Меню Рубрики

Химический анализ проб воды в почвах

Кислотность — свойство почвы, обусловленное содержанием в почвенном растворе ионов водорода. Почвенная реакция имеет для роста растений решающее значение. Реакция среды (она определяется величиной рН ) измеряется в единицах от 1 до 14. По кислотности почвы делятся на : сильно-кислые почвы (рН 3,5-4 ), кислые(рН 4,6-5,3 ), слабокислые (рН 5,4-6,3) , нейтральные(рН 6,4-7,3 ), слабощелочные(рН 7,4-8 ),щелочные(рН 8,1-8,5 ).Для характеристики почвенной кислотности используется ряд показателей:

  • Актуальная кислотность — это pH почвенного раствора (на практике измеряется pH водной вытяжки при соотношении почва:вода = 1:2,5 для минеральных почв и 1:25 для торфяных). При рН 7 реакция почвенного раствора нейтральная, ниже 7 — кислая, выше — щелочная. Подзолистые почвы лесной зоны имеют преимущественно кислую реакцию (рНводн 4,5 — 5,5), подзолы и верховые торфяники — сильнокислую (рНводн 3,5—4,5).
  • Потенциальная кислотность почвы — кислотность твёрдой части почвы, её выражают в мг-экв на 100 г сухой почвы. Параметры потенциальной кислотности учитывают также влияние катионов ППК, которые могут подкислять почвенный раствор (H + и Al 3+ ).
  • Обменная кислотность почвы вызывается обменными катионами водорода и алюминия, которые переходят в раствор из почвенного поглощающего комплекса при взаимодействии с нейтральными солями. В богатых перегноем горизонтах она обусловлена преимущественно Н + -ионами, в малогумусных минеральных — Al-ионами. Обменная кислотность подзолистых почв лесной зоны составляет рН КС1 3,5—5, или 0,5 — 6 мг-экв на 100 г сухой почвы, серых и бурых лесных — значительно ниже.
  • Гидролитическая кислотность — pH вытяжки раствором гидролитически щелочной CH3COONa (позволяет более полно вытеснить H + из ППК). Определяется Н + -ионами, переходящими в раствор при взаимодействии с почвой гидролитически щелочных солей, и включает менее подвижные Н + -ионы, не вытесняемые нейтральными солями. В подзолистых почвах гидролитическая кислотность составляет 1—10 мг-экв на 100 г сухой почвы. О величине гидролитической кислотности можно судить также по насыщенности почвы основаниями.

Повышенная кислотность почвы негативно сказывается на росте большинства культурных растений за счёт уменьшения доступности ряда макро- и микроэлементов, и наоборот, увеличения растворимости токсичных соединений марганца, алюминия, железа, бора и др., а также ухудшения физических свойств. Для снижения кислотности прибегают к известкованию.

Чем опасна кислая почва на огороде?

1.Повышенная кислотность почв угнетает рост и развитие растений. Происходит это по причине того, что в кислых грунтах преобладает содержание растворимого алюминия и его солей, а также марганца, которые связывают на себе щелочные минералы: кальций, магний, калий, селен и др., препятствуя их усвоению растениями.
2. Нарушается белковый и углеродный обменный процессы у растений, из-за чего могут вовсе не появляться органы размножения, что приводит к потере урожая.

Чем более кислая почва, тем быстрее она заболачивается, через некоторое время на ней уже смогут расти только некоторые болотные и хвойные растения.

Как определить кислотность почвы?

Самый точный результат можно получить, только обратившись в лабораторию анализа почв и предоставив им образцы почвы. Пробы для химического анализа почвы на кислотность,PH, отбираются в соответствии с ГОСТ 17.4.3.01-83 «Охрана природы. Почвы. Общие требования к отбору проб».

В лаборатории анализа почв , кислотность почвы определяют в соответствии с ГОСТом. Стандарт ГОСТ 27753.3-88 .Почвы. Метод определения рН водной суспензии. , распространяется на тепличные грунты и устанавливает метод определения рН водной суспензии почвы при химическом анализе почвы . Сущность метода заключается в измерении разности потенциалов стеклянного электрода, чувствительного к ионам водорода и электрода сравнения, значение которого зависит от концентрации ионов водорода в растворе.

Предельное значение суммарной относительной погрешности результатов анализа при доверительной вероятности Р = 0,95 составляет 0,3 единицы рН. Для анализа используют часть водной суспензии, приготовленной по ГОСТ 27753.2-88. Грунты тепличные. Метод приготовления водной вытяжки.

источник

Лабораторные исследования почвы, которые выполняет лаборатория «Лаб24», являются острой необходимостью для многих сфер жизнедеятельности человека. Они могут выполняться с разными целями. Определение состава и типа грунтов делают перед началом любого серьезного строительства. Полный и комплексный анализ почвы требуется, если необходимо увеличить плодородность сельскохозяйственных земель.

В зависимости от отрасли и поставленной задачи, специалисты Лаб24 разработали индивидуальные программы анализа почв, включающие в себя как потребности изыскательских компаний так и агрохимическое направление анализа почв.

Лаб24 располагает исчерпывающим количеством видов исследования почвы и разнообразными методами проведения испытаний. Заказать исследования можно как на один, так и на перечень тех показателей, которые необходимы именно Вам в конкретной ситуации.

Лаборатория Лаб24 оказывает полный комплекс услуг, необходимых при исследовании качества почвы. Проводятся комплексные исследования, а также имеется возможность провести анализ почвы по отдельно взятым показателям.

Современная лабораторная база Лаб24 и многолетний практический работы в данной сфере позволяет в самые сжатые сроки провести полное радиологическое обследование почв и грунтов и установить наличие ограничений в использовании почв и грунтов.

Биотестирование почв и грунтов обеспечивает возможность оценки общей токсичности почвы с целью определения возможного ее последующего применения в строительных работах. В лаборатории Лаб24 это исследование может быть выполнено на ряде тест-объектов.

Отбор проб проводится специалистами Лаб24 в соответствии с действующей нормативной базой, отбирается необходимое для проведения всех заказанных показателей количество анализируемой пробы, по согласованию специалист приедет в удобное для Вас время.

Стоимость исследования не включает выезд специалиста и отбор проб. Посмотреть стоимость выезда специалиста и отбора проб.

Антропогенный фактор является главной причиной загрязнения земельных угодий. Они деградируют вследствие производственной деятельности человека и засорения им окружающей среды бытовыми отходами. При этом, вредные вещества, попадающие на поверхностный слой почвы, проникают вглубь нее, где концентрируются, смешиваются и оказывают токсическое воздействие на полезные микроорганизмы, необходимые для корневой системы растений.

В зависимости от поставленной цели, проведение анализов почвы может производиться различными методами. По желанию заказчика мы можем выполнить полный или элементный вариант исследования. После изучения нашими квалифицированными специалистами химического состава грунта, заказчику будет предоставлен протокол испытания, в котором указываются все типы загрязнений, выявленных в пробе. Ими могут быть:

  • Соли тяжелых металлов
  • Нефтепродукты различного происхождения
  • Бензапирен и другие канцерогенные вещества органического происхождения
  • Повышенный или пониженный уровень кислотности
  • Опасные бактерии

Обладая данной информацией, землевладелец сможет предпринять необходимые меры по улучшению плодородия земли, используя минеральные удобрения определенного химического состава, а застройщик, принять решение о возможности либо невозможности возведения жилых или общественных зданий на конкретном земельном участке.

Если вас заинтересовали наши услуги, необходимо провести отбор почвы для лабораторного исследования и доставить ее в офис «Лаб24» в этот же день. Условия хранения образцов зачастую играют немаловажную роль в точности проведенных испытаний, и случае правильного отбора и своевременной доставки мы сможем гарантировать полную достоверность результатов. Если участок, с которого отбираются пробы, находится на значительном удалении от Москвы, лучше связаться по телефону с нашими специалистами, которые дадут необходимые консультации относительно условий их хранения.

Лаборатория «Лаб24» является независимой и аккредитована в Федеральной службе по аккредитации. Наши клиенты имеют возможность заказать исследования грунтов на загрязнение отдельными элементами или оценку ее состояния по нескольким показателям. Стоимость работ будет зависеть от перечня выбранных показателей. Каждому заказчику мы гарантируем индивидуальный подход, а цена на наши услуги вас приятно удивит.

Анализ почвы осуществляется на современном техническом уровне.

Срок исполнения заказа — от 3 до 7 рабочих дней.

источник

  • Анализом почвы называют комплекс исследований, проводимых для определения состава, биологических, агрохимических и химических свойств грунтов.
    Результаты исследований можно использовать для составления карт почвы. Исследования проводятся путем отбора проб и дальнейшего изучения их в лабораторных условиях.

Пробы берутся из верхних слоев почвы. Для получения усредненного результата по участку применяются разные методы отбора проб грунтов — в углах и центре участка, а также по диагонали через определенные равные промежутки. Каждый отобранный образец помещается в отдельную емкость, которая надежно закрывается. Отбор проб проводится с целью контроля уровня загрязнения и оценки общего качественного состояния, поиска естественных нарушений структуры и пр.

