Меню Рубрики

Химический и органический анализ воды

Качество потребляемой человеком воды определяется с учетом ее свойств и состава. Данные показатели также определяют пригодность применения воды в тех или иных сферах жизнедеятельности. Нормативы (или стандарты) качества составляются с учетом требований заказчика и основных характеристик. Во многом содержание воды определяется с учетом источника ее происхождения (он может быть антропогенным либо естественным).

Чистая питьевая вода – залог здоровья человека и его отличного самочувствия. Чтобы понять, является она такой или нет, обращайтесь в специализированные инстанции, которые проводят анализ качества жидкости и ее соответствия нормативным стандартам, принятым на сегодняшний день. При выполнении анализа учитываются бактериологические, химические и физические показатели.

Проводить химический анализ по закону обязаны различные организации и предприятия при выполнении определенных работ – например, возведении моста через реку. Обязаны соблюдать требования к химсоставу предприятия, которые осуществляют выпуск бутилированной воды. Частные лица заказывают проведение анализа для:

  • оценки качества питьевой воды из водопровода, скважин, родников;
  • подтверждения качества бутилированной воды;
  • подбора фильтра для воды, оценки его эффективности;
  • контроля качества воды в бассейнах;
  • оценки качества жидкости, используемой для полива растений;
  • контроля среды в аквариуме;
  • пр.
  • щелочность;
  • жесткость;
  • содержание ионов;
  • водородный фактор;
  • минерализация.

Бактериологические параметры жидкости:

  • степень загрязненности источника кишечной палочкой;
  • наличие радиоактивных, токсичных элементов;
  • бактериальная зараженность.

Рассмотрим данные характеристики подробнее.

Цветность – показатель, который всегда должен учитываться при анализе воды. Он обуславливает присутствие железа и включений других металлов в виде коррозионных продуктов. Цветность является косвенной характеристикой присутствия в жидкости растворенной органики, зависит от загрязненности источника стоками промышленной категории, определяется путем сравнения образцов с эталонными. Максимально допустимый показатель составляет 20°.

Мутность зависит от наличия мелкодисперсных взвесей нерастворенных частиц. Выражается она в:

  • наличии осадка;
  • взвешенных, грубодисперсных примесях, определяемых в ходе фильтрации;
  • степени прозрачности.

Можно определять мутность фотометрическим путем – то есть по качеству проходящего через толщу жидкости светового луча.

Запах зависит от присутствия в воде пахнущих веществ, которые попадают в нее из стоков. Практически все органические жидкие вещества передают воде специфический аромат растворенных в ней газов, органики, минеральных солей. Запахи делятся на природные (гнилостные, болотные, серные) и искусственные (фенольные, нефтяные, пр.).

Вкус воды может быть соленым, кислым, сладким или горьким, все остальные «нотки» относятся уже к привкусам – например, хлорные, аммиачные, металлические, сладковатые, пр. Оценка привкуса и запаха производится по пятибалльной шкале.

Химические показатели, степень загрязненности зависят от глубины забора водных масс, просачивания в стоки различных веществ (отбросы предприятий, свалки, выгребные ямы и т.д.). Анализ проводить нужно обязательно, поскольку загрязнению подвергаются даже артезианские скважины с низким давлением, а что уже говорить о колодцах.

Жесткость характеризуется наличием в жидкости элементов кальция и магния, которые со временем превращаются в нерастворимые соли. Итог – образование накипи, отложений на внутренних поверхностях емкостей, котлов, рабочих узлах бытовой техники.

Сухой осадок указывает на степень концентрации органических элементов, а также растворенных неорганических солей. Его высокое содержание приводит к нарушению солевого баланса организма человека.

Водородный фактор рН характеризуется щелочным и кислотным фоном жидкости. Изменение фактора указывает на нарушения в технологиях водоподготовки. Норма – 6-9 единиц.

Некоторые компоненты ухудшают пищевые качества воды, а также являются потенциально опасными для здоровья человека. Рассмотрим основные:

  1. Железо в составе сульфатов, гидрокарбонатов, органических соединений, хлоридов. Может оно присутствовать и в виде высокодисперсных взвесей, придающих жидкости коричневый с красным оттенком цвет, снижающий вкусовые качества. Из-за высокой концентрации железа в воде начинают развиваться железобактерии, образуются засоры труб. Максимально допустимая концентрация железа по нормам составляет 0,3 мг/л.
  2. Марганец – главная причина генетических мутаций. Элемент оказывает негативное влияние на вкусовые характеристики жидкости, после стирки на белье появляются характерные пятна и разводы, на сантехнике образуется осадок. Максимальная концентрация согласно нормативам – 0,1 мг/л.
  3. Катионы марганца и кальция повышают жесткость воды. Для измерения их содержания обычно используется такой показатель как мг-экв/л. Пороговые значения находятся на отметке 3-3.5 мг-экв/л, при более высоком содержании катионов накапливается осадок на сантехническом оборудовании, нагревательных элементах бытовых приборов. Для здоровья человека жесткая вода очень вредна.
  4. Перманганатная окисляемость указывает на количественное содержание кислорода к концентрации иона перманганата, который принимает участие в процессах окисления воды. Предельно допустимое значение составляет 5 мг О2/л. При высоких показателях перманганатной окисляемости страдают почки и печень, репродуктивная функция, иммунная, нервная системы человека. Не рекомендуют употреблять воду без обработки при значении перманганатной окисляемости выше 2 мг О2/л.
  5. Сульфиды – благодаря им жидкость приобретает посторонние неприятные ароматы, а трубы начинают ржаветь. Именно сульфиды являются токсичными компонентами, вызывающими кожные аллергические реакции.
  6. Фториды – их концентрация не должна составлять более 1,5 мг/л. Обратите внимание, что полностью лишенная фтора вода также не полезна.

Перечисленные компоненты к сильно токсичным не относятся и отравлений не вызывают, но их постоянное употребление в пищу (даже в малых дозах) наносит непоправимый вред здоровью и приводит к хронической интоксикации.

Определение токсичных соединений, содержащихся в сравнительно небольших количествах, становится с каждым годом все более сложным и затратным. Определенные вещества в воде присутствовать могут, но строго в установленных количествах. Важно контролировать как структурный состав жидкости, так и ее функциональные интегральные характеристики.

Метрологические приборы позволяют определять только основные химические показатели, для проверки бактериального состава образцы отправляются в лаборатории. В зависимости от глубины проверки данных, анализы делятся на полные химические, сокращенные, направленные на определение некоторых составляющих. В большинстве случаев сокращенного анализа достаточно, но в целях определения полного набора компонентов требуется выполнение более глубокой проверки.

При анализе результатов нужно учитывать все показатели и сравнивать данные анализа с полученными характеристиками. Для каждого элемента есть предельно допустимая концентрация – она не должна быть превышена.

