Меню Рубрики

Гравиметрический метод анализа питьевой воды

Анализ питьевой воды позволяет точно понять, пригодна ли она для употребления человеком или может быть опасна для здоровья. Лабораторные исследования могут проводиться в разных вариантах, все зависит от поставленной задачи (от простого анализа на жёсткость до многоступенчатого исследования пробы на включение в состав редких элементов). Выбор методики зависит от типа пробы (из водопровода или забор на природе) и цели исследования. Есть контроль качества, соответствие нормам, степень превышения включения в состав примесей относительно ПДК. Стоит подробнее изучить вопросы о том, что включает в себя анализ, как проводится и какова его стоимость.

Основа в осуществлении анализов – полная качественная оценка качества воды из скважины, пробы из природного источника, осадков атмосферы, а также вод из стоков. Сегодня многие компании предоставляют квалифицированные услуги по определению физических и химических показателей качества и пригодности для употребления воды.

Благодаря анализу воды можно определить, пригодна ли она для употребления или нет

Обычно проводится проверка вод:

  1. Для питья центрального и нецентрального трубопровода снабжения водой. Эта жидкость, нужная для употребления людьми внутрь, в бытовых целях, для применения в процессе перерабатывания продовольствия и производства пищи. Регламент — СанПиН 2.1.4.1074-01.
  2. Из природных источников (поверхностная, подземная), осадки атмосферы. Задача охраны вод на поверхности от загрязнения актуальны для России, особенно для регионов вдоль реки Волги. Исследования поверхностных вод в лаборатории выполняются с целью выявления качества жидкости для питья и бытовых нужд, контроля за загрязнением производством, стоками в быту, а также для выявления качества объектов рыбно-хозяйственного назначения.
  3. Вода сточная.

При сбрасывании сточных вод в канализационную сеть необходимо проводить проверку результативности очищения и соответствия стоков прописанным в законе нормам. Проверка должна проводиться регулярно, сроки также указаны в законодательных документах.

Первостепенно нужно определение элементарного состава воды (30 самых распространенных химических элементов). Второй момент — выявление присутствия в нем дополнительных химических веществ, если это нужно или если проба имеет особенности (забор воды из грязных водоносных горизонтов или стоки промышленного предприятия).

В целом мощности хороших лабораторий дают возможность выполнять анализ проб на выявление 72 химических элементов разного рода.

Залог успеха и правильного исследования жидкости – это качественно взятая проба. Важно обращать внимание на требования к забору проб для исследования.\

Для проведения анализа воды нужно обладать специальными знаниями и оборудованием

Требования к таре и объёму воды следующие:

  1. Применение стерильной емкости из пластика или тары из-под дистиллированной воды. Запрещается использовать в качестве тары емкости из-под газировки, бутылки, в которых находились агрессивные среды.
  2. Минимум воды для исследования, взятой из скважины, колодца, крана – не меньше 0,5 л.
  3. Перед тем как забирать пробу для исследований, нужно, чтобы вода протекла в течение 5 минут, следует предварительно ополоснуть тару водой из этого источника.

Период, на протяжении которого взятая проба должна быть отправлена на исследование, не может быть больше 2 суток. Взятую пробу необходимо хранить в холодильнике. Также на каждой емкости должны быть нанесены данные о времени, дате и месте забора, а также о виде источника.

Исследование обычно состоит из 30 самых распространенных элементов. Образец следует передать на анализ в лабораторию не позже 48 часов с момента забора жидкости. Промаркированный образец нельзя оставлять без присмотра.

Цена исследования высчитывается в зависимости от его сложности.

Если это стандартная услуга (на выявление 30 веществ), то стоимость классическая (комплекс, примерно 60 руб./вещество). За каждый дополнительный элемент берется дополнительная сумма, все зависит от типа пробы. Однако в лабораториях для постоянных клиентов, а также при больших объёмах заказа на исследования предоставляются скидки.

Хорошая лаборатория должна иметь аттестат аккредитации на выполнение исследований воды из разных источников, а именно:

  • Водопроводной воды;
  • Питьевой;
  • Минеральной;
  • Из скважины;
  • Колодезной.

Анализ воды выполняется достаточно быстро и стоит это недорого

Лабораторный анализ воды в хорошем центре основан на инновационной методике исследования – масс-спектрометрии, которая дает возможность выявлять присутствие в пробе элементов даже в микроскопических дозах. Аккредитованная лаборатория гарантирует качественный результат проведенных исследований.

Химический анализ воды направлен на определение органики и неорганики, а также степени жёсткости, мутности и прочих важных показателей пригодности и качества. Сегодня разработано больше 100 разнообразных методов, часть которых применяется на практике только в единичных лабораториях.

В перечне самых актуальных методик находятся:

  • Спектрофотометрия;
  • Биотестирование;
  • Кондуктометрия;
  • Фотометрия;
  • Капиллярный электрофорез;
  • Турбидиметрия;
  • Газовая хроматография;
  • Гравиметрия;
  • Нефелометрия.

После выполнения анализа воды результаты будут перенесены на листок в виде таблицы

Обычно центры, которые специализируются на диагностировании качества воды, предлагают сокращенное и полное химическое исследование пробы. Первая методика включает диагностирование по 25 пунктам и выявляет соответствие на нормы: присутствие посторонних запахов, жесткость, мутность, общая минерализация, окисляемость, присутствие железа и магния. Сокращенный метод можно применять при переезде на новое место и для выбора фильтра в домах с централизованным снабжением водой.

Полное исследование дает возможность с высочайшей точностью выявить процент включения в состав образца следующих веществ: металлов, газов, нефтепродуктов, щелочей, мочевины, нитритов, аммиака.

Расширенное диагностирование предполагает тест по 100 и больше пунктам. Эта методика должна быть выбрана владельцами частных скважин и колодцев ещё во время стройки. Для тех, кто не может обратиться в лабораторию, выпускают уникальные наборы для химического диагностирования воды из источника своими руками дома.

Наборы для анализа в домашних условиях дают возможность в общих чертах понять, какова жёсткость воды, увеличен ли уровень солей и металлов:

Можно найти дешевые тесты, созданные специально для водопроводной системы, скважин, природных источников и колодцев. Это могут быть наборы для выявления одного или нескольких видов веществ. Тесты реализуются с описанием, оно поможет выполнить экспресс-анализ жидкости дома, понять результат и правильно подобрать устройство для фильтрации воды.

Исследование проб воды требует профессионализма, поэтому для своей же безопасности правильно будет доверить дело экспертам.

источник

Из этой статьи вы узнаете:

  • Каковы особенности анализа питьевой воды
  • Кому и зачем проводить анализ проб питьевой воды
  • Где это можно сделать
  • Какие методы анализа питьевой воды различают
  • Сколько стоит анализ воды
  • Как правильно собрать воду для анализа
  • Как расшифровать результаты

Одной из главных составляющих человеческого здоровья является чистая питьевая вода. Однако под это определение подходит не вся жидкость, бегущая из водопроводного крана или скважины. Соответствие питьевой воды нормативным стандартам устанавливается в специализированных лабораториях, где проверяют бактериологические, химические и физические показатели представленного образца. Из этого материала вы узнаете, как делают анализ питьевой воды, сколько он стоит и как его проводят.

