 3.6.1, начиная с добавления 1,0 см раствора красителя.

3.6.3 Если измеренная массовая концентрация АПАВ превышает 2 мг/дм , то пробу воды разбавляют дистиллированной водой таким образом, чтобы массовая концентрация АПАВ в экстракте разбавленной пробы составляла от 0,1 до 2,0 мг/дм , и повторяют определение по 3.6.1 с разбавленной пробой.

3.7 Обработка результатов измерений

где — градуировочный коэффициент, рассчитанный по 3.4.6.6;

— интенсивность флуоресценции экстракта пробы, измеренная прибором по 3.6.1, отн.ед.;

— интенсивность флуоресценции экстракта холостой пробы, измеренная прибором по 3.4.6.4, отн.ед.

где — массовая концентрация АПАВ в экстракте, измеренная по 3.7.1 или рассчитанная по 3.7.2, мг/дм ;

— коэффициент разбавления пробы по 3.6.3, который рассчитывают по формуле

где — объем разбавленной пробы по 3.6.3, см ;

— объем аликвоты пробы анализируемой воды, взятый для разбавления по 3.6.3, см .

Если пробу не разбавляют, то 1.

— коэффициент концентрирования пробы при экстракции. Если объем пробы 5 см , то 1; при объеме пробы 20 см 0,25 (см. 3.6.2).

3.7.4 За результат определения массовой концентрации АПАВ , мг/дм , принимают среднеарифметическое значение результатов параллельных определений и в двух аликвотах пробы воды. Приемлемость результатов определения оценивают исходя из условия

где — значение предела повторяемости (см. таблицу 1). Для разбавленной по 3.6.3 пробы значение выбирают в соответствии со значением массовой концентрации АПАВ в разбавленной пробе.

При невыполнении условия (6) используют методы проверки приемлемости результатов параллельных определений и установления окончательного результата измерений согласно ГОСТ ИСО 5725-6 (пункт 5.2) и рекомндации [1].

Примечание — При получении результатов измерений в двух лабораториях и результат измерений считают удовлетворительным при выполнении условия

где — значение предела воспроизводимости (см. таблицу 1). Для разбавленной по 3.6.3 пробы значение выбирают в соответствии со значением массовой концентрации АПАВ в разбавленной пробе.

При невыполнении условия (7) для проверки прецизионности в условиях воспроизводимости каждая лаборатория должна выполнить процедуры согласно [1, подпункты 5.2.2; 5.3.2.2] и [2].

источник

Начиная с 50-60-х годов прошлого века в технически развитых странах стали в массовом порядке производиться новые химические соединения — синтетические поверхностно-активные вещества (СПАВ). В настоящее время различные по составу они широко применяются в быту и промышленном производстве.

Под этот термин попадают различные по структуре и классам вещества, общее свойство которых — способность адсорбироваться на поверхности разделов фаз и уменьшать поверхностное натяжение.

Области промышленного использования — приготовление смазочных жидкостей, антикоррозийных составов, нанесение электролитических покрытий, в качестве компонентов лакокрасочных составов, в нефтедобыче, в горнорудной флотации, для получения противопожарной пены, для крашения и замасливания текстильных волокон и др. Наиболее широкая и экологически значимая область использования СПАВ — приготовление синтетических моющих и чистящих веществ (детергентов) для использования в быту.

Детергентом считается такое вещество, один конец которого растворим в воде, а другой — в углеводородах или жирах. Детергенты усиливают моющее действие воды. В отличие от природных детергентов (мыла), синтетические детергенты способны проявлять моющие свойства даже в жесткой воде.

Таким образом, СПАВ поступают в природные водоемы:

  • с хозяйственно-бытовыми стоками;
  • с промышленными стоками текстильной, нефтяной, химической промышленности;
  • со сточными водами прачечных хозяйств и автомоек;
  • со смывами от сельхозугодий, обработанных химическими реагентами с эмульгаторами (гербициды, инсектициды, фунгициды).

Специфические физико-химические свойства поверхностно-активных веществ сильно затрудняют известные методы химической и биологической очистки стоков.