Рассмотрим основные способы, используемые для проверки качества воды.

Метод позволяет оценивать те качества, которые доступные органам чувств. Органолептическое исследование предполагает оценку цветности, прозрачности, аромата и вкуса воды.

Анализ воды на физико-химические показатели учитывает:

  • жесткость;
  • минерализацию;
  • щелочность;
  • окисляемость.

Методика позволяет определять наличие в воде паразитов и бактерий, среди которых могут присутствовать болезнетворные микроорганизмы. Обычно подсчитывается количество организмов на 1 мл жидкости

При анализе химического состава определяется наличие и количество органических, неорганических включений – к ним относят сложные органические вещества, металлы, нефтепродукты, ПАВы и так далее. Под сложными органическими веществами подразумеваются акриламиды, стиролы, фенолы, винилхлориды, тетрахлорид углероды, диоксины.

Анализ на альфа- и бета-частицы, радий проводится в целях определения радиационной безопасности жидкости. Определение содержания радионуклидов – основа для снижения дозовых нагрузок на организм. Вместе с результатами по комплексному анализу заказчик обычно получает также рекомендации, которые помогут ему улучшить качество воды.

Экспресс-анализы используются в целях ускорения процедуры проверки и снижения ее стоимости. Они позволяют анализировать такие показатели как:

  • биохимическое потребление кислорода;
  • число адсорбируемых либо экстрагируемых галогенов органического происхождения;
  • кислотно-щелочной баланс;
  • органолептические свойства воды.

Экспресс-анализ позволяет сокращать потребность в сложном оборудовании и реактивам. Важно! Высокое качество исследования поверхностная проверка гарантировать не может.

Все чаще в последние годы для проверки состава воды используются сенсоры – чувствительные элементы, которые являются основой большинства многокомпонентных анализаторов и экспрессных тест-систем. Они эффективно определяют содержание ферментов антропогенного происхождения, а также патогенную микрофлору.

Биотестирование – передовая методика определения токсичности химического вещества на биоценоз или водные организмы. Оценочные критерии – выживаемость и активность микроорганизмов, скорость их размножения, пр. Для получения корректных результатов биотестирования нужны соответствующие показатели температуры, освещенности, состава, кислотности и так далее.

Существует множество других быстрых способов определения качества питьевой воды – например, на вкус или используя другие органы чувств. Но вы должны понимать, что подобная оценка является очень субъективной, поэтому ставку следует делать на лабораторные исследования.

источник

Требования, предъявляемые к качеству воды, могут быть самыми различными и определяются её целевым назначением. Для оценки качества пластовых, природных и сточных вод их образцы подвергают анализу. На основании результатов анализа делаются выводы о пригодности воды для конкретного вида потребления, возможности применения тех или иных методов очистки. Анализы подземных вод позволяют прогнозировать сопутствующие месторождения полезных ископаемых. При анализе вод для характеристики их свойств определяют химические, физические и бактериологические показатели. Основными показателями, определяющими пригодность воды для определенной отрасли народного хозяйства, являются химические, так как физические (содержание взвешенных частиц, температура, цвет, запах, плотность, сжимаемость, вязкость, поверхностное натяжение) и бактериологические (наличие бактерий) показатели зависят от химического состава воды.

К химическим показателям качества воды относятся:

состав растворенных газов.

Общее солесодержание характеризует присутствие в воде минеральных и органических примесей, количество этих примесей в виде общей минерализации, сухого и плотного остатков. Общая минерализация представляет собой сумму всех найденных в воде анализом катионов и анионов. Минерализацию выражают в миллиграмм-эквивалентах солей, находящихся в I л воды, или в процентах, то есть числом граммов растворенных веществ, содержащихся в 100 г раствора. Сухим остатком называется суммарное количество нелетучих веществ, присутствующих в воде во взвешенном, коллоидном и растворенном состоянии, выраженное в мг/л. Сухой остаток определяют путем выпаривания пробы воды, последующего высушивания при 105 о С и взвешивания. Плотный остаток – это сухой остаток, определенный из профильтрованной пробы воды. Следовательно, разница двух показателей соответствует содержанию взвешенных веществ пробы. Если сухой остаток прокалить при температуре 500-600 о С, то масса его уменьшится и получится остаток, называемый золой. Уменьшение массы происходит за счет сгорания органических веществ, удаления кристаллизационной воды, разложения карбонатов. Потери при прокаливании приближенно относят за счет органических примесей.

Жесткость воды обусловливается наличием в ней ионов Са 2+ и Mg 2+ . Для большинства производств жесткость воды является основным показателем её качества. В жесткой воде плохо пенится мыло. При нагревании и испарении жесткой воды образуется накипь на стенках паровых котлов, труб, теплообменных аппаратов, что ведет к перерасходу топлива, коррозии металлов и авариям.

Жесткость количественно выражается числом миллиграмм-эквивалентов ионов кальция и магния в 1 л воды (мг-экв/л); 1 мг-экв/л жесткости соответствует содержанию в воде 20,04 мг/л ионов Са 2+ или

12,16 мг/л ионов Mg 2 + . Различают жесткость общую, карбонатную и некарбонатную.

Карбонатная жесткость связана с присутствием в воде в основном гидрокарбонатов и карбонатов кальция и магния, которые при кипячении воды переходят в нерастворимые средние или основные соли и выпадают в виде плотного осадка:

Таким образом, при кипячении карбонатная жесткость устраняется. Поэтому она называется также временной жесткостью. Следует сказать, что при переходе HCO3 – в CO32 – и при выпадении карбонатов кальция и магния в воде остается некоторое количество ионов Са 2+ , Mg 2+ , CO32 – , соответствующее произведению растворимости СаСО3 и (MgOH)2CO3. В присутствии посторонних ионов растворимость этих соединений повышается.

Некарбонатная (постоянная) жесткость не разрушается кипячением. Она обусловливается присутствием в воде кальциевых и магниевых солей сильных кислот, главным образом сульфатов и хлоридов.

Общаяжесткость воды представляет собой сумму карбонатной и некарбонатной жесткости и обусловливается суммарным содержанием в воде растворенных солей кальция и магния. По величине общей жесткости принята следующая классификация природных вод:

Если известны концентрации (мг/л) в воде Ca 2+ , Mg 2+ и HCO3 – , то жесткость рассчитывается по следующим формулам:

Общая жесткость

Карбонатная жесткость равна концентрации (мг/л) [HCO3 ]; в случае, если содержание ионов кальция и магния в воде выше, чем количество гидрокарбонатов:

, где 61,02 – эквивалентная масса иона HCO3 – .