Во время анализа питьевой воды на химическом и физическом уровнях происходит проверка ее состава. Пристальное внимание уделяется вредным примесям, к которым относятся:

  • бактерии и микроорганизмы;
  • ионы тяжелых металлов;
  • соли;
  • хлор;
  • прочие химические соединения и элементы;
  • механические взвеси.

Появление примесей в питьевой воде происходит различными способами. Например, для борьбы с бактериями, обитающих в воде, используется хлорирование. Этот метод сочетает в себе высокую эффективность и низкую стоимость, часто используется для обработки городских систем водоснабжения. Анализ такой воды не покажет содержание микроорганизмов, зато уровень хлора будет значительно повышен, а значит, такая вода не пригодна для питья.

В ходе анализа питьевой воды возможно обнаружение загрязнений, появившихся из-за деятельности людей. Не секрет, что многие предприятия сливают промышленные отходы в реки и водоемы, тем самым загрязняя их. Также источником вредных примесей могут являться старые системы водоснабжения.

Результаты анализа питьевых и природных вод в разных городах и регионах могут существенно различаться. В любом случае, подбор подходящего фильтра или системы очистки невозможно осуществить без предварительного анализа питьевой воды.

Согласно законодательству РФ, анализ питьевой воды должен производиться при проведении различных инженерно-геологических работ, например, при строительстве моста через реку. Предприятия, специализирующиеся на продаже бутилированной воды обязаны соблюдать определенные требования к химическому составу воды. Частные организации проводят анализ проб для:

  • Определения качества питьевой воды из водопроводных систем, скважин или родников;
  • Проверки качества бутилированной воды;
  • Подбора и оценки эффективности системы фильтрации воды;
  • Контроля качества воды в бассейнах;
  • Диагностики качества воды, используемой для полива растений;
  • Оценки среды в аквариуме и пр.

Как правило, люди самостоятельно решают, стоит ли проводить анализ питьевой воды из скважины. Однако проверка качества воды необходима в следующих случаях:

  • Приобретение или продажа недвижимости.

Результаты анализа питьевой воды из колодца или скважины послужат дополнительным фактором, повышающим стоимость недвижимости и ее привлекательности в глазах будущих покупателей.

При приобретении земельного участка необходимо удостовериться в безопасности питьевой воды, если предыдущий владелец не провел соответствующий анализ.

  • Возникновение заболеваний у домочадцев.

Как говорилось ранее, для правильной работы и здоровья человеческого организма необходима чистая питьевая вода. Если вы используете воду ненадлежащего качества, вредные примеси могут стать причиной многих заболеваний, таких как аллергические реакции, пищеварительные расстройства или хронические простуды.

  • Открытие детского или оздоровительного учреждения.

Согласно действующим нормативам, перед открытием детского сада, дома отдыха, санатория или клиники необходимо провести анализ питьевой воды.

  • Подбор фильтрационной установки.

Для правильного выбора системы очистки необходимо определить текущую степень загрязнения воды.

Анализ питьевой воды из скважины рекомендуется проводить один раз в несколько лет. Дело в том, что состав воды изменяется в зависимости от природных условий (засуха, паводок и пр.). Также снижение качества воды происходит по вине человека. Различные ядохимикаты и сточные воды просачиваются в почву и отравляют грунтовые воды, ближайшие водоемы и источники. Без анализа невозможно узнать, насколько безопасна и пригодна вода для использования, содержатся ли в ней какие-либо токсические вещества.

Сегодня представлено немало компаний, осуществляющих лабораторные анализы питьевой воды. Основными различиями фирм являются стоимость и качество проводимых исследований.

Конечно же, предпочтительнее обратиться к крупным компаниям, обладающим большим опытом и зарекомендовавшим себя на рынке. В отличие от фирм-однодневок, такие организации заботятся о собственной репутации и предоставляют услуги высокого качества. Также маленькие фирмы редко обладают собственными лабораториями и проводят анализ образцов в других учреждениях, что увеличивает сроки исследования.

Прежде чем отдать предпочтение какой-либо фирме, удостоверьтесь в наличии собственной лаборатории и действующей государственной аккредитации. Контракт на проведение анализа питьевой воды должен содержать перечень проводимых тестов, сроки и стоимость услуг, а также тип документа, который будет выдан по окончанию работ.

Для исследования образцов питьевых вод используют следующие методы:

  1. Органолептический метод позволяет исследовать только питьевую воду. Качество воды (чистота, прозрачность, запах и вкус) оценивается лаборантами. При наличии каких-либо отклонений представленные образцы проходят проверку другими методами;
  2. Оптический метод считается самым результативным, но используется редко, так как для проведения фотометрического, спектрометрического и люминесцентного анализа требуется довольно дорогостоящее оборудование. Метод применяется для анализа питьевых, сточных, хозяйственно-бытовых и промышленных вод;
  3. Фотохимический метод используется для определения компонентов, входящих в состав проб;
  4. Хроматографический метод включает в себя несколько исследований (тонкослойная хроматография, жидкостная колоночная хроматография и высокоэффективная жидкостная хроматография). Для осуществления требуется сложная и дорогостоящая аппаратура, поэтому данный метод используется крайне редко;
  5. Токсикологический и радиационный. С помощью специального оборудования определяется наличие вредных веществ и радионуклидов.
  6. Электрохимический и химические методы анализа питьевой воды. С помощью специальных реактивов устанавливается уровень рН и жесткость воды, концентрация минералов и солей, наличие вредных примесей и пр. Электрохимический метод включает в себя полярографический и потенциометрический способы анализа;
  7. Санитарно-микробиологический, паразитологический и бактериологический метод анализа питьевой воды используются в комплексе для анализа сточной, питьевой и хозяйственно-бытовой воды. Для осуществления данных методов используют титрационный тест, АТФ, чашечный подсчет, мембранную фильтрацию и пр.

Две последние методики анализа питьевой воды стоит рассмотреть подробнее.

Не секрет, что вода – идеальная среда для размножения микроорганизмов, большинство которых попадает туда из почвы. Количество бактерий в 1 мл воды варьирует в зависимости от питательности среды. Чем больше содержание органических соединений, тем больше микробов обитает в воде. Вода считается чистой, если в одном ее миллилитре содержится 100-200 микробов. Один миллилтр грязной воды несет в себе от 100 до 300 тысяч (и более) бактерий.

Читайте также:  Анализ дистиллированной воды на качество

Воды из родников и глубоких артезианских скважин не содержат микробов и являются чистыми, в отличие от открытых водоемов и рек. Степень загрязнения последних также различается. К примеру, большая часть микроорганизмов находится в поверхностных слоях воды (10-сантиметровый слой водной поверхности) прибрежных зон. Численность микробов уменьшается с увеличением глубины и расстояния от берега.