В сточных водах ПАВ находятся в виде растворимых соединений или сорбатов. Часть детергентов распределяется по поверхности водной пленки. Если сорбированные СПАВ оседают и накапливаются в донных отложениях, то в анаэробных условиях они могут становиться источником вторичного загрязнения водоемов.

Наиболее высокие концентрации синтетических поверхностно-активных веществ наблюдаются в сточных водах от процессов стирки и мойки различных изделий, прачечных, красильно-отделочных производств, автомоек. Причем в состав этих сточных вод входят анионоактивные и неионогенные поверхностно-активные вещества, наиболее трудно поддающиеся естественному биохимическому разложению [4].

В зависимости от свойств синтетического поверхностно-активного вещества при растворении в воде и его характеристик, различают следующие виды СПАВ [3]:

  • анионоактивные;
  • катионоактивные;
  • амфолитные;
  • неионогенные.

Анионоактивные — в воде образуют отрицательно заряженные ионы. К ним относятся соли сернокислых эфиров и соли сульфокислот (сульфонаты). Радикал может быть алкильным, алкилакрильным, алкилнафтильным. В соединениях могут быть двойные связи и функциональные группы.

Катионоактивные — в водном растворе ионизируются с образованием положительных органических ионов. Это четвертичные аммониевые соли, обычно состоящие из углеводородного радикала с прямой цепью (количество атомов углерода — от 12 до 18); метил- , этил- , или бензильного радикала; атома брома, хлора, йода или остатка этил- или метилсульфита.

Амфолитные — проявляют разные свойства в зависимости от pH среды. В кислом растворе они проявляют катионоактивные свойства, в щелочном — анионоактивные.

Неионогенные — в водном растворе не диссоциируют на ионы.

По степени биохимической устойчивости и структуре молекул синтетические поверхностно-активные вещества подразделяют на мягкие, промежуточные и жесткие. Легче всего окисляются первичные и вторичные алкилсульфаты нормального строения. В соединениях с более разветвленной цепью скорость окисления снижается. К числу трудноразрушаемых СПАВ относят алкилбензолсульфонаты на основе тетрамеров пропилена.

C понижением температуры снижается и скорость окисления полимеров СПАВ. При температуре окружающей среды 0-5 °С окисление в природных водах происходит очень медленно. Для процессов окислительного самоочищения наиболее благоприятна нейтральная или слабощелочная среда природной воды — pH 7-9.

В природных водоемах СПАВ ухудшают кислородный режим и органолептические свойства воды, а из-за медленных процессов окисления они могут долгое время негативно влиять на экосистему. Высокое пенообразование — еще один отрицательный фактор воздействия. По данным [1] уже при повышенных концентрациях СПАВ (5-15 мг/дм³) у рыб разрушается слизистый покров, а при более высоких концентрациях наблюдается кровотечение жабр. Опытные данные показывают, что загрязнение природных водоемов синтетическими ПАВ ведет к снижению численности моллюсков за счет гибели их эмбрионов [3].

Показатель БПК для различных СПАВ находится в диапазоне от 0 до 1,6 мг/дм³. В процессе биохимического окисления эти вещества распадаются с образованием вторичных продуктов загрязнения — спиртов, альдегидов, органических кислот, а при распаде СПАВ с бензольным кольцом в структуре молекулы — фенолов.

Таким образом, синтетические поверхностно-активные вещества являются значимыми загрязнителями водных сред и оказывают негативное воздействие на организмы-гидробионты [3].

Имеются данные о негативном влиянии таких веществ на неорганическую среду: эрозию почв, коррозию металлов, ускорение процессов старения железобетонных сооружений [4].

В ходе работы прачечного хозяйства образуется большое количество сточных вод. Основные объемы стоков дает сам процесс стирки. Незначительное количество солесодержащих промывных вод получается в процессе умягчения воды.

Процесс стирки включает семь или восемь операций:

  • предварительное прополаскивание водой, содержащей умягчающие реагенты (сода и смачивающие вещества);
  • стирка горячей водой с кипячением в присутствии соды, мыла и синтетических моющих средств;
  • многократное прополаскивание горячей или холодной водой.

