Меню Рубрики

Физические методы анализа сточных вод

Дата публикации: 01.09.2013 2013-09-01

Статья просмотрена: 13731 раз

Кутковский К. А. Виды сточных вод и основные методы анализа загрязнителей // Молодой ученый. — 2013. — №9. — С. 119-122. — URL https://moluch.ru/archive/56/7745/ (дата обращения: 01.06.2019).

Воды и атмосферные осадки, которые поступают в естественные водоемы с территорий населенных пунктов и предприятий, принято называть сточными водами. Отвод данных вод осуществляется посредством канализации или естественным путем.

Сточные воды это в большей или меньшей степени загрязненные в результате использования бытовые, промысловые и производственные воды, содержащие отбросы или отработанное тепло, а также отличающиеся изменившимися в отрицательную сторону физическими и биологическими свойствами [1, с. 1287]. Из этого можно сделать вывод о, безусловно, антропогенном происхождении и неоднородности стоков, а также о сложности очистки или утилизации данного продукта антропогенной деятельности.

Из-за ухудшившихся биологических и физических свойств, сточные воды пагубно влияют на развитие всей биосферы. Сточные воды провоцируют и ускоряют эвтрофикацию водоемов из обильного содержания в них фосфора и азота, а также приводят к изменению естественных биоценозов и, как следствие, гибели биологических видов, загрязнению объектов водопользования, используемые человеком в качестве источника питьевой воды. Так же происходит обильное воздействие на артезианские бассейны: их биологическая чистота несопоставима с их состоянием до научно-технической революции, обусловившей эру активного антропогенного воздействия на природу.

Вследствие научно-технической мысли, ее развитии и повсеместном внедрение, источниками сточных вод являются практически любые антропогенные объекты: жилые дома, образовательные учреждения, медицинские объекты, торговые склады и точки реализаций товаров, различные сервисные организации, АЗС, металлургическая промышленность, пищевая промышленность, фармацевтической промышленность, сельхозяйственные угодья и т. д.

Для контроля качества и объема поступления сточных вод разрабатываются законы и подзаконные акты, происходит внедрение и разработка как новых, так и уже зарекомендованных себя методов очистки. Формируется всесторонний анализ сточных вод, позволяющий разработать оптимальный алгоритм очистки (с учетом характера загрязнителей) для каждого промышленного объекта и оценить качество воды, покидающей очистные сооружения. Любые нарушения влекут за собой штрафы и санкции, прописанные как в Водном кодексе РФ, так и в Уголовном кодексе РФ.

Определим, какими характеристиками обладают сточные воды, и как загрязнители влияют на процесс очистки. Для начала определим классификацию сточных вод и особенности отдельных их типов.

Виды сточных вод

1) Хозяйственно-бытовые. Этот тип стоков в основном поступает из жилых домов, а так же объектов социального пользования(больницы, образовательные учреждения, торговые центры и т. д.). Отведение происходит посредством хозяйственно-бытовой и общесплавной канализации. Состав загрязнителей: 58 % — органика, 42 % — минеральные вещества. Особенность — высокое содержание азотсодержащих соединений и фосфатов, значительная степень фекального загрязнения.

2) Промышленные сточные воды. Основной загрязнитель — объекты промышленности и предприятия различного рода деятельности. Отведение происходит посредством промышленной канализации. Спектр загрязнителей характеризуется видом промышленной деятельности. Содержат органические и неорганические элементы. Наибольшую опасность для гидросферы и человека представляют нефтепродукты, органические красители, фенолы, поверхностно-активные вещества, сульфаты, хлориды и тяжелые металлы.

3) Поверхностные сточные воды. Основное поступление из дождевых и талых вод, формирующихся из атмосферных осадков, проникающих в почву и стекающих в водоемы посредством ливневой канализации с территории промышленных предприятий и населенных пунктов. Спектр возможных загрязнителей широк и определяется особенностями территории и видом антропогенной деятельности, преобладающей в районе стока.

Анализ сточных вод

Рассмотрим основные источники поступления сточных вод в экосистемы: промышленные и бытовые объекты, на них приходится основная доля поступающих на очистные сооружения стоков. [2, с. 59] Анализ именно этих источников позволяет понять специфику оценки качества сточных вод и спектр загрязнителей. На выходе из очистных сооружений не должно быть примесей, содержишихся в характерной для той или иной природы стоков, либо их количество должно быть минимальным (определяется нормативами).

Для анализа качества вод используются следующие параметры: температура, цветность, запах и прозрачность. Физические показатели качества воды малоинформативные и понятны на интуитивном уровне. Для всех типов сточных вод характерна повышенная температура, специфический запах и сниженная прозрачность (определяется по шрифту). Изменение цветности (измеряется в градусах платинокобальтовой шкалы) присущи промышленным сточным водам и зависят от вида производственной деятельности.

Так же важным методом анализа качества вод является химический анализ. Реакция (рН) коммунальных сточных вод, как правило, нейтральна (6,5–8), а реакция промышленных стоков подвержена изменениям от сильнокислой (рН менее 3) до сильнощелочной (рН более 11) в зависимости от источника поступления. В процессе очистки реакция сточных вод должна стать нейтральной.

Для определения доли примесей как сухих, так и растворенных, используется такой параметр как «сухой остаток», отражающий степень загрязненности воды примесями. Данный параметр берется из нефильтрованной пробы. Он указывает на количество в воде примесей, как взвешенных (руда, окалина, известняк, кокс и т. д.), так и растворенных. В зависимости от содержания примесей сточные воды принято делить на четыре категории: первая — сухой остаток менее 500 мг/л (коммунальные сточные воды), четвертая — выше 30 000 мг/л. Отметка 5000 мг/л разделяет вторую и третью категорию. [4, с. 76]

Процесс очистки сточных вод от взвешенных примесей происходит путем механических методов очистки, самым распространенным из которых является метод отстаивания. Для прогнозирования эффективности этого метода используется показатель «оседающие вещества». Проба воды помещается в цилиндр, после чего оценивается, какое количество взвешенных веществ осядет за 2 часа. Измеряется в мг/л и процентах от сухого остатка. Оседающие вещества в городских сточных водах, как правило, составляют 65–75 %.

Необходимость вычисления сухого остатка обусловлена дальнейшей обработкой промышленных и коммунальных стоков при помощи биологических методов (бактерии), и на этой стадии количество взвешенных веществ не должно превышать 10 г/л.

Следующим важным параметром сточных вод является зольность твердых примесей. Прокаливание сухого остатка проводят при температуре «красного» каления (500–600°С), в результате чего часть химических соединений сгорает и улетучиваются в виде оксидов, углерода, водорода, азота, серы и других примесей, вес пробы уменьшается. Массу остатка, называемого золой, делят на первоначальную массу образца и получают зольность, выраженную в процентах. Для городских сточных вод характерна зольность 25–35 %.

Еще одним показателем является окисляемость. Данный показатель является санитарным, сфера его актуальности распространяется также не только на сточные воды. Окисляемость указывает на степень загрязнения воды органическими и неорганическими веществами, но также он используется для оценки степени органического загрязнения. Окисляемость определяется при помощи аэробных гетеротрофных бактерий (биохимическая окисляемость) и посредством химических реакций (химическая окисляемость — бихроматная, иодатная и т. д.).

Единицами измерения окисляемости является потребление кислорода: БПК и ХПК — биохимическое и химическое потребление кислорода, выраженное в миллиграммах О2 на литр. Большое значение имеет соотношение БПК к ХПК, которое позволяет прогнозировать, какое количество загрязнителей может быть удалено при помощи биологических методов очистки. [3, с. 141]

Химическая окисляемость определяет общее содержание в воде восстановителей — органических и неорганических, реагирующих с окислителями. В сточных водах преобладают органические восстановители, поэтому, как правило, всю величину окисляемости относят к органическим примесям воды.

Важнейшими показателям для сохранности гидросферы и эффективности биологической очистки является содержание фосфора и азотистых соединений. В сточных водах определяется содержание общего, нитратного, нитритного и аммонийного азота. От количества соединений азота зависит степень эффективности биологической очистки. При малом содержание азота в производственных сточных водах на стадии биологической очистки добавляют в воду хлористый аммоний. В хозяйственных стоках концентрация соединений азота всегда высока, из-за обилия поступающих веществ, связанных с процессом человеческой жизнедеятельности.

