Меню Рубрики

Фториды в воде методы анализа

ПНД Ф 14.1:2:4.270-2012 Количественный химический анализ вод. Методика измерений массовой концентрации фторид-ионов в питьевых, природных и сточных водах потенциометрическим методом

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ
В СФЕРЕ ПРИРОДОПОЛЬЗОВАНИЯ

Директор ФБУ «Федеральный центр

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ИЗМЕРЕНИЙ
МАССОВЫХ КОНЦЕНТРАЦИЙ ФТОРИД-ИОНОВ В
ПИТЬЕВЫХ, ПРИРОДНЫХ И СТОЧНЫХ ВОДАХ
ПОТЕНЦИОМЕТРИЧЕСКИМ МЕТОДОМ

Методика допущена для целей государственного
экологического контроля

Методика рассмотрена и одобрена федеральным бюджетным учреждением «Федеральный центр анализа и оценки техногенного воздействия (ФБУ «ФЦАО»).

Настоящее издание методики действует до выхода нового издания.

Главный инженер ФБУ «ФЦАО», к.х.н.

Аналитический центр ЗАО «РОСА»

Настоящий нормативный документ устанавливает методику количественного химического анализа различных типов вод с целью измерения массовой концентрации фторид-ионов (далее фторидов) потенциометрическим методом.

Методика распространяется на следующие объекты анализа: воды питьевые, в том числе расфасованные в емкости и минеральные природные; воды природные, в том числе поверхностных и подземных источников водоснабжения; воды сточные, в том числе производственные, хозяйственно-бытовые, ливневые и очищенные.

Диапазон измерений массовых концентраций фторидов в питьевых и природных водах составляет от 0,15 до 7,0 мг/дм 3 и сточных водах — от 0,15 до 20 мг/дм 3 .

Мешающее влияние, обусловленное присутствием алюминия и железа в количествах более 0,5 мг/дм 3 и 0,3 мг/дм 3 , соответственно, устраняют в ходе анализа введением буферного раствора обеспечивающего значение рН 4,9 — 5,5.

ГОСТ Р 51592-2000 Вода. Общие требования к отбору проб

ГОСТ Р 52501-2005 Вода для лабораторного анализа. Технические условия

ГОСТ Р ИСО 5725-6-2002. Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности

ГОСТ Р 53228-2008 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ 12.0.004-90 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения

ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 12.1.007-76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ Р 12.1.019-2009. Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты

ГОСТ 12.4.009-83 Система стандартов безопасности труда. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание

ГОСТ 1770-74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 3117-78 Реактивы. Аммоний уксуснокислый. Технические условия

ГОСТ 3118-77 Реактивы. Кислота соляная. Технические условия

ГОСТ 3773-72 Реактивы. Аммоний хлористый. Технические условия

ГОСТ 4328-77 Реактивы. Натрия гидроокись. Технические условия

ГОСТ 4386-89 Вода питьевая. Методы определения массовой концентрации фторидов

ГОСТ 4463-76 Реактивы. Натрий фтористый. Технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 10652-73 Реактивы. Соль динатриевая этилендиамин-N,N, N ¢ ,N ¢ -тетрауксусной кислоты 2-водная (трилон Б). Технические условия

ГОСТ 27384-2002 Вода. Нормы погрешностей измерений показателей состава и свойств

ГОСТ 29169-91 Посуда лабораторная стеклянная. Пипетки с одной отметкой

ГОСТ 29227-91 Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

Настоящая методика обеспечивает получение результатов измерений с показателями точности, не превышающими значений, приведенных в таблице 1. Границы относительной погрешности измерений не превышают нормы погрешностей, установленные ГОСТ 27384.

Таблица 1 — Диапазон измерений, значения показателей точности, воспроизводимости и повторяемости

Показатель повторяемости (стандартное отклонение повторяемости), s r, %

Показатель воспроизводимости (стандартное отклонение воспроизводимости) s R, %

Показатель точности (границы относительной погрешности при Р = 0,95), ± d , %

Питьевые и природные воды

Примечание — Показатель точности измерений соответствует расширенной неопределенности при коэффициенте охвата k = 2.

Метод основан на измерении потенциала ионоселективного электрода и установлении его зависимости от активности (концентрации) фторид-ионов.

Блок-схема проведения анализа приведена в Приложении 1.

5.1 Средства измерений, вспомогательное оборудование, лабораторная посуда

5.1.1 Весы лабораторные с максимальной нагрузкой 210 г высокого класса точности по ГОСТ Р 53228.

5.1.2 Государственный стандартный образец (далее ГСО) состава водного раствора фторид-ионов с относительной погрешностью аттестованного значения при доверительной вероятности Р = 0,95 не более 1 %.

5.1.3 Мономер, функционирующий в режиме измерения концентраций ионов, например, «Анион-410» или рН-метр-милливольтметр любого типа.

5.1.4 Колбы мерные вместимостью 10; 50; 100; 200; 250 и 500 см 3 по ГОСТ 1770,2 класс точности.

5.1.5 Пипетки градуированные вместимостью 1; 2; 5; 10 и 20 см 3 по ГОСТ 29227, 2 класс точности.

5.1.6 Пипетки с одной меткой вместимостью 2 и 20 см 3 по ГОСТ 29169, 2 класс точности.

5.1.7 Электрод ионоселективный (фторидный), например, фирмы ORION, модель 94-09 SC или «Вольта 3000».

5.1.8 Электрод сравнения хлорсеребряный, например, фирмы ORION модель 900100 или ЭВЛ-1М3.1.

5.1.9 Мешалка магнитная любой модели.

5.1.10 Стаканы пластиковые вместимостью 50 см 3 .

5.1.11 Флаконы полиэтиленовые вместимостью 250 см 3 и 500 см 3 .

5.1.12 Холодильник бытовой любого типа, обеспечивающий хранение проб при температуре от 2 °С до 10 °С.

Допускается использование средств измерения, вспомогательного оборудования, лабораторной посуды с аналогичными или лучшими метрологическими и техническими характеристиками.

5.2.1 Аммоний уксуснокислый, ч.д.а., по ГОСТ 3117.

5.2.2 Аммоний хлористый, х.ч., по ГОСТ 3773.

5.2.3 Бумага индикаторная универсальная, позволяющая измерять рН в диапазоне от 1 до 12 ед. рН с шагом 1 ед. рН по ТУ 2642-008-11764404-99 или по ТУ 6-09-1181-76.

5.2.4 Вода дистиллированная по ГОСТ 6709 или для лабораторного анализа по ГОСТ Р 52501 (2-ой степени чистоты).

5.2.5 Кислота соляная, х.ч. по ГОСТ 3118.

5.2.6 Натрия гидроокись, ч.д.а. по ГОСТ 4328.

5.2.7 Натрий фтористый, ч.д.а. по ГОСТ 4463.

5.2.8 Этилендиамин-N , N,N ¢ , N ¢ -тетрауксусной кислоты динатриевая соль, 2-водная (Трилон Б) по ГОСТ 10652.

Допускается использование реактивов более высокой квалификации, а также материалов с аналогичными или лучшими характеристиками.

6.1 При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

6.2 При работе с оборудованием необходимо соблюдать правила электробезопасности по ГОСТ Р 12.1.019.

6.3 Обучение работающих безопасности труда должно быть организовано в соответствии с ГОСТ 12.0.004.

6.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой потенциометрического анализа и изучивший правила эксплуатации используемого оборудования.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

относительная влажность воздуха

9.1 Отбор проб осуществляют в соответствии с ГОСТ Р 51592 и ГОСТ Р 51593. Отбор проб воды осуществляют во флаконы из полимерного материала (за исключением полифторэтиленового). Объём отбираемой пробы должен быть не менее 100 см 3 .

9.2 Максимально рекомендуемый срок хранения пробы 30 суток при температуре не выше 28 ° С.

9.3 При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— должность, фамилия сотрудника, отбирающего пробу.

Подготовку иономера или рН-метра-милливольтметра к работе проводят в соответствии с рабочей инструкцией по эксплуатации прибора.