Длительность процесса стирки — около 1 часа. В соответствии с удельными нормативами принимается, что на каждые 100 кг белья образуется 3,75 м³ сточных вод [6].

Примерный состав загрязнителей сточных вод прачечных:

  • Анионные и неионогенные СПАВ (моющие средства, детергенты, отбеливатели).
  • Соли жесткости.
  • Взвешенные вещества (эмульгированная грязь).
  • Механические частицы, волокна ткани.
  • Красители и нефтепродукты.

По сравнению со средним составом городских канализационных сточных вод, концентрации специфических загрязнений в сточных водах прачечных выше в 2-3 раза. Сточные воды прачечной от стирки 100 кг белья эквивалентны суммарным канализационным стокам населенного пункта с 35 жителями [6].

При смешении с городскими канализационными стоками сточные воды от прачечных дают стойкое пенообразование.

СПАВ, попадающие на городские очистные сооружения, затрудняют работу отстойников, повышают нагрузку на очистные сооружения и снижают общую эффективность очистки хозяйственно-бытовых стоков.

Выпуск сточных вод от прачечных в городскую канализационную сеть, с учетом специфики из загрязнений, возможен при соблюдении температурных условий и усреднения состава, но нежелателен. В настоящее время существуют методы предварительной обработки сточных вод, а также технологические схемы оборотного водоснабжения прачечных предприятий для повторного использования части воды.

Схема очистки сточных вод и оборотного водоснабжения прачечных с применением методов флотации и нанофильтрации функционирует следующим образом (по данным [7]).

Применяемый метод очистки является многоступенчатым. На первом этапе из сточной воды удаляются взвеси и нефтепродукты методом флотации; второй этап (фильтрация) убирает из воды остаточные нерастворимые взвешенные вещества; третий этап (мембранная нанофильтрация) удаляет из воды растворимую органику.

Стоки от прачечной поступают в усреднительный резервуар. Туда же заливают вторичные оборотные воды — фильтрат из установки обезвоживания, концентрат из узла мембранной фильтрации и промывные воды фильтра.

Усредненные стоки поступают в многоступенчатый реактор коагуляции. В реактор подаются реагенты из реагентного хозяйства — флокулянты и коагулянты. Под действием реагентов в реакторе идет процесс хлопьеобразования.

Затем сточные воды вместе со взвешенными хлопьями поступают на установку флотации. Во флотаторе поддерживается постоянная аэрация смеси сточных вод и происходит удаление взвешенных хлопьев, которые отделяются от воды и подаются на установку обезвоживания осадка. Здесь хлопья обезвоживаются и направляются на дальнейшую утилизацию.

Осветленная после флотации сточная вода проходит сначала стадию грубой фильтрации, а затем поступает на узел мембранной нанофильтрации. Это основная стадия очистки, на которой происходит мембранное фильтрование и очищение воды.

Вода после стадии тонкой фильтрации (пермеат) является чистой водой высокого качества и возвращается в оборотное водоснабжение прачечного хозяйства.

Система очистки стоков и оборотного водоснабжения прачечной регулируется в автоматическом режиме и управляется с диспетчерского пульта.

Функциональные узлы и оборудование описанной схемы:

Эффективность подобного комплекса очистных сооружений по СПАВ составляет: 98% — для неионогенных, 16% — для анионных. Эффективность очистки по БПК — 99%.

Другая схема очистки сточных вод прачечной предложена на основе опытно-лабораторных разработок методов очистки воды от СПАВ [4]. Технологическая схема предусматривает очистку сточных вод крупной механизированной прачечной производительностью 4140 кг белья в сутки. Очистка сточных вод реализована по одноступенчатой схеме с применением метода электрофлотокоагуляции. Очищенные до нормативных показателей стоки сбрасываются в городскую канализационную сеть.

Сточные воды прачечной из усреднителя подаются насосами в электрофлотокоагулятор (ЭФК). Сточная вода протекает между электродами и взаимодействует с гидроксидом железа, который выделяется в камеру с анода под действием электрического тока. Дисперсные частицы укрупняются. Вода со взвешенными частицами отводится в отстойник, где хлопья с адсорбированными загрязнениями выпадают в осадок.