Если же количество гидрокарбонатов в воде превышает содержание ионов кальция и магния, то карбонатная жесткость соответствует общей жесткости. Разность между общей и карбонатной жесткостью составляет некарбонатную жесткость: ЖНК= ЖО– ЖК . Следовательно, ЖНК – это содержание Ca 2+ и Mg 2 + , эквивалентное концентрации всех остальных анионов, в том числе и некомпенсированных гидрокарбонатов.

Читайте также:  Анализ на воду в лыскове

Окисляемость характеризует содержание в воде восстановителей, к которым относятся органические и некоторые неорганические (сероводород, сульфиты, соединения двухвалентного железа и др.) вещества. Величина окисляемости определяется количеством затраченного окислителя и выражается числом миллиграммов кислорода, необходимого для окисления веществ, содержащихся в 1 л воды. Различают общую и частичную окисляемость. Общую окисляемость определяют обработкой воды сильным окислителем – бихроматом калия K2Cr2O7 или йодатом калия KIO3. Частичную окисляемость определяют по реакции с менее сильным окислителем – перманганатом калия КMnO4. По этой реакции окисляются только сравнительно легко окисляющиеся вещества.

Для полного окисления содержащихся в воде органических веществ, при котором происходят превращения по схеме

требуется количество кислорода (или окислителя в расчете на кислород), называемое химическим потреблением кислорода (ХПК) и выражаемое в мг/л.

При любом методе определения ХПК вместе с органическими веществами окисляются и неорганические восстановители, содержащиеся в пробе. Тогда содержание неорганических восстановителей в пробе определяют отдельно специальными методами и результаты этих определений вычитают из найденного значения ХПК.

Реакция среды характеризует степень кислотности или щелочности воды. Концентрация водородных ионов природных вод зависит главным образом от гидролиза солей, растворенных в воде, количества растворенных угольной кислоты и сероводорода, содержания различных органических кислот. Обычно для большинства природных вод величина рН изменяется в пределах 5,5-8,5. Постоянство рН природных вод обеспечивается наличием в ней буферных смесей. Изменение значения рН свидетельствует о загрязнении природной воды сточными водами.

Определение иона Cl . В основу определения иона хлора положен аргентометрический метод Мора. Принцип анализа заключается в том, что при прибавлении к воде раствора AgNO3 образуется белый осадок хлорида серебра:

Определение хлорид-ионов ведут в интервале рН = 6,5 ÷ 10, чтобы одновременно с AgCl не выпадал осадок Ag2CO3. Проведению определения Сl мешает наличие в воде ионов брома, йода, сероводорода, от которых освобождаются предварительной обработкой воды.

Определение иона SO42– . Метод определения сульфат-ионов основан на малой растворимости сульфата бария, количественно выпадающего в кислой среде при добавлении к воде раствора хлорида бария: Ba 2+ + SO42– = BaSO4

По массе образовавшегося осадка рассчитывают содержание иона SO42– .

Определение ионов CO32– и HCO3 . Эти ионы определяют титрованием пробы воды растворами серной или соляной кислот последовательно с индикаторами фенолфталеином и метилоранжем. Реакция нейтрализации протекает в две стадии.

Первые порции кислоты вступают в реакции с карбонат-ионом, образуя гидрокарбонат-ион:

Окраска фенолфталеина при рН = 8,4 переходит из розовой в бесцветную, что совпадает с таким состоянием раствора, когда в нем остаются лишь гидрокарбонаты. По количеству кислоты, пошедшей на титрование, рассчитывают содержание карбонат-иона. Расход кислот на титрование с фенолфталеином эквивалентен содержанию половины карбонатов, т.к. последние нейтрализуются только наполовину до HCO3 – . Поэтому общее количество CO32 – эквивалентно удвоенному количеству кислоты, затраченной на титрование. При дальнейшем титровании в присутствии метилоранжа происходит реакция нейтрализации гидрокарбонатов:

Метилоранж меняет окраску при pH = 4,3, т.е. в момент, когда в растворе остается только свободный диоксид углерода.

При расчете содержания ионов HCO3 – в воде следует из количества кислоты, пошедшей на титрование с метилоранжем, вычесть количество кислоты, идущей на титрование с фенолфталеином. Общее количество кислоты, затраченной на нейтрализацию ионов ОН , СО32– и НСО3 , характеризует общую щелочность воды. Если рН воды ниже 4,3, то её щелочность равна нулю.

Определение ионов Ca 2+ , Mg 2+ . Имеется несколько методов обнаружения и определения содержания ионов Са 2+ и Mg 2+ . При добавлении в воду оксалата аммония (NH4)2C2O4 в случае присутствия ионов кальция образуется белый осадок оксалата кальция:

После отделения осадка оксалата кальция в воде можно определить ионы Mg 2+ с помощью раствора гидрофосфата натрия Na2HPO4 и аммиака. При наличии иона Mg 2 + образуется мелкокристаллический осадок соли магния:

Полученные осадки прокаливают и взвешивают. На основании полученных результатов вычисляется величина кальциевой и магниевой жесткости.

Наиболее быстрым и точным методом определения Са 2 + и Mg 2 + является комплексонометрический метод, основанный на способности двунатриевой соли этилендиаминотетрауксусной кислоты (трилон Б)

NaOOCCH2 CH2COONa

N––CH2––CH2––N

образовывать с ионами кальция и магния прочные комплексные соединения.

При титровании пробы воды трилоном Б происходит последовательное связывание в комплекс сначала ионов кальция, а затем ионов магния. Содержание ионов кальция определяют, титруя воду в присутствии индикатора — мурексида. Мурексид образует с ионами кальция малодиссоциированное комплексное соединение, окрашенное в малиновый цвет.

Ионы магния не дают комплекса с мурексидом. Трилон Б извлекает Са 2+ из его растворимого комплекса с мурексидом, вследствие чего окраска раствора, изменяется на сиреневую:

По количеству трилона Б, расходуемого на титрование, определяют содержание Са 2 + . Титрованием пробы воды трилоном Б в присутствии индикатора хромогена черного определяют суммарное содержание Са 2 + и Mg 2 + , то есть общую жесткость воды. Вода, содержащая Са 2 + и Mg 2 + , в присутствии хромогена черного окрашивается в красный цвет вследствие образования комплекса с Mg 2 + . При титровании воды в точке эквивалентности происходит изменение цвета на синий вследствие протекания следующей реакции:

Содержание Mg 2+ вычисляют по разности между общим содержанием (Са 2+ + Mg 2+ ) и содержанием Са 2 + . Трилонометрическое определение каждого иона производится при том значении рН, при котором этот ион образует с трилоном Б соединение более прочное, чем с индикатором. Для поддержания заданного значения рН к титруемому раствору добавляют буферные растворы. Кроме того, поддержание заданной величины рН обеспечивает определенную окраску индикатора. Общую жесткость воды определяют при рН > 9, кальциевую – при рН = 12.