10.2 Приготовление растворов

В мерную колбу вместимостью 500 см 3 помещают (37,5 ± 0,1) г хлористого аммония, (1,25 ± 0,01) г уксуснокислого аммония и (15,0 ± 0,1) г трилона Б. Соли растворяют в 400 см 3 дистиллированной воды и доводят объём раствора водой до метки. Срок хранения раствора — 3 месяца при комнатной температуре.

Из ГСО готовят градуировочный раствор с массовой концентрацией фторидов 20 мг/дм 3 . Далее из приготовленного раствора путем последовательных разбавлений готовят градуировочные растворы с массовыми концентрациями фторидов 2,0 и 0,15 мг/дм 3 . Срок хранения раствора с концентрацией 0,15 мг/дм 3 — 1 месяц при комнатной температуре, растворов с концентрациями 2,0 и 20,0 мг/дм 3 — 3 месяца при комнатной температуре.

Из ГСО готовят основной градуировочный раствор с массовой концентрацией фторидов 190 мг/дм 3 . Далее из основного раствора путем последовательных разбавлений в 10 раз готовят градуировочные растворы с массовыми концентрациями фторидов 19; 1,9 и 0,19 мг/дм 3 . Срок хранения раствора с концентрацией 0,19 мг/дм 3 — 1 месяц при комнатной температуре, растворов с концентрациями 1,9 и 19,0 мг/дм 3 — 3 месяца при комнатной температуре.

Примечание — Допускается приготовление основного градуировочного раствора (с массовой концентрацией фторид иона 190 мг/дм 3 ) из фторида натрия, высушенного предварительно при (105 ± 2) °С до постоянной массы. Для этого навеску (0,4199 ± 0,0005) г фтористого натрия растворяют в 1000 см 3 дистиллированной воды.

В мерной колбе вместимостью 500 см 3 в небольшом количестве дистиллированной воды растворяют (1,00 ± 0,01) г NaOH. Объём раствора доводят водой до метки. Раствор хранят в полиэтиленовом флаконе. Срок хранения — 6 месяцев при комнатной температуре.

10 .2.4 Приготовление раствора соляной кислоты молярной концентрации 1 моль/дм 3

В мерной колбе вместимостью 500 см 3 к небольшому количеству дистиллированной воды осторожно при перемешивании прибавляют 42,5 см 3 концентрированной соляной кислоты. Объём раствора доводят водой до метки. Срок хранения раствора — 6 месяцев при комнатной температуре.

10.3 Установление градуировочной характеристики

Градуировочную характеристику устанавливают каждые 3 месяца, а также при смене партии любого из реактивов и после ремонта потенциометра.

Для установления градуировочной характеристики в пластиковые стаканчики пипеткой наливают по 20 мл градуировочных растворов, приготовленных по 10.2.2.1, добавляют по 2 мл буферного раствора, опускают электрод в раствор с наименьшим содержанием фторидов. Перемешивая раствор с помощью магнитной мешалки, добиваются удаления пузырьков воздуха с торцевой поверхности электрода, и после выдержки 1 — 2 минуты измеряют значение потенциала. Измерение проводят последовательно в каждом растворе.

Градуировочную характеристику записывают в память прибора в соответствии с инструкцией по его эксплуатации.

Значение крутизны электродной функции должно быть (58 ± 2) мВ.

Для установления градуировочной характеристики, в пластиковые стаканчики наливают по 20 мл растворов приготовленных по 10.2.2.2, в каждый стаканчик добавляют по 2 мл буферного раствора. Последовательно, начиная с раствора с наименьшей концентрации фторидов, измеряют значение равновесного потенциала каждого раствора так же, как описано в 10.3.1. По полученным результатам строят градуировочный график в координатах: значение потенциала, мВ — pF (отрицательный логарифм концентрации фторид-ионов, -lg[ F — ], моль/дм 3 ).

10.4 Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочной характеристики проводят по одному градуировочному раствору перед выполнением серии анализов. Градуировочную характеристику считают стабильной в случае, если полученное значение концентрации градуировочного раствора отличается от аттестованного значения не более чем на 10 %.

Если условие стабильности градуировочной характеристики не выполняется для одного градуировочного раствора, необходимо выполнить повторное измерение для этого градуировочного раствора.

Если повторно контроль стабильности градуировочной характеристики дает неудовлетворительный результат, то выясняют и устраняют причины нестабильности и строят новый градуировочный график.

20 см 3 анализируемой пробы * помещают в пластиковый стаканчик, добавляют 2 см 3 буферного раствора, опускают электрод в анализируемый раствор при перемешивании, добиваясь удаления пузырьков воздуха с торцевой поверхности электрода. Через 1 — 2 минуты измеряют концентрацию фторидов в мг/дм 3 при работе на иономере, функционирующем в режиме измерения концентрации, или значение равновесного потенциала в мВ при работе на рН-метре-милливольтметре. В последнем случае по градуировочному графику находят pF.

По полученному значению pF (если измерение проводили на рН-метре-милливольтметре) пересчитывают концентрацию фторидов в мг/дм 3 с помощью таблицы в Приложении 2.

Если пробу разбавляли, то при вычислении результатов измерений концентрации фторидов в анализируемой пробе воды учитывают разбавление:

X — концентрация фторид-ионов в анализируемой пробе, мг/дм 3

XF — концентрация фторид-ионов, в разбавленной пробе (измеренная или найденная по градуировочному графику), мг/дм 3 ;

Vn — объём пробы, взятый для анализа, см 3 ;

Vk — объём колбы для разбавления, см 3 .

Результаты количественного анализа в протоколах анализов представляют в виде:

D = d´ 0,01 ´ XF — значение характеристики погрешности, мг/дм 3 ;

d — значение показателя точности, % (таблица 1).

Результаты измерений концентрации фторид-ионов при занесении в протокол анализа округляют с точностью:

при содержании от 0,15 до 10 мг/дм 3 — 0,01 мг/дм 3

при содержании свыше 10 мг/дм 3 — 0,1 мг/дм 3

14.1 При получении двух результатов измерений (Х1, Х2) в условиях повторяемости (сходимости) осуществляют проверку приемлемости результатов в соответствии с требованиями ГОСТ Р ИСО 5725-6 (раздел 5).

Результат измерений считают приемлемым при выполнении условия:

Значения пределов повторяемости ( r ) приведены в таблице 2.

14.2 При получении результатов измерений в двух лабораториях ( X лаб1 , Хлаб2) проводят проверку приемлемости результатов измерений в соответствии с требованиями ГОСТ Р ИСО 5725-6 (раздел 5).

Результат измерений считают приемлемым при выполнении условия:

Значения пределов воспроизводимости ( R ) приведены в таблице 2.

Таблица 2 — Пределы повторяемости и воспроизводимости результатов измерений

Предел повторяемости (при n = 2 и Р = 0,95), r, %

Предел воспроизводимости (при n = 2 и Р = 0,95), R, %

источник

1.1 Настоящий руководящий документ устанавливает методику выполнения измерений (далее — методика) массовой концентрации фторидов в природных и очищенных сточных водах в диапазоне от 0,19 до 190 мг/дм 3 потенциометрическим методом с ионселективным электродом.

При анализе проб воды с массовой концентрацией фторидов, превышающей 190 мг/дм 3 , допускается выполнение измерений после разбавления пробы дистиллированной водой таким образом, чтобы массовая концентрация фторидов в разбавленной пробе находилась в пределах указанного выше диапазона измеряемых концентраций.

1.2 Настоящий руководящий документ предназначен для использования в лабораториях, осуществляющих анализ природных и очищенных сточных вод.

В настоящем руководящем документе использованы ссылки на следующие нормативные документы:

ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007-76 ССБТ. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 17.1.5.04-81 Охрана природы. Гидросфера. Приборы и устройства для отбора, первичной обработки и хранения проб природных вод. Общие технические условия

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков

ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

ГОСТ Р 51592-2000 Вода. Общие требования к отбору проб

МИ 2881-2004 Рекомендация. ГСИ. Методики количественного химического анализа. Процедуры проверки приемлемости результатов анализа.

Примечание — Ссылки на остальные нормативные документы приведены в разделах 4, А.4.