Одновременно в камере ЭФК происходит гидролиз воды и выделение газообразных кислорода и водорода, активирующих процесс флотации. Результатом флотации является пена, которая собирается в лоток и отводится на мешалку. Там к ней подмешивается глиняная суспензия, а образовавшийся ил поступает в иловый колодец. Суспензия ила подвергается обезвоживанию, полученный шлам отправляют на утилизацию. Фильтрат после обезвоживания возвращают в усреднитель и подмешивают к новым порциям очищаемой сточной воды.

При оптимальном режиме работы расчетная эффективность очистной установки составляет 95% по СПАВ и 72% по взвешенным веществам.

Законодательство устанавливает, что стоки, образовавшиеся на автомойке, запрещается сбрасывать без очистки в окружающую среду (в том числе на грунт), а система водоснабжения автомойки должна включать очистку и систему рециркуляции сточных вод.

Методы очистки и конкретные технологии для стоков автомоек подбираются с учетом специфики загрязняющих веществ.

Примерное содержание основных загрязняющих веществ в сточных водах автомоек от разных категорий транспорта (по данным [7]):

  • взвешенные вещества: 400-4000 мг/л;
  • нефтепродукты: 20-150 мг/л;
  • тетраэтилсвинец: 0,01-0,1 мг/л;
  • СПАВ: 100 мг/л.

Основные загрязнители в стоках автомоек — смывы с корпусов автомобилей, содержащие большое количество взвешенных веществ, нефтепродуктов и токсичных соединений свинца. СПАВ в стоках автомоек появляются в том случае, если в процессе мойки применяются специальные моющие составы.

Готовая схема водоочистки автомойки [8] включает в себя несколько этапов:

  • грубая механическая очистка;
  • гравитационное осаждение;
  • реагентная обработка;
  • напорная флотация;
  • фильтрация.

На предварительном этапе стоки очищаются от грубых механических примесей и взвешенных веществ в пескоуловителях и нефтеловушках. Дальнейшая очистка стоков происходит в гравитационных отстойниках. В описанной схеме очистки используются тонкослойные отстойники, в которых осаждение взвешенных примесей происходит более эффективно.

Основные методы очистки сточных вод автомоек— реагентный и метод напорной флотации.

Эти методы позволяют очистить сточные воды до показателей, допускающих их повторное использование в оборотной системе водоснабжения. Недостатки реагентных и флотационнных методов — высокие затраты на расходные материалы и реагенты.

На практике высокие рекомендации получил комплексный метод очистки стоков автомоек с использованием водооборотной системы «Скат» [8]. Установка состоит из трех блоков:

  1. Блок БПО — для удаления грубых примесей.
  2. Блок ОТБ — флотационная очистка от мелкодисперсных взвесей.
  3. Блок ДСБ— доочистка воды на угольном фильтре.

Подбор оборудования для очистной системы ведется в зависимости от объемов воды, циркулирующей в системе оборотного водоснабжения, и подпитки свежей водой (15% от объема оборотной).

Подобные системы очистки и оборотного водоснабжения автомоек не только эффективны в плане улавливания выбросов, но и выгодны, поскольку значительно сокращают водопотребление. Очищенная вода повторно используются в процессе мойки машин, а свежая вода применяется лишь для конечного ополаскивания.

Методы очистки сточных вод от СПАВ условно можно разделить на методы, подходящие для очистки сточных вод с невысоким содержанием веществ (10-100 мг/л) и на методы, подходящие для очистки стоков с высокими концентрациями поверхностных активных веществ (100-1000 мг/л).

  1. Для очистки стоков с невысоким содержанием можно применять методы адсорбции на углях; сорбционные методы с использованием ионообменных смол и полимерных адсорбентов; методы обратного осмоса; биохимические методы очистки (биоокисление и биосорбция); флокуляцию; методы электрокоагуляции; метод озонирования.
  2. Для очистки сточных вод с высоким содержанием больше подходят методы коагуляции; флокуляции; экстракции; ионного обмена; а также электрические и комбинированные методы — электрофлотация, электрокоагуляция, гальванокоагуляция, электрофлотокоагуляция.