Определение ионов Na + , K + . Производится вычислением по разности между суммой мг-экв найденных анионов и катионов, поскольку вода электронейтральна:

С достаточно высокой точностью все присутствующие в воде катионы можно определить эмиссионной спектроскопией сухого остатка.

Растворенные в воде газы определяют химическими методами или газовой хроматографией.

Определение диоксида углерода производят титрованием пробы воды щелочью в присутствии индикатора–фенолфталеина:

Определение растворенного кислорода производится йодометрическим методом.

Для анализа в пробу воды поcледовательно добавляют раствор хлорида марганца и щелочной раствор йодида калия. Метод основан на окислении свежеполученного гидроксида двухвалентного марганца содержащимся в воде кислородом:

Количество образовавшегося в воде бурого осадка гидроксида четырехвалентного марганца эквивалентно количеству растворенного кислорода. При последующем добавлении к пробе соляной или серной кислоты четырехвалентный марганец вновь восстанавливается до двухвалентного, окисляя при этом йодид калия. Это приводит к выделению свободного йода, эквивалентного содержанию четырехвалентного марганца, или, что то же самое, растворенного кислорода в пробе:

Выделившийся свободный йод определяется количественно путем титрования раствором тиосульфата натрия:

I2+ 2Na2S2O32NaI + Na2S4O6

Йодометрический метод определения растворенного кислорода неприменим для вод, содержащих сероводород, так как сероводород вступает во взаимодействие с йодом и занижает результат. Во избежание этой ошибки предварительно связывают содержащийся в пробе сероводород в соединение, не препятствующее нормальному течению реакции. Для этой цели обычно используют хлорид ртути (II):

Определение H2S. Прежде чем приступить к количественному определению сероводорода, определяют его качественное присутствие по характерному запаху. Более объективным качественным показателем служат свинцовые индикаторные бумажки (фильтровальная бумага, пропитанная раствором ацетата свинца). При опускании в воду, содержащую сероводород, свинцовая бумага темнеет, принимая желтую (малое содержание), бурую (среднее содержание) или темно-коричневую (высокое содержание) окраску.

В водных растворах сероводород присутствует в трех формах: недиссоциированный H2S, в виде ионов HS и S 2 – . Относительные концентрации этих форм в воде зависят от рН этой воды и в меньшей степени от температуры и общего солесодержания.

Если анализируемая вода не содержит веществ, реагирующих с иодом, то сероводород и его ионы можно определить следующим образом.

В основе количественного метода определения H2S лежит реакция окисления сероводорода йодом:

К точно отмеренному подкисленному раствору йода, взятого в избытке по отношению к ожидаемому содержанию сероводорода, прибавляют определенное количество воды. Количество йода, израсходованное на окисление сероводорода, определяется обратным титрованием остатка йода тиосульфатом. Разница между количеством раствора тиосульфата, соответствующим всему количеству взятого для анализа йода, и количеством этого же раствора, затраченного на титрование остатка йода в пробе, эквивалентна содержанию сероводорода в исследуемой пробе.

источник

Анализ данных о составе сточных вод, поступающих на городские очистные сооружения, показал, что большой проблемой на сегодняшний день является недостаточная эффективность очистки от органических соединений и тяжелых металлов, в частности меди и цинка. По если органические соединения подвергаются биологическому разложению, то тяжелые металлы могут только перераспределяться в объектах окружающей среды. Поэтому вопросы, связанные с повышением эффективности очистки от ионов тяжелых металлов, в частности меди и цинка, весьма актуальны.[ . ]

Вода в природе нигде не встречается в виде химически чистого вещества. Под физико-химическим составом природных вод принято понимать весь сложный, комплекс растворенных газов, ионов, взвесей и коллоидов минерального и органического происхождения. В природных водах обнаружено около половины химических элементов, входящих в периодическую таблицу Д. И. Менделеева, а многие другие пока не найдены только из-за недостаточной чувствительности методов анализа. Еще большим качественным и количественным многообразием при месей отличаются сточные воды; состав этих примесей всецело зависит от характера производства, в котором они образуются.[ . ]

Анализ состава органических примесей природных вод, сорбированных на поверхности гидроокиси алюминия, позволяет отнести их к группе флокулянтов растительного происхождения. Преимущество флокулянтов природного происхождения заключаются в отсутствии у них токсичных свойств и полной безвредности для организма человека [2]. На это явление указывает также Т. А. Карюхина. Коллоидные гумусовые вещества сорбируются на поверхности А1 ((ЗН) ч, передавая ему свои свойства.[ . ]

Анализ сточных вод производства изопрена по отдельным органическим загрязнителям очень затруднен ввиду присутствия в сточных водах различных соединений, имеющих одинаковые функциональные группы (гидроксильные, метальные, непредельные связи, связанный формальдегид и др.). Поэтому для характеристики состава сточных вод производили обычный санитарно-химический анализ их и некоторые специфические определения, например формальдегида и изопрена.[ . ]

При анализе вод с известным качественным составом проведение указанных операций выделения и разделения органических веществ нецелесообразно; основные компоненты можно определять непосредственно в сточной воде по методикам, описанным в п. 5.3.[ . ]

При анализе природных вод, содержащих смеси органических веществ неизвестного состава, существенно усложняются задачи идентификации. Один из возможных подходов для реализации метода прямого анализа природных вод рассматривается в работах [7—9], используется принцип пиролитической хроматографии. Хроматограммы фрагментов пиролиза отдельных классов и групп соединений имеют общие и специфические пики. Описана возможность идентификации органических соединений в смесях по группам или классам в пирографических участках и расчет концентраций с помощью математической обработки [9].[ . ]

При анализе очень сложных смесей, когда идентификация компонентов только при помощи газовой хроматографии затруднена, все чаще используют комбинацию газовой хроматографии и . масс-спектрометрии — хромато-масс-спектроме-трию. Применение такой комбинации для определения состава органических примесей в природных и сточных водах описано в ряде работ, требующих специального рассмотрения.[ . ]

При водятся методы группового разделения органических веществ для случая неизвестного состава воды; идентификация компонентов выделенных групп производится методами физико-химического анализа; УФ, ИК спектрометрией, газово-жидкостной, тонкослойной хроматографией и др.[ . ]

При анализе состава сточных вод все чаще применяют «многокомпонентные» методы анализа, позволяющие определять сразу большое число веществ, например атомно-эмиссионный и рентгеновский анализ, хроматографию. Предпочтительно использование методов прямого анализа, т. е. не связанного с химической подготовкой пробы, но в случае определения типа загрязнений, такая подготовка часто необходима. Например, предварительное концентрирование исследуемого компонента позволяет определять его в меньших концентрациях, устранять трудности, связанные с негомогенным распределением компонента в пробе и отсутствием образцов сравнения. Специфическую группу методов определения органических соединений составляют методы элементного анализа. Применение газовой хроматографии позволило автоматизировать элементный анализ: для этого выпускают С-, Н-, Ы-анализаторы и другие приборы-автоматы. Анализ органических соединений по функциональным группам (например, ЫН2-группа, ОН-группа и др.) выполняют различными химическими, электрохимическими (амперометрия, полярография), спектральными (инфракрасная спектроскопия) или хроматографическими методами.[ . ]