Концентрация фосфора в сточных водах всегда превышает ПДК. Основой поступления фосфатов в сточные воды служат фосфатные компоненты синтетических моющих средств и фекальные стоки, поступающие как из хозяйственной, так и из промышленной сферы. Избыток фосфорсодержащих соединений является одной из главных причин эвтрофикации водоемов.

Следующими показателями состояния сточных вод являются сульфаты и хлориды. Концентрация сульфатов в городских сточных водах обычно находится на уровне 100- 150 мг/л, хлоридов — 150–300 мг/л. В промышленных стоках (в частности, на металлургических заводах) уровень хлоридов и сульфатов значительно выше, к тому же к ним добавляются цианиды, аммиак и роданистые соединения.

Представленные выше показатели важны для оценки загрязненности стоков, так же их следует учитывать и в процессе трактовки данных, полученных в ходе иных анализов. Концентрацию хлоридов важно знать при определении ХПК, так как хлориды окисляются бихроматом калия до молекулярного хлора. Поэтому при концентрации хлоридов более 200 мг/л требуется их предварительное осаждение или введение поправки к результату анализа ХПК. Синтетические поверхностно-активные вещества, или СПАВ, так же являются серьезными загрязнителями естественных водоемов. Воздействие СПАВ напрямую влияет на эвтрофикацию рек и озер, угнетение процессов самоочищения гидросферы, торможение биохимических процессов в водоемах, вызывая другие губительные для биоценоза процессы.

Большинство СПАВ — органические вещества, состоящие из двух частей: гидрофобной и гидрофильной. Гидрофобная часть СПАВ соединена обычно с одной гидрофильной группой. В зависимости от физико-химических свойств гидрофильной части СПАВ делятся на три основных типа: анионактивные, катионоактивные, неионогенные. Каждый тип в свою очередь делится на классы в зависимости от химического состава гидрофобной части.

Примерно 75–80 % всех СПАВ, применяемых в быту и промышленности, составляют анионактивные. Важнейшим из них являются: алкилсульфаты с общей формулой R—O—SO3Na (где R — углеводородный радикал с числом углеродных атомов от 10 до 20); алкилсульфонаты R—SO3Na (с числом углеродных атомов 12–15) и алкиларилсульфонаты R—C6Н4—SO3Na (с числом углеродных атомов в радикале 5–18).

Так же присутствие СПАВ резко отрицательно сказывается на работе очистных сооружений, во время очистки сточных вод поверхностно-активные вещества замедляют процессы осаждения твердых взвешенных частиц, провоцируют появление пены в очистных сооружениях и препятствуют биологической очистке. Для предотвращения данных процессов содержание СПАВ в стоках, поступающих на стадию биологической очистки, не должно превышать 20 мг/л. Некоторые фракции (в частности, жесткие СПАВ) предварительно должны быть полностью удалены химическими и физико-химическими методами.

Поверхностно-активные вещества присутствуют во всех сточных водах, в том числе и хозяйственно-бытовых. Источниками СПАВ в сточных водах является результат широкого применения их в быту и промышленности в качестве моющих средств, а также смачивающих, эмульгирующих, выравнивающих, дезинфицирующих препаратов.

Наиболее высокая концентрация токсических веществ определяется в промышленных сточных водах и классифицируются на две категории — неорганические и органические. К органическим токсическим веществам относятся нефтепродукты, смолы, карбоциклические соединения, пестициды, красители, кетоны, фенолы, спирты и СПАВ. Неорганические компоненты представлены солями, щелочами, кислотами и различными химическими элементами (хром, алюминий, свинец, никель, фтор, бор, железо, ванадий и т. д.).

В хозяйственно-бытовых и сельскохозяйственных сточных водах основными биологическим загрязнителями являются бактерии, вирусы, патогенные простейшие и яйца гельминтов, источником которых являются люди и животные.

Для оценки фекальной загрязненности сточных вод используются микробиологические анализы — определение общего микробного числа и количества общих колиформ (коли-тест). Основная задача данных анализов оценить степень фекального загрязнения воды, а не выявление самого факта наличия патогенных микроорганизмов. Вывод делается на основе степени загрязнения сточных вод фекалиями: чем выше уровень загрязнения, тем выше вероятность присутствия патогенных организмов в воде.

Бактериологический анализ сточных вод необходим для оценки эффективности работы очистных сооружений и дает представление о необходимых корректировках процесса очистки сточных вод. Дезинфекция проводится хлором, который оказывает негативное воздействие на качество воды.

Последним показателем является растворенный кислород. Содержание растворенного кислорода (РК) в воде характеризует кислородный режим водоема и имеет важнейшее значение для оценки его экологического и санитарного состояния. Он также необходим для самоочищения водоемов, т. к. участвует в процессах окисления органических и других примесей, разложения отмерших организмов. Снижение концентрации РК свидетельствует об изменении биологических процессов в водоеме, о загрязнении водоема биохимически интенсивно окисляющимися веществами (в первую очередь органическими). Потребление кислорода обусловлено также химическими процессами окисления содержащихся в воде примесей, а также дыханием водных организмов. Поэтому важным фактором является соблюдение качества очищенной воды, поступающей в естественные водоемы. [5, с. 49]

Оценка качественного и количественного состава загрязнителей сточных вод необходима не только для составления плана очистных мероприятий, но и для повышения их эффективности, а так же для мониторинга и последующего прогнозирования негативного антропогенного воздействия на гидросферу и экосистему в целом. Проблемы загрязненности сточных вод, методов очистки и возвращения в естественные источники или их повторное использование, давно перестали быть чем то далеким и несбыточным. За последние 150 лет качество наземных и подземных источников воды резко ухудшилось и требует не только использования современных норм и стандартов, но так же и поиск, разработку и внедрение новых идей и подходов, как к контролю поступающих загрязняющих веществ, так и к методам очистки сточных вод.

1. Советский энциклопедический словарь/Научно-редакционный совет: А. М. Прохоров (пред.).- М.: «Советская энциклопедия», 1981.- 1287 с.

2. Водоотведение и очистка сточных вод: Учебник для вузов/С. В. Яковлев, Я. А. Карелин, Ю. М. Ласков, В. И. Калицун.- М.:Стройиздат, 1996.- 59 с.

3. Комплексное использование и охрана водных ресурсов. Под редакцией О. А. Юшманова М.: Агропромиздат 1985.- 141 с.

4. Евилович А. З. Утилизация осадков сточных вод М.: Стройиздат 1989.- 76 с.

5. Методы охраны внутренних вод от загрязнения и истощения Под редакцией И. К. Гавич М.: Агропромиздат 1985.- 49 с.

источник

Учебное пособие по основам экологии и охране природы предназначено для студентов при подготовке в качества специалиста экологической лаборатории.

Название Учебное пособие по основам экологии и охране природы предназначено для студентов при подготовке в качества специалиста экологической лаборатории.
страница 2/5
Тип Учебное пособие

filling-form.ru > Туризм > Учебное пособие

Органолептические и некоторые физические методы анализа сточных вод

Качество (анализ) сточных вод определяется с помощью органолептических, физических, химических и физико-хими­ческих показателей.

Показатели, характеризующие свойства веществ, которые воспринимаются органами чувств (зрение, обоняние) челове­ка, называются органолептическими. К органолептическим методам относятся определение цветности, запаха, прозрачности и мутности, а к физическим методам — определение рН и температуры. Определение этих показателей проводится в экологическом анализе сточных вод.
Определение цветности

Контроль цветности сточных вод позволяет контролиро­вать содержание окрашенных загрязняющих веществ без про­ведения дорогостоящих инструментальных методов анализа. При определении цветности пробы не консервируют. Опреде­ление проводят через 2 ч после отбора пробы. Цвет сточных вод может быть различных оттенков.