Каждый из перечисленных методов имеет свои недостатки и ограничения по использованию. Сочетание нескольких технических приемов при очистке сточных вод позволяет получить наиболее высокую степень извлечения СПАВ [4].

  1. Адсорбция
    В установках очистки стоков от СПАВ может быть использован гранулированный активированный уголь. В отличие от порошкообразного угля, у гранулированного угля меньше потери при регенерации, а стоимость регенерации гранулированного угля ниже, чем порошкообразного. Адсорбцию углем целесообразно использовать на стадиях доочистки стоков с содержанием СПАВ не более 100-200 мг/л. При этом достигается высокая степень очистки, до 95%.
  2. Ионный обмен
    Сорбция ионитами наиболее эффективна для сточных вод с содержанием поверхностно-активных веществ не более 100 мг/л. Для удаления анионоактивных СПАВ используют среднеосновные и сильноосновные иониты. Регенерируют иониты водно-органическими растворами солей. Недостаток метода ионного обмена — необходимость установки большого количества ионитовых фильтров с коротким рабочим циклом, и их частая регенерация. Очистка воды от СПАВ методами ионного обмена может быть целесообразна лишь в случаях, когда к очищенной воде предъявляются высокие требования. Степень очистки методом ионного обмена порядка 80-90%.
  3. Коагуляция
    В качестве коагулянтов применяют сернокислый алюминий или сернокислое железо. Этот метод подходит для очистки слабоконцентрированных растворов анионных СПАВ (1-20 мг/л), и является достаточно затратным из-за высоких капитальных расходов, необходимости использования больших доз коагулянтов, переработки большого объема выпадающего осадка. Степень очистки составляет порядка 90%.
  4. Пенная флотация
    Методы пенной флотации эффективны для слабоконцентрированных растворов СПАВ, потому что при росте концентрации происходит резкое увеличение объема пены [1]. Эффективность метода очистки пенообразованием зависит от многих факторов: pH среды, размеров пузырьков газа, высоты слоя раствора, температуры, присутствия в растворе других ионов. Создание оптимальных условий для протекания процесса пенообразования — достаточно сложная задача. Зачастую метод пенной очистки требует предварительной обработки сточных вод.
  5. Электрохимические методы
    Электрохимические методы имеют много преимуществ перед классическими методами очистки сточных вод от СПАВ и имеют хорошие перспективы к практическому использованию. Методы с использованием электричества позволяют отказаться от проектирования и содержания реагентного хозяйства, так как не предусматривают использования химических реагентов. При условии, что стоимость электроэнергии не будет возрастать, можно прогнозировать широкое распространение электрохимических методов очистки.
    Метод электрокоагуляции эффективен для очистки сточных вод от алкилсульфонатов высокой концентрации при pH сточных вод 11-11,5 (по данным [1]). Для подщелачивания сточных вод применяется оксид кальция. В методе используются алюминиевый анод и медный катод, плотность тока составляет 3 А/дм², длительность обработки —20-30 минут. По данным [9] эффективность очистки от алкилсульфонатов составляет свыше 98%.
    Если концентрации СПАВ в растворе невысоки (до 100 мг/л) используют прямую электрокоагуляцию без добавления нейтрализующих агентов.
    По данным [4] наиболее эффективны для очистки сточных вод от СПАВ комбинированные методы, сочетающие в себе несколько процессов: электролиз, коагуляцию, сорбцию и флотацию. Вода подается в реакционную камеру с электродами. На поверхности электродов генерируются ионы металлов и образуются гидроксиды. Одновременно идет процесс гидролиза воды с выделением газообразных водорода (на катоде) и кислорода (на аноде). Хлопья коагулянта и пузырьки газа в стесненных условиях интенсивно подвергаются коагуляции загрязнений, что повышает эффективность флотации. Образующийся пенный продукт отводится в карман сбора пены, а очищенная вода отводится на отстаивание. Оптимальное время обработки — 20 минут, плотность тока 85 А/м².
  6. Физические методы