Читайте также:  Анализ на воду и атмосферу

Общий органический углерод (ТОС) — это та часть растворенного и нерастворенного органического вещества, которая присутствует в воде. Она не дает информации о природе органического вещества. Органический углерод может быть определен до анализа или определен в составе ТОС, а затем получен путем вычитания содержания неорганического углерода из общего содержания углерода.[ . ]

На основе анализа данных о взаимодействии органических веществ в воде, их устойчивости к действию окислителей и адсорбентов может быть рекомендовано небольшое число технологических схем, обеспечивающих очистку воды в широком диапазоне ее состава. Если до последнего времени такие схемы можно было создавать на основании эмпирического подбора, то наличие сведений о природе веществ и механизме протекающих при обработке воды реакций дает возможность обоснованно рекомендовать технологические схемы и реагенты и четко очертить границы их применимости.[ . ]

Трудность анализа состава сточных вод ЦБП определяется как сложностью состава основного объекта технологического процесса древесины, так и многообразием химических операций, проводимых с древесиной, затем с целлюлозой, в результате чего образуются щелока, поступающие в сточные воды. Для делигнифика-ции древесины при получении целлюлозы используют различные химические реагенты: щелочные растворы сульфида натрия или двуокиси серы. Разнообразны способы отбелки целлюлозы: хлорирование, щелочение, обработка гипохлоритом натрия, двуокисью хлора, перекисью водорода, кислородом [1, 2]. Реакции, протекающие в процессе получения целлюлозы из древесины, приводят к образованию и накоплению в сточных водах ЦБП огромного количества веществ, различных по химическому составу, строению, дисперсному состоянию. Сточные воды содержат органические и неорганические, низко- и высокомолекулярные, растворенные, эмульгированные и суспендированные вещества. Положение осложняется тем, что концентрации многих компонентов очень малы, а это накладывает серьезные ограничения на использование ряда аналитических методов для их определения. Сложность состава сточных вод и неустойчивость многих компонентов весьма затрудняют идентификацию веществ. Отметим, что в наиболее изученном сульфатном черном щелоке идентифицировано к настоящему моменту 100 соединений, но это лишь небольшая часть всех веществ, имеющихся в щелоке [3—7]. Сточные воды бумажного производства значительно проще по составу, чем целлюлозного производства, и не определяют специфику аналитического контроля сточных вод ЦБП, поэтому мы не будем их рассматривать [8].[ . ]

Метод прямого анализа водных образцов. При анализе водных растворов с помощью пламенно-ионизационного детектора возможно обнаружение присутствующих органических веществ; в концентрациях до 10-3—10-4%. Прямой анализ получил распространение при контроле сточных вод [1—3] и других систем известного состава, для которых вопросы идентификации и количественного определения могут быть решены путем сравнительного анализа искусственных смесей.[ . ]

Для определения органических примесей в водах и воздушной среде и для сигнализации о выбросах опасных веществ в лабораторных производственных и полевых условиях, в том числе на транспортных средствах в составе передвижных лабораторий. Режимы работы: обзорный анализ — определение наличия и идентификация компонентов на основе использования масс-спектров индивидуальных веществ, хранящихся в компьютеризированной базе данных; анализ на содержание определяемых компонентов; количественный анализ смесей известного состава; выполнение сервисных функций — цифровая фильтрация масс-спектра от шумов, преобразование аналоговою спектра в гистограммный, пополнение базы данных и другие.[ . ]

Вследствие сложности состава производственных и бытовых сточных вод оценка самоочищения водоема в целом представляет собой сложную комплексную задачу. Чаще дают оценку самоочищения водоема по отношению к легко окисляемому органическому веществу (определяемому по ВПК) или по общему содержанию органических веществ (определяемому по ХПК). Оценка самоочищения производится и по данным определения конкретных соединений или их групп (фенолов, углеводородов, смол), а также на основании микробиологических показателей и анализа индикаторных организмов — сапробионтов. О самоочищении водоема в целом [1,9, 10, 23] можно говорить только в том случае, когда имеются данные по всем показателям.[ . ]

Проблема исследования состава природных и сточных вод ввиду ее сложности, особенно в части органического анализа, должна решаться на основе двух основных тенденций развития современной аналитической химии: разделение веществ перед их определением и разделение суммы сигналов, получаемой при исследовании смеси веществ. В настоящем сообщении будут рассмотрены перспективы некоторых спектральных методов анализа: спектрофотометрии, ИК-спектроскопии, ЯМР, рентгено-электрон-ной спектроскопии и ЭПР. Применение масс-спектроскопии, флуо-риметрии настолько разнообразно и широко, что краткое обсуждение их вряд ли целесообразно.[ . ]

В анализируемых сточных водах должны определяться: содержание компонентов, специфичных для данного вида производства (фенолов, нефтепродуктов, поверхностно-активных, ядовитых, радиоактивных, взрывоопасных веществ); общее количество органических веществ, выражаемое БПКшш и ХПК; активная реакция; интенсивность окраски; степень минерализации; наличие биогенных элементов и др. В зависимости от технологии производственных процессов анализ состава сточных вод производится по разовым часовым, среднесменным и среднесуточным пропорциональным пробам; следует также составлять графики колебания концентраций наиболее характерных загрязнений по часам смен, суток, дням недели. Необходимо установить такие параметры, как кинетика оседания или всплывания механических примесей и их объем, возможность коагулирования сточных води др. Эти данные позволяют выбрать наиболее целесообразный и экономически обоснованный метод очистки сточных вод для определенного предприятия.[ . ]

При изучении химического состава вод определяют содержание минеральных, газовых и органических компонентов. Среди минеральных компонентов, как правило, анализируют содержание кальция, магния, натрия, калия, хлор-, сульфат-, карбонат- и бикарбонат-ионов и некоторых микрокомпонентов — стронция, бария, иода, брома, бора, азота, иногда лития и радиоактивных элементов. При этом используют обычные комплексонометриче-ские (трилонометрические) методы, пламенную фотометрию, а также классические титриметрические и гравиметрические методы анализа. Содержание основной массы неорганических веществ в подземных водах измеряется десятками и сотнями граммов, микрокомпонентов — десятками и сотнями миллиграммов на литр исследуемой воды.[ . ]