3.1 При соблюдении всех регламентируемых методикой условий проведения измерений характеристики погрешности результата измерения не должны превышать значений, приведенных в таблице 1.

Таблица 1 — Диапазон измерений, значения характеристик погрешности и ее составляющих при доверительной вероятности Р = 0,95

Показатель повторяемости (среднеквадратическое отклонение повторяемости)

Показатель воспроизводимости (среднеквадратическое отклонение воспроизводимости)

Показатель правильности (границы систематической погрешности)

Показатель точности (границы погрешности)

При выполнении измерений в пробах с массовой концентрацией фторидов свыше 190 мг/дм 3 после соответствующего разбавления погрешность измерения массовой концентрации фторидов в исходной пробе находят по формуле

Читайте также:  Анализы на микробиологические показатели воды

где ± D 1 — показатель точности измерения массовой концентрации фторидов в разбавленной пробе, рассчитанный по уравнению таблицы 1;

Предел обнаружения фторидов потенциометрическим методом равен 0,1 мг/дм 3 .

3.2 Значения показателя точности методики используют при:

— оформлении результатов измерений, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения измерений;

— оценке возможности использования результатов измерений при реализации методики в конкретной лаборатории.

4.1.1 Иономер любого типа или рН-метр, работающий в режиме милливольтметра, снабжённый магнитной мешалкой (например, И-500, ТУ 4215-002-18294344-02; «Экотест-2000», ТУ 4215-005-41541647-99 и др.).

4.1.2 Электрод измерительный ЭЛИС-131F , ТУ 4214-015-35918409-2002, или другого типа с аналогичными характеристиками.

4.1.3 Электрод вспомогательный — хлорсеребряный электрод ЭВЛ-1МЗ, ТУ 25.05.2181-77, или другого типа с аналогичными характеристиками.

4.1.4 Весы лабораторные высокого (II) класса точности по ГОСТ 24104-2001.

4.1.5 Весы лабораторные среднего (III) класса точности по ГОСТ 24104-2001, с наибольшим пределом взвешивания 500 г.

4.1.6 Государственный стандартный образец состава раствора фторид-ионов, ГСО 7261-96 (далее — ГСО).

4.1.7 Термометр по ГОСТ 29224-91 с диапазоном измерения температур от 0 °С до 150 °С и ценой деления не более 1 °С.

4.1.8 Колбы мерные 2 класса точности исполнения 2, 2а по ГОСТ 1770-74, вместимостью 100 см 3 — 7 шт., 200 см 3 — 21 шт., 1000 см 3 — 1 шт.

4.1.9 Пипетки градуированные 2 класса точности исполнения 1, 2, ГОСТ 29227-91, вместимостью 2 см 3 — 2 шт., 25 см 3 — 5 шт.

4.1.10 Пипетки с одной отметкой 2 класса точности исполнения 2 по ГОСТ 29169-91, вместимостью 5 см 3 — 1 шт., 10 см 3 — 4 шт., 20 см 3 — 1 шт.

4.1.11 Цилиндры мерные исполнения 1, 3 по ГОСТ 1770-74, вместимостью 25 см 3 — 3 шт., 250 см 3 — 1 шт.

4.1.12 Стаканы В-1, ТХС, по ГОСТ 25336-82, вместимостью 50 см 3 — 30 шт., 100 см 3 — 1 шт., 1000 см 3 — 1 шт.

4.1.13 Стаканчики для взвешивания (бюксы) СВ-24/10, СВ-34/12 по ГОСТ 25336-82 — 2 шт.

4.1.14 Воронка лабораторная типа В по ГОСТ 25336-82, диаметром 56 мм — 1 шт., 75 мм — 1 шт.

4.1.15 Чашка выпарительная № 2 по ГОСТ 9147-80.

4.1.16 Эксикатор исполнения 2 с диаметром корпуса 140 мм или 190 мм по ГОСТ 25336-82.

4.1.17 Посуда полиэтиленовая (полипропиленовая) для хранения проб и растворов вместимостью 0,1; 0,25; 1 дм 3 .

4.1.18 Шкаф сушильный общелабораторного назначения.

4.1.19 Электроплитка с закрытой спиралью, ГОСТ 14919-83.

Примечание — Допускается использование других типов средств измерений, посуды и вспомогательного оборудования, в том числе импортных, с характеристиками не хуже, чем у приведенных в 4.1.

При выполнении измерений применяют следующие реактивы и материалы:

4.2.1 Натрий фтористый (натрия фторид) по ГОСТ 4463-76, ч.д.а. 99 %

4.2.2 Натрий хлористый (натрия хлорид) по ГОСТ 4233-77, х.ч.

4.2.3 Натрий уксуснокислый 3-водный (натрия ацетат гидрат) по ГОСТ 199-78, х.ч.

4.2.4 Натрий лимоннокислый 5,5-водный (натрия цитрат гидрат), ГОСТ 22280-76, ч.д.а.

4.2.5 Калий хлористый (калия хлорид) по ГОСТ 4234-77, х.ч.

4.2.6 Кислота уксусная по ГОСТ 61-75, х.ч.

4.2.7 Вода дистиллированная по ГОСТ 6709-72.

4.2.8 Фильтры бумажные обеззоленные «белая лента», ТУ 6-09-1678-86.

4.2.9 Фильтровальная бумага по ГОСТ 7584-89.

Примечание — Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже указанной в 4.2.

Выполнение измерений основано на изменении потенциала ионселективного электрода в зависимости от активности фторид-ионов в растворе. Измерения проводят в присутствии буферного раствора — индифферентного электролита, поддерживающего в анализируемом растворе определенное значение рН и ионной силы, что позволяет градуировать прибор в единицах концентрации, а не активности фторид-ионов. Концентрацию фторидов в пробе находят, исходя из градуировочной зависимости величины электродного потенциала от значения обратного логарифма активности (концентрации) фторид-ионов (pF). Потенциал ионселективного электрода зависит только от концентрации свободных фторид-ионов. Фториды, присутствующие во взвешенных веществах, либо связанные в прочные комплексы не влияют на величину потенциала электрода.

6.1 При выполнении измерений массовой концентрации фторидов в пробах природных и очищенных сточных вод соблюдают требования безопасности, установленные в национальных стандартах и соответствующих нормативных документах.

6.2 По степени воздействия на организм вредные вещества, используемые при выполнении измерений, относятся к 3 классу опасности по ГОСТ 12.1.007.

6.3 Содержание используемых вредных веществ в воздухе рабочей зоны не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005.

6.4 Особых требований по экологической безопасности не предъявляется.

К выполнению измерений допускаются лица со средним профессиональным образованием или без профессионального образования, но имеющие стаж работы в лаборатории не менее года и освоившие методику анализа.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

— температура окружающего воздуха (22 ± 5) °С;

— атмосферное давление от 84,0 до 106,7 кПа (от 630 до 800 мм рт. ст.);

— влажность воздуха не более 80 % при 25 °С;

— напряжение в сети (220 ± 10) В;

— частота переменного тока в сети питания (50 ± 1) Гц.

Отбор проб для определения фторидов производится в соответствии с ГОСТ 17.1.5.05 и ГОСТ Р 51592. Оборудование для отбора проб должно соответствовать ГОСТ 17.1.5.04 и ГОСТ Р 51592. Пробы помещают в полиэтиленовую или полипропиленовую посуду. В герметично закрытой посуде пробы допускается хранить до месяца. Объем отбираемой пробы не менее 50 см 3 .

10.1.1 Буферный раствор (рН 5,4 — 5,5)

В стакан вместимостью 1000 см 3 помещают 58,5 г хлорида натрия, 0,36 г цитрата натрия (Na 3 C 6 H 5 O 7 ×5,5H 2 O) и 102 г ацетата натрия (СН3СОО Na ×3Н2О), растворяют в дистиллированной воде и добавляют 14,4 см 3 ледяной уксусной кислоты. Полученный раствор переносят в мерную колбу вместимостью 1000 см 3 , дважды ополаскивая стакан дистиллированной водой. Раствор доводят дистиллиро ванной водой до метки на колбе и перемешивают. Хранят в полиэтиленовой посуде не более 1 мес.