    Это методы очистки воды, основанные на воздействии ультразвука, электростатического, радиационного и магнитного поля. По данным [1], физические методы могут дополнять основные методы очистки воды от синтетических поверхностно-активных веществ высоких концентраций, повышая их общую эффективность.
    При воздействии на сточную воду магнитного поля ускоряется процесс флотации, осаждения и агрегации взвешенных веществ, изменяется структура осадка. Методы электромагнитной обработки стоков перспективны из-за невысокой стоимости оборудования и малой энергоемкости.
  7. Биохимические методы
    Поверхностно активные вещества (ПАВ) являются органическими веществами, способными подвергаться биохимическому окислению. В процессе очистки ПАВ частично сорбируются активным илом или удаляются из воды вместе с осаждением взвешенных веществ. При значительных концентрациях поверхностно-активных веществ в аэротенках наблюдается активное пенообразование. Также пена присутствует в очищенных стоках, выпускаемых в водоем.
    При первоначальном поступлении стоков, содержащих ПАВ, в аэротенки или биофильтры, сразу происходит интенсивная адсорбция этих веществ. Количество ПАВ, удаляемых адсорбцией, зависит от химического строения этих веществ. Если их биохимическое окисление идет недостаточно активно, они накапливаются в активном иле, что может привести к его деградации.
    Самым негативным воздействием обладают «жесткие» СПАВ, которые уже в концентрациях порядка 15 мг/л ухудшают течение биохимических процессов. При концентрации 10 мг/л наблюдается интенсивное пенообразование очищаемой воды. Активный ил начинает деградировать, микроорганизмы измельчаются. При концентрациях 20 мг/л жизнедеятельность микроорганизмов подавляется, наблюдается отмирание коловраток и свободно плавающих инфузорий [1].
    Удаление ПАВ на биофильтрах менее эффективно, чем в аэротенках. Вероятно, это связано с процессами аэрации и выноса части ПАВ в виде пены.
    Неионогенные (так называемые «мягкие» СПАВ), также оказывают отрицательное влияние на процессы биохимической очистки, но это проявляется при более высоком их содержании. При их концентрации в стоках свыше 50 мг/л они вызывают незначительное повышение БПК очищенных стоков. Если в сточных водах присутствуют СПАВ, относимые к промежуточной группе, наблюдаются процессы пенообразования в аэротенках и ухудшение эффективности очистки при концентрации этих веществ свыше 20 мг/л.
    Как видно, степень влияния ПАВ на процессы биохимического окисления сильно зависит от особенностей их строения и способности молекул к адсорбции и биохимическому распаду. Поэтому существуют рекомендуемые нормативы предельного содержания ПАВ в сточных водах, поступающих на сооружения биологической очистки. Сточные воды с высоким содержанием поверхностно-активных веществ необходимо подвергать разбавлению, либо предварительной очистке.
  8. Озонирование
    Озон — сильнейший природный окислитель, вступающий в реакцию со многими органическими и неорганическими соединениями и имеющий высокую растворимость в воде. На его свойствах основана группа окислительных методов очистки сточных вод.
    По данным [1] озонирование является перспективным методом для очистки сточных вод от СПАВ в невысоких концентрациях. В результате воздействия озона образуются нетоксичные продукты, не оказывающие негативного влияния на экосистемы. Есть предположения, что озонирование можно применять и для очистки более высоконцентрированных стоков (до 200 мг/л).
    При озонировании стоков с содержанием СПАВ 26 мг/л при щелочной реакции среды (pH=9-10), полное их разложение происходило в течение 3-5 минут. При слабокислой среде реакция идет в 5-6 раз медленнее. Степень очистки составляет порядка 90% [9].
    Кроме непосредственного озонирования, для очистки стоков перспективно использовать редокс-системы, в которых озон сочетается с другими окислителями. Это дает повышение эффективности очистки и снижение расхода реагентов. Один из перспективных методов — деструкция СПАВ совместным воздействием озона и пероксида водорода.