    Наименование исследований Цена за 1 ед. работ / руб., в т.ч. НДС
    pH 220
    Кадмий, никель, хром, медь, цинк, марганец, кобальт, железо, молибден, свинец, натрий, калий, кальций, магний, алюминий (1 показатель) 430
    Ртуть, мышьяк, АПАВ (1 показатель) 600
    Нефтепродукты, азот общий, органический углерод, фенолы, формальдегид (1 показатель) 700
    Азот аммонийный, азот нитратный, сульфаты, хлориды, фосфор общий, фосфор подвижный, сера подвижная, карбонаты, бикарбонаты, хлориды (1 показатель) 430
    Влажность, зольность (1 показатель) 350
    Гранулометрический состав 1100
    Плотность скелета грунта 500
    Бенз(а)пирен 2 500
    Полихлорированные бифенилы (ПХБ) 3 800
    Хлорорганические пестициды (ХОП) 3 800
    Сумма полиароматических углеводородов 3 800
    Токсичность (2 тест-объекта) 3 500
    Оловоорганические соединения 24 000
    ПХТ (полихлорированные терфенилы) 19 500
    Радиологические исследования
    226 Ra, 232 Th, 40 K, 137 Cs (все вместе) 8 000
    90 Sr 5 000
    Микробиологические и паразитологические исследования
    БГКП (ЛКП.колиформы) 400
    Энтерококки 400
    Патогенные микроорганизмы (в т.ч. сальмонеллы) 900
    Гельминты и цисты простейших (паразитология) 950
    Наличие личинок и куколок мух 900
    Стафилоккоки 300
    Синегнойная палочка 400
    Энтеробактерии родов Салмонеллы Шигеллы 900
    E.coli 400
    Наименование исследований Цена за 1 ед. работ / руб., в т.ч. НДС Срок
    Подготовительные работы проб для исследования
    1 Доставка в лабораторию с отбор проб специалистом по договоренности ?
    2 Сушка влажных образцов 100 3 дня
    3 Растирка образца почвы предварительная (сито 1 мм) 600 3 дня
    4 Отбор корешков и растирка образца почвы для определения гумуса и азота из предварительно растертой пробы (сито 0,25 мм) 500 3 дня
    5 Растирка образца почвы для определения карбонатов, гипса, железа и др. (сито 0,25 мм) 400 3 дня
    6 Подготовка образца почвы для гранулометрического анализа (сито 1 мм) 600 3 дня
    7 Отмывка почвы от карбонатов 500 8 дней
    8 Отмывка почвы от ила 500 8 дней
    Общий анализ почв
    1 рН водной суспензии 300 3 дня
    2 рН солевой суспензии 300 5 дней
    3 Гидролитическая кислотность (по Каппену) 500 5 дней
    4 Обменная кислотность 500 3 дня
    5 Сумма поглощенных оснований (по Каппену) 600 5 дней
    6 Емкость катионного обмена по Шолленбергеру 2000 10 дней
    7 Емкость катионного обмена по Пфефферу 3000 10 дней
    8 Органическое вещество (по Тюрину) 700 5 дней
    9 Общий азот 2000 3 дня
    10 Гипс (по Хитрову) 2500 10 дней
    11 Общее содержание карбонатов (по Козловскому) 900 5 дней
    12 Гигроскопическая влага, влажность почвы (грунта, торфа) 300 3 дня
    13 Потеря почвы при прокаливании (ППП), зольность торфяных горизонтов, торфов 500 6 дней
    14 Зольность 1500 6 дней
    15 Общее содержание нефтепродуктов 2000 8 дней
    Гранулометрический состав:
    1 — сокращенный (содержание физ. песка и физ. глины) 1500 8 дней
    2 — полный (содержание всех фракций) 3000 10 дней
    Приготовление вытяжек для анализа
    1 Водная вытяжка 400 3 дня
    2 Вытяжка для определения подвижных форм микроэлементов 500 5 дней
    3 Вытяжка Тамма 900 5 дней
    4 Вытяжка Мера и Джексона 1500 5 дней
    5 Вытяжки для определения фосфора и калия (на выбор по Кирсанову, Чирикову, Мачигину, Масловой) 500 5 дней
    Определение металлов в вытяжках
    1 Алюминий 900 3 дня
    2 Железо 900 3 дня
    3 Кадмий 900 3 дня
    4 Кальций 900 3 дня
    5 Калий 600 3 дня
    6 Кобальт 900 3 дня
    7 Магний 900 3 дня
    8 Марганец 900 3 дня
    9 Медь 900 3 дня
    10 Натрий 600 3 дня
    11 Никель 900 3 дня
    12 Свинец 900 3 дня
    13 Стронций 900 3 дня
    14 Хром 900 3 дня
    15 Цинк 900 3 дня
    Определение других неорганических соединений
    1 Аммоний 600 3 дня
    2 Карбонат-ион (CO3) 600 3 дня
    3 Гидрокарбонат-ион (HCO3) 500 3 дня
    4 Хлорид-ион (Cl) 600 3 дня
    5 Нитрат-ион (NO3) 900 3 дня
    6 Нитрит-ион (NO2) 600 3 дня
    7 Сульфат-ион 600 3 дня
    8 Фосфат-ион (PO4) 900 3 дня
    9 Фторид-ион (F) 900 3 дня
    Комплексные лабораторные исследования почв
    1 Общее содержание нефтепродуктов, тяжелые металлы (кислоторастворимые формы): кадмий, медь, никель, свинец, цинк, содержание естественных радионуклидов 6000 8 дней
    2 рН водный, влажность, гранулометрический состав, общий азот, гумус, фосфор подвижный, калий подвижный 6000 10 дней
    3 рН водный, гидролитическая кислотность, влажность, гранулометрический состав, гумус, фосфор подвижный, калий подвижный, азот общий, обменные основания. 7000 10 дней
    4 рН водный, азот аммонийный, азот нитратный, нитраты, хлориды, сульфаты 9000 10 дней
    5 рН водный, влажность, гранулометрический состав, общий азот, гумус, фосфор подвижный, калий подвижный, емкость катионного обмена, обменные основания 7000 10 дней
    6 рН водный, влажность, гранулометрический состав, гумус, фосфор подвижный, калий подвижный, азот общий, обменные основания, нефтепродукты 8000 10 дней
    7 Водная вытяжка: рН, хлориды, карбонаты, гидрокарбонаты, сульфаты, кальций, магний, калий натрий, сумма токсичных солей 2000 10 дней
    Комплексные лабораторные исследования донных отложений
    1 рН, нефтепродукты, тяжелые металлы (кислоторастворимые подвижные формы): кадмий, медь, никель, свинец, цинк 6000 8 дней
    Комплексные лабораторные исследования природных вод (поверхностных, подземных)
    1 Определение ХПК, определение БПК5 2500 10 дней
    2 Определение перманганатной окисляемости 600 3 дня
    3 Определение содержания аПАВ 2000 8 дней
    4 Температура, запах, мутность, рН, железо, марганец, медь, нитраты, окисляемость перманганатная, ХПК, свинец, стронций, сульфаты, щелочность (общая и свободная), фториды, хлориды, цинк 7000 6 дней
    5 Температура, запах, мутность, рН, железо, марганец, сульфаты, фториды, хлориды, щелочность, ПАВ, БПК, ХПК, аммоний ион, нитраты, нитриты, свинец, кадмий, медь, никель, цинк, нефтепродукты 9000 10 дней
    6 рН, запах, мутность, аммоний йон, нитраты, нитриты, железо, марганец, кальций, магний, калий, натрий, гидрокарбонаты, хлориды, сульфаты, фосфаты, кадмий, медь, никель, цинк, нефтепродукты 7000 8 дней
    7 Запах, мутность, водородный показатель (рН), окисляемость перманганатная, аммоний-ион, нитраты, сульфаты, хлориды, железо общее. 7000 10 дней
    8 Запах, мутность, водородный показатель (рН), щелочность общая, окисляемость перманганатная, аммоний-ион, нитраты, сульфаты, хлориды, железо общее, кадмий, марганец, медь, никель, цинк, свинец, нефтепродукты, АПАВ 9000 8 дней
    Комплексные лабораторные исследования воды сточной очищенной
    1 Температура, БПК5,ХПК,рН,нефтепродукты, хлориды, сульфаты, азот аммонийный, сульфат-ион, железо, цинк, медь, свинец, хром 7000 10 дней
    2 Температура, рН, нефтепродукты, сульфаты, хлориды, БПК 5, азот аммонийный 6000 10 дней
    Комплексные лабораторные исследования питьевой воды
    1 Температура, рН, мутность, запах, окисляемость перманганатная, железо, щелочность, кальций, хром, никель, цинк 2000 6 дней
    2 Мутность, запах, рН, железо, цинк, медь 2000 6 дней
    3 Запах, прозрачность, окисляемость перманганатная, мутность, аммоний йон, нитриты, железо, рН 4000 6 дней
    4 Запах, прозрачность, хром, сульфаты, мутность, цинк, железо, рН 4000 6 дней
    5 Температура, рН, мутность, запах, железо 1500 6 дней
    6 рН, запах, прозрачность, железо, кальций, магний, натрий, калий, хлориды, сульфаты, щелочность 3000 6 дней
    Комплексные лабораторные исследования ливневой воды
    1 рН, температура, сульфаты, хлориды, БПК5, аммоний, нефтепродукты 3000 10 дней
    2 рН, температура, сульфаты, хлориды, БПК5, нефтепродукты, аммоний, нитраты, нитриты, аПАВ, фосфаты 6000 10 дней
    Радиологические исследования
    1 Измерение МЭД гамма-излучения (1га) по договоренности 3 дня
    2 Измерение плотности потока радона участка изысканий (1 точка) по договоренности 3 дня
    3 Интерпретация результатов анализов по договоренности 3 дня
    Комплексные лабораторные исследования почвы, без НДС Цена / руб.
    Анализ почвы на плодородие (16 показателей) 8000
    Стандартный анализ почвы на загрязненность (химический анализ на 10 показателей, токсикологический анализ на 2 тест-объекта) 8000
    Расширенный анализ почвы на загрязненность (химический анализ на 15 показателей, токсикологический анализ на 2 тест-объекта, бактериологический анализ, паразитологический анализ) 16000
    Анализ песка из песочницы на загрязненность (химический анализ на 10 показателей, токсикологический анализ на 2 тест-объекта, бактериологический анализ, паразитологический анализ) 11000
    Комплексное исследование воды из скважины/колодца + анализ почвы на загрязненность/или плодородие 15000
    Комплексное исследование участка на загрязненность (стандартный анализ почвы на плодородие/или загрязненность, стандартный анализ воды (химический анализ на 26 показателей + бактериологический анализ), обследование дома до 300 кв.м. и участка до 0.5 га на радиологию) 30000

Отбор проб рекомендуется проводить не только для изучения целесообразности и особенностей ведения строительства на конкретной территории. Желательно проводить этот вид исследования регулярно — не менее одного раза в год. Если нужно вести контроль загрязнения почвы тяжелыми металлами, пробы для анализа отбирают не менее одного раза в три года. На действующих промышленных площадках при определении уровня загрязнения почвы пробы берутся вдоль векторов так называемой «розы ветров» — это делается с учетом миграционных свойств грунтов.

Контроль санитарного состояния почвы в зоне действия промышленных источников проводится на площади, которая равна трехкратной величине защитной санитарной зоны.