Количество бактерий существенно возрастает в городах и населенных пунктах, где хозяйственные воды и фекальные нечистоты сливаются в местные реки. Загрязненность реки постепенно уменьшается по мере удаления от города. Примерно на 30-40 км значение микробного показателя приближается к исходной величине. Подобный процесс самоочищения воды происходит по нескольким причинам: механическое осаждение микробов, снижение питательности среды, действие прямых солнечных лучей, пожирание бактерий простейшими и т.д.

Если представить, что объем бактериальной клетки равен 1 мк³, то 1000 клеток в 1 мл жидкости сравнимы с тонной бактерий, содержащихся в 1 км³ воды. Такое количество микроорганизмов необходимо для круговорота веществ в природе, так как микробы являются первичным звеном в цепи питания рыб.

Болезнетворные микроорганизмы, провоцирующие возникновения многих кишечных инфекций (брюшной тиф, паратиф, дизентерия, холера и пр.), попадают в реки и водоемы со сточными водами и сохраняются там длительный период. Вода в таком случае становится источником инфекционных заболеваний, что особенно опасно при ее попадании в систему водоснабжения. Именно поэтому санитарно-микробиологический контроль наблюдает за состоянием водоемов и водопроводной воды, подаваемой из них.

Существует больше сотни показателей, используемых для оценки состава и качества воды. В среднем, каждый конкретный анализ питьевой воды проводят в соответствии с 10-20 критериями, среди которых:

  • Органолептические параметры отображают свойства воды, влияющие на органы чувств человека – прозрачность, запах, вкус и чистота.
  • Интегральные (обобщенные) индексы качества. К ним относится жесткость воды, ее рН, плотность и пр.
  • Неорганические показатели определяют содержание одноименных анионов и катионов, например, ионов тяжелых металлов или железа.
  • Органические показатели используются для выявления и установления природы органических соединений, обнаруженных в воде. Ключевым параметром в этой категории является окисляемость – содержание органических веществ, подверженных воздействию окислителей. Показатель измеряется количеством кислорода, необходимого для окисления всей органической массы в одном литре воды.
  • Растворенные газы. Сведения о растворенных в воде газах необходимы для сохранения здоровья человека. Например, обнаружение небольшого количества кислорода во время анализа питьевой воды является нормой, а наличие других газообразных примесей, допустим, сероводорода, может быть опасным. Этот показатель необходим и в других сферах: чтобы выбрать фильтры и компрессоры, владельцам аквариумов необходимо знать уровень содержания кислорода в воде.
  • Реагенты водоподготовки.При неправильном хлорировании воды концентрация хлора и побочных продуктов обработки воды может превышать допустимые нормы. Использование такой воды может быть небезопасным.

Для проверки качества воды применяется множество методов химического анализа. Самыми известными и часто используемыми из них являются:

  1. Органолептические методы. Анализ воды производится при помощи органов чувств исследователей или лаборантов. К примеру, для оценки чистоты воду наливают в прозрачный стеклянный сосуд и осматривают жидкость на фоне белого листа бумаги. Вода считается загрязненной, если цвет бумажного листа теряет свою белизну. Для исследования прозрачности через воду просматривают печатный шрифт, размещенный на дне специального стеклянного сосуда. Прозрачность недостаточна, если шрифт не различим на расстоянии 3 см от уровня воды. Вкус и запах воды лаборант оценивает, полагаясь на собственные ощущения. Результаты фиксируются в баллах.
  2. Гравиметрия(весовой анализ). Это один из главных методов количественного анализа питьевой воды, позволяющий определить точную массу конкретного компонента. Искомое вещество обнаруживают в виде осадка или малорастворимого соединения. С помощью этого метода оценивают общую минерализацию воды, содержание сульфатов и пр.
  3. Нефелометрия и турбидиметрия. Данные методы помогают определить замутнённость воды, наличие цветности или примесей. Анализ основывается на измерении интенсивности света, рассеянного и прошедшего сквозь образец исследуемой воды.
  4. Капиллярный электрофорез.В зависимости от заряда ионы компонентов воды разделяются под воздействием электрического поля. Частицы с одинаковым зарядом собираются на разных стенках капилляров и фиксируются с помощью специального детектора. Полученные сведения помогают определить содержание анионов и катионов, пестицидов, опасных органических и неорганических экотоксикантов.
  5. Хроматография. Этот метод анализа питьевой воды используется для выявления различных органических соединений. Вода и содержащиеся в ней примеси проходят вдоль слоя сорбента в потоке подвижной фазы с многократным повторением сорбционных и десорбционных актов. При этом разделяемые вещества распределяются между двумя несмешивающимися фазами (в зависимости от их относительной растворимости в каждой фазе): подвижной и неподвижной.
  6. Потенциометрия.Электрохимический метод, основанный на измерении электродного потенциала в ответ на действие гальванического элемента. Потенциометрия используется для определения уровня рН и концентрации фторидов в воде.
  7. Титриметрия. Количество искомого вещества определяется пропорционально количеству химического реагента, необходимого для образования химической реакции.
  8. Спектрофотометрия позволяет обнаружить недопустимые примеси в воде – ионы тяжелых металлов или аммониевые соединения. Для проведения анализа измеряются спектры поглощения в оптической области электромагнитного излучения.

Проведение химанализа питьевой воды допустимо только на специальных приборах, внесенных в государственный реестр средств измерений. К лабораторному оборудованию относятся:

  • аналитические весы;
  • хроматографы;
  • иономеры;
  • термореакторы;
  • турбидиметры;
  • спектрофотометры;
  • фотоколориметры;
  • система капиллярного электрофореза;
  • анализаторы влажности;
  • автоматические титраторы;
  • термостаты и др.

Химический анализ питьевой воды проводится в три стадии, каждая из которых должна соответствовать определенным требованиям.

Этап 1. Отбор проб.

Конечный результат анализа напрямую зависит от того, насколько правильно будет отобрана исследуемая вода. Положения и требования к отбору образцов отображены в ГОСТ 31861-2012 «Вода. Общие требования к отбору проб» и ГОСТ 31862-2012 «Вода питьевая. Отбор проб». Для сбора воды необходима чистая стеклянная или пластиковая емкость объемом 1-5 литров. Недопустимо использование бутылок из-под сладких и газированных напитков.

Перед набором воду необходимо слить в течение 2-3 минут. Чтобы избежать излишнего попадания кислорода, воду набирают тонкой струей под острым углом к стенкам емкости. Тару аккуратно наполняют до верхней границы горлышка и плотно закрывают крышкой. Пузырьков воздуха в бутылке быть не должно. Собранную воду можно хранить в холодильнике не более шести часов.

Этап 2. Анализ.

Непосредственное проведение анализа питьевой воды по необходимым параметрам.