10.1.2 Насыщенный раствор хлорида калия

В 140 см 3 дистиллированной воды при температуре 50 — 60 °С растворяют 60 г хлорида калия. После охлаждения используют раствор над осадком для заполнения вспомогательного электрода.

10.2.1 Градуировочные растворы готовят из ГСО с массовой концентрацией фторидов 1,00 мг/см 3 (молярной концентрацией 5,26 · 10 -2 моль/дм 3 ) или аттестованного раствора с массовой концентрацией фторидов 1,900 г/дм 3 (молярной концентрацией 1,00 — 10 -1 моль/дм 3 ). Методика приготовления аттестованного раствора приведена в приложении А.

10.2.2. Для приготовления градуировочного раствора № 1 с молярной концентрацией фторидов 1,00 — 10 -2 моль/дм 3 из ГСО отбирают 19,0 см 3 раствора ГСО с помощью чистой сухой градуированной пипетки вместимостью 25 см 3 , помещают его в мерную колбу вместимостью 100 см 3 , доводят дистиллированной водой до метки и перемешивают.

Для приготовления градуировочного раствора № 1 из аттестованного раствора отбирают пипеткой с одной отметкой 10,0 см 3 аттестованного раствора с молярной концентрацией 1,00 · 10 -1 моль/дм 3 , помещают его в мерную колбу вместимостью 100 см 3 , доводят дистиллированной водой до метки и перемешивают.

Полученному раствору приписывают величину pF равную 2,00.

10.2.3 Для приготовления градуировочного раствора № 2 с молярной концентрацией фторидов 1,00 · 10 -3 моль/дм 3 отбирают пипеткой с одной отметкой 10,0 см 3 градуировочного раствора № 1 с молярной концентрацией фторидов 1,00 · 10 -2 моль/дм 3 , помещают его в мерную колбу вместимостью 100 см 3 , доводят дистиллированной водой до метки и перемешивают. Полученному раствору приписывают величину pF равную 3,00.

10.2.4 Для приготовления градуировочного раствора № 3 с молярной концентрацией фторидов 2,00 · 10 -4 моль/дм 3 отбирают 2,0 см 3 градуировочного раствора № 1 с молярной концентрацией фторидов 1,00 · 10 -2 моль/дм 3 с помощью градуированной пипетки вместимостью 2 см 3 , помещают его в мерную колбу вместимостью 100 см 3 , доводят дистиллированной водой до метки и перемешивают. Полученному раствору приписывают величину pF равную 3,70.

10.2.5 Для приготовления градуировочного раствора № 4 с молярной концентрацией фторидов 1,00 · 10 -4 моль/дм 3 отбирают пипеткой с одной отметкой 10,0 см 3 градуировочного раствора № 2 с молярной концентрацией фторидов 1,00 · 10 -3 моль/дм 3 , помещают его в мерную колбу вместимостью 100 см 3 , доводят дистиллированной водой до метки и перемешивают. Полученному раствору приписывают величину pF равную 4,00.

10.2.6 Для приготовления градуировочного раствора № 5 с молярной концентрацией фторидов 5,00 · 10 -5 моль/дм 3 отбирают пипеткой с одной отметкой 5,0 см 3 градуировочного раствора № 2 с молярной концентрацией фторидов 1,00 · 10 -3 моль/дм 3 , помещают его в мерную колбу вместимостью 100 см 3 , доводят дистиллированной водой до метки и перемешивают. Полученному раствору приписывают величину pF равную 4,30.

10.2.7 Для приготовления градуировочного раствора № 6 с молярной концентрацией фторидов 2,00 · 10 -5 моль/дм 3 отбирают 2,0 см 3 градуировочного раствора № 2 с молярной концентрацией фторидов 1,00 · 10 -3 моль/дм 3 с помощью градуированной пипетки вместимостью 2 см 3 , помещают его в мерную колбу вместимостью 100 см 3 , доводят дистиллированной водой до метки и перемешивают. Полученному раствору приписывают величину pF равную 4,70.

10.2.8 Для приготовления градуировочного раствора № 7 с молярной концентрацией фторидов 1,00 · 10 -5 моль/дм 3 отбирают пипеткой с одной отметкой 10,0 см 3 градуировочного раствора № 4 с молярной концентрацией фторидов 1,00 · 10 -4 моль/дм 3 , помещают его в мерную колбу вместимостью 100 см 3 , доводят дистиллированной водой до метки и перемешивают. Полученному раствору приписывают величину pF равную 5,00.

10.2.9 Градуировочные растворы фторидов хранят в полиэтиленовой или полипропиленовой посуде с плотно закрывающейся пробкой. Градуировочный раствор № 1 хранят не более 3 мес, растворы № 2, 3 — не более 1 мес, растворы № 4, 5 — не более 2 недель, растворы № 6, 7 — не более 5 дней.

Подготовку прибора, измерительного и вспомогательного электродов к работе осуществляют в соответствии с руководством по их эксплуатации или паспортом.

Для каждого градуировочного раствора проводят по три параллельных измерения потенциала и за результат принимают среднее арифметическое. Градуировочную зависимость рассчитывают методом наименьших квадратов в координатах: значения pF градуировочных растворов (pF = -lg[F — ]) — соответствующие им значения потенциала в милливольтах.

Градуировочную зависимость устанавливают каждый раз при выполнении измерений массовой концентрации фторидов в пробах воды.

Если в анализируемых пробах массовая концентрация фторидов не превышает 10 мг/дм 3 , градуировочную зависимость допускается устанавливать, используя градуировочные растворы № 2 — 7.

10.4.2 Если руководством по эксплуатации иономера предусмотрен иной способ установления градуировочной зависимости (градуировки), то допускается устанавливать её в соответствии с руководством к данному иономеру. В том случае, когда градуировочную зависимость для конкретного прибора устанавливают по меньшему числу градуировочных растворов, чем предусмотрено в 10.4.1, после ее установления следует выполнить контроль стабильности градуировочной характеристики в соответствии с 10.5.

Средствами контроля являются градуировочные растворы № 1 — 7 по 10.2 (не менее 3-х). Градуировочная характеристика считается стабильной при выполнении условия

где X — результат контрольного измерения массовой концентрации фторидов в градуировочном растворе, мг/дм 3 ;

Cm — приписанное значение массовой концентрации фторидов в градуировочном растворе, мг/дм 3 ;

s R — показатель воспроизводимости для концентрации Cm, мг/дм 3 (таблица 1).

Если условие стабильности не выполняется для одного градуировочного раствора, необходимо выполнить повторное измерение этого раствора для исключения результата, содержащего грубую погрешность. При повторном невыполнении условия, выясняют причины нестабильности, устраняют их и повторяют измерения. Если градуировочная характеристика вновь не будет удовлетворять условию (1), устанавливают новую градуировочную зависимость, либо проводят измерения в режиме милливольтметра и устанавливают градуировочную зависимость согласно 10.4.1.

В три стакана вместимостью 50 см 3 градуированными пипетками или цилиндрами вместимостью 25 см 3 вносят по 15 см 3 анализируемой пробы и по 15 см 3 буферного раствора, перемешивают и выдерживают 15 мин. Стаканы устанавливают на магнитную мешалку, погружают в анализируемую пробу перемешивающий элемент, измерительный и вспомогательный электроды. Включают мешалку и проводят измерение потенциала измерительного электрода. Показания иономера записывают после установления постоянного значения потенциала. По окончании измерения электроды отмывают дистиллированной водой. Отмывание электродов происходит достаточно быстро при её трехкратной замене. Остатки воды с поверхности электрода удаляют фильтровальной бумагой. Проводят три параллельных измерения потенциала в анализируемой пробе воды.

Температура анализируемых проб не должна отличаться от температуры градуировочных растворов более, чем на ± 1 °С.

11.2.1 Выполнению измерений массовой концентрации фторидов с ионселективным электродом могут мешать вещества, образующие пленку на рабочей поверхности электрода. В таких случаях для выполнения измерений целесообразно использовать другую методику. Очень мутные пробы следует фильтровать через фильтр «белая лента». Первую порцию фильтрата отбрасывают.