Точеные пробы на участке отбирают любым указанным способом — главное, чтобы соблюдалось условие: каждая проба должна соответствовать части почвы, которая типична для данного слоя или генетического горизонта. То есть, если участок находится на пересечении нескольких различных слоев грунта (или горизонтов), пробы должны быть взяты из каждого слоя. Их количество регулируется соответствующими ГОСТами.
Отбор точеных проб производится с помощью почвенного бура, в редких случаях — с применением лопаты, ножа или шпателя.
Существует также понятие объединенной пробы — она составляется путем смешивания различных точечных проб, взятых на одной площадке. Точный химический анализ возможен при включении в объединенную пробу не менее пяти точечных проб с одного участка. Масса такой пробы должна быть не меньше одного килограмма.

Если пробы отбираются для определения наличия тяжелых металлов, при их отборе есть свои особенности — в частности, должен использоваться инструмент, не содержащий металлов. Нюансы есть и при взятии проб на наличие летучих и нестойких химических веществ — их нужно сразу помещать в герметичные флаконы, наполняя емкости до уровня пробки. После их доставляют в лабораторию, где сразу же изучают.
Анализ полученных проб — ответственная работа, от которой зависит надежность результатов, поэтому любые ошибки в этом процессе недопустимы.

Точно выполненный анализ почвы позволит определить безопасность использования грунтов при строительстве объектов различного предназначения, необходимость вывоза грунтов в процессе строительства. При проектировании, реконструкции или вводе в эксплуатацию производственных объектов будет дана оценка состояния земельного участка. Она позволит заложить правильные проектные данные или выполнить мероприятия по изменению содержания химических веществ в грунтах.
Особенно актуально провести исследования почвы, если строительные и прочие работы с объектов планируются в местах расположения промышленных и энергетических объектов, крупных автомобильных магистралей, свалок бытовых отходов и пр.
Кроме того, исследование будет нелишним для осуществления ландшафтного дизайна на территории объекта.
Истощения и эрозия почвы в настоящее время — не главные проблемы грунтов. К ним прибавилось техногенное загрязнение, которое существенно влияет на состав и, соответственно, свойства почвы. Вещества, несущие загрязнение, оседают на поверхности грунта, могут быть поглощены растениями, попасть в грунтовые воды и вовлечься в природный круговорот. Наличие тяжелых металлов в почве (свинца, цинка, кадмия, ртути и т.п.) влияет на постепенное изменение химического состав грунтов, ни изменения жизнедеятельности растений, а также живых организмов.
Какие источники загрязнения могут повлиять на состав почвы? В первую очередь, это промышленные предприятия, выбрасывающие в процессе производства загрязняющие вещества в воздух или воду. Также это — как ни удивительно — объекты жилого фонда и коммунальные предприятия, массово производящие бытовые отходы в больших количествах. Влияет также транспорт, выбрасывающий элементы в атмосферу вместе с выхлопными газами, а также проникающими в почву нефтепродуктами. В комплексе или по отдельности они насыщают грунты мышьяком, кадмием, ртутью, марганцем, стронцием, фенолом, органическими кислотами, бенз(а)пиреном и еще десятком элементов. Если строительство объекта планируется на местах сельскохозяйственного пользования, к этому списку добавятся пестициды и гербициды, попавшие в почву с удобрениями и ядохимикатами.
Из этого следует, что абсолютно чистой почвы сейчас не существует — тем более, если речь идет о грунтах в крупном мегаполисе. И строительство объекта без исследования грунтов может негативно сказаться на здоровье людей, находящихся на территории здания.
Загрязненная почва действительно неблагоприятно влияет на здоровье, провоцируя развитие тяжелых заболеваний. Само по себе загрязнение не исчезает — зачастую для этого требуется организовать ряд мероприятий.

Читайте также:  Использование хроматографии в анализе вод

Эти мероприятия разрабатываются после ряда исследований, включающих анализ количественного содержания в грунтах тяжелых металлов и вредных химических соединений, нефтепродуктов, стойких органических загрязняющих веществ.
Результаты проведенного анализа включаются в соответствующий протокол, который вместе с выводами и рекомендациями выдается заказчику исследований после их завершения.

источник

Химическим анализом почвы называют совокупность методов, направленных на оценку химического состояния грунта: его состава, свойств и экологического состояния.

  • рассчитать содержание питательных компонентов в грунте;
  • выявить вредные вещества почвы, представляющие опасность для живых организмов.

Известно несколько видов химического анализа почв:

  • определение кислотности почвы, или величины рН;
  • анализ водной вытяжки;
  • степень загрязнённости почвы и степень опасности для человека (для обозначения суммарного количества вредных веществ в почве и степени опасности применяют индекс Zc);
  • расчёт органического вещества;
  • валовой, или элементный, анализ;
  • расчёт обеспеченности земель питательными веществами;
  • определение физико-химических свойств почв;
  • выяснение поглотительной способности грунта.

Химический анализ почвы требуется тем, кто занимается растениеводством: сельскохозяйственным предприятиям, фермерам и частным лицам. Он дает возможность эффективно вести сельское хозяйство: выяснить качество земли и её пригодность для земледелия, определить необходимость обеспечения почвы удобрениями, чтобы повысить урожай. Бесконтрольное внесение питательных веществ (как недостаток, так и переизбыток) может неблагоприятно сказаться на состоянии растений. Некоторые элементы, содержащиеся в почве, могут угнетать рост и развитие растений, нарушать обмен веществ.

Фото 1. Пробы земли.

Необходим химический анализ также инженерам (от состава почвы зависят особенности строительства).

В связи с постоянно возрастающим загрязнением окружающей среды химический анализ имеет важное значение для экологов. Чтобы защитить окружающую среду, необходимо получить достоверную информацию о степени загрязнения почвы.

В грунт постоянно проникают разнообразные вредные вещества, пестициды, отходы сельского хозяйства, промышленных и коммунальных предприятий. Накапливаясь, они приводят к загрязнению почвы и представляют опасность для живых существ, в том числе и для людей.

Химический анализ почвы проводят:

  • перед началом строительства зданий (гражданских и промышленных);
  • перед разработкой мер для улучшения состояния почвы, находящейся возле дорог и предприятий;
  • при экологических проверках (в том числе после нарушения почвенного покрова);
  • при подготовке заключения о пригодности почвы для сельскохозяйственных нужд;
  • перед проведением благоустройства и озеленения территории;
  • перед применением дренажных и оросительных систем;
  • перед закладкой сада;
  • при изменении целевого применения земли;
  • при выяснении пригодности земли, используемой под бытовые отходы, для рекультивации;
  • для определения стоимости земли.

Анализ грунта для определения вредных элементов проводится лабораториями санитарно-эпидемиологического надзора и аккредитованными лабораториями предприятий.

К каждой ёмкости, содержащей пробу, прикрепляют этикетку, на которой должно быть указано:

  • хозяйство, на территории которого взят почвенный образец, и адрес (район и область);
  • порядковый номер разреза;
  • почвенный слой и глубина, с которой взят образец;
  • дата получения пробы и фамилия человека, взявшего её.

В состав работ по изучению состава грунта входит:

  • определение мест, на которых необходимо взять пробы (при этом учитываются климатические условия местности и местонахождение источников загрязнения);
  • выяснение вредных компонентов и показателей, требующих контроля;
  • взятие почвенных проб;
  • подготовка полученных образцов к анализу;
  • проведение химического анализа, в процессе которого применяются разнообразные методы;
  • сравнение полученных результатов с предельно допустимыми или ориентировочно допустимыми концентрациями;
  • подготовка заключения о загрязнении грунта;
  • составление протокола о работах по обследованию местности и передача всем заинтересованным органам;
  • разработка рекомендаций, направленных на улучшение состояния почвы.

Для отбора проб площадь поля делят на несколько элементарных участков. Если площадь менее 10 гектов, то поле разделяют на 3 участка. На больших площадях (более 10 гектаров) элементарные участки должны равняться трём гектарам.

Самый распространенный способ отбора проб — метод «конверта». Для него выделяют 5 точек, 4 из которых располагаются по углам участка и 1 точка в его центре.

Если производят отбор смешанных образцов, то берут почвенные пробы в 20 точках: 4 из них на разных углах периметра, а 16 — по диагоналям через равные промежутки. Чем неоднородней почва, тем меньшее расстояние должно быть между точками отбора проб.

В процессе подготовки пробы её перемешивают, измельчают и сокращают до установленного веса.

Чтобы сократить пробу, прибегают к способу квартования. Измельчённую почву перемешивают на стерильном плотном картоне. Из неё удаляют корни, камни и другие посторонние предметы. Оставшуюся землю разравнивают, чтобы получился слой толщиной в 0,5 сантиметра, и разделяют на 4 сектора. Почву, входящую в два противоположно расположенных сектора, выбрасывают, а оставшуюся перемешивают. Процесс повторяют несколько раз, в результате чего вес полученной пробы сводят к 200 — 300 граммам. Почву просеивают сквозь сито, диаметр отверстий которого равняется одному миллиметру. Затем её высыпают в стерильную ёмкость, закручивают пробкой и нумеруют. Полученный образец используют для навесок.

При подготовке навески также используют метод «средней пробы». В этом случае почву рассыпают слоем толщиной 0,5 сантиметра. Полученный квадрат разделяют на мелкие квадратики, сторона которых равняется 2 — 2,5 сантиметра, и из каждого берут понемногу почвы и перемешивают.

Следует обратить внимание на то, что принцип нормирования содержания химических веществ в почве существенно отличается от принципа нормирования, использующегося при изучении свойств водоёмов и атмосферы. Это связано с тем, что вещества, содержащиеся в почве, проникают в человеческий организм не только при непосредственном контакте с грунтом, но и через воздух, воду и растения. Поэтому необходимо учитывать не только прямое воздействие, но и опосредованное.

В настоящее время разработаны предельно допустимые концентрации только для 30 вредных веществ, в основном для ядохимикатов. Именно на основании ПДК судят об опасности загрязнения почвы.

В почвах сельскохозяйственных угодий проводят анализ всех применяемых пестицидов. В почвах, расположенных возле городов и промышленных предприятий, контролируют концентрацию тяжёлых металлов и бензапирена.

Чтобы обеспечить точность результатов, необходимо правильно отобрать и обработать почвенные пробы. Так как почва в разных местах участка может различаться, то с каждого участка необходимо брать по несколько точечных проб.

Почвенные пробы берут на глубине 0 — 5 и 5 — 20 сантиметров. При оценке легко мигрирующих веществ необходим отбор образцов по всей глубине почвенного профиля.

Почвенные образцы рекомендуется брать на участке, радиус которого равняется 25 — 30 километрам (расстояние отсчитывают от источника загрязнения).