Читайте также:  Пить воду анализы на тромбоциты

Определение характера цвета. Одним из методов определе­ния цветности является спектрофотометрический метод. Из­меряют оптическую плотность сточной воды при различных длинах волн поглощенного света. Исследуемую воду предварительно фильтруют, отбрасывая первые порции фильтрата. Оптическую плотность фильтрата измеряют в кюветах с толщиной слоя 10 мм, применяя в каче­стве раствора сравнения дистиллированную воду. Длина вол­ны света, максимально поглощаемого водой, является харак­теристикой ее цвета.

Следует учитывать, что видимый цвет раствора всегда яв­ляется дополнительным к цвету поглощаемого излучения, что представлено в табл. 2.

Длины волн спектра и соответствующие окраски

Длина волны поглощае­мого света (приблизи­тельно), нм Цвет поглощаемого излуче­ния Дополнительный (види­мый) цвет раствора
400—450 Фиолетовый Желто-зеленый
450—480 Синий Желтый
480—490 Зелено-синий Оранжевый
490—500 Сине-зеленый Красный
500—560 Зеленый Пурпурный
560—575 Желто-зеленый Фиолетовый
575—590 Желтый Синий
590—605 Оранжевый Зелено-синий
605—730 Красный Сине-зеленый
730—760 Пурпурный Зеленый

Значение оптической плотности исследуемой воды при длине волны, близкой к максимуму поглощения, является ме­рой интенсивности ее окраски. Спектрофотометр может быть заменен фотоэлектроколориметром при наличии достаточного числа светофильтров, про­пускающих узкие полосы спектра света.

В отсутствие приборов цвет сточной воды определяют визу­ально. Цветность воды, содержащей большое количество взве­шенных веществ, определяют после отстаивания или фильтро­вания. Объективно определить цветность пробы трудно; если определить цвет нельзя, оттенок и интенсивность описывают словесно. В качестве основного применяется визуальный ме­тод, который заключается в просмотре слоя (на белом фоне) ис­следуемой воды толщиной 10 см в сравнении с таким же слоем дистиллированной воды. Результат определения описывают словесно: бесцветная, желтоватая, зеленоватая, бурая и т. д.

Количественная характеристика цветности. Определение цветности в градусах цветности проводится методами сравне­ния с искусственными стандартами. Интенсивность окраски испытуемой воды сравнивают со стандартными растворами. В качестве стандартных растворов применяют смеси хлорплатината калия и хлорида кобальта (платиново-кобальтовая шкала) или дихромата калия и сульфата кобальта (дихроматно-кобальтовая шкала); на практике чаще используется по­следняя. Основной раствор шкалы обладает цветностью 500 градусов цветности. Из него путем разбавления готовят шкалу от 5 до 80 градусов цветности.

Определение порога цветности (степени разбавления). Так как правила спуска сточных вод в водоем требуют, чтобы вода в водоеме после смешения со сточной водой не имела види­мой окраски при толщине слоя 10 см, практическое значение имеет определение степени разбавления сточной воды, при котором цвет ее при указанной толщине слоя перестает раз­личаться. Сточную воду разбавляют дистиллированной водой до получения бесцветного раствора при толщине слоя 10 см (сравнивают с таким же слоем дистиллированной воды). Сте­пень разбавления (порог цветности) для производственных сточных вод, принимаемых в городскую канализацию, имеет максимально допустимое значение 1:16.
Определение запаха

По запаху промышленных сточных вод можно ориентиро­вочно судить об их составе. Качественное определение запаха (характер запаха) проводят как при комнатной температуре, так и при нагревании до 50-60°С в колбе, покрытой часовым стеклом. Результат определения запаха выражают описатель­но: запах свободного хлора, землистый, фенольный, запах нефти, сероводородный и т. д.

Для запаха естественного происхождения дается определе­ние по следующей классификации.

Классификация запахов воды

Неопределенный (специфический, не подходящий под предыдущие)
Запахи искусственного происхождения называют по соот­ветствующим веществам: фенольный, бензинный, запах неф­ти, хлорный и т. д.

Для количественного определения запаха находят так назы­ваемое пороговое число, показывающее, во сколько раз надо разбавить анализируемую воду чистой, не имеющей запаха во­дой, чтобы запах пробы перестал ощущаться, например 1:5 (воду надо разбавить в 5 раз). Для разбавления следует применять водопроводную воду, предварительно пропущенную через колонку с активирован­ным углем. Дистиллированную воду применять не следует, так как она часто имеет специфический запах. В тех случаях, когда запах сточной воды вызван присутст­вием в ней веществ, имеющих кислотные или основные свой­ства, запах надо определять при оптимальном значении рН, т. е. при том его значении, при котором запах наиболее ощу­тим. Это значение рН находят экспериментально. Разбавле­ние сточной воды до пороговой концентрации проводят силь­но разбавленным буферным раствором, имеющим требуемое значение рН. Буферный раствор готовят на воде, пропущен­ной через колонку с активированным углем.

Испытания надо проводить в комнате, в которую не долж­ны проникать какие-либо запахи. Нельзя работать более 1 ч потому, что обоняние быстро притупляется. Аналитик не дол­жен курить перед этим испытанием или принимать пищу, приготовленную с острыми приправами.

Для сточных вод оценка запаха по пятибалльной шкале, применяемая для питьевой воды, не используется.
Определение прозрачности

Прозрачность как общее свойство воды зависит от ее цвета и мутности. Мерой прозрачности служит высота водяного стол­ба, при котором можно еще прочитать текст определенного шрифта.

Прозрачность воды определяют по печатному шрифту Снеллена. Исследуемую воду взбалтывают и доверху наливают в бесцветный цилиндр Снеллена, разделенный по высоте на сантиметры и снабженный внизу тубусом с зажимом. Дно ци­линдра должно быть гладким. Под цилиндр на расстоянии 2 см от его дна помещают шрифт Снеллена № 1 (с высотой букв 2 мм) и пытаются различить буквы через столб воды. Если шрифт прочесть не удается, воду медленно выпускают через тубус до тех пор, пока буквы не станут ясно видны. Высота столба воды в сантиметрах указывает на степень ее прозрачно­сти. Высота столба сточной воды должна быть не менее 20 см.
Определение мутности

Контроль мутности сточной воды имеет токсикологическое значение, так как во взвешенном состоянии могут находиться алюминий, свинец, мышьяк, кадмий, ртуть. Степень мутности воды зависит от наличия в ней взвешенных веществ. Контроль мутности сточных вод требует применения стан­дартной шкалы на основе каолина или формазина. Мутность воды выражают в миллиграммах взвешенного ве­щества на 1 л воды (при использовании стандартной шкалы на основе каолина) или в единицах мутности формазина (ЕМФ).

Определение мутности проводят визуально или фотоэлектро-колориметрическим или нефелометрическим методом для неокрашенных растворов в сравнении с эталонным раствором формазина. Стандартный раствор формазина готовят следующим обра­зом: растворяют 10 г гексаметилентетрамина в воде и доводят водой до 100 мл (раствор А). Растворяют 1 г сульфата гидрази­на в воде и доводят водой до 100 мл (раствор Б). Смешивают 5 мл раствора А с 5 мл раствора Б и оставляют на 24 ч, затем раствор доводят дистиллированной водой до 100 мл.

Мутность приготовленного раствора в единицах формазина равна 400 ЕМФ. Раствор годен в течение 4 нед. Стандартные растворы сравнения готовят разбавлением исходного раствора дистиллированной водой для получения эталонных растворов, имеющих необходимую степень мутности, используя для это­го пипетки и мерные колбы. Эти растворы остаются стабиль­ными в течение недели.

Мутность воды должна быть не более 1,5 мг/л по каолину и не более 2 ЕМФ по формазину.
Определение реакции среды (рН)

Определение значения рН сточной воды имеет большое значение при оценке ее качества. Концентрация ионов водорода (вернее, их активность) вы­ражают величиной рН ее десятичным логарифмом, взятым с обратным знаком.

Существуют различные методы определения рН воды от простого метода с помощью индикаторной бумаги до различ­ных методов с применением электронных приборов. Все эти методы можно разделить на 2 класса: колориметрические и электрометрические.

Колориметрические методы базируются на использовании индикаторов, развиваются в направлении подбора индикато­ров для точной характеристики различных значений рН. Их точность ограничена, они применяются в полевых условиях для анализа природных вод.