11.2.2 Фториды образуют довольно прочные комплексы с рядом металлов. Наибольшее влияние при анализе природных и очищенных сточных вод оказывают высокие концентрации железа и алюминия. Добавление буферного раствора, содержащего в своем составе цитрат натрия, в значительной степени уменьшает их влияние за счет разрушения комплексов.

12.1 Значения pF в анализируемых пробах воды находят по градуировочной зависимости. Массовую концентрацию фторидов X, мг/дм 3 , рассчитывают по следующим соотношениям:

pF = -lg[ F — ]; [ F — ] = 10 — pF моль/дм 3 ; X = 10 — pF · 19,00 · 10 3 мг/дм 3 (3)

или находят по таблице, приведенной в приложении Б для значений pF в диапазоне от 4,00 до 5,00. Концентрацию фторидов в мг/дм 3 для значений pF от 3,0 до 4,0 и от 2,0 до 3,0 получают, увеличивая табличные значения в диапазоне от 4,00 до 5,00, имеющие одинаковые значения дробной части, в 10 и в 100 раз, соответственно. Например, pF, равный 4,40, соответствует 0,756 мг/дм 3 фторидов, pF, равный 3,40 соответствует 7,56 мг/дм 3 , pF, равный 2,40 соответствует 75,6 мг/дм 3 .

При использовании для выполнения измерений иономера, имеющего программу обработки данных, значение массовой концентрации фторидов считывают непосредственно с дисплея.

12.2 Результат измерений в документах, предусматривающих его использование, представляют в виде

(4)

где — среднее арифметическое значение трех результатов, разность между которыми не превышает предела повторяемости rn (3,31 · s r ). При превышении предела повторяемости следует поступать в соответствии с 13.2.

± D — границы характеристики погрешности результатов измерений для данной массовой концентрации фторидов (таблица 1).

Численные значения результата измерения должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности, которые не должны содержать более двух значащих цифр.

Читайте также:  Анализы на содержание железа в воде

12.3 Допустимо представлять результат в виде:

(5)

где ± D л — границы характеристики погрешности результатов измерений, установленные при реализации методики в лаборатории и обеспечиваемые контролем стабильности результатов измерений.

12.4 Результаты измерений оформляют протоколом или записью в журнале, по формам, приведенным в Руководстве по качеству лаборатории.

13.1.1 Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:

— оперативный контроль исполнителем процедуры выполнения измерений (на основе оценки повторяемости, погрешности при реализации отдельно взятой контрольной процедуры);

— контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, погрешности).

13.1.2 Периодичность контроля исполнителем процедуры выполнения измерений, а также реализуемые процедуры контроля стабильности результатов выполняемых измерений регламентируются в Руководстве по качеству лаборатории.

13.2.1 Контроль повторяемости осуществляют для каждого из результатов измерений, полученных в соответствии с методикой. Для этого отобранную пробу воды делят на три части, и выполняют измерения в соответствии с разделом 11.

13.2.2 Результат контрольной процедуры r к , мг/дм 3 рассчитывают по формуле

где Хмакс, Хмин — максимальный и минимальный результаты измерений массовой концентрации фторидов в пробе, мг/дм 3 .

13.2.3 Предел повторяемости rn, мг/дм 3 рассчитывают по формуле

13.2.4 Результат контрольной процедуры должен удовлетворять условию

13.2.5 При несоблюдении условия (8) выполняют еще три измерения и сравнивают разницу между максимальным и минимальным результатами с нормативом контроля равным 4,03 · s r . В случае повторного превышения предела повторяемости, поступают в соответствии с разделом 5 ГОСТ Р ИСО 5725-6.

13.3 Алгоритм оперативного контроля погрешности измерений с использованием метода добавок совместно с методом разбавления проб

13.3.1 Оперативный контроль погрешности измерений с использованием метода добавок совместно с методом разбавления пробы проводят, если массовая концентрация фторидов в рабочей пробе составляет 0,5 мг/дм 3 и более. В противном случае оперативный контроль проводят с использованием метода добавок согласно 13.4. Для введения добавок используют ГСО или аттестованный раствор фторидов (приложение А).

13.3.2 Оперативный контроль исполнителем процедуры выполнения измерений проводят путем сравнения результатов отдельно взятой контрольной процедуры с нормативом контроля К1.

13.3.3 Результат контрольной процедуры , мг/дм 3 , рассчитывают по формуле

(9)

где — среднее арифметическое результатов контрольных измерений массовой концентрации фторидов в пробе, разбавленной в h раз, с известной добавкой, мг/дм 3 ;

— среднее арифметическое результатов контрольных измерений массовой концентрации фторидов в пробе, разбавленной в h раз, мг/дм 3 ;

— среднее арифметическое результатов контрольных измерений массовой концентрации фторидов в рабочей пробе, мг/дм 3 ;

С — концентрация добавки, мг/дм 3 .

13.3.4 Норматив контроля К1, мг/дм 3 , рассчитывают по формуле

(10)

где , и — значения характеристик погрешности результатов измерений, установленные при реализации методики в лаборатории, соответствующие массовой концентрации фторидов в разбавленной пробе, разбавленной пробе с добавкой, рабочей пробе, мг/дм 3 .

Примечание — Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения: с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов измерений.

13.3.5 Если результат контрольной процедуры удовлетворяет условию:

процедуру анализа признают удовлетворительной.

При невыполнении условия (11) контрольную процедуру повторяют. При повторном невыполнении условия (11), выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

13.4.1 Контроль исполнителем процедуры выполнения измерений проводят путем сравнения результатов отдельно взятой контрольной процедуры Кк с нормативом контроля К.

13.4.2 Результат контрольной процедуры Кк, мг/дм 3 , рассчитывают по формуле

(12)

где — среднее арифметическое результатов контрольных измерений массовой концентрации фторидов в пробе с известной добавкой, мг/дм 3 .

13.4.3 Норматив контроля погрешности К, мг/дм 3 , рассчитывают по формуле

(13)

где — значение характеристики погрешности результатов измерений, установленное при реализации методики в лаборатории и соответствующие массовой концентрации фторидов в пробе с известной добавкой, мг/дм 3 .

13.4.4 Если результат контрольной процедуры удовлетворяет условию

процедуру признают удовлетворительной.

При невыполнении условия (14) контрольную процедуру повторяют. При повторном невыполнении условия (14), выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

14.1 Расхождение между результатами измерений, полученными в двух лабораториях, не должно превышать предела воспроизводимости R. При выполнении этого условия приемлемы оба результата измерений и в качестве окончательного может быть использовано их общее среднее значение. Значение предела воспроизводимости рассчитывают по формуле

14.2 При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов измерений согласно разделу 5 ГОСТ Р ИСО 5725-6 или МИ 2881.

14.3 Проверка приемлемости проводится при необходимости сравнения результатов измерений, полученных двумя лабораториями.

А.1 Назначение и область применения

Настоящая методика регламентирует процедуру приготовления аттестованных растворов фторидов, предназначенных для установления градуировочных характеристик приборов и контроля точности результатов измерений массовой концентрации фторидов в природных и очищенных сточных водах с ионселективным электродом.

А.2 Метрологические характеристики

Метрологические характеристики аттестованных растворов приведены в таблице А.1.

Значение характеристики для аттестованного раствора

Аттестованное значение молярной концентрации фторидов, моль/дм 3

Границы погрешности установления аттестованного значения молярной концентрации фторидов (Р = 0,95), моль/дм 3

Аттестованное значение массовой концентрации фторидов, г/дм 3

Границы погрешности установления аттестованного значения массовой концентрации фторидов (Р = 0,95), г/дм 3

А.3 Средства измерений, вспомогательные устройства

А.3.1 Весы лабораторные высокого (II) класса точности по ГОСТ 24104-2001.

А.3.2 Колбы мерные 2 класса точности по ГОСТ 1770-74, вместимостью 200 см 3 — 2 шт.

А.3.3 Пипетка с одной отметкой по ГОСТ 29169-91, вместимостью 20 см 3 .

А.3.4 Стаканчик для взвешивания (бюкс), СВ-34/12 по ГОСТ 25336-82.