Вес каждой точечной пробы должен равняться 200 — 300 граммам, а вес средней пробы не может быть менее килограмма.

Отобранные образцы упаковывают в мешочки из полиэтилена либо в ёмкости, изготовленные из материала, не вступающего в реакции.

Если нет возможности сразу провести анализ, почву помещают в холодильник. В случае слабого загрязнения почвы её можно хранить на протяжении 72 часов, а при сильном загрязнении — 48 часов.

Химический анализ, направленный на определение степени загрязненности почвы, проводят согласно графику (периодичность проверки зависит от категории земли и вредного вещества) либо после инцидента, произошедшего на производственном предприятии и вызвавшего выброс веществ, опасных для здоровья. Но в любом случае анализ должен проводиться ежегодно. Исключением является контроль концентрации тяжёлых металлов. Его достаточно делать раз в 3 года.

Химический анализ для определения степени загрязнения почв, на которых расположены детские сады, лечебно-профилактические учреждения и зоны отдыха, должен проводиться дважды в год: в весенний и осенний период.

Почвенные образцы берут с помощью почвенного щупа или бура. Обычно при работе с сухими и пыльными грунтами пользуются почвенным щупом, а если берут образцы на мёрзлых и каменистых почвах, применяют почвенный бур.

Облегчить работу исследователей помогут механические или гидравлические пробоотборники, позволяющие взять поверхностные и глубинные образцы.

При отсутствии необходимых инструментов подойдёт и лопата (стальная или алюминиевая, без следов коррозии), но она должна иметь тщательно отточенное лезвие.

Доступность вредных элементов для растений, а следовательно, их токсическое воздействие на организм человека зависит от свойств почвы:

  • состава;
  • кислотности;
  • окислительно-восстановительного режима;
  • катионно-обменных свойств;
  • концентрации гумуса;
  • наличия легкорастворимых солей;
  • биологической активности;
  • уровня грунтовых вод.

Опасность загрязнения увеличивается при повышении:

  • фактических уровней содержания вредных веществ сравнительно с предельно допустимыми концентрациями;
  • класса опасности оцениваемых веществ.

Поэтому, чтобы оценить степень загрязнения почвы, учитывают:

  • специфику источников загрязнения;
  • приоритетность загрязняющих веществ и их класс опасности;
  • особенности землепользования;
  • буферность почвы.

Если невозможно учесть все загрязняющие вещества, оценивают самые токсичные.

Стоимость работ зависит от вида анализа, стоимости используемых реактивов, количества определяемых показателей и образцов в партии.

При проведении химического анализа почвы руководствуются следующими документами:

  • ГОСТ 17.4.3.01-83 «Охрана природы. Почвы. Общие требования к отбору проб»;
  • ГОСТ 28168-89 «Почвы. Отбор проб»;
  • ГОСТ 17.4.4.02-84 «Охрана природы. Почвы. Методы отбора и подготовки проб для химического, бактериологического, гельминтологического анализа»;
  • ГОСТ 17.4.3.03-85 «Охрана природы. Почвы. Общие требования к методам определения загрязняющих веществ»
  • ГОСТ Р 53123-2008 (ИСО 10381-5:2005) «Качество почвы. Отбор проб. Часть 5. Руководство по изучению городских и промышленных участков на предмет загрязнения почвы»;
  • ГОСТ 17.4.2.02-83 «Охрана природы. Почвы. Номенклатура показателей пригодности нарушенного плодородного слоя почв для землевания»;
  • ГОСТ 17.5.1.03-86 «Охрана природы. Земли. Классификация вскрышных и вмещающих пород для биологической рекультивации земель»;
  • ГОСТ 17.5.3.06-85 «Охрана природы. Земли. Требования к определению норм снятия плодородного слоя почвы при производстве земляных работ»;
  • ГОСТ 17.5.3.05-84 «Охрана природы. Рекультивация земель. Общие требования к землеванию»;
  • ГОСТ 17.0.0.02-79 «Охрана природы. Метрологическое обеспечение контроля загрязнённости атмосферы, поверхностных вод и почвы»;
  • ГОСТ 17.4.2.01-81 «Охрана природы. Почвы. Номенклатура показателей санитарного состояния» (с Изменением N 1);
  • ГОСТ 5180-84 «Грунты. Методы лабораторного определения физических характеристик»;
  • ГОСТ Р 50685-94 «Определение подвижных соединений марганца по методу Крупского и Александровой в модификации цинао»;
  • ГОСТ Р 50686-94 «Определение подвижных соединений цинка по методу Крупского и Александровой в модификации цинао»;
  • ГОСТ Р 50687-94 «Определение подвижных соединений кобальта по методу Пейве и Ринькиса в модификации цинао»;
  • ГОСТ Р 50688-694 «Почвы. Определение подвижных соединений бора по методу Бергера и Труога в модификации цинао»;
  • ГОСТ Р 50689-94 «Определение подвижных соединений молибдена по методу Григга в модификации цинао»;
  • ГОСТ 26951 «Почвы. Определение нитратов ионометрическим методом»;
  • ГОСТ Р 506984-94 «Ферросплавы. Материалы. Термины и определения»;
  • ГОСТ 30108-94 «Материалы и изделия строительные. Определение удельной эффективной активности естественных радионуклидов»;
  • ПНД Ф 16.1:2:2.2:3.53-08 «Количественный химический анализ почв. Методика выполнения измерений массовой доли водорастворимых форм сульфат-ионов в почвах, илах, донных отложениях, отходах производства и потребления гравиметрическим методом»;
  • ГН 2.1.7.2042-06 «Ориентировочно допустимые концентрации (ОДК) химических веществ в почве»;
  • ГН 2.1.7.2041-06 «Предельно допустимые концентрации (ПДК) химических веществ в почве»;
  • ГН 1.2.2701-10 «Гигиенические нормативы содержания пестицидов в объектах окружающей среды» (перечень);
  • СанПиН 2.1.7.1287-03 «Санитарно-эпидемиологические требования к качеству почвы»;
  • СанПиН 2.6.1.2523-09 2 «Нормы радиационной безопасности (НРБ-99/2009)»;
  • СП 2.6.1.2612-10 «Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ 99/2010)»;
  • СП 11-102-97 «Инженерно-экологические изыскания для строительства»;
  • МУ 2.1.7.730-99 «Гигиеническая оценка качества почвы населённых мест»;
  • МУ 2.6.1.2398-08 «Радиационный контроль и санитарно-эпидемиологическая оценка земельных участков под строительство жилых домов, зданий и сооружений общественного и производственного назначения в части обеспечения радиационной безопасности»;
  • ФЗ РФ № 172-ФЗ от 12.12.2004г. «О переводе земель и земельных участков из одной категории в другую».

Вы можете ознакомиться с нашими выполненными объектами и стоимостью работ по проведению химического анализа почвы.

источник

Выбор почвенных образцов в природных условиях и их подго­товка к лабораторному исследованию являются основным вопро­сом методики, от которого зависит результат всех последующих определений. Необходимо правильно наметить места для отбора проб почвы, которые позволили бы выявить участки, подвергаю­щиеся наибольшему загрязнению и, наоборот, благополучные по своему санитарному состоянию. Для этого один или несколько уча­стков выбирают вблизи имеющихся источников загрязнения, а дру­гой — в месте отдаленном от них. Глубину отбора проб почвы опре­деляют в зависимости от характера почвы, задачи и вида лабора­торного исследования.

Для определения механического и химического состава почвы отбор проб производят в 3- 5 точках по диагонали с участка площадью 25 кв.м. с глубины 0,25 м, а при необходимости — с глу­бины 0,75 — 1 м и ] ,75 — 2 м. Пробы берут буром или лопатой, тща­тельно перемешивают и из проб, взятых с каждого горизонта, со­ставляют единую для него среднюю пробу весом около 1 кг, кото­рую помещают в банку с пробкой, ставят номер на этикетке и от­сылают в лабораторию с сопроводительным документом и указани­ем места и времени взятия пробы, глубины, метеорологических особенностей в момент взятия пробы и того, что следует опреде­лить в почве.

В лаборатории почвы взвешивают, перемешивают, просеивают и, в зависимости от цели исследования, подвергают анализу в нату­ральном виде или в воздушно-сухом состоянии, для чего почву вы­сушивают на воздухе при комнатной температуре с последующим дополнительным просеиванием через сито с отверстиями диамет­ром 1 мм. К анализу натуральной свежевзятой почвы приступают как можно скорее, так как в силу продолжающихся биохимических процессов в почве могут произойти существенные измене­ния. При невозможности исследования почвы в тот же день, можно хранить ее несколько дней в холодильнике или же добавить кон­сервирующие вещества.

Для бактериологического анализа пробы почвы в количест­ве 200-300 г берут стерильными инструментами также в 3-5 точках участка площадью 25 кв.м, помещают в стерильные банки и со­ставляют из них среднюю пробу. Пробы берут с глубины, на кото­рой предполагается бактериальное загрязнение. В населенных пунктах рекомендуется исследовать прежде всего поверхностные слои почвы до глубины 20 см. С участков полей орошения пробы отбирают на глубине 20 см. При изучении влияний загрязнений почвы на подземные воды и открытые водоемы следует отбирать пробы на глубине 0,75 — 2 м. В последнем случае для этого пользу­ются буром Некрасова, а при отсутствии его вырывают яму и с ка­ждой ее стороны отбирают пробы стерильной лопаточкой или но­жом. При контроле за обеззараживанием хозяйственно-бытовых отбросов почвенным методом пробы почвы отбирают с глубины 25,100 и 150 см в зависимости от физических свойств почвы. Сте­рилизация инструментов для взятия проб почвы производится на каждом новом участке путем обмывания водой, обтирания спиртом и под конец обжигания.

Банки с пробами почвы закрывают ватными пробками, обвер­тывают бумагой и перевязывают. Банку номеруют, записывают не­обходимые данные ( температура воздуха и почвы и др.) и немед­ленно направляют в лабораторию. При отсутствии банок можно переносить пробы почвы в стерильных полиэтиленовых пакетах или в стерильной пергаментной бумаге. В лаборатории почву вы­сыпают на простерилизованную в сушильном шкафу бумагу, осво­бождают от корней, щебня, стекла и т.д., крупные комки почвы разминают, тщательно перемешивают и отсюда берут навеску поч­вы для исследования. Если по доставлении проб в лабораторию нельзя приступить к бактериологическому исследованию, допуска­ется хранение их в холодильнике при 1-5гр.С не более 18 часов, так как с течением времени происходят изменения в составе микро­флоры.