Наиболее сложным является анализ содержащихся в воде органических веществ, от состава и количества которых во многих случаях зависят санитарно-гигиенические качества воды.[ . ]

В основу хроматографического анализа окрашенных органических веществ, содержащихся в высокоцветных водах, положено различие в адсорбционной активности гумусовых веществ, отличающихся по составу и строению, а также их способность переходить в раствор при определенных значениях pH среды. При подборе деталей установки преследовалась цель обеспечить бесперебойную круглосуточную работу хроматографической колонки, что особенно важно при разделении веществ, близких по составу и свойствам.[ . ]

Из сказанного следует, что при анализе вод, имеющих в своем составе азотсодержащие органические вещества, значение ХПК, полученное при использовании метода с КгБгОв, будет выше (за счет образования нитратов), чем при использовании обычного метода с К2СГ2О7. Для отличия первую величину целесообразно обозначить символом ХПКМ0 -Она отвечает тому химическому поглощению кислорода, которое произошло бы при очистке сточных вод в биохимических сооружениях, если бы процесс доводили до полной нитрификации азотсодержащих веществ.[ . ]

Рассмотрены некоторые возможности анализа состава естественных водных сред методом дистанционной лазерной флуориметрии. Обсуждается определение концентрации нефтепродуктов в воде, определение нефтей на фоне растворенного органического вещества, приводятся конкретные схемы лидаров и лабораторного оборудования для лазерного анализа.[ . ]

Кроме показателей общего содержания органически х веществ, таких, как ХПК, ВПК, нефтепродукты, для оценки состава производственных сточных вод часто возникает необходимость определить концентрацию индивидуальных примесей, если эти примеси отрицательно влияют на процесс очистки. Задача эта очень сложна. Трудности определения индивидуальных веществ обусловлены непостоянством состава стоков, малыми концентрациями компонентов, одновременным присутствием многих разнохарактерных веществ, взаимно влияющих и затрудняющих избирательное определение. Для решения этой сложной задачи широко используются современные физико-химические методы исследования — фотоколоримстрпя, газожидкостная хроматография, осциллополярография, люминесцентный анализ в сочетании с экстракцией, отгонкой и хроматографическим разделением в тонком слое.[ . ]

При общей очистке стоков с переменным составом неэффективно использовать специфические сорбенты, обладающие селективными свойствами. Так, если очистку общих стоков химического предприятия ведут на сугубо микропористом ГАУ, обладающем хорошей емкостью по ароматическим соединениям, то в первый период работы на АУ извлекается 70—80% органических веществ, а при изменении состава сточных вод — лишь 20— 40% загрязнений. Фирмой Са оп Согр. выполнен большой статистический анализ 222 случаев сорбционной очистки на АУ промышленных стоков 68 производств 15 отраслей. Оказалось, что в 5 случаях из 8 содержание общего органического углерода (ООУ) снижалось более чем на 90%, и лишь в двух менее чем на 85%; в 6 случаях из 7 цветность снижалась более чем на 95% и лишь в одном — менее чем на 90%. В целом, в 4/9 проб исходное содержание ООУ было выше 100, но менее 1000 мг/дм3, и в стольких же выше 1000 мг/дм3.[ . ]

При исследовании смесей неизвестного состава задачи идентификации упрощаются применением специфического концентрирования, позволяющего выделять отдельные классы органических соединений. Идентификация отдельных компонентов внутри класса более легко достигается при использовании различных зависимостей, связывающих хроматографические характеристики (время, объемы удерживания) с физико-химическими свойствами веществ внутри ряда (температура кипения, молекулярный вес). Выделение отдельных классов при концентрировании часто связано с первоначальным более или менее селективным накоплением (перегонка, экстракция, вымораживание и т. д.). Поэтому разработка общих схем систематического анализа органических компонентов вод имеет существенное значение для выбора наиболее рационального пути концентрирования, с использованием элементов этих схем при решении отдельных задач [34, 35]. Дополнительные возможности для идентификации дает метод аналитической реакционной хроматографии, который использует химические превращения анализируемых веществ в хроматографической схеме [36, 37].[ . ]

Известно, что при проведении химического анализа природных вод, сформированных в естественных условиях или в условиях наложенного техногена, для установления их состава, правильного соотношения присутствующих в них компонентов, используют результаты анализа, проведенного на месте отбора или в течение первых часов после отбора пробы. Это в первую очередь касается определения неустойчивых компонентов: растворенного кислорода (Оо), гидрокарбонатов (НСО3), нитратов (МО3), аммонийных ионов (МНр, железа (FСтепень биохимического окисления многих органических соединений, загрязняющих сточные воды, невысока. Степень биохимического окисления серу- и азотсодержащих соединений весьма различна — от 0,02 до 0,95. Причем анализ реального состава сточных вод в канализационных коллекторах ряда промышленных районов указывает на высокое содержание в них консервативных загрязнений (БПКп/ХПК от 1/6 до 1/15) [78, с. 40].[ . ]

Таким образом, дикарбоновые кислоты и сточная вода поступают в слабо турбулизирующий газовый поток, где процесс горения еще не закончился и сохраняются худшие условия для перемешивания паров органических веществ с кислородом воздуха. Создаются условия для еще большего затягивания горения и активизации его в конвективном газоходе. Наблюдались случаи, когда факел достигал скрубберов, где, вследствие резкого охлаждения дымовых газов орошающей водой, происходила закалка несгоревшей части органических соединений. При этом температура газов в верхней зоне была ниже, чем перед скрубберами, и, хотя в составе топочных газов СО не обнаруживалась, анализы скрубберной воды и дымовых газов показывали наличие в них органических соединений.[ . ]

Инфракрасная спектроскопия более пригодна для анализа неорганических газов и органических компонентов в воде, чем для определения металлов. Так как для значительного числа чисто неорганических твердых веществ известны инфракрасные спектры, то этот метод можно использовать для установления состава осадков, полученных при упаривании воды.[ . ]

Для определения чрезвычайно лабильных и разнообразных по составу органических веществ природных вод весьма перспективны систематические схемы анализа, включающие фракционирование сорбционными методами и сочетающие разделение по химической природе с разделением по размерам молекул [25, 26]. Для разделения органических веществ, обладающих сродством к ионным и водородным связям, успешно применяют сорбенты с гидрофильной матрицей (ионообменные целлюлозы и сефадексы). В отличие от ионообменных смол, целлюлозы представляют собой агрегаты полисахаридных цепей, хорошо проницаемых даже для очень больших ионов. Рыхлая структура целлюлозы, высокая дисперсность, сорбция преимущественно по поверхности обусловливают быстроту процессов сорбции и десорбции. Хорошо проницаемы для крупных молекул также нейтральные и ионообменные сефадексы.[ . ]