А.3.5 Воронка лабораторная по ГОСТ 25336-82, диаметром 75 мм.

А.3.5 Чашка выпарительная № 2 по ГОСТ 9147-80.

А.3.6 Эксикатор исполнения 2, диаметром корпуса 190 мм по ГОСТ 25336-82.

А.3.7 Шкаф сушильный общелабораторного назначения.

А.4.1 Натрий фтористый (фторид натрия) по ГОСТ 4463-76, ч.д.а. Основное вещество NaF, массовая доля которого не менее 99 %, молекулярная масса 41,99.

А.4.2 Вода дистиллированная по ГОСТ 6709-72.

А.5 Процедура приготовления аттестованных растворов

А.5.1 Приготовление аттестованного раствора фторидов AP1-F

На весах высокого класса точности взвешивают в бюксе с точностью до четвертого знака после запятой 8,398 г фторида натрия, предварительно высушенного при температуре 110 °С в течение 2 ч. Навеску количественно переносят в мерную колбу вместимостью 200 см 3 , растворяют в дистиллированной воде, доводят раствор до метки на колбе и перемешивают.

Полученному раствору приписывают молярную концентрацию фторидов 1,000 моль/дм 3 , массовую концентрацию 19,00 г/дм 3 .

А.5.2 Приготовление аттестованного раствора фторидов AP2-F

В мерную колбу вместимостью 200 см 3 вносят 20,0 см 3 раствора AP 1-F пипеткой с одной отметкой. Объем раствора доводят до метки на колбе дистиллированной водой и перемешивают.

Полученному раствору приписывают молярную концентрацию фторидов 0,1000 моль/дм 3 , массовую концентрацию 1,900 г/дм 3 .

А.6 Расчет метрологических характеристик аттестованных растворов

А.6.1 Расчет метрологических характеристик аттестованного раствора AP 1-F

Аттестованное значение молярной, M 1 , моль/дм 3 , и массовой концентрации фторидов, С1, г/дм 3 , рассчитывают по формулам

(А.1)

где т — масса навески фторида натрия, г;

V — вместимость мерной колбы, см 3 ;

19,00 и 41,99 — масса моля фторид-иона и фторида натрия, соответственно, г/моль.

Расчет предела возможных значений погрешности установления молярной D , моль/дм 3 , и массовой D 1 , г/дм 3 , концентрации фторидов в растворе AP 1-F проводится по формулам:

(А.2)

где D m — предельное значение возможного отклонения массовой доли основного вещества в реактиве от приписанного значения m , %;

m — массовая доля основного вещества в реактиве, приписанная реактиву квалификации ч.д.а., %;

D т — предельная возможная погрешность взвешивания, г;

D V — предельное значение возможного отклонения объема мерной колбы от номинального значения, см 3 .

Погрешности установления молярной и массовой концентрации фторидов в растворе AP1- F равны

А.6.2 Расчет метрологических характеристик аттестованного раствора АР2-F

Аттестованное значение молярной М2, моль/дм 3 , и массовой концентрации фторидов С2, г/дм 3 , рассчитывают по формулам

(A.3)

где V 1 — объем раствора AP1- F , отбираемый пипеткой, см 3 .

Расчет предела возможных значений погрешности установления молярной D , моль/дм 3 , и массовой D 2 , г/дм 3 , концентрации фторидов в растворе АР2- F проводится по формулам

(А.4)

где — предельное значение возможного отклонения объема V 1 от номинального значения, см 3 .

Погрешности установления молярной и массовой концентрации фторидов в растворе АР2-F равны

А.7 Требования безопасности

Необходимо соблюдать общие требования техники безопасности при работе в химических лабораториях.

А.8 Требования к квалификации исполнителей

Аттестованные растворы может готовить инженер или лаборант со средним профессиональным образованием, прошедший специальную подготовку и имеющий стаж работы в химической лаборатории не менее 6 месяцев.

А.9 Требования к маркировке

На склянки с аттестованными растворами должны быть наклеены этикетки с указанием условного обозначения аттестованного раствора, величины молярной и массовой концентрации фторидов в растворе, погрешности ее установления и даты приготовления.

Аттестованные растворы хранят в плотно закрытой полиэтиленовой или полипропиленовой посуде, мес, не более:

источник

Содержание фтора в природных и питьевых водах составляет особую проблему. Фтор широко распространен в природе. Его содержание в земной коре 0.01%. Чаще всего фтор встречается в виде фторидов с металлами. Много фтора содержат некоторые слюды, лепидолит, турмалин, фосфорит, фторапатит, гранит.

Воды поверхностных источников характеризуются преимущественно низким содержанием фтора (0.3-0.4 мг/л). Высокие содержания фтора в поверхностных водах являются следствием сброса промышленных фторсодержащих сточных вод или контакта вод с почвами, богатыми соединениями фтора. Максимальные концентрации фтора (5-27 мг/л и более) определяют в артезианских и минеральных водах, контактирующих с фторсодержащими водовмещающими породами.

Как недостаток, так и избыток фтора могут приводить к серьезным заболеваниям. Содержание фтора в питьевой должно поддерживаться в пределах 0.7 — 1.5 мг/л (в зависимости от климатических условий).

При гигиенической оценке поступления фтора в организм важное значение имеет содержание микроэлемента в суточном рационе, а не в отдельных пищевых продуктах. В суточном рационе содержится от 0.54 до 1.6 мг фтора (в среднем 0.81 мг). Как правило, с пищевыми продуктами в организм человека поступает в 4-6 раз меньше фтора, чем при употреблении питьевой воды, содержащей оптимальные его количества (1 мг/л).

Повышенное содержание фтора в воде (более 1.5 мг/л) оказывает вредное влияние на людей и животных, у населения развивается эндемический флюороз («пятнистая эмаль зубов»), рахит и малокровие. Отмечается характерное поражение зубов, нарушение процессов окостенения скелета, истощение организма. Содержание фтора в питьевой воде лимитируется. Установлено, что систематическое использование населением фторированной воды снижает и уровень заболеваний, связанных с последствиями одонтогенной инфекции (ревматизм, сердечно-сосудистая патология, заболевания почек и др.). Недостаток фтора в воде (менее 0.5 мг/л) приводит к кариесу.

Фтор — один из немногих элементов, которые лучше усваиваются организмом из воды. Оптимальная доза фтора в питьевой воде составляет 0.7 — 1.2 мг/л.

ПДК фтора составляет 1.5 мг/л.

Определение концентрации фторид-ионов в растворе с помощью ионоселективного электрода

Оборудование и реактивы: 1) иономер универсальный; 2) электроды: фторидный (индикаторный), хлорсеребряный (сравнения); 3) термокомпенсатор; 4) штатив лабораторный; 5) стаканчики полиэтиленовые на 50 см 3 ; 6) стакан для слива; 7) промывалка; 8)фильтровальная бумага; 9) бюреьки на 50 см 3 ; 10) мерные колбы на 100 см 3 и 500см 3 ; 11) 0.1 М раствор фторида натрия; 12) ацетат натрия; 13) цитрат натрия; 14) стандартный раствор динатриевой соли этилендиаминтетрауксусной кислоты (ЭДТА); концентрированная уксусная кислота.

1) Приготовление растворов фторида натрия:

0.1 М — в мерную колбу на 1 дм помещают 4.19990 г высушенного при 105 С о (до постоянной массы) фторида натрия. Растворяют навеску и доводят объём водой до метки;

0.01 М — берут 10.00 см приготовленного стандартного 0.1 М раствора и разбавляют до 100 см водой в мерной колбе;

0.001 М — готовят из 0.01 М раствора. Берут 10 см и разбавляют дистиллированной водой до метки;

0.0001 М — готовят из 0,001 М раствора;

0.00001 М — отбирают пипеткой 10 см 0.0001 М раствора, переносят в мерную колбу на 100 см и разбавляют водой до метки.

2) Приготовление ацетатно-цитратного буферного раствора:

в мерную колбу на 500 см помещают 52.0 г ацетата натрия, 29.2 г хлорида натрия, 3.0 г цитрата натрия, 0.3 г динатриевой соли этилендиаминтетрауксусной кислоты (ЭДТА), 8.0 см ледяной усусной кислоты и приливают 200-300 см дистиллированной воды. После растворения компонентов доводят объем раствора до метки дистиллированной водой.