Для санитарно-вирусологического анализа в первую очередь отбирают образцы пахотного слоя, так как в природных условиях энтеровирусы адсорбируются главным образом верхними слоями почвы. По Г.А. Багдасарьян, пробы берут раздельно с гряд и борозд с глубины 0-20см, для выяснения же проникновения энтеровирусов в глубь почвы — на глубине 50 и 100 см. Методика отбора проб аналогична применяемой при взятии проб для бактериологического исследования; следовательно, можно использовать одни и те же пробы почвы для того и другого анализа.

Первичную обработку проб следует Производить В день взятия пробы сразу по доставлении в лабораторию. Допускается произ­водство анализа на другой день, не позднее чем срез 24 часа, при условии хранения проб в холодильнике при А гр.С. Более длитель­ное хранение влечет за собой падение титра энтеровирусов и воз­можность их выделения уменьшается.

Читайте также:  Ионная хроматография в анализе воды

Для гельминтологического анализа пробы почвы отбирают отдельно с поверхности и с глубины 2-10 см, так как в зависимо­сти от глубины яйца гельминтов выживают в течение различных сроков. С каждого участка площадью 50 кв.м. берут не менее 10 проб весом примерно по 100 гр в разных местах по диагонали и из них составляют средние пробы весом около 1 кг отдельно для каж­дого горизонта.

Пробы почвы с поверхностных слоев отбирают металлическим шпателем, столовой ложкой или совочком, а с глубины — буром или лопатой. Пробы отбирают и транспортируют в стеклянных банках с пробкой или в целлофановых пакетах, снабжая тару этикеткой и отмечая, как обычно, время и место взятия пробы, внешние условия и т.п. По доставлении в лабораторию, пробы почвы, если они нахо­дились не в стеклянных банках, пересыпают в таковые, тщательно перемешивают и удаляют крупные частицы. Анализ производят в течении ближайших дней; если же это невозможно, то взятые про­бы заливают 3 % раствором формалина на физиологическом рас­творе или 3 % раствором соляной кислоты и хранят в открытых банках при температуре 18-24 гр.С, часто перемешивая для улуч­шения аэрации. При подсыхании почвы подливают чистую воду.

Для радиометрического анализа отбор проб почвы произво­дится в соответствии с поставленной задачей. Для определения радиоактивного загрязнения почвы в данном районе выбирают несколько участков площадью примерно 50 кв.м. и в се­редине каждого из них на площади около 1 кв.м. удаляют травяной покров и вырезают почву на пробу в виде куска размером 10×10см, толщиной 5 см. Пробу упаковывают в клеенчатый или пластиковый материал и направляют в лабораторию с указанием места взятия пробы, даты и т.д. Растительность берут в количестве около 75 г и упаковывают отдельно.

Для химического анализа почвы применяется «Методика выполнения измерений массовой концентрации ртути в пробах почв методом беспламенной атомной абсорбции с термическим разложением проб» ПНД Ф 16.1.1-96. При этом устанавливается методика выполнения измерений массовой концентрации ртути в пробах почв атомно-абсорбционным анализом (метод беспламенной атомной абсорбции.)

Для оценки механического состава почвы используется сито Кноппа состоящие из набора отдельных сит с отверстиями различного размера – от 0,25мм до 10мм. Каждому размеру отверстий соответствует определенный размер сита. Навеска отобранной почвы (200-300гр.) пропускается через сита Кноппа, в результате чего на отдельных ситах остаются частицы разного размера. Взвесив содержимое каждого сита и определив их процентный состав по отношению к навеске всей пробы ориентировочно оценивают ее механический состав.

Согласно классификации Н.Качинского частицы, задерживающиеся на том или ином сите относят к определенному типу почвы:

На ситах с отверстиями 3-10мм — камни и гравий;

На ситах с отверстиями 1-3мм — крупный песок;

На ситах с отверстиями 1-0,25мм — средний песок;

источник

Посев или посадка культур без предварительного анализа почвы — большая ошибка пользователей и владельцев земли. В почве могут содержаться элементы и соединения, наличие которых не совместимо с ростом и жизнедеятельностью выращиваемых растений. Бесконтрольное внесение удобрений (на всякий случай) может привести к недостатку или переизбытку какого-либо макро- или микроэлемента, что только ухудшит и без того не лучшее состояние растений.

Дефицит питательных элементов в растениях негативно влияет на их рост и развитие, нарушается обмен веществ растений, что сопровождается изменением их внешнего вида. Это приводит к тому, что одними агротехническими приемами не удается создать здоровый и красивый сад. В этом случае становится необходимым проведение химического анализа почвы, который является самым точным и надежным способом проверки почвы на качество, пригодность для использования.

Почвенный анализ позволяет установить содержание питательных веществ в почве, из которых растения потребляют необходимые элементы питания. Результаты анализа дают возможность определить вид и норму удобрений, правильное использование которых приводит к увеличению урожая, уровня рентабельности и тем самым приводит к снижению негативного экологического воздействия.

Результаты любого анализа зависят от правильного отбора проб и предварительной их обработки. Отбор проб для агрохимического анализа необходимо проводить учитывая вертикальную структуру, неоднородность почвенного покрова, рельеф и климат местности. Отбор смешанных образцов лучше всего проводить в весенний период, когда на поле еще не внесены удобрения и не произведены посевы. Второй срок отбора образцов устанавливается после уборки урожая, когда основной запас доступных питательных элементов уже израсходован растениями, а отсутствие посевов не мешает производству работ.

Наиболее часто для отбора смешанных почвенных образцов применяют метод «конверта». Он заключается в том, что на каждом из участков по диагонали или по «конверту» (четыре точки по углам и одна в центре) в его пяти точках отбирают пробы.

Если площадь земельного участка меньше 10 га, она делится на три элементарных участка (наименьшая площадь, которую можно охарактеризовать одной объединенной пробой почвы). Размер элементарных участков зависит от общей площади земельного участка. Например, если земельный участок составляет 4 га, то размер элементарного участка будет 1,33 га (4:3). Такой расчет объясняется тем, что с каждого земельного участка малой площади необходимо отобрать не меньше трех смешанных почвенных образца. На площадях более 10 га размер элементарного участка составляет 3 га.

Чаще всего точечные пробы отбирают с пахотного горизонта почвы, где глубина составляет 0-20 см. Смешанные образцы почвы составляют из 20 точечных проб (каждая весом 200-300 г), 4 пробы извлекаются по периметру с разных сторон, остальные по двум диагоналям через равные интервалы (100-150 м на участках с однородным почвенным покровом (А) и 10-20 м на участках с неоднородным почвенным покровом (Б)), тщательно перемешивают и берется средняя проба не менее 1 кг.

Точечные пробы (проба определенного объема, взятая из почвенного горизонта, слоя, типичная для данного горизонта или слоя) отбирают ножом или шпателем из прикопок или почвенным буром.

Прикопка почвенная — почвенный разрез небольшой глубины (50-75 см), вскрывающий только верхние горизонты почвенного профиля.

Пробы, отобранные для проведения химического анализа, упаковывают в емкости из химически нейтрального материала или полиэтиленовые мешочки и прилагают к ним этикетки. На этикетке должны быть указаны: область, район, хозяйство; номер разреза; горизонт и глубина взятия образца; дата и фамилия исследователя.

Оборудование для отбора проб

Образцы почвы отбирают с помощью почвенного бура или щупа. Для отбора проб на сухих и пылеватых почвах используют почвенный щуп, а на каменистых или замерзших почвах – почвенный бур.

Так же существуют гидравлические или механические пробоотборники для взятия поверхностных и глубинных образцов. Они существенно облегчают отбор проб, особенно при отборе большого количества образцов с разных участков.

Если у Вас нет необходимых инструментов для отбора образцов почвы, можно использовать лопату с тщательно очищенным лезвием или другие предметы огородно-садового инвентаря, изготовленные из стали или алюминия. Поверхности инструментов должны быть без коррозии и ржавчины.

Подготовка почвы для анализа

Подготовка пробы состоит в перемешивании, измельчении и сокращении до определенной массы. Для сокращения пробы используют метод квартования. Измельченный материал высыпают на стерильный плотный лист бумаги, тщательно перемешивают, отбрасывают корни, камни и прочие твердые предметы. Затем почву распределяют на месте ровным тонким слоем (0,5 см) в форме квадрата, делят на четыре сектора, содержимое двух противоположных секторов отбрасывают, а двух остальных — соединяют вместе и вновь перемешивают.

А — измельченный и перемешанный материал; Б — материал, рассыпанный тонким слоем в виде квадрата или круга; В — материал, разделенный на четыре сектора (квартование).

Почву делят до тех пор, пока не останется около 300 г и просеивают ее через сито диаметром 1 мм. После чего почву ссыпают в чистую емкость с притертой пробкой и нумеруют ее. Из полученного образца берут навески для анализа.

Если сразу сделать анализ невозможно, то почву можно хранить в холодильнике: слабо загрязненную — при температуре 0 °С в течение 72 ч, а сильно загрязненную — 48 ч.

Отбор проб воды для анализа

Состав воды и степень ее загрязнения зависят от разных причин: глубины отбора воды, структуры почвы в районе, наличия вблизи промышленных предприятий, сельскохозяйственных полей, свалок и т.д. Поэтому после копания колодцев и бурения скважин на воду необходимо провести анализ воды. Определение качества воды является первым и абсолютно незаменимым этапом процесса водоподготовки.

В лаборатории можно определить основные параметры качества воды, такие как жесткость воды, содержание в ней различных соединений и микроорганизмов, в том числе и содержание в ней железа. Именно эти показатели приносят наибольшее количество неприятностей пользователю в процессе эксплуатации скважины.

Для проведения химического анализа нужно не менее 1,5 литра воды. В качестве емкостей используют стеклянную или пластиковую тару. Посуда, предназначенная для отбора проб, должна быть чистой и без запахов, предварительно промытая той же водой, которую отбирают для анализа. Застоявшуюся воду предварительно спускают в течение 10-15 минут. Это делается для того, чтобы избежать попадания в образец окалины и застоявшейся воды, тем самым получить неточный химический анализ. Затем воду осторожно заливают в пробоотборную емкость до ее переполнения.