Электрометрические методы определения рН основаны на измерении ЭДС электрохимической ячейки, состоящей из пробы воды, стеклянного электрода и электрода сравнения.

В сточных водах определение рН проводят электрометри­ческим способом, пользуясь стеклянным электродом. Метод основан на том, что при изменении рН на единицу потенци­ал стеклянного электрода изменяется при 25 °С на 59,1 мВ; при 20 °С — на 58,1 мВ. Результат определения зависит от температуры, оптимальная температура при измерении рН равна 20 °С. Для измерения рН выпускаются специальные приборы — рН-метры, к которым прилагаются инструкции по их приме­нению. Стеклянные электроды этих приборов должны быть прока­либрованы по буферным растворам, имеющим определенное значение рН. Электрометрическому измерению не мешают окраска, мут­ность, взвесь, свободный хлор, присутствие окисляющих или восстанавливающих веществ или повышенное содержание со­лей в пробе. Точность электрометрического определения сни­жается при пользовании загрязненными электродами. Для ис­следования сильно загрязненных проб следует иметь отдель­ный электрод, применяемый только для этой цели. Если необ­ходимо обезжирить электрод, то пользуются куском тонкой ма­терии, смоченной эфиром или раствором синтетического мою­щего средства. Затем несколько раз промывают электрод дис­тиллированной водой, вытирая его каждый раз для удаления обезжиривающего вещества. При необходимости электрод ре­генерируют погружением на 2 ч в 2 % водный раствор хлоро­водородной кислоты с последующей тщательной промывкой дистиллированной водой. В нерабочее время электрод следует хранить в дистиллированной воде.
Определение температуры

Измерение температуры воды и воздуха во время отбора пробы является неотъемлемой частью анализа. Температуру воды измеряют всегда одновременно с отбором пробы ртут­ным термометром с ценой деления 0,1 — 0,5 о С. Следует при­менять калиброванные термометры или по крайней мере про­веренные по калиброванному.

Температура сбрасываемой в водоемы сточной воды долж­на быть не выше 40°С, так как более высокая температура приводит к уменьшению количества кислорода в воде, что от­рицательно сказывается на жизнедеятельности обитающих в водоеме организмов.
Химические и физико-химические методы анализа сточных вод

В экологических лабораториях химико-фармацевтических предприятий для анализа сточных вод используются как хи­мические, так и физические и физико-химические методы анализа. Например, для определения хлоридов применяют аргентометрический метод по Мору; йодометрическим методом определяют активный хлор, комплексонометрическим — суль­фаты, гравиметрическим — нефтепродукты, сухой остаток, взвешенные вещества и т. д. Широко применяются фотометрические методы. Железо, цинк, нитриты, нитраты, летучие фенолы, свинец и другие за­грязняющие вещества определяют методом фотоэлектроколориметрии.
Общее содержание примесей. Сухой остаток. Взвешенные вещества

Все вещества, содержащиеся в воде, можно разделить на растворенные и взвешенные. Растворенные вещества отделяют от взвешенных фильтро­ванием или центрифугированием.

Общее содержание примесей — это сумма всех растворенных и взвешенных веществ, которые определяются выпариванием пробы воды, высушиванием полученного остатка при 105°С до постоянной массы и взвешиванием. Полученный остаток прокаливают в электрической печи при 600°С до постоянной массы и взвешивают. Таким обра­зом получают остаток после прокаливания. Растворенные вещества или сухой остаток — это высушен­ный при 105°С остаток, получающийся выпариванием досуха профильтрованной исследуемой воды или фильтрата после определения взвешенных веществ. Сухой остаток характеризу­ет содержание минеральных и частично органических приме­сей, а именно тех, температура кипения которых заметно пре­вышает 105°С, нелетучих с водяным паром и не разлагаю­щихся при указанной температуре. Для фильтрования применяют беззольные бумажные фильтры, мембранные фильтры, стеклянные, кварцевые и фарфоровые фильтрующие тигли. Для определения прокаленного остатка чашку с сухим ос­татком осторожно прокаливают в электрической печи при 600°С, охлаждают в эксикаторе и взвешивают. Прокаливание повторяют до постоянной массы. Величина массы прокаленного остатка дает ориентировоч­ное представление о минеральном составе сточной воды. Диапазон концентраций сухого остатка от 50 до 25 000 мг/л.

Взвешенные вещества — это вещества, которые остаются на фильтре при использовании того или иного способа фильтро­вания. Общий принцип всех существующих способов опреде­ления взвешенных веществ заключается в задерживании на фильтре всех взвешенных веществ, содержащихся в отмерен­ном объеме тщательно перемешанной пробы, и определении их массы после высушивания до постоянной массы путем взвешивания. Во взвешенных веществах могут содержаться нераствори­мые в воде производные тяжелых металлов и другие загряз­няющие вещества. Остаток после прокаливания определяют путем прокалива­ния высушенного при 105°С до постоянной массы осадка (взвешенные вещества) в электрической печи при 600°С до постоянной массы. Потери при прокаливании определяют по разности между со­держанием взвешенных веществ и остатка после прокаливания. Такой ход определения (фильтрование) не гарантирует тео­ретически правильного разделения растворенных и взвешен­ных веществ, а разделяет их на отделяющиеся фильтрованием и проходящие через фильтр, что, однако, удовлетворяет прак­тическим целям. Газы, летучие вещества и вещества, которые при выпарива­нии или высушивании разлагаются с образованием летучих компонентов, не учитываются при таком ходе анализа. Пробы не консервируют, отбирают в бутыли из стойкого стекла или полиэтилена. Пробы анализировать лучше всего сразу, но не позднее чем через сутки (взвешенные вещества при консервировании 2-4 мл хлороформа на 1 л воды).

источник

Методы анализа. Выбор конкретного метода зависит от характера сточных вод анализируемых компонентов.

Гравиметрический – основан на определении массы вещества. В ходе анализа вещество отгоняется в виде какого-либо летучего соединения или осаждается из раствора в виде малорастворимого соединения.. Осадок взвешивается в виде соединения строго определенного состава, весовая форма по составу совпадает с осаждаемой. По весу высушенного или прокаленного осадка вычисляется содержание определенного компонента в данном образце. Достоинства: высокая точность, отсутствие необходимости калибровки, простота.. Недостатки: значительный расход времени на выполнение анализа.

Титриметрический .Основан на точном измерении количества реактива израсходованного на реакцию с определенными веществами. Титрированный раствор – раствор, концентрация которого известна с высокой точностью. Титрование – прибавление титрованного раствора к анализируемому для точного определения эквивалентного количества. Момент титрирования – точка эквивалентности. Титрирующий раствор – титрант. Используются реакции кислотно-основного взаимодействия, удовлетворяющие требованиям, которые предъявляются к титрометрическим реакциям. Взаимодействие должно происходить полностью и с высокой скоростью. – Методы кислотно-основного взаимодействия связанны с процессом передачи протона – Методы осаждения основаны на реакциях образования малорастворимых соединений – Методы комлексообразования используют реакции образования координационных соединений — методы окисления-восстановления объединяют многочисленную группу окислительно-восстановительных реакций. Достоинства: быстрота выполнения, простота оборудования, удобство выполнения серийных анализов, большой набор химических реакций. Недостатки: необходимость предварительной стандартофикации растворов титранта и калибровки мерной посуды.

Фотометрический. Измеряет поглощение света раствором. Приборы: Источник света – светофильтр – кювета с раствором – детектор. Конструкция прибора зависит от области спектра применения. Излучение выбирают такое, что бы соединение имело мах светопоглощение, а примеси – min. Достоинства – широкая область применения, высокая чувствительность. Недостатки: калибровка аппаратуры, посуды.