3) Построение градуировачного графика.

В пяти полиэтиленовых стаканчиках готовят пробы. В каждый наливают по 10 см буферного раствора и 20 см 0.1, 0.01, 0.0001, 0.00001 М растворов фторида натрия соответственно в 1-5 стаканчики. Поочередно измеряют ЭДС в каждом полученном растворе (стаканчике). Измерения следует проводить через 5 минут после погружения электродов при работающей мешалке.

Строится градуировочная кривая — зависимость потенциала фторид — селективного электрода от pF = — lg CF

4) Определение содержания фтора в пробе по градуировочной зависимости.

Фотометрический метод определения фторидов

Метод основан на способности фторид — иона образовывать растворимый в воде тройной комплекс сиренево — синего цвета, в состав которого входят лантан, ализарин комплексон и фторид.

Оборудование и реактивы: фотометр с длинной волны 590нм, ализаринокомплексон, буферныйт раствор, лантан, дистиллированная вода кювета 50.

Делается анализ параллельно с контрольной пробой. В первую мерную колбу на 50 мл наливаем 25 мл исследуемой воды, а во вторую дистиллированную воду и добавляем по 6.5 мл раствора ализаринкомплексона, тщательно перемешав, добавляем по 1.5 мл буферного раствора. Затем добавляем по 5 мл лантана и доводим до метки дистиллированной водой. Тщательно перемешиваем и ставим на один час в тёмном месте. Далее определяем результат на ФЭКе. Результат рассчитываем по формуле:

где С — массовая концентрация фторидов;

D — оптическая плотность, найденная по ФЭКу.

источник

Настоящий документ устанавливает фотометрическую методику количественного химического анализа проб природных и сточных вод для определения фторид-ионов при массовой концентрации от 0,1 до 1,0 мг/дм 3 фотометрическим методом с лантан (или церием) — ализаринкомплексоном.

Если массовая концентрация фторид-ионов в анализируемой пробе превышает верхнюю границу диапазона, то допускается разбавление пробы таким образом, чтобы его концентрация соответствовала регламентированному диапазону.

Если массовая концентрация фторид-ионов меньше нижней границы диапазона, то пробу концентрируют упариванием.

Процедура разбавления или концентрирования пробы не должна оказывать влияние на метрологические характеристики методики.

Читайте также:  Анализы на определение подтекания околоплодных вод

Наибольшее мешающее влияние оказывает алюминий, который связывает фторид-ионы с образованием комплексов AlF 2+ и AlF 2 + . Если концентрация алюминия в анализируемой пробе не превышает 1/3 концентрации фторид-ионов, его присутствием можно пренебречь. При равных концентрациях алюминия и фтора результат определения фторид-ионов получается на 20 — 30 % заниженным.

Избавление от мешающих влияний описано в п. 9 МВИ.

При выполнении измерений на уровне ПДК необходимо пользоваться другой аттестованной методикой.

Фотометрический метод определения массовой концентрации фторид-ионов основан на взаимодействии их с лантан (или церием)-ализаринкомплексоном. При этом образуется тройной комплекс — сиренево-синее соединение, интенсивность окраски которого измеряется при длине волны 610 — 620 нм.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1.

Таблица 1 — Диапазон измерений, значения показателей повторяемости, воспроиз водимости и точности методики

Показатель повторяемости (относительное значение среднеквадратического отклонения повторяемости), σr, %

Показатель воспроизводимости (относительное значение среднеквадратического отклонения воспроизводимости), σR, %

Показатель точности (границы относительной погрешности при вероятности Р = 0,95),

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

— Спектрофотометр или фотоэлектроколориметр, позволяющий измерять оптическую плотность при длине волны λ = 610 — 620 нм.

— Кюветы с толщиной оптического слоя 10 мм.

— Весы лабораторные общего назначения, например, ВЛР-200 по ГОСТ 24104-2001.

— ГСО состава фторид-ионов с погрешностью аттестованного значения не более 1 % при Р = 0,95.

— Колбы мерные 2-50-2, 2-100-2, 2-1000-2 по ГОСТ 1770-74.

— Цилиндры или мензурки 1(3)-50, 1(3)-100 по ГОСТ 1770-74.

— Пипетки градуированные 2 кл. точности вместимостью 1, 5, 10 см 3 по ГОСТ 29227-91.

— Стаканы химические В-1-100 ТХС по ГОСТ 25336-82.

— Стаканы для взвешивания СВ по ГОСТ 25336-82.

— Полиэтиленовые бутыли для отбора проб и хранения растворов.

— Склянки из темного стекла для хранения растворов.

— Ализаринкомплексон по ТУ 6-09-4547-77.

— Натрий уксуснокислый (ацетат натрия) по ГОСТ 199-78.

— Лантан азотнокислый 6-водный по ТУ 6-09-4676-78.

— Церий азотнокислый 6-водный по ТУ 6-09-4081-75.

— Кислота уксусная (ледяная) по ГОСТ 61-75.

— Бумага индикаторная универсальная по ТУ 6-09-1181-76.

1. Допускается применять средства измерений, устройства и материалы отличные от указанных, но не уступающие им по метрологическим и техническим характеристикам.

Средства измерений должны быть поверены в установленные сроки.

2. Все реактивы, используемые для анализа, должны быть квалификации х.ч. или ч.д.а.

4.1 При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76.

4.2 Электробезопасность при работе с электроустановками по ГОСТ 12.1.019-79.

4.3 Организация обучения работников безопасности труда по ГОСТ 12.0.004-90.

4.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.

Выполнение измерений может производить химик-аналитик, владеющий техникой фотометрического анализа и изучивший инструкцию по эксплуатации спектрофотометра или фотоколориметра.

Измерения проводятся в нормальных лабораторных условиях:

— Температура окружающего воздуха (22 ± 5) °С.

— Атмосферное давление (84 — 106) кПа.

— Относительная влажность не более 80 % при t = 25 °C .

— Частота переменного тока (50 ± 1) Гц.

— Напряжение в сети (220 ± 22) В.

7.1 Отбор проб производят в соответствии с ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб».

7.2 Пробы воды отбирают в чистые полиэтиленовые бутыли предварительно ополоснутые отбираемой водой. Объем отобранной пробы должен быть не менее 200 см 3 .

7.3 Пробы не консервируют. Анализ проб должен быть произведен в течение 24 часов.

7.4 При отборе проб составляется акт отбора проб по утвержденной форме, в котором указывается:

— цель анализа , предполагаемые загрязнители,

— должность, фамилия отбиравшего пробу, дата.

Подготовку прибора к работе проводят в соответствии с рабочей инструкцией по эксплуатации.

8.2 Приготовление растворов

В мерную колбу вместимостью 1 дм 3 помещают 0,1927 г ализаринкомплексона и 50 — 100 см 3 дистиллированной воды. К полученной суспензии добавляют 0,1 н раствор гидроксида натрия до растворения осадка. Когда весь реактив растворится, раствор разбавляют приблизительно до 500 см 3 дистиллированной водой, прибавляют 0,25 г ацетата натрия и приливают по каплям 0,1 н раствор соляной кислоты до тех пор, пока окраска раствора не перейдет из красной в желтую — это соответствует рН ≈ 5,0 (рН определяют по индикаторной бумажке). Затем раствор доводят до метки дистиллированной водой. Хранят раствор в склянке из темного стекла. Срок хранения 2 месяца.

4,0 г гидроксида натрия помещают в мерную колбу вместимостью 1 дм 3 и доводят до метки дистиллированной водой. Раствор хранят в полиэтиленовой бутыли. Срок хранения 2 месяца.

В мерную колбу вместимостью 1 дм 3 помещают 500 см 3 дистиллированной воды и приливают при перемешивании 8,3 см 3 концентрированной соляной кислоты. Раствор доводят до метки дистиллированной водой.

Срок хранения не ограничен.