При отборе воды из реки или родника также нужно не допускать образования воздушной прослойки, чтобы кислород воздуха не растворялся в воде при отборе и перевозке пробы — он может вступить в реакцию с примесями и исказить реальную картину. Более бутылку не открывать!

источник

ОСТ 46-52-76 Методы агрохимического анализа почв. Определение химического состава водных вытяжек и состава грунтовых вод для засоления почв

Срок введения установлен с 1 октября 1976 г.

2. Отбор пробы почвы для анализа

3. Получение водной вытяжки

3.1. Аппаратура, материалы и реактивы

4.1. Определение ионов СО 2- 3 и HCO — 3 (карбонатная и бикарбонатная щелочность)

4.2. Меркуриметрический метод определения Сl — -иона

4.3. Аргентометрический метод определения Сl — -иона по Мору

4.4. Трилонометрический метод определения иона Са 2+

4.5. Трилонометрический метод определения суммы ионов Са 2+ и Мg 2+

4.6. Пламенно-фотометрический метод определения ионов Na + и К + .

4.7. Весовой метод определения иона SO 2- 4

4.8. Объемный метод определения иона SO 2- 4 — по Айдиняну

4.9. Весовой метод определения общей суммы воднорастворимых веществ (сухой остаток)

Настоящий стандарт распространяется на анализы почв, выполняемые при почвенно-агрохимическом обследовании сельскохозяйственных угодий и проведении полевых опытов с удобрениями и другими средствами химизации.

1. Метод основан на извлечении растворимых солей из почвы водой при отношении почва : вода 1:5 с последующим определением в исследуемой вытяжке ионов

Образцы почвы, поступающие на анализ, должны быть предварительно доведены до воздушно-сухого состояния, измельчены и пропущены через сито с круглыми отверстиями диаметром 2 мм.

Если образец поступает на анализ в коробке, то перед отбором пробы почва должна быть тщательно перемешана ложкой или шпателем на всю глубину коробки. Проба для анализа отбирается ложкой или шпателем не менее, чем из пяти разных мест, равномерно распределенных по площади коробки.

Если образец поступает на анализ в мешках или пакетах, почву высыпают на ровную поверхность, хорошо перемешивают, распределяют слоем толщиной не более 1 см и отбирают ложкой или шпателем пробу для анализа не менее, чем из 5 разных мест.

Банки бытовые по ГОСТ 5717-70 или другие технологические емкости из материала, устойчивого к действию применяемых реактивов.

Кассеты под технологические емкости.

Дозатор для прибавления 150 мл дистиллированной воды. Погрешность дозирования не более 2%.

Установки фильтровальные десятипозиционные.

Мешалка лабораторная электромеханическая для перемешивания почвы с водой.

Фильтры бумажные беззольные с «белой лентой» диаметром 15 см по МРТУ 6-09-2411-65.

Вода дистиллированная по ГОСТ 6709-72.

Пробу почвы массой 30 г взвешивают с погрешностью не более 0,3 г и пересыпают в бытовую банку или другую технологическую емкость, установленную в десятипозиционную кассету. Дозируют к навеске почвы 150 мл свежеприготовленной дистиллированной воды и перемешивают содержимое банки в течение 3 минут. Затем полученную суспензию фильтруют через двойной складчатый фильтр («белая лента») и полученную вытяжку используют для анализа.

Метод основан на последовательном титровании водной вытяжки раствором серной кислоты сначала до рН 8,3, а затем до рН 4.4.

При титровании до рН 8,3 происходит нейтрализация карбонат-иона до бикарбонат-иона:

При титровании до рН 4,4 происходит нейтрализация бикарбонат-иона:

4.1.1. Аппаратура, материалы и реактивы

рН-метр ЛПМ-60М, рН-340 с блоком автоматического титрования БАТ-12ЛМ или рН-метр рН-121 с блоком автоматического титрования БАТ-15.

Мешалка магнитная для перемешивания раствора при титровании.

Бюретка вместимостью 25 мл по ГОСТ 1770-64.

Дозатор для дозирования 20 мл вытяжки. Погрешность дозирования не более 1%.

Капельницы для индикаторов по ГОСТ 9876-73.

Взамен ГОСТ 9876-73 постановлением Госстандарта СССР от 15 июля 1982 г. N 2670 с 1 января 1984 г. введен в действие ГОСТ 25336-82

Стаканы химические вместимостью 100 мл.

Серная кислота по ГОСТ 4204-66 х.ч. или ч.д.а., 0,02 н. титрованный раствор: готовят из фиксанала.

Фенолфталеин, индикатор по ГОСТ 5850-51, 1% -ный спиртовой раствор.

Метиловый оранжевый, индикатор по ГОСТ 10816-64, 0,05%-ный водный раствор.

Дистиллированная вода по ГОСТ 6709-72.

В химический стакан берут дозатором 20 мл вытяжки, помещают в нее «магнитик» и ставят стакан на магнитную мешалку. В раствор погружают стеклянный электрод и электрод сравнения рН-метра и определяют рН вытяжки. Если рН вытяжки ниже 8,3, то отмечают, что нормальных карбонатов нет, и определяют только бикарбонат-ион, титруя вытяжку 0,02 н. раствором серной кислоты до рН 4,4. В вытяжках с рН выше 8,3 определяют оба вида щелочности. Пробу вытяжки сначала титруют 0,02 н. раствором серной кислоты до рН 8,3 и записывают расход кислоты, а затем продолжают титрование до рН 4,4.

При отсутствии рН-метра допускается визуальное установление эквивалентных точек при титровании по фенолфталеину (рН 8,3) и по метиловому оранжевому (рН 4,4). В этом случае к 20 мл вытяжки прибавляют 1 каплю 2%-ного спиртового раствора фенолфталеина. При появлении малиновой окраски вытяжку оттитровывают 0,02 н. раствором серной кислоты до обесцвечивания окраски индикатора. Затем прибавляют 1 каплю 0,1%-ного водного раствора метилового оранжевого и титруют 0,02 н. раствором серной кислоты до перехода окраски от желтой к оранжевой. Если вытяжка не дает окрашивания с фенолфталеином, это указывает на отсутствие нормальных карбонатов. В этом случае титруют только бикарбонаты, прибавив метиловый оранжевый.

4.1.3. Обработка результатов

Содержание СО 2- 3 в анализируемой почве рассчитывают по формуле:

где а — объем раствора Н2SO4, израсходованный на титрование вытяжки до рН 8,3, мл;

Н — нормальность раствора Н2SO4, мг-экв/мл;

С — навеска почвы, соответствующая 20 мл вытяжки (4 г), г;

100 — коэффициент пересчета на 100 г почвы;

2 — коэффициент, учитывающий, что при pН 8,3 карбонат-ион оттитрован только наполовину.

Содержание НСО — 3 в анализируемой почве рассчитывают по формуле:

где а — объем растворов Н2SO4, израсходованный на титрование вытяжки до рН 8,3, мл;

в — объем раствора Н2SO4, израсходованный на титрование вытяжки от рН 8,3 (или ниже при отсутствии карбонат-иона в исходной вытяжке) до рН 4,4, мл;

Н — нормальность раствора Н2SO4, мг-экв/ мл;

С — навеска почвы, соответствующая 20 мл вытяжки (4 г), г;

100 — коэффициент пересчета на 100 г почвы.

Общую щелочность анализируемой почвы вычисляют, суммируя содержания СО 2- 3 и НСО — 3, выраженные в мг-экв/100 г почвы, или по формуле:

где а — объем раствора Н2SO4, израсходованный на титрование вытяжки до рН 8,3;

в — объем раствора Н2SO4, израсходованный на титрование вытяжки от рН 8,3 (или ниже при отсутствии карбонат-иона в исходной вытяжке) до рН 4,4, мл;

Н — нормальность раствора Н2SO4, мг-экв/мл;

С — навеска почвы, соответствующая 20 мл вытяжки (4 г), г;

100 — коэффициент пересчета на 100 г почвы.

Метод основан на титровании ионов хлора азотнокислой ртутью (II), в процессе которого образуется труднодиссоцируемое соединение HgC l 2 .

4.2.1. Аппаратура, материалы и реактивы

Бюретка вместимостью 10 мл по ГОСТ 1770-64.

Азотная кислота по ГОСТ 4461-67, х.ч. или ч.д.а., 0,05 н. раствор.

Спирт этиловый, 96%-ный по ГОСТ 5962-67.

На территории РФ действует ГОСТ Р 51652-2000 «Спирт этиловый ректификованный из пищевого сырья. Технические условия»

Ртуть (II) азотнокислая по ГОСТ 4520-68.

Натрий хлористый по ГОСТ 4233-66, х.ч., 0,1 н. раствор.

Дифенилкарбазон по ГОСТ ТУ МХП 2636-51, х.ч. или ч.д.а.

Бромфеноловый синий, индикатор по ГОСТ ТУ МГУХП 271-59, ч.д.а.

Дистиллированная вода по ГОСТ 6709-72.

4.2.2.1. Приготовление 0,02 н. титрованного раствора азотнокислой ртути (II).

Сначала готовят 0,1 н. раствор, для чего 16,68 г соли растворяют в 100 мл дистиллированной воды, содержащей 1,0-1,5 мл концентрированной азотной кислоты, и доводят объем до 1 л дистиллированной водой. Полученный раствор разбавляют в 5 раз и устанавливают его титр по 0,1 н. раствору хлористого натрия.

4.2.2.2. Приготовление смешанного индикатора.

0,5 г кристаллического дифенилкарбазона и 0,05 г кристаллического бромфенолового синего растворяют в 100 мл 96%-ного спирта. Раствор устойчив в течение месяца при хранении его в темной склянке.

В оттитрованные после определения общей щелочности пробы вытяжки приливают по 10 капель раствора смешанного индикатора и по 0,5 мл 0,05 н. раствора азотной кислоты для установления рН 3,0-3,5. Затем пробы титруют 0,02 н. раствором азотнокислой ртути до перехода вишнево-розовой окраски в сиренево-фиолетовую.

Читайте также:  Исследовательская работа анализ качества питьевой воды

При проведении анализа нужно соблюдать осторожность, так как в процессе титрования образуется ядовитая соль НgС l 2 (сулема).

4.2.4. Обработка результатов

Содержание Сl — -иона в анализируемой почве рассчитывают по формуле:

где а — объем раствора Hg(NO3)2, израсходованный на титрование, мл;

Н — нормальность раствора Hg(NO3)2,мг-экв/мл;

С — навеска почвы, соответствующая 20 мл вытяжки (4 г), г;

100 — коэффициент пересчета на 100 г почвы.