Этап 3. Выдача результатов экспертизы.

Результат анализа питьевой воды предоставляется в виде протокола, оформленного на специальном бланке. В документе отображаются результаты проведенного анализа и предельно-допустимые значения исследуемых показателей в соответствии с установленными нормативами.

Сотрудники лаборатории могут прокомментировать результаты анализа и посоветовать систему для очистки и фильтрации воды.

Большинство методов анализа питьевой воды требуют специального оборудования и времени. Альтернативой им является экспресс-тест для анализа питьевой воды, позволяющий в кратчайшие сроки определить качество воды с помощью специального прибора или наборов.

Экспресс-анализ питьевой воды выявляет общие показатели качества:

  • Уровень рН;
  • Биохимическое потребление кислорода;
  • Органолептические параметры;
  • Уровень экстрагируемых и адсорбируемых галогенов органической природы.

Важно понимать, что экспресс-анализ питьевой воды предназначен для обнаружения определенных компонентов. Подобная проверка не даст точных количественных показателей. Экспресс-тест позволяет определить вирусный или бактериальный состав воды. Некоторые приборы оснащены биосенсорами, позволяющими выявить одно или несколько конкретных веществ.

С помощью экспресс-метода не рекомендуется проверять воду, качество которой оставляет желать лучшего. В таком случае подойдет стандартный или расширенный анализ питьевой воды.

Срок проведения анализа питьевой воды и его цена зависят от развернутости исследования. Чем больше показателей, тем больше требуется времени, реагентов и оборудования, тем выше стоимость процедуры.

Экспресс-анализ определяет минимальный спектр параметров: запах, уровень pH, общая жесткость, концентрация железа, марганца. Подобный метод подходит для оценки работы фильтров. Минимальный объем исследуемой воды – один литр. Результаты предоставляются в течение трех рабочих дней. Стоимость от 1000 рублей.

Стандартный анализ используется для определения главных показателей пригодности воды для питья: запах, мутность, цветность, pH, щелочность, общая жесткость, общее солесодержание, перманганатная окисляемость, концентрации железа, марганца, хлоридов, сульфатов, фторид-ионов, алюминия. Минимальный объем исследуемой воды – два литра. Результаты предоставляются в течение пяти рабочих дней. Стоимость около 3500 рублей.

Расширенный анализ включает в себя стандартный анализ питьевой воды и дополнительное определение концентрации фторидов, СПАВ, цинка, хлора, карбонатов и гидрокарбонатов, аммоний-ионов. Минимальный объем исследуемой воды — 3,5 литра. Результаты предоставляются в течение семи рабочих дней. Стоимость около 5500 рублей.

Полный химический анализ воды включает в себя расширенный анализ питьевой воды и дополнительное определение щелочности воды, концентраций кадмия, хрома, никеля, меди, мышьяка, ртути, свинца, ЛГС. Минимальный объем исследуемой воды — пять литров. Результаты предоставляются в течение семи рабочих дней. Полный анализ питьевой воды стоит около 12 тысяч рублей.

Сбор воды для оценки качества можно провести самостоятельно или с помощью сотрудников лаборатории, предоставляющей услуги анализа питьевой воды. В случае необходимости специалисты приезжают для сбора проб или проведения предварительного экспресс-теста.

Кроме этого, вы можете самостоятельно взять пробы воды для анализа. Порядок действий:

  1. Прежде чем приступить к сбору материала, нужно открыть кран на 5-10 минут и слить воду. Так из системы водоснабжения будет удалена старая, застоявшаяся вода, которая может повлиять на результаты проводимого исследования.
  2. Если отбор осуществляется из скважины, необходимо интенсивное покачивание или эксплуатация скважины в течение нескольких недель. Растворы, которые нередко применяются при бурении скважины, могут повлиять на качество и состав собранной воды, особенно в первые дни функционирования скважины.
  3. Для анализа воды необходимы образцы, не прошедшие какую-либо систему очистки или фильтрации. Если в доме установлены фильтры, соберите воду из поливочного крана на улице.
  4. В качестве емкости подойдет чистая пластиковая бутылка из-под воды объёмом 1,5 литра. Недопустимо использование тары из-под сладких, газированных и алкогольных напитков, так как остатки жидкостей повлияют на результат анализа питьевой воды.
  5. Перед сбором образцов необходимо тщательно ополоснуть емкость.
  6. Набор воды осуществляется тонкой струей под острым углом к стенке бутылки. Емкость заполняется до краев и закрывается крышкой. Содержание воздуха в пробе воды недопустимо.
  7. Отобранную воду необходимо отвезти в лабораторию. Если это невозможно в ближайшее время, бутылку с водой нужно убрать в холодильник. Срок хранения материала не должен превышать 2-3 дня.

Понимание результатов анализа питьевой воды невозможно без расшифровки основных показателей, отображенные в таблице №1. Для многих параметров не существует референсных значений, но они крайне важны для оценки физико-химических свойств питьевой воды. Зачастую именно эти показатели используются для определения качества воды и подбора правильной системы очистки и фильтрации.

К ключевым показателям анализа питьевой воды относятся:

Водородный показатель, или уровень (рН) – величина, характеризующая относительное количество свободных ионов водорода в воде (Н + ). Вода считается кислой, если водородный показатель меньше семи. И наоборот, при рН больше семи, вода является щелочной. Допустимый диапазон водородного показателя подобран таким образом, чтобы трубы системы водоснабжения не разрушались под влиянием слишком кислой или чрезмерно щелочной воды.

Кислотность воды. В отличие от водородного показателя, определяющего, что вода более или менее кислая, кислотность отражает количество веществ, способных вступать в реакцию с гидроксид-ионами (ОН — ).

Щёлочность воды — количество веществ, которые могут взаимодействовать с ионами водорода (Н + ). Чем выше щёлочность воды, тем больше значение водородного показателя. В отличие от рН, щёлочность — это числовой показатель, измеряемый в миллиграммах на литр воды.

Общая минерализация или общее содержание солей количество твердых веществ, растворенных в воде.

Жёсткость воды — это показатель, отображающий количество солей кальция и магния. Жесткость воды бывает разной, чаще всего подсчитывается общая жесткость – суммарное количество всех солей кальция и магния. Повышенная жёсткость воды является основной причиной появления накипи в трубах и нагревательных элементах.

Перманганатная окисляемость — количество органических и минеральных веществ, окисляемых перманганатом калия, которые содержатся в воде.

Электропроводность — численное определение, насколько возможно проведение электрического тока водой. Электропроводность зависит от степени минерализации и температуры воды.

Температура — параметр, оказывающий непосредственное воздействие на физические, химические, биохимические и биологические процессы, происходящие в воде. От данного показателя зависит кислородный режим, интенсивность окислительно-восстановительных реакций, активность микрофлоры и т.д. Также температура воды влияет на функционирование фильтрующих систем.

Окислительно-восстановительный потенциал (ОВП) – показатель химической активности элементов или их соединений в обратимых химических процессах, связанных с изменением заряда ионов в растворах.