Повсеместная распространенность синтетических поверхностно-активных веществ остро ставит вопрос нахождения наиболее приемлемых и экономически выгодных методов очистки сточных вод от них. Физико-химические особенности СПАВ и разделение этих веществ на группы по способности к биохимическому разложению существенно затрудняют подбор наиболее оптимального метода очистки.

Выбор актуального способа очистки сточных вод должен вестись в зависимости от концентрации поверхностно-активных веществ в воде, его способности к разложению («жесткое» или «мягкое» СПАВ), наличия в сточной воде других загрязняющих примесей (нефтепродуктов, взвесей), а также требуемого качества воды на выходе.

При однородном составе сточных вод и невысоких концентрациях ПАВ возможно реализовать схему одноступенчатой очистки с использованием методов сорбции, флотации, коагуляции, биологического окисления или мембранного фильтрования.

Для многокомпонентных сточных вод, вод с высоким содержанием ПАВ или при наличии трудноразрушаемых соединений СПАВ, рекомендуется использовать многоступенчатые технологии с последовательной очисткой стоков несколькими методами или комбинированные методы очистки (электрофлотация, электрофлотокоагуляция и др.).

источник

ПАВ используют для мойки инвентаря, оборудования, полов и стен, которые затем попадают в сточные воды. Они уменьшают поверхностное натяжение воды и образуют стабильную эмульсию или суспензию вместе с частицами загрязнений, что снижает эффективность работы отстойников и биологических фильтров. При флотационной очистке сточных вод способствует образованию устойчивой к расслоению пеномассы.

Поверхностно-активные вещества, попадая в водоем, загрязняют воду. Скорость разложения их в воде очень низкая. Полифосфатные ПАВ в воде гидролизуются, образуя монофосфаты, которые поставляют биогенный элемент фосфор в водоем, вызывая разрастание водных растений, которые, разлагаясь, поглощают кислород.

Поверхностно-активные вещества могут быть анионоактивными, катионоактивными и неионогенными. В промышленных масштабах в качестве моющих веществ применяют чаще анионоактивные ПАВ (или детергенты).

Определение анионоактивных ПАВ

Метод определения основан на образовании комплексных соединений синего цвета при взаимодействии ПАВ с метиленовым синим. Определению мешают катионоактивные ПАВ, сульфиды, восстанавливающие метиленовый синий; их влияние устраняется добавлением к пробе пероксида водорода, мешают также большие количества хлоридов, белков. Влияние этих веществ устраняют, экстрагируя комплексное соединение хлороформом, в котором метиленовый синий не растворяется.

Оборудование, реактивы, материалы

Пипетки на 1 см 3 , 10 см 3 ;

Мерная колба на 100 см 3 , 1000 см 3 ;

Пероксид водорода 3%-ный раствор (сжеприготовленный);

Фосфатный буферный раствор рН=10. Растворяют 10 г чда двухзамещенного фосфата натрия (безводного) в дистиллированной воде, добавляют раствор едкого натра до рН=10, разбавляют дистиллированной водой до 1 дм 3 и перемешивают;

Нейтральный раствор. Растворяют 0,35 г метиленового синего в дистиллированной воде и разбавляют раствор такой же водой до 1 дм 3 ;

Кислый раствор. Растворяют о,35 г метиленового синего в 500 см 3 дистиллированной воды, прибавляют 6,5 см 3 концентрированной серной кислоты чда и разбавляют раствор дистиллированной водой до 1 дм 3 ; хлороформ чда;

Стандартный раствор ПАВ (лаурилсульфанатнатрия, сульфанол и др.).

Основной раствор: Растворяют 0,1 г определяемого ПАВ в дистиллированной воде и разбавляют раствор до 1 дм 3 ; в 1 см 3 содержится 0,1 мг анионактивного вещества;

Рабочий раствор, отобрав 10 см 3 основного раствора, разбавляют его дистиллированной водой до 100 см 3 . В 1 см 3 рабочего раствора содержится 0,01 мг ПАВ.