Сконцентрированные в ловушках (патроны и диски) загрязняющие воду примеси токсичных веществ обычно элюируют органическими растворителями (см. разделы 2.3.1 и 2.3.4). При этом выбор растворителя зависит от свойств сорбента, характера и природы матрицы (сточные, природные, питьевые воды и др.), состава и количества загрязнений и цели исследования (арбитражный анализ, экологическая экспертиза, рутинные анализы, определение отдельных наиболее важных приоритетных загрязнений, анализ представительной пробы, скрининг целевой и нецелевой и т.п.).[ . ]

Читайте также:  Анализ на воды по санпин

Как в первой серии опытов (с добавкой 20% хозяйственнофекальных сточных вод), так и в данных был составлен общий баланс процесса. Анализ данных баланса показал, что в течение 28 суток через аэротенк прошло 377 л стоков с содержанием кислорода 19 г по фильтрованной пробе и 24,5 г по нефильтрованной. Таким образом, при средней нагрузке 271 г/м3 — сутки по фильтрованной и 350 г/м3- сутки по нефильтрованной пробе эффект очистки по БПК5 составил 96,2—94,8%; при этом разрушение органических веществ составило 260— 331 г/м3-сутки 02.[ . ]

В заключение можно сказать, что решение задачи определения индивидуальных органических соединений по существу сводится к разработке некоторого общего метода систематического анализа природных вод для определения органических компонентов [27]. Этот метод может иметь несколько вариантов, применяемых в зависимости от состава анализируемой воды и от допустимых потерь тех или иных веществ. При изучении состава органических веществ параллельно с компонентным анализом необходимо иметь данные о содержании неорганических микро- и макрокомпонентов и органического углерода, о цветности воды, что позволит дать оценку методам выделения и определения отдельных групп органических соединений [28].[ . ]

Применявшийся раньше метод перманганатного окисления совершенно не пригоден для анализа сточных вод (в анализе природных вод его еще используют). Перманганат — недостаточно сильный бйбслитель: окисление органических веществ проходит неполно и многие из них совсем не окисляются. Кроме того, при кипячении растворов, содержащих избыток перманганата, последний в значительной мере разлагается с образованием диоксида марганца и кислорода. Это разложение происходит как в кислой, так и в щелочной среде. Выпадающий диоксид марганца каталитически ускоряет процесс. Количество образующегося осадка различно в зависимости от условий и состава пробы. Поправка на холостой опыт здесь невозможна, так как при проведении холостого определения осадок диоксида марганца обычно совсем не выпадает.[ . ]

К сожалению, на данный момент можно констатировать малую доступность СО природных вод для аналитиков-практиков, особенно в России из-за отсутствия отечественных образцов. К тому же образцы природных вод нередко различаются по минеральному составу ввиду сезонной и временной динамики, а также в зависимости от места отбора пробы [128]. Другими словами, даже сертифицированный СО природной воды не всегда идентичен по минеральному и органическому составу анализируемой пробе. По этой причине в аналитических лабораториях широко применяют унифицированные методы анализа, основанные на применении более простых СО, например, водные растворы солей. Однако упрощение калибровки не упрощает, а скорее усложняет саму процедуру создания методики анализа. На этой стадии необходимо выявить все возможные влияния макро- и матричных компонентов, а также найти способ их устранения или учета, например, путем разделения микро- и макроэлементов с применением экстракции, сорбции и других методов или путем введения макрокомпонентов в образцы сравнения на уровне, соответствующем его содержанию в пробе.[ . ]

Содержание азотсодержащих соединений нитратов, аммонийного азота) в исследованных водах за период наблюдении определялось в концентрации, в несколько раз ниже предельно допустимой (ПДК — 45 мг/л) для питьевой воды. Анализ динамики изменения содержания азотсодержащих соединений в воде, обработанной прибором с активной водой, и в контрольной (после контакта с «плацебо») воде показал, что в течение срока наблюдений среднее отклонение опытных данных от контрольных составляло для нитратов — 1,46 мг/л, а для аммонийного азота — 0,035 мг/л, т.е. понижение концентрации нитратов и повышение количества аммонийного азота относительно их среднего содержания в воде является существенным и равно 27 и 22,4% соответственно (относительно контрольных величин). Отклонение от средних контрольных значений для показателей ВПК, органического углерода, перманганатной окисляемости составило 30,3%, 13,1% и 7% соответственно.[ . ]

Бихромат калия наиболее полно окисляет вещества, содержащиеся в промышленных сточных водах, особенно при использовании серебра в качестве катализатора. В результате анализа определяется суммарное количество кислорода, которое затрачивается на окисление углеродсо ержащих веществ до двуокиси углерода, серусодержащих — до сульфатов, фосфорсодержащих — до фосфатов. Кислород, который содержится в составе некоторых органических соединений, в величину ХПК не входит.[ . ]

Таким образом, расчет сооружений для биохимической очистки должен производиться с учетом состава производственных сточных вод при определении всей суммы органических загрязнений, выражаемой полной • биохимической потребностью в кислороде. Для этого необходимо знать величину БПКполн, а также ХПК производственных сточных вод, которая определяется по данным анализов.[ . ]

Промывка должна быть интенсивной и равномерной, осуществляться быстро и с минимальной затратой воды. После нее в песке не должно оставаться скоплений комочков грязи, плохо промытых участков, а при анализе песка не должно обнаруживаться изменения химического состава в результате обволакивания его неотмытыми органическими и минеральными отложениями. Качество промывки зависит от интенсивности и равномерности распределения промывной воды, времени промывки и условий отвода воды.[ . ]

Последние публикации подтверждают возможность получения качественно новой геологической информации, особенно на основе данных о молекулярном составе органических веществ подземных вод. Важнейшими направлениями в области анализа органических веществ вод являются инструментализация и автоматизация методов. К одной из таких задач относится создание и внедрение в практику специальных анализаторов для определения органического углерода, азота, а также анализаторов для селективного определения отдельных компонентов или групп веществ. Серьезных успехов следует ожидать от внедрения различных видов хроматографии, особенно инструментальной (газовой и жидкостной хроматографии), а в дальнейшем — хроматомасс-спектрометрии для определения молекулярного состава органических соединений.[ . ]

Опубликованы данные по убыли кислорода и снижению ХПК первичного стока четырех очистных сооружений Калифорнии. К сожалению, ничего не сообщается о составе стоков. Было найдено, что выход убыли кислорода составляет 2,8 молекул/100 эв, даже при введении катализирующих добавок, таких, как Т 03 , Ре2+ + Н202 и Н202. Снижение ХПК измерялось при различных режимах проведения облучения: в отсутствие кислорода (насыщение азотом), при предварительном насыщении воздухом или кислородом и при барботаже воздуха во время облучения. В последнем случае С(—02), рассчитанный по изменению ХПК, равняется 10 эке/100 эв. Анализы по общему углероду показали, что около половины органических соединений разлагается до С02 и воды. Цепные процессы окисления обнаружены не были.[ . ]