Читайте также:  Анализ фенола в сточных водах

Степенью насыщения кислородом называется процентное содержание кислорода в жидкости. Значение параметра варьируется в зависимости от температуры воды, атмосферного давления и общего уровня минерализации. Повышенное содержание кислорода негативно сказывается на состоянии металлических водопроводных труб.

Общее железо — количество солей железа, растворённых в воде. Для определения значения данного параметра воду оставляют на открытом воздухе. При контакте с кислородом железо окисляется и придает прозрачной воде стойкий желтовато-бурый оттенок. Если концентрация железа превышает 0,3 мг/л, такая вода портит белье при стирке и становится причиной появления ржавых потеков на сантехнике. Вода с содержанием железа свыше 1 мг/л становится мутной, приобретает желто-бурый окрас и характерный металлический привкус. Такая вода непригодна для технического и питьевого применения, требует удаления железа с помощью различных способов.

Таблица №1. Параметры показателей анализа питьевой воды

источник

Контроль качества водных ресурсов и сточных вод играет огромную роль в обеспечении личной (населения страны) безопасности. Какие методы анализа воды сегодня применяются? О чем говорят получаемые в ходе исследования результаты?

Чтобы иметь возможность регулировать и контролировать качество питьевых ресурсов специалисты используют лабораторные методы анализа воды, основывающиеся на выявление физических и химических особенностей тестируемого образца. Насколько важны процессы исследования водных ресурсов и сточных вод? Они имеют чрезвычайную важность, поскольку позволяют предупредить загрязнение окружающей среды и ухудшение экологической остановки. Но их главная задача остановить развитие огромного числа заболеваний у населения, которые ежедневно контактируют и пьют некачественную воду. В нашей независимой лаборатории можно по невысокой цене заказать исследование различных классов жидкостей. Мы гарантируем достоверность результатов и применение самых современных методик.

Процедура контроля и процессы водоочистки в жилых и загородных домах, на производственных и промышленных предприятиях начинается с мероприятий по выявлению и подсчету количества содержащихся в потребляемой (используемой) воде компонентов и соединений. Современная методика анализа воды позволяет с высокой точность идентифицировать вещество в составе образца и его объем на единицу массы. Все тесты проводятся в лабораторных условиях при помощи специального оборудования, химических реагентов и препаратов.

Существуют следующие типы исследований проб сточных и питьевых вод:

  • Химический — применяется весовой и объемный методы анализа.
  • Электрохимический — процедура использует полярографический и потенциометрический методы анализа.
  • Оптический — образец исследуется посредством фотометрических, люминесцентных и спектрометрических методик. Считаются самыми результативными, но за счет необходимости использовать очень редкое и сложное оборудование являются и наименее применяемыми, дорогостоящими. Используются для покомпонентного тестирования как питьевых, сточных, так и хозяйственно-бытовых, промышленных вод.
  • Санитарно-микробиологический, паразитологический и бактериологический — применяются титрационный, АТФ, чашечный подсчет, мембранная фильтрация выращивание и прочие методы анализа: сточная вода, питьевая и хозяйственно-бытовая проверяются комплексами, составленными из перечисленных тестов.
  • Фотохимический — покомпонентный состав пробы определяется фотохимическим методом.
  • Хроматографический — один из самых сложных типов исследования, который использует метод тонкослойной хроматографии, жидкостной колоночной хроматографии и высокоэффективной жидкостной хроматографии. Чтобы оценить пробу также необходимо использовать сложное и редкое оборудование.
  • Органолептический — эталонный метод исследования проб. Применяется исключительно к питьевым видам образцов.
  • Токсикологический и радиационный — приборные способы проверки наличия в предъявленном образце вредных для здоровья токсинов, α и β-частичек.

Перечисленные типы исследований разработаны для проверки качества жидкости применяемой для приготовления пищи, питья и используемой в хозяйственно-бытовых нуждах. Однако многие методы анализа питьевой воды пригодны и для установления степени загрязненности сточных вод прошедших через очистные сооружения. Наша лаборатория проводит все существующие виды тестов жидкостей по доступной стоимости. Чтобы сдать воду на анализ в лабораторию, мы рекомендуем купить специальную тару для ее забора, хранения и транспортировки.

  • Содержание в пробе природных веществ и их концентрации. Обязательный тест для образцов, взятых из естественных водоемов: скважина, колодец, водопроводная вода.
  • Содержание в пробе химических элементов и соединений, попавших в образец в результате очистки воды. Данные методы контроля воды применяются ко всем видам проб: сточные, хозяйственно-бытовые, промышленные, питьевые воды;
  • Наличие в пробе бактерий и патогенных микробов, вирусных микроорганизмов и палочек. Тест, которым исследуется питьевая вода и образцы, взятые с поверхностных источников: озера, водохранилища, реки и так далее. Присутствие бактерий в жидкости, с которой контактирует человек (не пьет), также может вызвать ряд заболеваний.
  • Присутствие запаха. Органолептические и санитарно-микробиологические тесты позволяют выявить «виновников» запаха. Ими являются микроорганизмы и продукты их жизнедеятельности. Важное исследование питьевой и хозяйственно-бытовой воды.
  • Степень жесткости, мутности. Анализу обязательно подвергают хозяйственно-бытовые и питьевые образцы.

Полученные результаты сравнивают с нормативами СанПиН, в которых оговорено допустимое и нормальное присутствие в воде макро- и микроэлементов, солей, природных веществ и прочего. Если количественные величины примесей, минералов и солей попали в разрешенный СанПиН диапазон, тестируемый образец можно считать пригодным для питья, бытовых, промышленных целей. Аналогично оцениваются сточные воды. Если их физико-химический и токсический состав соответствует установленным нормам, то очищенную системой загрязненную жижу можно выбрасывать в окружающую среду. Она не станет причиной ее загрязнения и отравления людей. По каждому виду вод разработаны свои критерии оценки и нормы.

Контроль качества воды следует проводить не только предприятиям, но и людям, использующим водопроводную, колодезную и скважинную воду. По результатам теста можно с легкостью определить, какие системы фильтрации и очистки будут наиболее эффективны. В нашей независимой компании можно по доступной цене заказать любые типы анализов различных классов вод.

источник

Классическое название метода — весовой анализ. Гравиметрический анализ широко используют при количественных определениях. С его помощью определяют, например, содержание фосфора в фосфоритах, апатитах, фосфорных удобрениях, почвах, кормах и т. п.

1. Общая характеристика метода

Гравиметрией называют метод количественного анализа, заключающийся в точном измерении массы определяемого компонента пробы, выделенного в виде соединения известного состава или в форме элемента.

Гравиметрический анализ основан на законе сохранения массы веществ при химических превращениях. Это наиболее точный из химических методов анализа, его характеристики: предел обнаружения — 0,10%; правильность — 0,2 отн.%; информативность — 17 бит. В гравиметрии используют реакции обмена, замещения, разложения и комплексообразования, а также электрохимические процессы. Наиболее распространен метод осаждения.