Метод основан на титровании хлор-ионов раствором азотнокислого серебра, в процессе которого ионы серебра связываются ионами хлора в труднорастворимое соединение AgC l .

4.3.1. Аппаратура, материалы и реактивы

Бюретка вместимостью 10 мл по ГОСТ 1770-64.

Пипетка вместимостью 1 мл по ГОСТ 1770-64.

Калий хромовокислый по ГОСТ 4459-65, х.ч. или ч.д.а., 10%-ный водный раствор.

Серебро азотнокислое по ГОСТ 1277-63.

Натрий хлористый по ГОСТ 4233-66, х.ч., 0,1 н. раствор. Допускается использование фиксанала.

Дистиллированная вода по ГОСТ 6709-72.

4.3.2.1. Приготовление 0,02 н. титрованного раствора азотнокислого серебра.

3,4 г соли растворяют в дистиллированной воде и доводят объем раствора до 1 л в мерной колбе. Титр устанавливают по 0,1 н. раствору хлористого натрия.

К пробам водной вытяжки, в которых оттитрована общая щелочность, прибавляют по 1 мл раствора K2CrO4 и титруют 0,02 н. раствором AgNO3 до появления неисчезающей красно-бурой окраски.

4.3.4. Обработка результатов

Содержание С l — -иона в анализируемой пробе рассчитывают по той же формуле, что и при определении хлора меркуриметрическим методом.

Метод основан на титровании ионов кальция трилоном Б в сильнощелочной среде в присутствии мурексида в качестве металлоиндикатора.

4.4.1. Аппаратура, материалы и реактивы

Мешалка магнитная для перемешивания раствора при титровании.

Бюретка вместимостью 10 мл по ГОСТ 1770-64.

Пипетки вместимостью 1,2 и 10 мл по ГОСТ 1770-64 или дозаторы. Погрешность дозирования не более 1%.

Химические стаканы вместимостью 150 мл по ГОСТ 10394-63.

См. ГОСТ 25336-82 «Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры», утвержденный постановлением Госстандарта СССР от 15 июля 1982 г. N 2670

Цилиндр мерный вместимостью 100 мл по ГОСТ 1770-64.

Натр едкий по ГОСТ 4328-66, х.ч. или ч.д.а., 2 н. раствор.

Натрий сернистый по ГОСТ 2053-66, х.ч. или ч.д.а., 2%-ный раствор.

Гидроксиламин солянокислый по ГОСТ 5456-65, х.ч. или ч.д.а., 5%-ный раствор.

Мурексид, индикатор по МРТУ 6-09-1254-64, ч.д.а.

Этилендиамин-N-;N;N — тетрауксусной кислоты динатриевая соль, 2-водная (трилон Б) по ГОСТ 10652-63, х.ч. или ч.д.а.

Магний сернокислый по ГОСТ 4523-67, х.ч.

Натрий хлористый по ГОСТ 4233-66, х.ч. или ч.д.а.

Дистиллированная вода по ГОСТ 6709-72.

4.4.2.1. Приготовление индикатора

Растирают 5 г мурексида с 95 г хлористого натрия до равномерной окраски. Хранят в склянке из темного стекла.

4.4.2.2. Приготовление 0,05 н. раствора сернокислого магния. Готовят из фиксанала.

4.4.2.3. Приготовление 0,05 н. раствора трилона Б.

9,3 г трилона Б растворяют в дистиллированной воде и доводят объем до 1 л. Титр раствора устанавливают по сернокислому магнию.

В химический стакан берут 10 мл вытяжки, помещают в нее «магнитик» и ставят стакан на магнитную мешалку. Приливают к вытяжке 50-70 мл дистиллированной воды, 0,5 мл 5%-ного раствора гидроксиламина, 2 мл 2 н. раствора едкого натра и 0,5 мл 2%-ного раствора сернистого натрия при непрерывном перемешивании раствора в стакане магнитной мешалкой. Затем добавляют 10-15 мг индикатора и титруют 0,05 н. раствором трилона Б до перехода розовой окраски в лиловую.

4.4.4. Обработка результатов

Содержание иона Са 2+ в анализируемой почве рассчитывают по формуле:

где а — объем раствора трилона Б, израсходованный на титрование, мл;

Н — нормальность раствора трилона Б, мг-экв/мл;

С — навеска почвы, соответствующая 10 мл вытяжки (2 г);

100 — коэффициент пересчета на 100 г почвы.

Метод основан на титровании ионов кальция и магния трилоном Б в растворе аммиачного буфера в присутствии хромогена черного в качестве металлоиндикатора.

4.5.1. Аппаратура, материалы и реактивы

Мешалка магнитная для перемешивания растворов при титровании.

Бюретка вместимостью 10 мл по ГОСТ 1770-64.

Пипетки по ГОСТ 1770-64 или дозаторы вместимостью 1, 5 и 10 мл. Погрешность дозирования 1%.

Стаканы химические вместимостью 150 мл по ГОСТ 10394-63.

Аммоний хлористый по ГОСТ 3773-60, ч.д.а. или х.ч.

Аммиак водный, 25%-ный раствор по ГОСТ 3760-64, х.ч. или ч.д.а.

Натрий сернистый по ГОСТ 2053-66, х.ч. или ч.д.а., 2%-ный раствор.

Гидроксиламин солянокислый по ГОСТ 5456-65, х.ч. или ч.д.а., 5%-ный раствор.

Хромоген черный, индикатор по ТУ МХП 3498-52.

Натрий хлористый по ГОСТ 4233-66, х.ч. или ч.д.а.

Магний сернокислый по ГОСТ 4523-67, х.ч.

Этилендиамин-N,N, N, N -тетрауксусной кислоты динатриевая соль 2-водная (трилон Б) по ГОСТ 10652-63, х.ч. или ч.д.а.

Дистиллированная вода по ГОСТ 6709-72.

4.5.2.1. Приготовление хлоридно-аммиачного буферного раствора: 20 г аммония хлористого растворяют в 100 мл дистиллированной воды, приливают 100 мл 25%-ного аммиака и доводят дистиллировалной водой до 1 л.

4.5.2.2. Приготовление индикаторной смеси: 5 г хромогена черного растирают с 95 г хлористого натрия до равномерной окраски. Хранят в склянке из темного стекла.

4.5.2.3. Приготовление 0,05 н. раствора сернокислого магния по пункту 4.4.2.2. настоящего стандарта.

4.5.2.4. Приготовление 0,05 н. раствора трилона Б по пункту 4.4.2.3. настоящего стандарта.

В химический стакан берут 10 мл вытяжки, помещают в нее «магнитик» и ставят стакан на магнитную мешалку. Приливают к вытяжке 5 мл хлоридно-аммиачного буферного раствора, 0,5 мл 2%-ного раствора сернистого натрия и 0,5 мл 5%-ного раствора гидроксиламина. Затем добавляют 10-15 мг индикаторной смеси и титруют сумму ионов Са 2+ и Мg 2+ 0,05 н. раствором трилона Б до перехода вишнево-красной окраски в сине-голубую.

4.5.4. Обработка результатов.

Результаты титрования суммы ионов Са 2+ и Мg 2+ и ионов Са 2+ используют для расчета содержания ионов Мg 2+ . Расчет проводят по следующей формуле:

где в — объем раствора трилона Б, израсходованный на титрование суммы Са 2+ + Мg 2+ , мл;

а — объем раствора трилона Б, израсходованный на титрование Са 2+ , мл;

Н — нормальность трилона Б, мг-экв/мл;

С — навеска почвы, соответствующая 10 мл вытяжки (2 г);

100 — коэффициент пересчета на 100 г почвы.

Метод основан на пламенно-фотометрическом принципе определения натрия и калия.

4.6.1. Аппаратура, материалы и реактивы

Пламенный фотометр. Допустимо использование пламен: пропан-бутан-воздух, сетевой газ — воздух, бензин-воздух.

Стаканы химические вместимостью 50 мл по ГОСТ 10394-63.

См. ГОСТ 25336-82 «Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры», утвержденный постановлением Госстандарта СССР от 15 июля 1982 г. N 2670

Колбы мерные вместимостью 250 и 1000 мл по ГОСТ 1770-64.

Цилиндры мерные вместимостью 100 мл по ГОСТ 1770-64.

Натрий хлористый по ГОСТ 4233-66, х.ч.

Калий хлористый по ГОСТ 4234-69, х.ч.

Вода дистиллированная по ГОСТ 6709-72.

4.6.2.1. Приготовление исходного образцового раствора натрия и калия.

29,225 г хлористого натрия и 18,638 г хлористого калия взвешивают с погрешностью не более 0,002 г. Обе навески растворяют в в дистиллированной воде и доводят объем полученного раствора до 1 литра в мерной колбе. Полученный образцовый раствор имеет концентрацию 0,5 н. по хлористому натрию и 0,25 н. по хлористому калию, что соответствует 250 мг-экв натрия и 125 мг-экв калия на 100 г почвы.

4.6.2.2. Приготовление рабочей шкалы образцовых растворов, используемой для калибровки пламенного фотометра: в мерные колбы вместимостью 250 мл отбирают количества исходного образцового раствора, указанные в таблице.

Объем исходного образцового раствора (мл)

Содержание натрия, мг-экв на 100 г почвы

Содержание калия мг-экв на 100 г почвы

Объемы растворов в колбах доводят до метки дистиллированной водой.

Определение натрия и калия проводят на пламенном фотометре, распыляя анализируемые вытяжки в пламя. Натрий определяют, используя светофильтр, пропускающий аналитические линии 589,0 и 589,9 нм, калий — 766,5 и 769,9 нм.

4.6.4. Обработка результатов

Содержание натрия и калия в анализируемых почвах находят по рабочей шкале образцовых растворов в мг-экв на 100 г почвы. Если вытяжку перед анализом разбавляли, то найденное значение увеличивают во столько раз, во сколько была разбавлена вытяжка.

Метод основан на осаждении сульфат-иона хлористым барием и взвешивании прокаленного осадка в виде ВаSO4.

4.7.1. Аппаратура, материалы и реактивы

Стаканы химические вместимостью 50 мл по ГОСТ 10394-63.

Пипетки емкостью 1,5 и 10 мл по ГОСТ 1770-64.