По сравнению с первым изданием (1958 г.) книга значительно переработана и расширена. Наибольшее число дополнений внесено в раздел, посвященный методам определения органических веществ в промышленных сточных водах (раздел увеличен примерно в три раза), но, конечно, и это далеко не может удовлетворить острой потребности в таких методах анализа. Определение малых количеств органических веществ, присутствующих в сложных комбинациях, в сложных по составу смесях, какими являются производственные сточные воды — задача, пока еще далеко не решенная, и для анализа сточных вод многих производств мы еще не располагаем надежными методами.[ . ]

Среди выявленных представителей семейства преобладают литораль-но-эпифитные водоросли (16 таксонов), обитающие в прибрежной зоне. По отношению к содержанию солей в воде основная часть состава семейства Fragilariaceae в данных водотоках приходится на индифферентные диатомеи (24 вида с разновидностями). Основной экологической группой по отношению к pH являются алкалифильные диатомовые (26 таксонов). Сапробиологический анализ показал преобладание диатомовых водорослей (13), характерных для вод с умеренным загрязнением легкоокисляе-мыми органическими веществами. Соотношение экологических групп со-ответствуетхимическому составу вод исследованных водотоков. Среди био-географических групп первое место занимают космополиты (27 видов с внутривидовыми таксонами). Выявлены редкие виды.[ . ]

Следует отметить, что ранее с использованием фотометрических методов было получено большое количество аномально высоких и, как правило, некорректных результатов по содержанию ртути в незагрязненных природных водах [168]. Следовательно, необходимо очень осторожно применять эти методы для анализа ртути, а также интерпретировать данные по ее содержанию, полученные с их использованием. Обзоры фотометрических и экстракционно-фотометрических методов определения ртути приведены в [45, 134, 140, 153, 456]. В обзоре [153], рассматривающем развитие фотометрических методов за 20 лет (1971—1991 гг.), в табличном виде приведены характеристики используемых органических реагентов, их аналитические свойства, сведения по селективности методов, мешающие компоненты. В зависимости от характеристик и состава анализируемых объектов можно выбрать наиболее подходящий метод анализа. Авторы обзора делают вывод, что большинство разработанных фотометрических методик определения ртути недостаточно избирательны вследствие неспецифичности функционально-аналитических групп применяемых реагентов и проведения комплексообразования в щелочной среде. Поэтому для фотометрического определения ртути перспективны направленный синтез органических реагентов, образующих устойчивые комплексы с ртутью в сильнокислых средах, и разработка высокочувствительных методов на их основе [153].[ . ]

Геохимическое опробование снежного покрова проводилось в течение нескольких лет (1992—1995 гг.) на территории нескольких промышленных городов области (Новый Уренгой, Сургут, Тюмень), в поселках, возникновение которых связано со строительством компрессорных станций (КС) на магистральных трубопроводах. Для сопоставления проводилось исследование состава снежного покрова в ненарушенных, т.е. фоновых условиях. Исследованиями были охвачены различные природные зоны — от типичных тундр (п-ов Ямал) до границы таежной и лесостепной зон (г. Тюмень, КС “Богандинская“). Отбор проб и подготовка к анализу проводились по методике мониторинга снежного покрова [Василенко и др., 1985]. В талой снеговой воде определялись: основные гидрохимические показатели, содержание тяжелых металлов методом атомно-адсорбционной спектрофотоме-трии, содержание ряда органических соединений, используемых в технологических процессах на КС (метанол, этиленгликоль, фенол), а также ароматические углеводороды (бензол, этилбензол, толуол и др.). Математическая обработка полученных результатов включала вычисление стандартных статистических параметров, корреляционный и факторный анализы. По материалам опробования строились картосхемы (методом изолиний), отражающие пространственное распределение загрязнителей по территории исследуемых городов и КС. При оценке уровня экологической опасности загрязнения использовались предельно допустимые концентрации для природных водоемов.[ . ]

В основном в пробах были отмечены планктонные и факультативно-планктонные формы водорослей, однако достаточно большую долю диатомовых составляют обрастатели, бентосные и эпифитные формы. В экологогеографическом отношении водоросли планктона прудов были представлены широко распространенными видами, обитающими в пресных водоемах и предпочитающими нейтральные или щелочные воды. Виды-космополиты преобладали в списке водорослей и составляли в зависимости от типа водоема 42-75 % от общего числа. По шкале сапробности число водорослей-индикаторов органического загрязнения составило в среднем 35-43 % от общего количества видов по водоему. Среди них значительное положение занимали (3-мезосапробы (20-34 % от общего количества видов в водоеме) и олиго-[3-мезосапробы (9-15 % от общего количества видов в водоеме). На основании анализа видовой структуры и летней биомассы фитопланктона, которая часто превышала пределы 4-8 мг/л (г/м3), было определено, что исследуемые водоемы являются эвгрофными. В периоды «цветения» воды трофический статус водоемов достигал гиперэвтрофного уровня.[ . ]

Водохранилища — искусственно созданные водоемы различных размеров — приобретают в настоящее время большое народнохозяйственное значение, позволяя решать важные проблемы энергетики, промышленности, транспорта, сельского хозяйства. Заселение водохранилищ ценными породами рыб (рис. Формирующийся в конкретных условиях данного водохранилища химический состав воды определяет пригодность ее использования для намеченных целей, а также условия жизни рыб, противокоррозионную устойчивость гидротехнических сооружений и многое другое. Игнорирование этого вопроса может привести к тяжелым, трудно исправимым последствиям. Процесс формирования химического состава воды в водохранилищах протекает особенно интенсивно в первоначальный период их существования. В результате затопления новых площадей суши, представляющей леса, луга, пашни, болота, происходит смыв в водохранилища большого количества растворимых органических и минеральных веществ, отмирание и разложение растительности, формирование новых грунтов дна водохранилища при интенсивном взаимодействии растворенных в воде ионов и газов с почвами. Этот период первичного формирования химического состава воды для различных водохраниг лищ протекает в различные промежутки времени (порядка нескольких лет), а затем в водохранилищах устанавливается свойственный им режим, близкий к озерному, Переход от речного режима к озерному сопровождается изменением гидрологических и биологических условий: повышается температура воды, усиливается испарение, увеличивается прозрачность, более интенсивно развиваются планктон и водная растительность. Все это может привести к существенным изменениям гидрохимического режима. Точный анализ возможных изменений представляет значительные трудности, и прогнозы гидрохимических особенностей создаваемых водохранилищ могут быть даны лишь в предварительной общей форме, на основе учета рассмотренного выше влияния физико-географических условий и водного режима на гидрохимический режим водоемов.[ . ]

источник