1. Метод осаждения это метод, при котором навеску анализируемого вещества растворяют и прибавляют 1,5-кратный избыток реагента- осадителя, соблюдая необходимые условия осаждения. Полученный осадок называют осаждаемой формой. Осадок отделяют от раствора (чаще всего фильтрованием), промывают, затем высушивают или прокаливают, по­лучая гравиметрическую (весовую) форму. Массу определяемого компонента mа рассчитывают по формуле:

где mа — масса высушенного или прокаленного осадка, г; F — гравиметрический фактор, определяемый по химической формуле гравиметрической формы; а — навеска анализируемого вещества, г.

Гравиметрические факторы, называемые также аналитическими множителями или факторами пересчета, вычисляют как отношение молекулярной массы определяемого компонента к молекулярной массе гравиметрической формы с учетом стехиометрических коэффициентов.

Пример. Вычислить гравиметрические факторы для следующих гравиметрических определений:

Решение: F = ABa = 137.4 = 0.5887

2. Методы выделения основаны на выделении определяемого компонента из анализируемого вещества и точном взвешивании его. Например, при определении содержания золы в твердом топливе сжигают определенное количество (навеску) этого топлива, взвешивают золу и вычисляют процентное содержание ее во взятом образце.

3.Метод отгонки состоит в том, что определяемый компонент «количественно» выделяют в виде летучего соединения (газа, пара) действием кислоты, основания или высокой температуры на анализируемое вещество. Например, определяя, содержание двуокиси углерода в карбонатной породе, обрабатывают образец ее соляной кислотой. Выделившийся газ пропускают через поглотительные трубки со специальными реактивами. По увеличению массы поглотительной трубки определяют количество выделившегося CO2.

4.Термогравиметрия. Выполнение большинства операций гравиметрического анализа (фильтрование, высушивание и прокаливание осадка, доведение его до постоянной массы) отнимает очень много времени. Однако с помощью термовесов, сконструированных Дювалем, удается значительно ускорить определение. В этом приборе можно нагревать твердые вещества до температуры приблизительно 1000 0 C и наблюдать, как изменяется их масса. При этом прибор автоматически вычерчивает на бумаге кривую изменения массы вещества. Получающаяся ступенчатая кривая характеризует изменение массы осадка в процессе повышения температуры и даже позволяет судить о химических превращениях веществ.

Например, такая кривая показывает, что кристаллогидрат оксалата кальция CaC2O4•H2O устойчив лишь при температуре не выше 100 0 C. При повышении температуры до 226 0 C он разрушается с образованием безводной соли CaC2O4. Последняя при 420 0 C разлагается с получением карбоната кальция СаСО3. Далее при 660 0 C начинается распад карбоната на окись кальция и двуокись углерода. Этот процесс заканчивается при температуре 840 0 C.

2.Основные операции весового анализа

В ходе гравиметрического определения различают следующие операции: 1) отбор средней пробы вещества и подготовку ее к анализу; 2) взятие навески; 3) растворение; 4) осаждение определяемого элемента (с пробой на полноту осаждения); 5) фильтрование; 6) промывание осадка (с пробой на полноту промывания); 7) высушивание и прокаливание осадка; 8) взвешивание; 9) вычисление результатов анализа.

Отбор средней пробы. Аналитическое определение лишь тогда приводит к содержательным выводам, когда отобранная для анализа проба является пред­ставительной по отношению к исследуемому материалу.

В производстве бывает необходимо определить средний химический состав большой партии неоднородного материала (удобрения, ядохимиката, почвы, руды и т. п.). При этом подготовка вещества к анализу сводится к правильному отбору так называемой средней пробы. Правила отбора средних проб раз­личных материалов предусмотрены государственными стандартами или техническими условиями. Выполнение этой операции всегда подчинено единому принципу: средняя проба должна быть составлена из большого числа мелких порций, взятых в разных местах анализируемого материала. Благодаря этому состав отобранной пробы приближается к среднему химическому составу большого количества исследуемого материала.

Первичная средняя проба, отобранная тем или иным способом, еще непригодна для анализа. Обычно она слишком велика (от одного до нескольких килограммов) и неоднородна. Подготовка пробы состоит в измельчении, перемешивании и сокращении до небольшой массы (около 300 г). Для сокращения пробы пользуются так называемым квартованием . Измельченный материал перемешивают в куче, рассыпают ровным слоем в виде квадрата (или круга), делят на четыре сектора, содержимое двух противоположных секторов отбрасывают, а двух остальных — соединяют вместе. Операцию квартования повторяют многократно. Из полученного таким образом однородного материала берут навески для анализа.

Перекристаллизация. В условиях исследовательской лаборатории часто требуется найти содержание какого-нибудь элемента в химически чистом соединении (например, содержание бария в хлориде барии ВаС12•2Н20). Здесь подготовка вещества к анализу состоит и очистке его от примесей и обычно осуществляется путем перекристаллизации для удаления примесей только из кристаллических веществ, например из солей.

Применительно к пробоотбору введены следующие количественные характеристики:

1. Рабочий диапазон. A=mi — диапазон количеств определяемого компонента i, к которым применима данная методика.

2. Диапазон количества пробы P=mi+mo — диапазон общих количеств пробы, состоящий из определяемого компонента (индекс i) и «матрицы» (индекс 0) — суммы остальных компонентов. В зависимости от требуемого для анализа количества пробы методики обычно классифицируют следующим образом:

G 2+ образует несколько малорастворимых солей: карбонат, оксалат, хромат и сульфат. Учитывая произведения растворимости их:

BaC2O4 — 1,6•10 -10 ; BaCO3 — 2,4 • 10 -10 ; ВаСО3 — 8,0•10 -10 ; BaSO4 — 10 -10 . Очевидно, что при гравиметрическом определении ионы Ва 2+ следует осаждать в виде сульфата BaSO4, имеющего наименьшую величину произведения растворимости.

2. Кроме того, получаемый осадок должен легко отфильтровываться и хорошо отмываться от примесей. Эти свойства наиболее характерны для крупнокристаллических осадков.

3. Наконец, осаждаемая форма должна при прокаливании полностью превращаться в весовую форму. Состав весовой формы должен точно соответствовать определенной химической формуле иначе невозможно провести вычисление результатов анализа. Например, осадок гидроокиси железа Fe(OH)3 в результате прокаливания полностью переходит в оксид железа Fe2O3. Последнюю и на­зывают весовой формой и именно ее взвешивают в конце анализа.

Помимо этого, весовая форма не должна изменять своей массы на воздухе из-за поглощения паров воды и двуокиси углерода или вслед­ствие частичного разложения. Для точности определения желательно также, чтобы весовая форма имела возможно большую молекулярную массу и содержала как можно меньше атомов определяемого элемента в молекуле. При этом погрешности определения (ошибки взвешивания, потери при перенесении осадка на фильтр и т. п.) меньше сказываются на результате анализа.