0,2165 г лантана азотнокислого (или 0,2171 г церия азотнокислого) помещают в мерную колбу вместимостью 1 дм 3 , растворяют в небольшом количестве дистиллированной воды и доводят до метки дистиллированной водой.

105 г уксуснокислого натрия растворяют в 500 см 3 дистиллированной воды, переносят в мерную колбу вместимостью 1 дм 3 , приливают 100 см 3 ледяной уксусной кислоты и доводят до метки дистиллированной водой. Раствор хранят в полиэтиленовой посуде. Срок хранения 2 месяца.

Раствор готовят из ГСО с аттестованным содержанием фторид-ионов в соответствии с прилагаемой к образцу инструкцией. Раствор хранят в полиэтиленовой бутыли. Срок хранения 1 месяц.

В мерную колбу вместимостью 100 см 3 помещают 1 см 3 ГСО раствора фторид-ионов и доводят до метки дистиллированной водой. Раствор хранят в полиэтиленовой бутыли. Срок хранения 1 неделя.

Примечание . При отсутствии ГСО допускается приготовление рабочего градуировочного раствора фторид-ионов из фторида натрия.

0,2210 г фторида натрия помещают в мерную колбу вместимостью 1 дм 3 , растворяют в небольшом количестве дистиллированной воды и доводят до метки дистиллированной водой.

Отбирают 10 см 3 полученного раствора, переносят в мерную колбу вместимостью 100 см 3 и доводят до метки дистиллированной водой.

Раствор хранят в полиэтиленовой бутыли. Срок хранения 1 неделя.

8.3 Построение градуировочного графика

Для построения градуировочного графика необходимо приготовить образцы для градуировки с массовой концентрацией фторид-ионов 0,1 — 1,0 мг/дм 3 . Условия анализа, его проведение должны соответствовать п.п. 6 и 10 МВИ.

Состав и количество образцов для градуировки приведены в таблице 2. Погрешность, обусловленная процедурой приготовления образцов для градуировки, не превышает 2,5 %.

Таблица 2Состав и количество образцов для градуировки

Массовая концентрация фторид-иона в градуировочных растворах, мг/дм 3

Аликвотная часть (см 3 ) рабочего градуировочного раствора фторид-ионов с концентрацией 0,01 мг/см 3 , помещаемая в мерную колбу вместимостью 50 см 3

Анализ образцов для градуировки проводят в порядке возрастания их концентрации. Для построения градуировочных графиков каждую искусственную смесь необходимо фотометрировать 3 раза с целью исключения случайных результатов и усреднения данных. При построении градуировочных графиков по оси ординат откладывают значения оптической плотности, а по оси абсцисс — величину концентрации вещества в мг/дм 3 .

8.4 Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочной характеристики проводят не реже одного раза в квартал, а также после ремонта или поверки прибора, при использовании новой партии реактивов. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведённых в таблице 2).

Градуировочную характеристику считают стабильной при выполнении следующего условия:

(1)

где X — результат контрольного измерения содержания фторид-ионов в образце для градуировки, мг/дм 3 ;

С — аттестованное значение массовой концентрации фторид-ионов в образце для градуировки, мг/дм 3 ;

— среднеквадратическое отклонение внутрилабораторной прецизионности, установленное при реализации методики в лаборатории.

Примечание . Допустимо среднеквадратическое отклонение внутрилабораторной прецизионности при внедрении методики в лаборатории устанавливать на основе выражения: , с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Значения σR приведены в Таблице 1.

Если условие стабильности градуировочной характеристики не выполняется только для одного образца, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины ее нестабильности с использованием других образцов, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график.

Мешающее влияние алюминия устраняют добавлением ацетилацетона, образующего с алюминием устойчивый бесцветный комплекс. В присутствии этого реагента допустимо 10-кратное по отношению к фторид-ионам количество алюминия. Ацетилацетон добавляют в количестве 2 см 3 на 25 см 3 анализируемой пробы, содержащей от 3 до 50 мкг фторид-ионов.

В мерную колбу вместимостью 50 см 3 помещают такой объем пробы, чтобы в ней содержалось от 5 до 50 мкг фторид-ионов, но не больше 35 см 3 .

Приливают 5 см 3 0,0005 моль/дм 3 раствора ализаринкомплексона, 1 см 3 ацетатного буферного раствора, 5 см 3 азотнокислого лантана или церия (порядок прибавления реактивов следует строго соблюдать), доливают до метки дистиллированной водой, тщательно перемешивают и оставляют на 1 час в темном месте. Затем переносят окрашенный раствор в кювету с толщиной поглощающего слоя 10 мм и измеряют оптическую плотность при длине волны 610 — 620 нм. В качестве раствора сравнения используется холостая проба.

Массовую концентрацию фторид-ионов находят по градуировочному графику.

Содержание фторид-ионов X (мг/дм 3 ) рассчитывают по формуле:

где (2)

С — массовая концентрация фторид-иона, найденная по градуировочному графику, мг/дм 3 ;

V — объем пробы, взятой для определения, см 3 ;

50 — объем мерной колбы, см 3 .

За результат измерений Х ср принимают среднее арифметическое значение двух параллельных определений Х1 и X 2

(3)

для которых выполняется следующее условие:

где r — предел повторяемости, значения которого приведены в таблице 3.

Таблица 3значения предела повторяемости при вероятности Р = 0,95

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r, %

При невыполнении условия (4) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6.

Расхождение между результатами измерений, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 4.

Таблица 4значения предела воспроизводимости при вероятности Р = 0,95

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6.

Результат измерений X , мг/дм 3 в документах, предусматривающих его использование, может быть представлен в виде:

где Δ — показатель точности методики.

Значение Δ рассчитывают по формуле:

Значение δ приведено в таблице 1.

Допустимо результат измерений в документах, выдаваемых лабораторией, представлять в виде:

где: X — результат измерений, полученный в соответствии с прописью методики;

± Δ л — значение характеристики погрешности результатов анализа, установленное при реализации методики в лаборатории и обеспечиваемое контролем стабильности результатов анализа.

Примечание . При представлении результата анализа в документах, выдаваемых лабораторией, указывают:

— количество результатов параллельных определений, использованных для расчета результата анализа;

— способ определения результата измерений (среднее арифметическое значение или медиана результатов параллельных определений).

Контроль качества результатов анализа при реализации методики в лаборатории предусматривает:

— оперативный контроль процедуры анализа (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);

— контроль стабильности результатов анализа (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

13.1 Алгоритм оперативного контроля процедуры анализа с использованием метода добавок

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры Кк с нормативом контроля К.

Результат контрольной процедуры К к рассчитывают по формуле

(5)

где — результат анализа массовой концентрации фторид-ионов в пробе с известной добавкой — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (4) раздела 11, мг/дм 3 ;

Хср — результат анализа массовой концентрации фторид-ионов в исходной пробе — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (4) раздела 11, мг/дм 3 ;

С д — величина добавки, мг/дм 3 .

Норматив контроля К рассчитывают по формуле

(6)

где , — значения характеристики погрешности результатов анализа, установленные в лаборатории при реализации методики, соответствующие массовой концентрации фторид-ионов в пробе с известной добавкой и в исходной пробе соответственно.

Примечание . Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: Δл = 0,84 ∙ Δ, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

При невыполнении условия (7) контрольную процедуру повторяют. При повторном невыполнении условия (7) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

13.2 Алгоритм оперативного контроля процедуры анализа с применением образцов для контроля

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры Кк с нормативом контроля К.

Результат контрольной процедуры Кк рассчитывают по формуле:

где Х ср — результат анализа массовой концентрации фторид-ионов в образце для контроля — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (4) раздела 11, мг/дм 3 ;

С — аттестованное значение образца для контроля, мг/дм 3 .

Норматив контроля К рассчитывают по формуле

где ± Δ л — характеристика погрешности результатов анализа, соответствующая аттестованному значению образца для контроля.

Примечание . Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: Δл = 0,84 ∙ Δ, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

При невыполнении условия (10) контрольную процедуру повторяют. При повторном невыполнении условия (10) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Периодичность оперативного контроля процедуры анализа, а также реализуемые процедуры контроля стабильности результатов анализа регламентируют в Руководстве по качеству лаборатории.

источник