Жесткость воды отражает содержание в ней ионов кальция и магния. Жесткость, обусловленная наличием в воде гидрокарбонатов кальция и магния, называется временной, или карбонатной (Жвр). Жесткость, обусловленная хлоридами и сульфатами этих металлов, называется постоянной (Жп). Суммарная жесткость воды носит название общей жесткости. Жесткость воды (степень жесткости принято выражать в миллимолях ионов Са2+ или Mg2+ (или обоих ионов) в 1 дм3 или 1 кг воды – ммоль/дм3 или ммоль/кг. В технической литературе встречается единица измерения степени жесткости воды – мг экв/дм3 или мг-экв/кг. Зная, что молярные массы эквивалентов ионов Са2+ и Mg2+ соответственно равны 20,04 и 12,16 мг/дм3, можно рассчитать обжую жесткость воды (в ммоль/дм3): . Часто в расчетах жесткости используют формулу:

Читайте также:  Пить воду перед анализом на вич

Содержание в питьевой воде большого количества растворимых солей магния и кальция не только ухудшает ее вкус, но и обуславливает жесткость воды. Жесткая вода неприменима в ряде отраслей промышленности, теплотехники и неблагоприятна при бытовом использовании. В ней труднее развиваются многие продукты, их питательная ценность уменьшается. Резко ухудшается моющая способность и возрастает расход мыла. Способствует развитию ряда заболеваний. Питьевая вода – жесткость не должна быть выше 7 ммоль/л.Один из методов устранения жесткости воды – введение соды (Na2CO3).

37. Виды сточных вод. Классификация производственных сточных вод. Сточные воды машиностроительных предприятий. Виды сточных вод. Сточные воды, отводимые с территории промышленных предприятий, по своему составу могут быть разделены на 3 вида:

производственные – использованные в технологическом процессе производства или получающиеся при добычи полезных ископаемых.

бытовые – от санитарных узлов производственных и не производственных корпусов и зданий, а также от душевых установок, имеющихся на территории, промышленных предприятий.

атмосферные – дождевые и оттаивание снега.

Производственные сточные воды делятся на 2 две основные категории:

незагрязненные (условно чистые)

Загрязненные производственные сточные воды содержат различные примеси и подразделяются на 3 группы:

загрязнённые преимущественно минеральными примесями (предприятия металлургической, машиностроительной, угледобывающей промышленности)

загрязнённые преимущественно органическими примесями (предприятия рыбной, мясной, молочной, пищевой, целлюлозно-бумажной промышленности)

загрязнённые минеральными неорганическими примесями (предприятия нефтедобывающей, нефтеперерабатывающей, текстильной, лёгкой промышленности)

Машиностроительные заводы характеризуются наличием ряда водоёмких производственных процессов, а следовательно, и образованием значительного количества, производственных сточных вод, которые в основном загрязняются отходами травильных и гальванических цехов и нефтепродуктами.

В гальванических цехах детали из металлов и сплавов подвергаются различным видам химической или электрохимической обработки. В начале поверхность изделий подвергается предварительной обработки: обезжириванию и травлению с применением различных растворов кислот, щелочей, солей металлов. Отработанные растворы травильных ванн образуют кислые и щелочные сточные воды. В каждом травильном отделение существует 2 вида сточных вод: концентрированные и разбавленные. Разбавленные являются промывными водами.

38.Методы очистки сточных вод. Механические методы применяются как первая стадия в общей схеме очистки сточных вод. Выбор механического метода очистки осуществляется с учётом размера взвешенных частиц. Механическая очистка состоит из:

процеживания через решётки

Химические методы обработки сточных вод основаны на применение химических реакций. В результате которых загрязнения превращаются в соединения безопаснее для потребителя или легко выделяются в виде осадков. В особую группу химических методов следует выделить хлорирование и озонирование сточных вод, содержащих органические примеси, а также цианиды и другие пахнущие не органические вещества. Хлорирование и озонирование наиболее часто применяют для доочистки и обезвреживания питьевой воды на городских водопроводных станция.

Физико-химические методы. В большинстве случаев использование физико-химических методов выделения загрязняющих веществ из сточных вод позволяет в дальнейшем рекуперацию.

Биологическая очистка. Биологическое окисление осуществляется сообществом микроорганизмов, включающим множество различных бактерий, простейших и ряд более высокоорганизованных организмов, связанных между собой единый комплекс сложными взаимоотношениями. Главенствующая роль в том сообществе принадлежит бактериям.

При термической очистке сжигают жидки отходы нефтепродуктов и других горючих веществ в печах и горелках.

источник

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9

Государственное бюджетное образовательное учреждение

«Иркутский государственный медицинский университет»

Министерства здравоохранения Российской федерации

Методы Анализа сточных вод

Учебное пособие обсуждено на методическом совете фармацевтического факультета ИГМУ, рекомендовано к печати и использованию в учебном процессе на кафедре фармацевтической и токсикологической химии Иркутского государственного медицинского университета, протокол № 1 от 20.09. 2013 г.

Авторы: – д-р хим. наук, профессор, зав. каф. фармацевтической и токсикологической химии ГБОУ ВПО ИГМУ,

– канд. фарм. наук, доцент каф. фармацевтической и токсикологической химии ГБОУ ВПО ИГМУ.

— доктор фармацевтических наук, профессор, зав. каф. управления экономики фармации ГБОУ ВПО ИГМУ;

— доктор фармацевтических наук, профессор кафедры технологии лекарственных форм ГБОУ ВПО ИГМУ.

И44 Анализ сточных вод: учеб. пособие / , ; ГБОУ ВПО ИГМУ Минздрава РФ. – Иркутск, 2013. – 53 с.

В учебном пособии по основам экологии и охране природы изложены основы органолептических, физических и химических методов используемых в анализе сточных вод химико-фармацевтических предприятий.

Учебное пособие предназначено для студентов фармацевтического факультета.

© ГБОУ ВПО ИГМУ Минздрава РФ, 2013

Отбор проб сточных вод. Консервация. 3

Органолептические и некоторые физические методы анализа сточных вод. 3

Определение прозрачности. 3

Определение реакции среды (рН) 3

Определение температуры.. 3

Химические и физико-химические методы анализа сточных вод 3

Общее содержание примесей. Сухой остаток. Взвешенные вещества. 3

Биохимическое потребление кислорода. 3

Дихроматная окисляемость. 3

Перманганатная окисляемость. 3

Синтетические поверхностно-активные вещества. 3

Общее содержание азота (общий азот) 3

Тестовые задания по теме «методы Анализа сточных вод». 3

Рекомендуемая литература. 3

Учебное пособие по основам экологии и охране природы предназначено для студентов при подготовке в качества специалиста экологической лаборатории. В пособии приведены основные способы и методы анализа сточных вод химико-фармацевтических предприятий.

Пособие составлено в соответствии с программой по основам экологии и охраны природы для студентов 4 курса фармацевтического факультета.

Анализ сточных вод — одна из наиболее сложных областей аналитической химии (а по отношению к химико-фармацев­тическим предприятиям — фармацевтической химии), так как исследование качественного и количественного состава сточ­ных вод затрудняется вследствие: а) сложного состава сточных вод, б) широкого интервала концентраций примесей, в) изме­нения состава (нестабильность сточных вод во времени), г) малой концентрации загрязняющих веществ.

Для анализа сточных вод используются как классические методы химического анализа, так и современные физические и физико-химические методы:

-спектрофотометрия в видимой и УФ областях спектра;

-пламенная эмиссионная спектроскопия;

-атомно-абсорбционная и атомно-эмиссионная спектро­скопия;

-рентгеноструктурный анализ и др.

Для анализа сточных вод используют также органолептические и некоторые физические показатели.

В экологических лабораториях химико-фармацевтических предприятий наиболее часто используют классические хими­ческие методы, фотоэлектроколориметрию, спектрофотометрию в УФ и видимой областях спектра, органолептические, физические и некоторые другие методы.

Первостепенными задачами в разработке методик опреде­ления отдельных компонентов и групп веществ, присутствую­щих в сточной воде-, остаются максимальная инструментализация и целесообразная автоматизация работ, а также внедре­ние экспрессных тест-систем.

В последние годы для наблюдения за состоянием гидро­сферы все чаще применяются дистанционные методы с ис­пользованием авиации, аппаратуры спутников и околоземных космических станций.

Отбор проб сточных вод. Консервация

Результаты анализа сточной воды будут правильными толь­ко в том случае, если проба для анализа отобрана верно. Ме­сто отбора проб выбирается в зависимости от цели контроля, характера выпуска сточных вод, а также в соответствии с тех­нологической схемой канализации.