Читайте также:  Анализ эффективности бытовых очистителей воды

4.Кроме всех этих требований, предъявляемых к осадку при выборе осадителя, учитывают летучесть последнего. В качестве осадителя всегда предпочитают более летучее вещество, если примеси его не будут полностью удалены из осадка промыванием, то они улетучатся при последующем прокаливании. Например, для осаждения Ba 2+ в виде сульфата бария пользуются серной кислотой, а не ее раствори­мыми солями (К2S04), так как кислота более летуча. По тем же соображениям ион Fe 3+ осаждают из раствора действием летучего NH4OH, а не NaOH или KOH.

5. Выбираемый осадитель должен в той или иной мере обладать селективностью по отношению к осаждаемому иону. В противном случае приходится предварительно удалять другие ионы, мешающие определению. Такая селективность особенно характерна для органических реагентов, находящих применение не только в качественном, но и в количественном анализе.

Расчет количества осадителя. Необходимое количество осадителя вычисляют исходя из содержания осаждаемого иона в растворе и величины навески анализируемого вещества.

Пример. Для количественного определения Ba 2+ растворили навеску BaCl2•2H2O в 0,4526 г. Какой объем 2 н. раствора серной кислоты потребуется для полного осаждения ионов Ba 2+ ?

Решение: Из уравнения реакции видно, что одна грамм-молекула хлорида бария взаимодействует с одной грамм-молекулой серной кислоты:

Следовательно, на взаимодействие с 244,31 г BaCl2•2H2O расходуется 98 г H2SO4, которые содержатся в 1000 мл 2 н. раствора кислоты. Поэтому можно составить следующую пропорцию:

Казалось бы, в этом примере для полного осаждения ионов Ba 2+ достаточно взять 2 мл 2 н. H2SO4. Однако это не так. Абсолютно нерастворимых веществ не существует, и над осадком сульфата бария в растворе еще будут находиться неосажденные ионы Ba + . Поэтому необходимо принять меры, чтобы понизить концентрацию их в растворе, т. е. добиться практической полноты осаждения ионов Ba 2+ .

Известно, что жидкость над осадком представляет собой насыщенный раствор электролита. Произведение концентраций его ионов при неизменной температуре сохраняет постоянное значение, равное произведению растворимости. В рассматриваемом примере

Следовательно, чтобы понизить концентрацию ионов Ba 2+ , еще остающихся в растворе после осаждения, нужно повысить концентрацию других ионов (SO4 2- ), т. е. действовать избытком осадителя (серной кислоты).

Опытным путем установлено, что для практически полного осаждения иона достаточно полуторного избытка осадителя. Добавление большего избытка осадителя может повысить растворимость осадка вследствие образования комплексных соединений, кислых солей и т. д.

Ответ: в рассматриваемом случае для полного осаждения ионов нужно взять не 2 мл, а 3 мл 2 н. H2SO4.

Наиболее благоприятные условия получения кристаллических и аморфных осадков неодинаковы.

При осаждении в растворе протекают два взаимосвязанных процесса: возникновение мельчайших зародышевых кристаллов и их дальнейший рост. Следовательно, надо по возможности уменьшить число центров кристаллизации и усилить рост уже образовавшихся кристаллов. Для достижения этих целей необходимо, чтобы раствор был возможно менее пересыщенным по отношению к осаждаемому соединению. Действительно, из сильно пересыщенного раствора осаждается множество мельчайших зародышевых кристаллов, которые почти не укрупняются. И, наоборот, в мало пересыщенном растворе создаются условия для дальнейшего роста небольшого количества образовавшихся кристаллов.

Возможно малое пресыщение раствора и получение крупнокристаллического осадка достигается при соблюдении особых условий. Разумеется, даже при соблюдении этих условий, помимо крупных кристаллов, получается и некоторое количество мелких. Чтобы их было меньше, осадок оставляют стоять на несколько часов (или до следующего занятия) для созревания (старения). Известно, что мелкие кристаллы любого вещества растворяются несколько быстрее, чем крупные, так как имеют большую поверхность соприкосновения с растворителем. Поэтому при созревании мелкие кристаллы растворяются и за их счет растут крупные. Поскольку крупные кристаллы имеют меньшую поверхность, соосаждение примесей понижается. Более быстрому созреванию осадка содействует повышение температуры, ускоряющее движение ионов в растворе. Поэтому стакан с осадком обычно оставляют в теплом месте, например на горячей водяной бане.

Проба на полноту осаждения. Как только раствор над осадком становится совершенно прозрачным, делают пробу на полноту осаждения иона. Для этого по стенке стакана прибавляют еще 2—3 капли раствора осадителя. Если при этом в месте смешения растворов появится хотя бы легкая муть, то считают, что полнота осаждения не достигнута. В таком случае добавляют к жидкости еще несколько миллилитров осадителя, перемешивают стеклянной палочкой, снова нагревают и оставляют стоять для созревания осадка. Иногда пробу на полноту осаждения приходится повторить несколько раз. Ее рекомендуется сделать и перед самым фильтрованием.

5. Фильтрование

Фильтрованием отделяют полученный осадок от раствора, содержащего посторонние примеси. Тщательность выполнения этой операции сказывается на точности определений.

В гравиметрическом анализе применяют не обычную фильтровальную бумагу, а так называемые беззольные фильтры. В процессе изготовления их промывают кислотами (HCl), удаляя большую часть минеральных веществ. Масса золы, образующейся при сжигании одного беззольного фильтра, бывает мала, поэтому ею пренебрегают.

Промышленность выпускает беззольные фильтры нескольких сортов, различающиеся по диаметру и плотности.

Черная (или красная) лента – наименее плотные, т.е. быстрофильтрующие и крупнопористые и используют для отделения аморфных осадков гидроксидов железа, алюминия и др.

Белая лента — фильтры средней плотности, применяемые для отделения большинства кристаллических осадков

Синяя лента — фильтры мелкопористые, наиболее плотные и медленно фильтрующие; применяют их для отделения мелкокристаллических осадков сульфата бария BaSО4 , эти фильтры называют также «баритовыми».

Иногда для фильтрования используют фарфоровую воронку Бюхнера, на дно которой помещают бумажный фильтр. Через нее фильтруют также при помощи вакуум-насоса.

6.Соосаждение. Промывание осадка

Осадок увлекает с собой посторонние вещества из раствора. Это явление, называемое соосаждением, — одно из серьезных помех при выполнении гравиметрического определения. Можно выделить четыре основных вида соосаждений.

Окклюзия — процесс захвата примесей микрокомпонента внутрь растущих кристаллов осадка основного компонента. Удаление окклюдированных примесей из осадка представляет трудную задачу.