Ход определения. Отбирают такой объем анализируемой воды, чтобы в нем содержалось более 20 мкт определяемого ПАВ. Если в 100 см 3 СВ содержится менее 20 мкг ПАВ, отбирают больший объем, который затем упаривают до объема менее 100 см 3 . Отобранную порцию сточной воды переносят в делительную воронку вместимостью 200-250 см 3 , разбавляют дистиллированной водой до 100 см 3 (или сразу берут объем 100 см 3 ), прибавляют 10 см 3 3%-ного пероксида водорода, 10 см 3 фосфатного буферного раствора, 5 см 3 нейтрального раствора метиленового синего и 15 см 3 хлороформа. Воронку закрывают пробкой, осторожно взбалтывают содержимое 1 мин и дают постоять 1 мин для расслоения жидкости. Отстоявшийся нижний хлороформный слой сливают во вторую делительную воронку, куда предварительно наливают 110 см 3 дистиллированной воды и 5 см 3 кислого раствора метиленового синего. Воронку закрывают пробкой, взбалтывают и отстаивают аналогично, как и первую воронку. Затем нижний слой сливают в мерную колбу на 50 см 3 через воронку с ватой.

В первую воронку наливают еще 10 см 3 хлороформа и операцию повторяют, как описано выше. Экстракцию повторяют столько раз, чтобы в мерной колбе собралось не менее 40 см 3 хлороформного экстракта. Доливают содержимое колбы до метки и перемешивают. В экстракте определяют оптическую плотность на ФЭКе при λ=650 нм, используя кювету с толщиной слоя 3 см. Во вторую кювету помещают раствор холостого опыта, для которого используют 100 см 3 дистиллированной воды.

Результат определений находят по калибровочному графику, для построения которого отбирают порции 2,5,10,15…30 см 3 стандартного раствора ПАВ, разбавляют каждую порцию дистиллированной водой до 100 см 3 и продолжают, как указано в «ходе определения».

Для определения анионоактивных ПАВ сточную воду консервируют с помощью хлороформа или хранят при температуре 4°С.

Загрязненную метиленовым синим посуду, промывают сначала разбавленной азотной кислотой, а затем водой.

1. Каковы источники поступления ПАВ в сточные воды рыбообрабатывающих предприятий?

2. Как влияет присутствие ПАВ в сточных водах на очистку путем отстаивания, флотации?

3. Как влияют на состояние водоема ПАВ, попадающие со сточными водами?

4. Из каких основных этапов складывается определение анионоактивных ПАВ?

5. С какой целью при определении анионоактивных ПАВ в сточную воду вводят пероксид углерода?

6. Как устраняют отрицательное влияние хлоридов в сточной воде при определении ПАВ?

7. Как отмывают химическую посуду от остатков метиленового синего?

8. Как консервируют сточную воду для определения в ней анионоактивных ПАВ?

1. Егорова Н.И. Промышленная экология рыбообрабатывающих предприятий. – Керчь. Издательство КМТИ, 2008.- 202 с.

2. Егорова Н.И. Экология отрасли. Методические указания для выполнения лабораторных работ по курсу «Экология отрасли» для студентов специальности 7.091708 «Технология хранения, консервирования и переработки рыбы и морепродуктов». г.Керчь, КМТИ, 2000. — 33 с.

3. Лурве Ю.Ю. Аналитическая химия промышленных сточных вод. – М.: Химия, 1984. – 648 с.

4. Кац В.М. Вода и сточные воды в пищевой промышленности. – М.: Издательство «Пищевая промышленность», 1972. – 384 с.

5. Федорова А.И., Никольская А.Н. Практикум по экологии и охране окружающей среды. – М.: Гуманитарный издательский центр «Владос», 2003.-286с.

  1. Шифрин С.М., Хосид Е.В., Голубовская Э.К., Баранова А.П. Современные методы физико-химических анализов сточных вод рыбообрабатывающих предприятий. Обзорная информация. Сер. обработка рыбы и морепродуктов, вып.2. – М.: ЦНИИТЭПРХ, 1975.-22с.

Промышленная экология рыбообрабатывающих предприятий

по выполнению лабораторных работ

для студентов направления 6.051701

«Пищевые технологии и инженерия» дневной и заочной формы обучения

Подписано к печати_____________________ Объем___3,2___п.л.

Тираж ________________________ Заказ № _________________

Издательство «Керченский государственный морской технологический университет»

98309, г.Керчь, ул. Орджоникидзе, 82

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 9620 — | 7307 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Читайте также:  Пить воду анализ из вены