К местам отбора проб должен быть свободный доступ. При отборе проб сточных вод с помощью автоматических пробоот­борников доступ к ним посторонних лиц должен быть исклю­чен. Способ отбора пробы сточной воды зависит от цели, ко­торая ставится перед исследователем.

Состав сточной воды обычно сильно колеблется и всецело зависит от технологического процесса производства, поэтому перед отбором пробы необходимо подробно изучить этот про­цесс и брать средние или сред непропорциональные пробы в течение суток или нескольких суток в зависимости от условий спуска сточных вод, так как некоторые цеха спускают сточ­ные воды не ежедневно и нерегулярно.

Если количество спускаемой воды более или менее посто­янно, можно ограничиться только средними пробами. При нерегулярном спуске сточной воды составляют среднепропорциональные пробы, т. е. отбирают порции, пропорциональ­ные объемам спускаемой сточной воды. И средние, и средне-пропорциональные пробы обычно берут в течение суток, сли­вая отдельные порции в большие, чисто вымытые бутыли. По истечении суток содержимое бутыли тщательно перемешива­ют и для анализа отливают часть жидкости (1—3 л) в чисто вымытую посуду. Если количество спускаемой воды непостоянно и ее спус­кают только в известные промежутки времени, это надо обя­зательно учитывать и согласовывать время и способы отбора проб с течением технологического процесса.

Для характеристики изменения состава воды отдельных стоков в различное время дня надо отбирать разовые про­бы и определять в них отдельные компоненты, характер­ные для данного стока. Такие пробы следует брать через одинаковые промежутки времени, например через 1 ч, 2 ч, а иногда и через несколько минут (в зависимости от цели ис­следования) и тотчас же проводить анализ отобранной пробы.

Таким образом, различают простую и смешанную пробы. Простая проба характеризует состав воды в данный момент времени в данном месте.

Смешанная проба характеризует средний состав воды за оп­ределенный промежуток времени в определенном объеме. Как было указано выше, ее получают смешением простых проб, взятых в одном и том же месте через определенные промежут­ки времени (усреднение по времени).

При проведении массовых анализов различают среднесменную, среднесуточную и среднепропорциональную суточ­ные пробы. Среднесменная или среднесуточная проба готовит­ся смешением равных по объему проб через равные проме­жутки времени. Среднепропорциональная проба готовится сме­шением объемов воды, пропорциональных объемам спускае­мой сточной воды, отобранных через равные промежутки времени.

Сроки отбора проб должны устанавливаться с учетом ре­жима расхода и состава сточных вод данного производства. Доступ к точкам сброса (колодцам) имеется на предпри­ятии или за его пределами.

Для отбора сточных вод применяют устройства различного типа, которые должны обеспечивать сохранение химического состава исследуемой воды и гарантировать исключение эле­ментов случайности при отборе проб. В качестве пробоотборных сосудов используют химически стойкие к исследуемой сточной воде стеклянные, фарфоровые и пластмассовые сосу­ды (с притертыми или плотно навинчивающимися крышка­ми) вместимостью, обеспечивающей определение всех иссле­дуемых компонентов. При использовании автоматического анализатора должны быть применены стационарные автома­тические пробоотборники. Стеклянную посуду моют и обеззараживают хромовой сме­сью, тщательно отмывают от кислоты и пропаривают. Поли­этиленовую посуду споласкивают смесью ацетона и хлоро­водородной кислоты (1:1), несколько раз водопроводной во­дой, а затем дистиллированной.

Консервация. При длительном стоянии отобранной для, анализа пробы могут произойти существенные изменения в составе предназначенной для анализа воды, связанные с про­теканием химических, физико-химических и биохимических процессов. Могут изменяться и органолептические свойства воды — запах, цвет, мутность, поэтому, если нельзя начать анализ воды сразу или в крайнем случае через 4 ч после отбо­ра пробы, нужно консервировать пробу для стабилизации ее химического состава.

Универсального консервирующего средства не существует, поэтому пробы для анализа отбирают в несколько бутылей. В каждой из них на. месте отбора воду консервируют, добав­ляя различные консерванты, в зависимости от определяемого компонента.

Способы консервации и сроки анализа проб воды для не­которых показателей качества представлены в табл. 1. Как следует из табл. 1, для определения некоторых пока­зателей качества воды консервирование не допускается, на­пример, при определении органолептических показателей (за­пах, цветность), а также рН, кислотности, хлоридов, сульфа­тов, активного хлора. Для многих показателей рекомендуется консервировать или охлаждать пробу. Охлаждение пробы до 4 °С приводит к замедлению биохимических процессов в про бах воды и, следовательно, к замедлению разрушения многих органических веществ.

Пробы для определения запаха, кислотности, ВПК, нефте­продуктов, фенолов отбирают в стеклянные бутыли.

источник

Величина рН в воде водоемов хозяйственно-питьевого водопользования регламентируется в пределах 6,5 — 8,5. В большинстве природных вод рН составляет от 6,5 до 8,5 и зависит от соотношения концентраций свободного оксида углерода (IV) и HCO3 — . Более низкие значения рН могут наблюдаться в кислых болотных водах за счет повышенного содержания гуминовых и фульвокислот. Летом при интенсивном фотосинтезе рН может повышаться до 9. На величину рН влияет содержание карбонатов, гидроокисей, солей, подверженных гидролизу, гуминовых веществ и др.

В результате происходящих в воде химических и биологических процессов и потерь углекислоты рН воды может быстро меняться, поэтому рН следует измерять сразу же.

Для ориентировочного определения рН можно пользоваться универсальным бумажным индикатором.

Потенциометрический метод определения рН отличается большой точностью (0,02). Определению не мешают окраска, мутность, свободный хлор, окислители, восстановители, повышенное содержание солей.

После проверки потенциометра ополосните дистиллированной водой стаканчик и электроды. Налейте в стаканчик анализируемую воду и измеряйте рН 2 – 3 раза с интервалом 2 – 3 мин. Последние два показания прибора должны быть одинаковыми. Если исследуемая вода имеет низкую температуру (около 0 0 С), то она должна быть нагрета до комнатной температуры.

Определение цветности воды

Цветность природных вод обусловлена главным образом присутствием гуминовых веществ и комплексных соединений железа (III). Количество этих веществ зависит от геологических условий, водоносных горизонтов, характера почв, наличия болот и торфяников в бассейне реки и т.д.

Цветность воды определяют визуально. Результаты выражают в градусах цветности. Цветность от 0 до 50 0 выражается с точностью до 2 0 , от 51 до 100 0 – до 5 0 , от 101 до 250 0 – до 10 0 , от 251 до 500 0 до 20 0. . При цветности выше 80 0 воду необходимо разбавлять.

Приготовление стандартных растворов

Раствор 1: 0,0875 г K2Cr2O7, 2 г CoSO4×7H2O и 1 мл серной кислоты (пл. 1,84 г/см 3 ) растворите в дистиллированной воде в мерной колбе на 1 л, доведите объем раствора до метки дистиллированной водой. Этот раствора соответствует цветности 500 0 .

Раствор 2: 1 мл серной кислоты (пл. 1,84 г/см 3 ) растворите в дистиллированной воде в мерной колбе на 1 л, доведите объем раствора до метки дистиллированной водой.

Подготовка шкалы стандартных растворов. Смешивая растворы 1 и 2 в соотношениях, указанных в таблице, приготовьте шкалу цветности.

Раст-вор Градусы цветности
N1,мл N2,мл

В цилиндр, однотипный с теми, в которых приготовлена шкала, налейте 100 мл исследуемой воды. Просматривая сверху на белом фоне, подберите раствор шкалы с тождественной окраской.

Запах воды водоемов не должен превышать 2 баллов, обнаруживаемых непосредственно в воде. Определение основано на органолептическом исследовании характера и интен­сивности запаха воды при 20 0 и 60 0 С.

Запах воды обусловлен наличием в ней летучих и пахнущих веществ, которые попадают в неё естественным путем или сточными водами. По характеру запахи делятся на две группы.