Изоморфное соосаждение — процесс образования «смешанных кристаллов» с ионами основного компонента и микрокомпонента, имеющими близкие радиусы. Например, осадок сульфата бария может увлекать с собой из раствора примеси перманганата калия, так как эти вещества изоморфны, т.е. образуют совместную пространственную кристаллическую решетку.

Соосаждение с образованием химических соединений с осаждаемым веществом и присутствующими в растворе примесями также довольно распространено. Если осаждать из раствора ионы Ba 2+ действием серной кислоты, то вместе с ними соосаждаются и примеси Fe 3+ в виде комплексного сульфата Ва3[Fe(SO4)3]. В таких случаях необходимо предварительное удаление примесей из раствора. Так, перед осаждением ионов Ba 2+ примеси Fe 3+ приходится осадить аммиаком и отфильтровать гидроокись железа.

Иногда для удаления примесей используют так называемое переосаждение. Например, осадок оксалата кальция CaC2O4, содержащий примеси оксалата магния MgC2O4, растворяют в соляной кислоте, нейтрализуют раствор и переосаждают ион Ca 2+ , т. е. повторяют осаждение его оксалатом аммония. Поскольку переосаждение происходит при значительно меньшей концентрации ионов Mg 2+ , чем в первый раз, осадок CaC2O4 оказывается практически свободным от примесей MgC3O4.

Соосаждение в результате поверхностной адсорбции примесей осадком особенно часто встречается при осаждении аморфных веществ, имеющих разветвленную поверхность (гидроксиды железа и алюминия, кремневая кислота и т. п.).

Но адсорбция — это обратимый процесс. При длительном промывании осадка той или иной жидкостью поглощенные им примеси могут быть десорбированы, вымыты и удалены. Десорбции содействует также применение горячей промывной жидкости. Задача промывания и состоит в удалении посторонних примесей, адсорбированных осадком из раствора.

Иногда осаждаемое вещество увлекает примеси из раствора в результате сочетания нескольких видов соосаждения (адсорбционная окклюзия, химическая окклюзия и т. п.).

При промывании необходимо исключить потери осажденного вещества. Поэтому выбор промывной жидкости определяется свойствами промываемого осадка.

Промывание разбавленным раствором осадителя. При промывании большинства осадков дистиллированной водой возможно частичное растворение их, приводящее к потере осажденного вещества. Во избежание потерь такие осадки промывают разбавленным раствором осадителя, т. е. в промывную жидкость вводят осаждающий ион. Например, осадок оксалата кальция CaC3O4, заметно растворимый в воде, промывают разбавленным раствором осадителя, т. е, оксалата аммония (NH4) C2O4.

Промывание раствором электролита-коагулятора. Если осажденное вещество склонно к пептизации, то возможна потеря его в результате прохождения коллоида через фильтр. Чтобы этого избежать, такой осадок промывают разбавленным раствором электролита-коагулятора, препятствующего пептизации. Электролитами-коагуляторами обычно служат летучие вещества, легко удаляющиеся при последующем прокаливании осадка. Так, аморфные осадки гидроксидов Fe(OH)3 и Al(OH)3 промывают разбавленным раствором нитрата аммония.

Промывание дистиллированной водой. Промывание водой возможно только в тех немногих случаях, когда промываемый осадок практически не растворяется в воде, не пептизируется и не гидролизуется. Так, например, осадок сульфата бария BaSO4 промывают на фильтре дистиллированной водой.

Когда повышение температуры не увеличивает потери осажденного вещества используют не холодную, а горячую промывную жидкость, так как нагревание ускоряет десорбцию примесей.

Самое промывание производят сначала декантацией, т. е. приливают в стакан с осадком 15—20 мл промывной жидкости, тщательно перемешивают, дают осадку осесть и сливают жидкость по палочке на фильтр. При таком способе отмывание примесей значительно ускоряется. Промывание декантацией обычно производят 3—4 раза. Затем осадок количественно, без потерь, переносят на фильтр. Для этого наливают в стакан небольшую порцию промывной жидкости, взмучивают осадок и полученную суспензию осторожно сливают на фильтр по стеклянной палочке. Выполняя эту операцию нельзя терять ни одной капли жидкости. Пользуясь промывалкой, многократно обмывают стенки стакана небольшими порциями промывной жидкости и каждый раз сливают ее на фильтр. Частицы осадка, приставшие к стенкам стакана, сначала тщательно оттирают резиновым наконечником палочки, смывают на фильтр, а затем следы осадка снимают кусочком фильтра, который помещают в ту же воронку. Стеклянную палочку также обтирают кусочком фильтра и помещают его в воронку с осадком.

Наконец, когда ни в стакане, ни на палочке больше не останется частиц осажденного вещества, приступают к промыванию осадка на фильтре. Промывают его большим числом маленьких порций жидкости, которой всякий раз дают полностью стекать. Это обеспечивает более быстрое удаление примесей, чем в случае больших порций жидкости. Попутно осадок смывают в нижнюю часть фильтра.

Повторив промывание 4—5 раз, делают пробу на полноту удаления примесей. Для этого собирают из воронки в пробирку небольшую порцию фильтрата и прибавляют к нему реактив, дающий характерную реакцию с удаляемым из осадка ионом. Например, выполняя пробу на полноту удаления Cl — из осадка BaSO4, берут 1—2 мл фильтрата, подкисляют его азотной кислотой и действуют нитратом серебра. Если муть хлорида серебра при этом не появляется, то промывание прекращают. Фильтрат при гравиметрических определениях обычно не анализируют и отбрасывают, если он совершенно прозрачен, т. е. не содержит частиц осадка.

Фильтрование и промывание осадка следует выполнять на одном и том же занятии; отфильтрованный осадок сильно высыхает при хранении и не поддается промыванию.

7. Высушивание и прокаливание осадка

Отфильтрованный и промытый осадок еще содержит влагу; обычно его высушивают и прокаливают. Эти операции позволяют получить вещество со строго определенным химическим составом.

Высушивание осадка.Осадок высушивают вместе с фильтром. Воронку с осадком накрывают листком влажной фильтровальной бумаги. Ее края плотно прижимают к наружной поверхности воронки, лишнюю бумагу удаляют. Получается бумажная крышечка, плотно сидящая на воронке и защищающая осадок от пыли.

После этого воронку с осадком следует поместить на 20—30 мин в сушильный шкаф, имеющий полки с круглыми отверстиями. В одно из них и вставляют воронку. Температуру в шкафу поддерживают не выше 90—105° С — при более сильном нагреве фильтр обугливается и распадается.

Прокаливают осадки в фарфоровых тиглях различных размеров. Прежде чем приступить к прокаливанию, необходимо узнать массу пустого тигля. Для этого тигель предварительно прокаливают до постоянной массы, т. е. до тех пор, пока масса его перестанет изменяться. Прокаливают тигли в электрической муфельной печи, в тигельной печи или на газовой горелке, но обязательно при тех же температурных условиях, при которых предполагается прокаливать осадок. О температуре прокаливания ориентировочно судят по цвету каления муфельной (тигельной) печи:

источник