Цилиндр мерный вместимостью 50 мл по ГОСТ 1770-64.

Фильтры бумажные беззольные «синяя лента» диаметром 9 см по МРТУ 6-09-2411-65.

Барий хлористый по ГОСТ 4108-72, х.ч. или ч.д.а., 10%-ный раствор.

Соляная кислота по ГОСТ 3118-67, х.ч. или ч.д.а., разбавленная 1:3.

Серная кислота по ГОСТ 4204-66, х.ч. или ч.д.а., 10%-ный раствор.

Метиловый красный, индикатор по ГОСТ 5853-51.

Вода дистиллированная по ГОСТ 6709-72.

В зависимости от содержания SO 2- 4 берут в химический стакан 5-50 мл вытяжки. При большом содержании SO 2- 4 в засоленных сульфатами почвах из раствора предварительно выделяют полуторные окислы аммиачным способом. Затем фильтрат подкисляют соляной кислотой по метиловому красному до кислой реакции, приливают еще 1 мл разбавленного раствора соляной кислоты и нагревают до кипения. К нагретой пробе прибавляют по каплям 2-5-10 мл (в зависимости от степени помутнения раствора) горячего раствора ВаС l 2 , тщательно размешивая раствор палочкой после каждой капли осадителя. Покрывают стаканы часовым стеклом и ставят на кипящую водяную баню на 2-3 часа для выкристаллизовывания и отстаивания осадка, после чего делают пробу на полноту осаждения SO 2- 4.

Если осадок едва заметен, время отстаивания увеличивают до 12-24 часов. Осадок отфильтровывают, промывают горячей водой, подкисленной HC l , до прекращения реакции на барий (10%-ный раствор H2SO4). Фильтр с осадком подсушивают на воронке, помещают во взвешенный фарфоровый тигель и ставят в холодную муфельную печь. Осадок прокаливают в течение 30 минут при температуре 700-750°С, выше 800° осадок разлагается. Затем тигель охлаждают в эксикаторе и взвешивают (точность взвешивания 0,0005 г). Для достижения постоянного веса осадок снова прокаливают при той же температуре 20 мин и после охлаждения взвешивают.

4.7.3. Обработка результатов

Содержание SO 2- 4 в анализируемых почвах рассчитывают по формуле:

где а — масса осадка ВаS O 4 , г;

С — навеска, соответствующая объему взятой для анализа вытяжки, г;

1000 — коэффициент пересчета г в мг;

100 — коэффициент пересчета на 100 г почвы;

116,7 — значение мг-экв ВаSO4, мг.

Метод основан на титровании сульфат-ионов раствором хлористого бария в присутствии нитхромазо в качестве металлоиндикатора.

4.8.1. Аппаратура, материалы и реактивы

Микробюретка вместимостью 10 мл с ценой деления 0,02 мл по ГОСТ 1770-64.

Колбы конические вместимостью 100 мл по ГОСТ 10394-63.

Колбы мерные вместимостью 100 и 1000 мл по ГОСТ 1770-64.

Пипетки или дозаторы вместимостью 10 и 50 мл по ГОСТ 1770-64.

Цилиндр вместимостью 25 мл по ГОСТ 1770-64.

Колонки стеклянные для катионита длиной 47 см и диаметром 1,5 см или воронки Нуча N 1 и N 2 (высота 70 мм, диаметр 27 мм, объем 40 мл).

Штативы металлические для воронок Нуча.

Капельница для индикатора.

Барий хлористый по ГОСТ 4108-65, х.ч. или ч.д.а.

Нитхромазо, индикатор по МРТУ 6-09-6514-70, ч.д.а., 0,1%-ный водный раствор.

Соляная кислота по ГОСТ 3118-67, 5%-ный раствор.

Азотнокислое серебро по ГОСТ 1277-63, ч.д.а., 1%-ный водный раствор.

Серная кислота (фиксанал) по ГОСТ 4204-66, х.ч.

Ацетон по ГОСТ 2603-71, ч.д.а.

Натрий хлористый по ГОСТ 4233-66, ч.д.а., 0,5%-ный водный раствор.

Спирт этиловый, 96%-ный по ГОСТ 5962-67.

Универсальная индикаторная бумага по ТУ МХП ОРУ 76-56.

Дистиллированная вода по ГОСТ 6709-72.

4.8.2.1. Приготовление 0,02 н. раствора хлористого бария.

2,081 г BaCl2 или 2,443 г BaCl2×2Н2О растворяют в дистиллированной воде, доводя объем до 1 л. Титр раствора проверяют по 0,02 н. раствору Н2SO4, приготовленному из фиксанала.

4.8.2.2. Подготовка ионообменных колонок. 8-10 г Н-катионита, предварительно очищенного от примесей обработкой 5%-ным раствором HCl и отмытого от ионов хлора дистиллированной водой, помещают в стеклянную колонку. Верхний конец колонки расширен в виде воронки, а нижний над краном сужен. В это суженное место закладывается стеклянная вата для удержания катионита, который засыпается сверху до основания воронки. Вместо стеклянных колонок можно использовать воронки со стеклянным фильтром (воронки Нуча N 1 или N 2). На дно воронки кладется бумажный фильтр «красная лента». После каждого определения сульфат-ионов катионит в колонке необходимо заменять или регенерировать. Для регенерации через каждую колонку с катионитом пропускают примерно 150-200 мл 5%-ного раствора HCl, а затем отмывают смолу дистиллированной водой до рН 5,0 или до исчезновения реакции на хлор-ион (проба с AqNO3). В заряженных колонках катионит должен сохраняться во влажном состоянии.

40-50 мл водной вытяжки пропускают через колонку с Н-катионитом. При сильном засолении почв 10-50 мл вытяжки предварительно разбавляют дистиллированной водой в 2-10 раз в мерной колбе емкостью 100 мл, а затем часть разбавленного раствора (40-50 мл) пропускают через катионитовую колонку. Первую порцию фильтрата отбрасывают (10-15 мл), 10 мл последующего фильтрата помещают в коническую колбу емкостью 100 мл, приливают ацетон или спирт в количестве, равном объему титруемого раствора. Затем прибавляют одну каплю раствора нитхромазо и титруют раствором ВаС l 2 из микробюретки до перехода окраски раствора из фиолетовой в голубую. Титрование следует вначале проводить медленно, прибавляя раствор соли по каплям и тщательно перемешивая. Появляющаяся в отдельных случаях голубая окраска раствора от первых капель ВаС l 2 через 30-40 сек снова переходит в фиолетовую. Конец титрования отличается четким переходом фиолетовой окраски в голубую, не изменяющуюся в течение 1-2 минут.

4.8.4. Обработка результатов

Содержание SO 2- 4 в анализируемых почвах рассчитывают по формуле:

где а — объем раствора ВаС l 2 , израсходованный на титрование, мл;

Н — нормальность раствора ВаС l 2 , мг-экв/мл;

С — навеска почвы, соответствующая взятому на анализ объему фильтрата, г;

100 — коэффициент пересчета на 100 г почвы.

Метод основан на весовом определении суммы воднорастворимых веществ после выпаривания пробы вытяжки на водяной бане.

Стаканы химические вместимостью 50 мл по ГОСТ 10394-63.

Цилиндр мерный вместимостью 25 мл по ГОСТ 1770-64.

Термостат с автоматической регулировкой температуры.

25 мл водной вытяжки берут в сухой химический стакан, предварительно взвешенный на аналитических весах с погрешностью не более 0,001 г. Ставят стакан на водяную баню и выпаривают содержимое досуха. Остаток сушат в термостате при температуре 105° в течение трех часов, после чего охлаждают в эксикаторе и взвешивают стакан с остатком на аналитических весах.

4.9.3. Обработка результатов

Общая сумма воднорастворимых веществ (сухой остаток) рассчитывается по формуле:

где а — вес стакана с сухим остатком, г;

С — навеска почвы, соответствующая объему вытяжки, взятому для выпаривания, г;

100 — коэффициент пересчета в %.

Грунтовую воду пресную или слабоминерализованную анализируют точно так же, как и водную вытяжку: для определения СО 2- 3, НСО — 3, C l — , SO 2- 4 и плотного остатка отбирают пробы по 20 мл, для определения Са 2+ и суммы Са 2+ и Мg 2+ — по 10 мл.

Минерализованные грунтовые воды разбавляют согласно качественной реакции на хлор.

В пробирку берут небольшое количество грунтовой воды, подкисляют 2-3 каплями НNO3 и прибавляют 1%-ный раствор AgNO3. При появлении быстро выпадающего осадка — пробы грунтовой воды разбавляют в 50 раз, если появляется сильная муть, то разбавляют в 25 раз; при появлении опалесценции — в 10 раз. После разбавления отбирают пробы по 50 мл для определения C l — , Са 2+ и суммы Са 2+ и Мg 2+ . Для определения СО 2- 3 и НСО — 3 отбирают неразбавленные пробы по 20 мл.

Содержание ионов для неразбавленных проб, анализируемых объемными методами, рассчитывают по формуле:

где X — концентрация иона в анализируемой воде, мг-экв/л;

а — объем раствора, израсходованного на титрование иона в анализируемой пробе воды, мл;

Н — нормальность раствора, использованного для титрования пробы воды, мг-экв/мл;

в — объем пробы, взятый для титрования, мл;

1000 — коэффициент пересчета на литр анализируемой воды.

Содержание иона SO 2- 4 для неразбавленных проб, анализируемых весовым методом, рассчитывают по формуле:

где а — масса осадка ВаSО4, г;

в — объем пробы воды, взятой для анализа, мл;

1000 — коэффициент пересчета г в мг;

1000 — коэффициент пересчета на 1 л анализируемой воды;

116,7 — значение мг-экв ВаSO4, мг.

Содержание плотного остатка в г/л воды рассчитывают по формуле:

где а — вес стакана с плотным остатком, г;

С — объем пробы воды, взятый для выпаривания, мл;

1000 — коэффициент пересчета на 1 литр воды.

Если перед анализом пробы воды разбавлялись, то при расчете результатов пользуются приведенными выше формулами, подставляя в знаменатель объем неразбавленной пробы воды (в), который находят по следующей формуле:

где в1 — объем анализируемой воды, взятый для разбавления, мл;

в2 — объем, до которого анализируемая вода разбавлялась дистиллированной водой, мл;

в3 — объем разбавленной воды, взятый для определения данного иона, мл.

источник