Запахи естественного происхождения описываются по следующей терминологии.

Символ Характер запаха Примерный род запаха
А Ароматический Огуречный, цветочный
Б Болотный Илистый, тинистый
Г Древесный Запах мокрой щепы, древесный
З Землистый Прелый, свежевспаханной земли
Р Рыбный Рыбы, рыбьего жира
С Сероводород Тухлых яиц
Т Травянистый Сена, скошенной травы
Н Неопределенный Не подходящий под предыдущие определения
Читайте также:  Письмо в сэс на анализ воды

Чистые природные воды запахов не имеют.

Запахи искусственного происхождения (от промышленных выбросов, для питьевой воды – от обработки воды реагентами на водопроводных сооружениях и т.п.) называют по соответствующим веществам: хлорфенольный, камфорный, бензиновый, хлорный и т.п.

Интенсивность запаха оценивают по пятибалльной системе, приведенной в таблице.

Балл Интенсивность запаха Описание определения
Никакого Отсутствие ощутимого запаха.
Очень слабый Запах, обнаруживаемый опытным исследователем.
Слабый Запах, не привлекающий внимания, но такой, который можно заметить, если указать на него.
Отчетливый Запах, обращающий на себя внимание и делающий воду непригодной для питья.
Заметный Запах, легко обнаруживаемый и могущий дать повод относиться к воде с неодобрением.
Очень сильный Запах настолько сильный, что делает воду непригодной для питья

Водой, не имеющей запаха, считается такая, запах которой не превышает 2 балла.

100 мл исследуемой воды при 20 0 С налейте в колбу вместимостью 150 – 200 мл с ши­роким горлом, накройте часовым стеклом или притертой пробкой, встряхните вращательным движением, откройте пробку или сдвиньте часовое стекло и быстро определите характер и интенсивность запаха. Затем колбу нагрейте до 60 0 С на водяной бане и также оцените запах.

Определение прозрачности воды

Прозрачность воды обусловлена ее цветом и мутностью, т.е. содержанием в ней различных окрашенных и взвешенных органических и минеральных веществ. Мерой прозрачности служит высота столба воды, при котором можно различать на белой бумаге стандартный шрифт определенного размера и типа. Прозрачность по шрифту выражают в см и определяют с точностью 0,5 см. Стандартный шрифт имеет высоту букв 3,5 мм.

В цилиндр с внутренним диаметром 2,5 см и высотой 30 см налейте исследуемую воду и поместите его неподвижно над шрифтом на высоте 4 см. Сливая и доливая исследуемую воду, найдите высоту столба, еще позволяющую читать шрифт. Исследование проводите в хорошо освещенном помещении, но не на прямом свету, на расстоянии 1 м от окна. Измерение повторите 2 – 3 раза.

Определение перманганатной окисляемости

Окисляемость – общее количество содержащихся в воде восстановителей (неорганических и органических), реагирующих с сильными окислителями, например, бихроматом или перманганатом калия. Результаты определения окисляемости выражают в миллиграммах кислорода на 1 л воды (мг О/л).

Все методы определения окисляемости условны, а полученные результаты сравнимы только в том случае, когда точно соблюдены все условия анализа.

Наиболее полное окисление достигается бихроматом калия, поэтому бихроматную окисляемость нередко называют «химическим потреблением кислорода» (ХПК). Большинство соединений окисляется при этом на 95 – 100%. Нормативы ХПК воды водоемов хозяйственно-питьевого назначения – 15 мг О/л, культурно – бытового – 30 мг О/л.

Метод перманганатометрической окисляемости основан на окислении веществ, присутствующих в воде, 0,01 н. раствором KMnO4 в сернокислой среде при кипячении. Без разбавления можно определять окисляемость до 10 мг кислорода в 1 л.

При определении перманганатной окисляемости после реакции должно остаться не менее 40% введенного перманганата калия, так как степень окисления зависит от его концентрации. При большом расходе реагента пробу необходимо разбавлять.

В колбу поместите 100 мл исследуемой воды (или разбавленной до 100 мл), несколько капилляров или кусочков пемзы, прилейте 5 мл разбавленной серной кислоты (1:3) и 10 мл 0,01 н. раствора KMnO4. Смесь нагревайте так, чтобы она закипела не ранее, чем через 5 мин, и кипятите точно 10 мин, закрыв колбу маленькой конической воронкой для уменьшения испарения. К горячему раствору прибавьте 10 мл 0,01 н. раствора щавелевой кислоты. Обесцвеченную горячую (80-90 0 С) смесь титруйте 0,01 н. раствором KMnO4 до слабо розового окрашивания.

Если в процессе кипячения содержимое колбы потеряет розовую окраску или побуреет, то определение необходимо повторить, разбавив исследуемую воду. Определение также необходимо повторить, если при обратном титровании щавелевой кислоты израсходовано более 7 мл или менее 2 мл 0,01 н. раствора KMnO4.

Одновременно проведите холостой опыт со 100 мл дистиллированной воды, обрабатывая ее так же, как и анализируемую воду. Расход перманганата калия не должен превышать 0,3 мл.

;

где Х – перманганатная окисляемость, мг О/л;

V1 – объем перманганата калия, пошедший на титрование исследуемой воды, мл;

V2 – объем перманганата калия, пошедший на титрование холостой пробы воды, мл;

N – нормальность раствора перманганата калия;

V – объем пробы, взятой для анализа, мл.

Определение биологического потребления кислорода (БПК)

БПК — количество кислорода (мг), требуемое для окисления находящихся в 1 л воды органических веществ в аэробных условиях при 20 0 С в результате протекающих в воде био­химических процессов за определенный период времени (БПК за 3, 5, 10, 20 т.д. суток).

Установлено, что при загрязнении водоемов преимущественно хозяйственно-бытовыми сточными водами с относительно постоянным составом и свойствами БПК5 (5-суточное) составляет 70% БПК полного.

Нормативы БПК воды водоемов хозяйственно-питьевого назначения – 3 мг/л кисло­рода, культурно – бытового – 6 мг/л кислорода.

Среди различных методов определения БПК наиболее распространено определение по разности содержания кислорода до и после инкубации при стандартных условиях (при 20 0 С в аэробных условиях без дополнительного доступа воздуха и света).

БПК определяют в натуральной, тщательно перемешанной воде.

Проба для анализа БПК должна быть обработана в день отбора (или при условии хранения пробы в холодильнике на следующий день). Для отбора проб воды необходимо использовать посуду с притертыми пробками и следить, чтобы при отборе проб воды она переливалась через край склянок.

РН воды при определении БПК должна быть в пределах 6,5 – 8,5. Температура исследуемой воды должна быть 20 0 С. Для аэрации воды необходимо перед анализом встряхивать воду в колбе, заполненной водой на ¾ объема, в течение 1 мин. и затем быстро перенести воду в специальные колбы с притертыми крышками, заполняя колбы до самых краев.

Для фиксации кислорода введите в 8 колб емкостью 100 мл с анализируемой водой по 1 мл хлорида или сульфата марганца (400 г MnSO4×2H2O или 425 г MnCl2×2H2O растворите в 1 л дистиллированной воды) и по 1 мл щелочного раствора йодида калия (150 г KI растворите в 100 мл дистиллированной воды, 500 г NaOH растворите в 500 мл свежеприготовленной дистиллированной воды, оба раствора смешайте и доведите общий объем в мерной колбе до 1л). Пипетки на 1 мл следует погружать до дна колбы, часть жидкости при этом будет выливаться. После введения реактивов закройте склянки пробками, перемешайте резким перевертыванием. В таком виде оставьте склянки соответственно две на 3, две на 5 и две на 10 сут. Содержимое двух склянок проанализируйте сразу же.

Перед титрованием (осадок должен хорошо осесть) прибавьте в каждую склянку по 5 мл соляной кислоты (2:1), при этом часть жидкости будет переливаться через край. Каждую склянку закройте пробкой и содержимое её перемешайте, осадок гидроксида марганца при этом растворится и окислит йодистые соединения, а выделившийся йод окрасит раствор в желтый цвет. После перемешивания каждую пробу перенесите в колбу для титрования на 250 – 300 мл и быстро титруйте 0,02 н. раствором тиосульфата натрия в присутствии индикатора крахмала до исчезновения окраски.

;

где Х – содержание растворенного кислорода, мг/л;

V – объем тиосульфата натрия, пошедший на титрование исследуемой воды, мл;

V1 – объем кислородной склянки, мл;

V2 – объем всех реактивов, внесенных в воду для фиксации кислорода, мл;

N – нормальность раствора тиосульфата натрия;

где Х1 – содержание растворенного кислорода в пробе до начала инкубации (нулевой день);

Х2 – содержание растворенного кислорода в пробе после инкубации.

Определение щелочности или кислотности воды

После определения рН воды можно приступить к определению щелочности (если рН>7) или кислотности (если рН — , анионами слабых кислот (например, карбонаты и гидрокарбонаты). Щелочность определяется количеством сильной кислоты, необходимой для замещения этих анионов. Расход кислоты эквивалентен их общему содержанию и выражает общую щелочность воды. Щелочность выражают в мг-экв/л.

В обычных природных водах щелочность зависит в основном от присутствия гидрокарбонатов щелочноземельных металлов, в меньшей степени щелочных. В этом случае значение рН воды не превышает 8,3. Растворимые карбонаты и гидроксиды повышают значение рН.

Отберите 100 мл исследуемой воды, добавьте 2-3 капли индикатора метилоранжа и титруйте 0,1 н раствором соляной кислоты в присутствии контрольного раствора до перехода окраски из желтой в оранжевую.

;

где Щ – щелочность воды, мг-экв/л;

V – объем соляной кислоты, пошедший на титрование исследуемой воды, мл;

VП – объем пробы, взятый для анализа, мл;

N – нормальность раствора соляной кислоты;

Кислотностью называется содержание в воде веществ, вступающих в реакцию с гидроксил — ионами. Расход щелочи, пошедшей на реакцию, выражает общую кислотность воды. В обычных природных водах кислотность в большинстве случаев зависит только от содержания свободного CO2. Естественную часть кислотности создают также гуминовые и другие слабые органические кислоты. В этих случаях рН воды не бывает ниже 4,5. Кислотность выражают в мг-экв/л.

Отберите 100 мл исследуемой воды, добавьте 2-3 капли индикатора фенолфталеина и титруйте 0,1 н раствором гидроксида натрия до появления розовой окраски, не исчезающей в течение 30 секунд.

;

где К – кислотность воды, мг-экв/л;

V – объем гидроксида натрия, пошедший на титрование исследуемой воды, мл;

VП – объем пробы, взятый для анализа, мл;

N – нормальность раствора гидроксида натрия.

Определение жесткости воды

Определение карбонатной жесткости воды

Жесткость воды изучают, чтобы выяснить её пригодность для растениеводства, животноводства, а также для технических целей. Под жесткостью понимают суммарное содержание в воде солей кальция и магния. Общую жесткость определяют комплексонометрическим методом, а карбонатную или временную жесткость – методом нейтрализации. Карбонатная жесткость зависит от содержания в воде гидрокарбонатов кальция и магния. Она почти полностью устраняется кипячением, при котором гидрокарбонаты разлагаются:

Поэтому карбонатную жесткость называют также устранимой, или временной. Карбонатная жесткость отвечает той части катионов кальция и магния, которая эквивалентна содержащимся в воде анионам гидрокарбонатов этих металлов. Жесткость принято выражать в ммоль экв/л.

Поместите 100 мл исследуемой воды в коническую колбу. Прибавьте 2-3 капли индикатора метилоранжа, перемешайте и титруйте раствором HCl до перехода желтой окраски индикатора в оранжевую. Титрование повторите не менее трех раз, до получения хорошо сходимых результатов.

Результаты рассчитайте в ммоль экв/л.

Определение общей жесткости воды

Под общей жесткостью понимают суммарное содержание ионов кальция и магния в воде, выраженное в ммоль экв/л. Она складывается из карбонатной (временной) и некарбонатной (постоянной) жесткости воды. Некарбонатная жесткость обусловлена наличием в воде сульфатов, хлоридов, силикатов, нитратов и фосфатов этих металлов.

Жесткость воды колеблется в широких пределах: от 0,1-0,2 ммоль экв/л в реках и озерах, расположенных в зонах тайги и тундры, до 80 ммоль экв/л и более — в подземных водах, морях и океанах. Различают воду мягкую (общая жесткость до 2 ммоль экв/л), средней жесткости (2-10 ммоль экв/л) и жесткую (более 10 ммоль экв/л). В поверхностных водоисточниках преобладает, как правило, карбонатная жесткость (70-80% от общей). Наибольшего значения жесткость воды достигает в конце зимы, а наименьшего – в период паводка. Так, в реке Волге (г. Нижний Новгород) максимальная жесткость бывает в марте (4,3 ммоль экв/л), а минимальная — в мае (0,5 ммоль экв/л). В подземных водах жесткость воды наиболее постоянна и меньше изменяется в течение года.

Повышенная жесткость способствует усиленному образованию накипи в паровых котлах, отопительных приборах и бытовой металлической посуде, что значительно снижает интенсивность теплообмена. В воде с высокой жесткостью плохо развариваются овощи и мясо, так как катионы кальция образуют с белками пищевых продуктов нерастворимые соединения. Большая магниевая жесткость придает воде горький привкус, поэтому содержание магния не должно превышать 100 мг/л. Общая жесткость питьевой воды во избежание ухудшения ее органолептических свойств должна быть не более 7 ммоль экв/л.

Для устранения или уменьшения жесткости воды применяют специальные методы. Из реагентных методов наиболее распространен известково-содовый, а при комбинировании его с ионообменными методами можно получить глубоко умягченную воду.

Поместите 100 мл исследуемой воды в коническую колбу. Прибавьте 20 мл аммонийного буферного раствора (рН = 10) и на кончике шпателя — несколько кристалликов индикатора эриохрома черного Т или кислотного хром темно-синего. Раствор перемешайте, после появления винно-красной окраски титруйте 0,05 н. раствором трилона Б до перехода окраски в синюю. Титрование повторите не менее трех раз, до получения хорошо сходимых результатов.

Результаты рассчитайте в ммоль экв/л.

Определение нитратов потенциометрическим методом

с ион-селективным электродом

Предельно допустимая концентрация нитратов в воде водоемов 45 мг/л, лимитирующий показатель вредности санитарно-токсикологический.

Массовую долю нитратов в миллионных долях находят по величине рС(NO3 — ) с помощью данных, приведенных в ниже представленной таблице.

Для проведения анализа необходим иономер типа ЭВ-74, рН-милливольтметр рН-340 или рН-121 (с ион-селективным нитратным электродом и электродом сравнения хлорсеребряным).

Подготовка электрода к работе. До начала работы заполните электрод водным раствором, содержащим нитрат калия и хлорид калия (10,11 г KNO3 и 0,37 г KCl растворите в мерной колбе на 1 л и доведите до метки дистиллированной водой). После этого электрод сутки выдерживайте в 0,1 М растворе KNO3. Перед началом работы нитратный электрод поместите на 10 минут в стаканчик с дистиллированной водой.

50 мл воды поместите в стаканчик и измеряйте концентрацию иона нитрата. Перед измерением ион — селективный электрод тщательно ополосните дистиллированной водой и выдерживайте его в дистиллированной воде 10 мин. Измерения повторите три раза и возьмите среднеарифметическое значение трех измерений.

Измерение концентрации иона нитрата проводите непосредственно в логарифмических единицах рС(NO3 — ) = -lgС(NO3 — ) по шкале иономера, предварительно отградуированного по растворам сравнения.

Определение активного хлора

Хлор активный (суммарное содержание свободного хлора, хлорноватистой кислоты, гипохлорит — ионов и хлораминов) в воде водоемов должен отсутствовать, лимитирующий показатель вредности общесанитарный.

Метод основан на том, что свободный хлор, хлорноватистая кислота, гипохлорит — ионы и хлорамины в кислой среде выделяют из йодида калия йод, который оттитровывают тиосульфатом в присутствии крахмала.

Дата добавления: 2014-01-07 ; Просмотров: 729 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник