Меню Рубрики

Инструкция по анализу дистиллированной воды

Коллеги, нужен ваш совет!
Наша лаборатория для проведения подготовительных работ (приготовление реактивов, ополаскивание посуды) и с целью разбавления проб при проведении испытаний использует воду для лабораторного анализа 2-й степени чистоты по ГОСТ Р 52501-2005 «Вода для лабораторного анализа. Технические условия», получаемую очисткой на установке обратного осмоса и последующей дистилляцией.
Часть методов испытаний, заявленных в Области аккредитации предусматривают использование дистиллированной воды по ГОСТ 6709-72.
Учитывая, что вода для лабораторного анализа 2-й степени чистоты по ГОСТ Р 52501-2005 превосходит по качеству дистиллированную воду, мы сочли возможным использование только воды 2-й степени чистоты.
Показатели качества, приведенные в ГОСТ 6709-72 и ГОСТ Р 52501-2005 значительно отличаются. Так, например, согласно ГОСТ Р 52501-2005 не требуется определять рН.
С какой периодичностью и по каким показателям мы должны контролировать качество используемой для испытаний воды?
Этот вопрос задавался на семинаре, проводимом Росакредитацией. Ответ был расплывчатый-решайте сами как часто и что вы будете контролировать, что это требование нигде не прописано и в этом вопросе будет разбираться эксперт уже на месте. Сами мы контролировать не можем, только по договору с другой лабораторией. А вот какой вариант устроит эксперта остается только догадываться.
Olesya1984_08 Дата: Четверг, 04.05.2017, 07:34 | Сообщение # 2
Здравствуйте всем кто прочитает сообщение. Действительно вопрос с проверкой качества дистиллированной воды мучает уже не один год. Пожалуйста кто то отзовитесь и напишите с какой периодичностью вы проверяете качество дистиллированной воды. А именно по всем 12 показателям согласно ГОСТа 6709-72. Если электропроводность и рН мы проверяем у каждой полученной партии воды то остальные показатели мы совсем запутались как проверять! С какой периодичностью.

Спасибо всем кто отзовется

тттттт Дата: Среда, 24.05.2017, 11:01 | Сообщение # 3
Мы с дистиллированной водой прошли Крым и Рим.

Полный анализ однозначно 1-2 раза в год. Мы делаем 1 раз в год

2.2. Допускается изготовителю показатели с 1-го по 12-й определять периодически. Периодичность контроля устанавливает изготовитель.

А РН и электропроводность от партии.. Нагнали 50 литров , проверили. в журнал записали. (Причем в журнале пишем , что соответствуют требованиям ГОСТ 6709 протокол №___)

Никогда РА не делала замечаний

Olesya1984_08 Дата: Вторник, 06.06.2017, 14:04 | Сообщение # 4
тттттт здравствуйте!
Спасибо что отозвались! Очень помогли!
Но у меня остался вопрос про то что вы написали в скобочках!
Вы говорите что пишите что соответствует требованиям ГОСТ протокол номер.
А вы печатаете получается протокол по результатам анализа дистиллированной воды. Наверное у вас в ОА есть дистил.вода и эти показатели!? Потому как сколько я лабораторий в городе аккредитованных обзвонила никто не делает протокол без наличия в ОА дистил воды и анализов на неё.

Добавлено (06.06.2017, 14:04)
———————————————
У меня есть ещё один вопрос касательно измерения электропроводности!Подскажите пожалуйста кто измеряет этот показатель в дистиллированной воде при помощи кондуктометра, как правильно измерить! С термокомпенсацией ( приведением к 25 град.) или абсолютное УЭП?
Запутались!
Спасибо заранее

Добрый день! по п.3.17. ГОСТ 6709 Удельную электрическую проводимость определяют на кондуктометре любого типа при 20 °С.
Не знаю марку вашего кондуктометра, у нас возможен выбор приведения УЭП к заданной температуре, а к 25 он корректирует сам в режиме автоматической термокомпенсации. Определяем УЭП мы в режиме простого измерения, на экране выводятся два параметра: температура и УЭП. Как правило у нас температура очень близка к 20 градусам.

Добавлено (06.06.2017, 15:43)
———————————————
Olesya1984_08, мы тоже делаем полный анализ 1 раз в год. Протоколы по рН и УЭП не выписываем, только регистрируем в журналах, т.к. эту работу выполняем «для себя». Аккредитованы на эти показатели по давнему совету экспертов, хотя для внутренних работ этого и не требуют теперь.

lab Дата: Вторник, 06.06.2017, 15:43 | Сообщение # 5
Lab спасибо вам большое что написали! Очень помогли! Вы не в первый раз отзываетесь на мои сообщения! Благодарю!
тттттт Дата: Вторник, 13.06.2017, 15:53 | Сообщение # 7

Мы лаборатория по физ-теху, в ОА у нет этого метода. Мы сдаем воду на анализ в аккредитованную лабораторию, они нам выдают протокол.

Согласно этого протокола, заносим результаты в журнал «Контроля качества дис. воды» , где указываем соответствие воды согласно протокола №.

sorssaratov Дата: Среда, 30.08.2017, 14:52 | Сообщение # 8
Добрый день, кто-нибудь видел проект нового ГОСТ на дистиллированную воду
lab Дата: Среда, 30.08.2017, 18:41 | Сообщение # 9
К сожалению, я не нашла, в нашей базе Техэксперт его нет, хотя найдена ссылка:
https://proinfosoft.ru/news/2017/avgust/proekt-gost-r-ot-zao-czikv
Еленарук Дата: Понедельник, 04.09.2017, 15:23 | Сообщение # 10

Через Анхем получила текст, которые разработчики высылают, если к ним обратиться.
Прием замечаний по проекту осуществляется по адресу :
195009, Санкт-Петербург, (почтовый адрес,ул. Комсомола, д. 9, лит К, тел. (812) 6001442, savinog.spbyandex.ru

7. Копию проекта национального стандарта можно получить :
195009, Санкт-Петербург,ул. Комсомола, д. 9, лит К, тел. (812) 6001442, savinog.spbyandex.ru

Заместитель генерального директора по производству— С.А. Виноградов
Разработчик Закрытое акционерное общество «Центр исследования и контроля Воды (ЗАО «ЦИКВ»)

источник

Анализ дистиллированной воды

Соответствие контроля дистиллированной воды ГОСТам

Необходимость осуществлять постоянный контроль дистиллированной воды обусловлена тем, что в лабораториях, ведущих контроль за качеством сточных и природных вод именно дистиллированная воды выступает в качестве основного растворителя, необходимого в приготовлении реактивов, разбавителя исследуемых проб, экстрагента, также применяется при ополаскивании лабораторной посуды. Поэтому успешная работа любой из существующих химико-аналитических лабораторий зависит не только от уровня квалификации работающих в ней специалистов, наличия поверенных точных приборов, использования реактивов с требуемой степенью чистоты, мерной стандартной посуды и стандартных образцов.

Особое внимание должно быть обращено на контроль дистилированной воды, долженствующей соответствовать по своим физико-химическим характеристикам требованиям предъявляемым по ГОСТ 6709-72. В случае, когда все параметры находятся в соответствии с установленными нормами, дистиллированная вода может употребляться при поведении лабораторных исследований, так как качество ее не сможет оказать существенного влияния на метрологические характеристики анализов, которые выполняются сотрудниками лаборатории. Стоит отметить, что действующими нормативами периодичность проведения контроля за качеством дистиллированной воды не установлена.

Получение дистилированной воды до ее контроля

Для получения дистиллированной воды применяют различные модели дистилляторов. Их устанавливают в отдельных помещениях, в воздухе которого не должны содержаться легко поглощаемые вещества, иначе контроль дистилированной воды покажет содержаний в ней соляной кислоты, паров аммиака и других примесей. В случаях, когда дистиллятор запускают после долгой консервации или же впервые, использование дистиллированной воды разрешается лишь спустя 40 часов работы прибора и тщательной проверки полученной воды по качеству на соответствие ГОСТ.

Качество дистиллированной воды может варьироваться в зависимости от того, каким был состав исходной воды. Если в воде содержится много солей магния и кальция, на различных поверхностях дистиллятора может образовываться накипь, что приводит к сокращению срока службы и производительности прибора. Для снижения образования накипи и умягчения исходной воды в процесс включают магнитное противонакипное устройство и/или химический водоподготовитель.

Прибегают также к периодической промывке дистиллятора. Контроль дистилированной воды подразумевает внесение всех результатов анализов в журнал с одновременным отражением режима работы дистиллятора. Последующая обработка информации позволяет применять впоследствии особый режим аппарата для каждой из исходных вод.

Порядок контроля дистилированной воды

Контроль дистилированной воды по ГОСТу предполагает определять количество в ней способных восстановить марганцовокислый калий органических веществ, поскольку использование (в качестве исходной) воды с их высоким содержанием создает возможность перехода этих веществ при отгоне в дистиллят, что повышает контрольную величину окисляемости. Чтобы освободить исходную воду от таких примесей и улучшить в итоге качество дистиллята, применяются, к примеру, химические водоподготовители, использующие гранулированный сорбент.

Стоит отметить, что в случае обнаружения в дистиллированной воде различных веществ, обладающих способностью восстанавливать перманганат калия (допустимая концентрация – не более 0.08 мг/дм3), надо осуществить повторную перегонку дистиллята и добавить в него перед отгоном однопроцентный раствор КМnО4 в пропорции два с половиной сантиметра кубических на кубический дециметр воды. По нормативам, общие затраты времени на контроль дистилированной воды, производимый по все 14 измеряемым показателям, составляет для одного аналитика 11 рабочих часов (что соответствует 65 лабораторным единицам).

источник

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Distilled water. Specifications

Настоящий стандарт распространяется на дистиллированную воду, получаемую в перегонных аппаратах и применяемую для анализа химических реактивов и приготовления растворов реактивов.

Дистиллированная вода представляет собой прозрачную, бесцветную жидкость, не имеющую запаха.

Молекулярная масса (по международным атомным массам 1971 г.) — 18,01.

1.1. По физико-химическим показателям дистиллированная вода должна соответствовать требованиям и нормам, указанным в таблице.

1. Массовая концентрация остатка после выпаривания, мг/дм 3 , не более

2. Массовая концентрация аммиака и аммонийных солей ( NH 4 ), мг/дм 3 , не более

3. Массовая концентрация нитратов (КО3), мг/дм 3 , не более

4. Массовая концентрация сульфатов ( SO 4 ), мг/дм 3 , не более

5. Массовая концентрация хлоридов (С l ), мг/дм 3 , не более

6. Массовая концентрация алюминия (А l ), мг/дм 3 , не более

7. Массовая концентрация железа ( Fe ), мг/дм 3 , не более

8. Массовая концентрация кальция (Сa), мг/дм 3 , не более

9. Массовая концентрация меди (С u ), мг/дм 3 , не более

10. Массовая концентрация свинца (Р b ), %, не более

11. Массовая концентрация цинка ( Zn ), мг/дм 3 , не более

12. Массовая концентрация веществ, восстанавливающих КМ n О4(O), мг/дм 3 , не более

14. Удельная электрическая проводимость при 20 °С, См/м, не более

(Измененная редакция, Изм. № 2).

2.1. Правила приемки — по ГОСТ 3885.

2.2. Допускается изготовителю показатели с 1 по 12 определять периодически. Периодичность контроля устанавливает изготовитель.

(Введен дополнительно, Изм. № 2).

3.1а. Общие указания по проведению анализа — по ГОСТ 27025. При взвешивании используют лабораторные весы общего назначения типов ВЛР-200 г и ВЛКТ-500 г-М или ВЛЭ-200 г.

Допускается применение других средств измерения с метрологическими характеристиками и оборудования с техническими характеристиками не хуже, а также реактивов по качеству не ниже указанных в настоящем стандарте.

3.1. Пробы отбирают по ГОСТ 3885. Объем средней пробы должен быть не менее 5 дм 3 .

3.1а, 3.1. (Измененная редакция, Изм. № 2).

3.3. Определение массовой концентрации остатка после выпаривания

Определение проводят по ГОСТ 27026.

Для этого берут 500 см 3 анализируемой воды, отмеренные цилиндром 2-500 (ГОСТ 1770).

Воду считают соответствующей требованиям настоящего стандарта, если масса сухого остатка не будет превышать 2,5 мг.

(Измененная редакция, Изм. № 2).

3.5. Определение массовой концентрации аммиака и аммонийных солей

(Измененная редакция, Изм. № 2).

3.5.1. Реактивы, растворы и аппаратура:

вода дистиллированная по настоящему стандарту; проверенная по п. 3.3;

вода дистиллированная, не содержащая аммиака и аммонийных солей; готовят следующим образом: 500 см 3 дистиллированной воды помещают в круглодонную колбу прибора для отгонки, прибавляют 0,5 см 3 концентрированной серной кислоты, нагревают до кипения и отгоняют 400 см 3 жидкости, отбросив первые 100 см 3 дистиллята. Воду, не содержащую аммиак и аммонийные соли, хранят в колбе, закрытой пробкой с «гуськом», содержащим раствор серной кислоты;

кислота серная по ГОСТ 4204, концентрированная и раствор 1:3;

натрия гидроокись, раствор с массовой долей 20 %, не содержащий аммиака; готовят по ГОСТ 4517;

реактив Несслера: готовят по ГОСТ 4517;

раствор, содержащий NH 4 ; готовят по ГОСТ 4212; соответствующим разбавлением готовят раствор, содержащий 0,001 мг/дм 3 NH 4 ;

прибор для отгонки, состоящий из круглодонной колбы вместимостью 1000 см 3 холодильника с брызгоуловителем и приемной колбы;

пробирка плоскодонная из бесцветного стекла с пришлифованной пробкой диаметром 20 мм и вместимостью 120 см 3 ;

пипетка 4(5)-2-1(2) и 6(7)-2-5(10) по ГОСТ 29169;

цилиндр 1(3)-100 и 1-500 по ГОСТ 1770.

(Измененная редакция, Изм. № 1, 2).

100 см 3 анализируемой воды помещают цилиндром в пробирку, прибавляют 2,5 см 3 раствора гидроокиси натрия и перемешивают. Затем прибавляют 1 см 3 реактива Несслера и снова перемешивают.

Воду считают соответствующей требованиям настоящего стандарта, если наблюдаемая через 20 мин по оси пробирки окраска анализируемого раствора не будет интенсивнее окраски раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме: 100 см 3 воды, не содержащей аммиака и аммонийных солей, 0,002 мг NH 4 , 2,5 см 3 раствора гидроокиси натрия и 1 см 3 реактива Несслера.

3.6. Определение массовой концентрации нитратов

3.5.2, 3.6. (Измененная редакция, Изм. № 2).

3.6.1. Реактивы, растворы и аппаратура:

вода дистиллированная по настоящему стандарту, проверенная по п. 3.3;

индигокармин; раствор готовят по ГОСТ 10671.2;

кислота серная по ГОСТ 4204, х.ч.;

натрия гидроокись по ГОСТ 4328, х.ч., раствор концентрации с ( NaOH ) = 0, l моль/дм 3 (0,1 н.), готовят по ГОСТ 25794.1 без установления коэффициента поправки;

натрий хлористый по ГОСТ 4233, раствор с массовой долей 0,25 %;

раствор, содержащий NO 3 ; готовят по ГОСТ 4212; соответствующим разбавлением готовят раствор, содержащий 0,01 мг/см 3 NO 3 ;

колба Кн-1-50-14/23 ТХС или Кн-2-50-18 ТХС по ГОСТ 25336;

пипетки 4(5)-2-1 и 6(7)-2-5(10, 25) по ГОСТ 29169-91;

чашка выпарительная 2 по ГОСТ 9147 или чаша 50 по ГОСТ 19908;

цилиндр 1(3)-25(50) по ГОСТ 1770.

25 см 3 анализируемой воды помещают пипеткой в чашку, прибавляют 0,05 см 3 раствора гидроокиси натрия, перемешивают и выпаривают досуха по п. 3.3. Чашку сразу же снимают с бани, к сухому остатку прибавляют 1 см 3 раствора хлористого натрия, 0,5 см 3 раствора индигокармина и осторожно при перемешивании добавляют 5 см 3 серной кислоты.

Через 15 мин содержимое чашки количественно переносят в коническую колбу, чашку ополаскивают в два приема 25 см 3 дистиллированной воды, присоединяя ее к основному раствору, и содержимое колбы перемешивают.

Воду считают соответствующей требованиям настоящего стандарта, если окраска анализируемого раствора не будет слабее окраски раствора сравнения, приготовленного следующим образом: в выпарительную чашку помещают 0,5 см 3 раствора, содержащего 0,005 мг NO 3 , 0,05 см 3 раствора гидроокиси натрия и выпаривают досуха на водяной бане. Чашку сразу же снимают с водяной бани; далее сухой остаток обрабатывают таким же образом одновременно с сухим остатком, полученным после выпаривания анализируемой воды, прибавляя такие же количества реактивов в том же порядке.

3.6.1, 3.6.2. (Измененная редакция, Изм. № 1, 2).

3.7. Определение массовой концентрации сульфатов

(Измененная редакция, Изм. № 2).

3.7.1. Реактивы, растворы и аппаратура:

вода дистиллированная по настоящему стандарту, проверенная по п. 3.3;

барий хлористый по ГОСТ 4108, раствор с массовой долей 10 %;

кислота соляная по ГОСТ 3118, раствор концентрации с (НС1) = 1 моль/дм 3 (1 н.), готовят по ГОСТ 25794.1 без установления коэффициента поправки;

раствор, содержащий SO 4 ; готовят по ГОСТ 4212 на анализируемой воде соответствующим разбавлением основного раствора той же водой получают раствор с концентрацией SO 4 0,01 мг/см 3 ;

спирт этиловый ректификованный технический по ГОСТ 18300;

пипетки 4(5)-2-2 и 6(7)-2-5(10) по ГОСТ 29169;

стакан В-1-50 ТС по ГОСТ 25336;

цилиндр 1(3)-50 по ГОСТ 1770.

40 см 3 анализируемой воды помещают цилиндром в стакан (с меткой на 10 см 3 ) и упаривают на электроплитке до метки. Затем охлаждают, прибавляют медленно при перемешивании 2 см 3 этилового спирта, 1 см 3 раствора соляной кислоты и 3 см 3 раствора хлористого бария, предварительно профильтрованного через обеззоленный фильтр «синяя лента».

Воду считают соответствующей требованиям настоящего стандарта, если опалесценция анализируемого раствора, наблюдаемая на темном фоне через 30 мин, не будет интенсивнее опалесценции раствора сравнения, приготовленного одновременно с анализируемым и содержащего: 10 см 3 анализируемой воды, содержащей 0,015 мг SO 4 , 2 см 3 этилового спирта, 1 см 3 раствора соляной кислоты и 3 см 3 раствора хлористого бария.

3.7.1, 3.7.2. (Измененная редакция, Изм. № 1, 2).

3.8. Определение массовой концентрации хлоридов

3.8.1. Реактивы, растворы и аппаратура:

вода дистиллированная по настоящему стандарту, проверенная по п. 3.3;

кислота азотная по ГОСТ 4461, растворы с массовой долей 25 и 1 %; готовят по ГОСТ 4517;

натрий углекислый по ГОСТ 83, раствор с массовой долей 1 %;

серебро азотнокислое по ГОСТ 1277; раствор с массовой долей около 1,7 %;

раствор, содержащий С l ; готовят по ГОСТ 4212; соответствующим разбавлением готовят раствор, содержащий 0,001 мг/см 3 С l ;

пробирка П4-15-14/23 ХС по ГОСТ 25336;

пипетки 4(5)-2-1 и 6(7)-2-5(10) по ГОСТ 29169;

чашка выпарительная 3 по ГОСТ 9147 или чаша 100 по ГОСТ 19908;

цилиндр 1(3)-50 по ГОСТ 1770.

50 см 3 анализируемой воды помещают цилиндром в выпарительную чашку, прибавляют 0,1 см 3 раствора углекислого натрия и выпаривают досуха по п. 3.3. Остаток растворяют в 3 см 3 воды, если раствор мутный, его фильтруют через обеззоленный фильтр «синяя лента», промытый горячим раствором азотной кислоты с массовой долей 1 %, и переносят в пробирку. Чашку смывают 2 см 3 воды, присоединяя промывные воды к раствору, прибавляют при перемешивании 0,5 см 3 раствора азотной кислоты с массовой долей 25 % и 0,5 см 3 раствора азотнокислого серебра.

Воду считают соответствующей требованиям настоящего стандарта, если наблюдаемая через 20 мин на темном фоне опалесценция анализируемого раствора не будет интенсивнее опалесценции раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме: 0,001 мг С l , 0,1 см 3 раствора углекислого натрия, 0,5 см 3 раствора азотной кислоты с массовой долей 25 % и 0,5 см 3 раствора азотнокислого серебра.

3.8.1, 3.8.2. (Измененная редакция, Изм. № 1, 2).

3.9. Определение массовой концентрации алюминия с применением стильбазо

(Измененная редакция, Изм. № 2).

3.9.1. Реактивы, растворы и аппаратура:

вода дистиллированная по настоящему стандарту, проверенная по п. 3.3;

аскорбиновая кислота (витамин С) раствор с массовой долей 5 %, свежеприготовленный;

ацетатный буферный раствор рН 5,4; готовят по ГОСТ 4919.2;

кислота соляная по ГОСТ 3118, раствор концентрации с (НС l ) = 0,1 моль/дм 3 (0,1 н.); готовят по ГОСТ 25794.1 без установления коэффициента поправки;

раствор, содержащий А l ; готовят по ГОСТ 4212; соответствующим разбавлением готовят раствор, содержащий 0,001 мг/см 3 А l ;

стильбазо, раствор с массовой долей 0,02 %; годен в течение двух месяцев;

пипетки 4(5)-2-1(2) и 6(7)-2-5(10) по ГОСТ 29169;

пробирка П4-15-14/23 ХС по ГОСТ 25336;

чашка выпарительная № 2 по ГОСТ 9147 или чаша 40(50) по ГОСТ 19908;

цилиндр 1(3)-25(50) по ГОСТ 1770.

20 см 3 анализируемой воды помещают цилиндром в выпарительную чашку и выпаривают досуха по п. 3.3. К остатку прибавляют 0,25 см 3 раствора соляной кислоты, количественно переносят 2,25 см 3 воды в пробирку, прибавляют при перемешивании 0,15 см 3 раствора аскорбиновой кислоты, 0,5 см 3 раствора стильбазо и 5 см 3 ацетатного буферного раствора.

Воду считают соответствующей требованиям настоящего стандарта, если окраска анализируемого раствора через 10 мин не будет интенсивнее окраски раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме: 0,001 мг А l , 0,25 см 3 раствора соляной кислоты, 0,15 см 3 раствора аскорбиновой кислоты, 0,5 см 3 раствора стильбазо и 5 см 3 буферного раствора.

3.9.1, 3.9.2. (Измененная редакция, Изм. № 1, 2).

3.9а. Определение массовой концентрации алюминия с применением ксиленолового оранжевого

3.9а.1. Реактивы, растворы и аппаратура:

вода дистиллированная по настоящему стандарту, проверенная по п. 3.3;

раствор ацетатный буферный рН 3,4; готовят по ГОСТ 4919.2;

кислота соляная по ГОСТ 3118, х.ч., раствор концентрации с (НС l ) = 0,1 моль/дм 3 (0,1 н.); готовят по ГОСТ 25794.1 без установления коэффициента поправки;

ксиленоловый оранжевый, раствор с массовой долей 0,1 %; готовят по ГОСТ 4919.1;

раствор, содержащий А l ; готовят по ГОСТ 4212; соответствующим разбавлением готовят раствор, содержащий 0,001 мг/см 3 А l ;

колба Кн-1-50-14/23 ТХС или Кн-2-50-18 ТХС по ГОСТ 25336;

пипетки 4(5)-2-1 и 6(7)-2-5(10) по ГОСТ 29169;

чашка выпарительная № 3 по ГОСТ 9147 или чаша 100 по ГОСТ 19908;

цилиндр 1(3)-100 по ГОСТ 1770.

60 см 3 анализируемой воды помещают цилиндром в выпарительную чашку и выпаривают досуха по п. 3.3. Остаток растворяют в 0,25 см 3 раствора соляной кислоты, 2 см 3 воды и количественно переносят 8 см 3 воды в коническую колбу.

Затем к раствору прибавляют 10 см 3 ацетатного буферного раствора, 1 см 3 раствора ксиленолового оранжевого, колбу помещают в водяную баню (80 °С) на 5 мин и охлаждают.

Воду считают соответствующей требованиям настоящего стандарта, если наблюдаемая в проходящем свете на фоне молочного стекла розовато-оранжевая окраска по розовому оттенку будет не интенсивнее окраски раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме воды 0,003 мг А l , 0,25 см 3 раствора соляной кислоты, 10 см 3 ацетатного буферного раствора и 1 см 3 раствора ксиленолового оранжевого.

3.9а. — 3.9а.2. (Измененная редакция, Изм. № 1, 2).

3.10. Определение массовой концентрации железа

(Измененная редакция, Изм. № 2).

3.10.1. Реактивы, растворы и аппаратура:

вода дистиллированная по настоящему стандарту, проверенная по п. 3.3;

аммоний надсернокислый по ГОСТ 20478, раствор с массовой долей 5 %, свежеприготовленный;

аммоний роданистый по ГОСТ 27067, раствор с массовой долей 30 %, очищенный от железа экстракцией изоамиловым спиртом (экстракцию проводят после подкисления раствора раствором серной кислоты до обесцвечивания спиртового слоя);

кислота серная по ГОСТ 4204, х.ч., раствор с массовой долей 20 %;

раствор, содержащий Fe ; готовят по ГОСТ 4212; соответствующим разбавлением готовят раствор, содержащий 0,001 мг/см 3 Fe ;

спирт изоамиловый по ГОСТ 5830;

пипетки 4(5)-2-1(2) и 6(7)-2-5(10) по ГОСТ 29169;

пробирка из бесцветного стекла с пришлифованной пробкой вместимостью 100 см 3 и диаметром 20 мм;

цилиндр 1(3)-50(100) по ГОСТ 1770.

(Измененная редакция, Изм. № 1, 2).

40 см 3 анализируемой воды помещают цилиндром в пробирку, прибавляют 0,5 см 3 раствора серной кислоты, 1 см 3 раствора надсернокислого аммония, 3 см 3 раствора роданистого аммония, перемешивают, прибавляют 3,7 см 3 изоамилового спирта, тщательно перемешивают и выдерживают до расслоения раствора.

Воду считают соответствующей требованиям настоящего стандарта, если наблюдаемая окраска спиртового слоя анализируемого раствора не будет интенсивнее окраски спиртового слоя раствора сравнения, приготовленного одновременно с анализируемым таким же образом и содержащего: 20 см 3 анализируемой воды, 0,001 мг Fe , 0,25 см 3 раствора серной кислоты, 1 см 3 раствора надсернокислого аммония, 1,5 см 3 раствора роданистого аммония и 3 см 3 изоамилового спирта.

3.11. Определение массовой концентрации кальция

3.10.2, 3.11. (Измененная редакция, Изм. № 2).

3.11.1. Реактивы, растворы и аппаратура:

вода дистиллированная по настоящему стандарту, проверенная по п. 3.3;

кислота соляная по ГОСТ 3118, раствор с массовой долей 10 %; готовят по ГОСТ 4517;

мурексид (аммонийная соль пурпуровой кислоты), раствор с массовой долей 0,05 %; годен в течение двух суток;

натрия гидроокись по ГОСТ 4328, раствор концентрации с ( NaOH ) = 1 моль/дм 3 (1 н.), готовят по ГОСТ 25794.1 без установления коэффициента поправки;

раствор, содержащий Ca ; готовят по ГОСТ 4212; соответствующим разбавлением готовят раствор, содержащий 0,01 мг/см 3 Ca ;

пробирки П4-15-14/23 ХС по ГОСТ 25336;

пипетки 4(5)-2-1 и 6(7)-2-5(10) по ГОСТ 29169;

чашка выпарительная 1 по ГОСТ 9147 или чаша 20 по ГОСТ 19908;

цилиндр 1(3)-25(50) по ГОСТ 1770.

10 см 2 анализируемой воды помещают цилиндром в выпарительную чашку и выпаривают досуха по п. 3.3. Сухой остаток обрабатывают 0,2 см 3 раствора соляной кислоты и количественно переносят 5 см 3 воды в пробирку. Затем прибавляют 1 см 3 раствора гидроокиси натрия, 0,5 см 3 раствора мурексида и перемешивают.

Воду считают соответствующей требованиям настоящего стандарта, если наблюдаемая через 5 мин розовато-фиолетовая окраска анализируемого раствора по розовому оттенку не будет интенсивнее окраски раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме: 0,008 мг Ca , 0,2 см 3 раствора соляной кислоты, 1 см 3 раствора гидроокиси натрия и 0,5 см 3 раствора мурексида.

3.11.1, 3.11.2. (Измененная редакция, Изм. № 1, 2).

3.12. Определение массовой концентрации меди

(Измененная редакция, Изм. № 2).

3.12.1. Реактивы, растворы и аппаратура:

вода дистиллированная по настоящему стандарту, проверенная по п. 3.3;

натрия N , N -диэтилдитиокарбамат 3-водный по ГОСТ 8864, раствор с массовой долей 0,1 %; свежеприготовленный;

кислота соляная по ГОСТ 3118, раствор с массовой долей 25 %; готовят по ГОСТ 4517;

раствор, содержащий Cu ; готовят по ГОСТ 4212; соответствующим разбавлением готовят раствор, содержащий 0,001 мг/см 3 Cu ;

спирт изоамиловый по ГОСТ 5830;

пробирка из бесцветного стекла с пришлифованной пробкой вместимостью 100 см 3 и диаметром 20 мм или цилиндр 2(4)-100 по ГОСТ 1770;

пипетка 4(5)-2-1(2) и 6(7)-2-5(10) по ГОСТ 29169;

цилиндр 1(3)-50(100) по ГОСТ 1770.

(Измененная редакция, Изм. № 1, 2).

50 см 3 анализируемой воды помещают цилиндром в пробирку, прибавляют 1 см 3 раствора соляной кислоты, перемешивают, прибавляют 3,8 см 3 изоамилового спирта и дважды по 1 см 3 раствора 3-водного N , N -диэтилдитиокарбамата натрия, перемешивая немедленно после прибавления каждой порции раствора 3-водного N , N -диэтилдитиокарбамата натрия в течение 1 мин и выдерживают до расслоения.

Воду считают соответствующей требованиям настоящего стандарта, если наблюдаемая окраска спиртового слоя анализируемого раствора не будет интенсивнее окраски спиртового слоя раствора сравнения, приготовленного одновременно с анализируемым таким же образом и содержащего: 25 см 3 анализируемой воды, 0,0005 мг Cu , 1 см 3 раствора соляной кислоты, 3 см 3 изоамилового спирта и 2 см 3 раствора 3-водного N , N -диэтилдитиокарбамата натрия.

3.13. Определение массовой концентрации свинца

3.12.2, 3.13. (Измененная редакция, Изм. № 2).

3.13.1. Реактивы, растворы и аппаратура:

вода дистиллированная по настоящему стандарту, проверенная по п. 3.3;

кислота уксусная по ГОСТ 61, х.ч., раствор с массовой долей 10%;

калий железистосинеродистый 3-водный по ГОСТ 4207, раствор с массовой долей 1 %, свежеприготовленный;

натрий тетраборнокислый 10-водный по ГОСТ 4199, раствор концентрации с ( Na 2 B 4 O 7 ·10 H 2 O ) = 0,05 моль/дм 3 ;

раствор, содержащий Pb ; готовят по ГОСТ 4212; соответствующим разбавлением готовят раствор, содержащий 0,001 мг/см 3 Pb ;

сульфарсазен (индикатор), раствор готовят по ГОСТ 4919.1;

пипетки 4(5)-2-1(2) и 6(7)-2-5(10) по ГОСТ 29169;

пробирка П4-15-14/23 ХС по ГОСТ 25336;

чашка выпарительная 2 по ГОСТ 9147 или чаша 50 по ГОСТ 19908;

цилиндр 1(3)-25(50) по ГОСТ 1770.

20 см 3 анализируемой воды помещают цилиндром в выпарительную чашку и выпаривают досуха по п. 3.3. Сухой остаток обрабатывают 1 см 3 раствора уксусной кислоты и снова выпаривают досуха. Затем чашку охлаждают, остаток смачивают 0,1 см 3 раствора уксусной кислоты, количественно переносят 3 см 3 воды в пробирку, прибавляют 0,2 см 3 раствора железистосинеродистого калия, 0,25 см 3 раствора сульфарсазена, перемешивают, прибавляют 2 см 3 раствора тетраборнокислого натрия и снова перемешивают.

Воду считают соответствующей требованиям настоящего стандарта, если окраска анализируемого раствора, наблюдаемая по оси пробирки в проходящем свете на белом фоне, не будет интенсивнее окраски раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме: 0,001 мг Р b , 0,1 см 3 раствора уксусной кислоты, 0,2 см 3 раствора железистосинеродистого калия, 0,25 см 3 раствора сульфарсазена и 2 см 3 раствора тетраборнокислого натрия.

3.13.1, 3.13.2. (Измененная редакция, Изм. № 1, 2).

3.14. Определение массовой концентрации цинка

(Измененная редакция, Изм. № 2).

3.14.1. Реактивы, растворы и аппаратура:

вода дистиллированная по настоящему стандарту, проверенная по п. 3.3;

аммиак водный по ГОСТ 3760, раствор с массовой долей 5 %, свежеприготовленный;

кислота винная по ГОСТ 5817, раствор с массовой долей 10 %;

кислота лимонная моногидрат и безводная по ГОСТ 3652, раствор с массовой долей 10 %;

раствор, содержащий Zn ; готовят по ГОСТ 4212; соответствующим разбавлением готовят раствор, содержащий 0,001 мг/см 3 Zn ;

сульфарсазен, раствор с массовой долей 0,02 %; готовят следующим образом: 0,02 г сульфарсазена растворяют в 100 см 3 воды и добавляют 1 — 2 капли раствора аммиака;

пипетки 4(5)-2-1(2) и 6(7)-2-5(10) по ГОСТ 29169;

пробирка П4-15-14/23 ХС по ГОСТ 25336;

чашка выпарительная 1 по ГОСТ 9147 или чаша 20 по ГОСТ 19908;

цилиндр 1-10 по ГОСТ 1770 или пипетка 6(7)-2-5(10) по ГОСТ 29169.

(Измененная редакция, Изм. № 1, 2).

5 см 3 анализируемой воды помещают цилиндром или пипеткой в выпарительную чашку и выпаривают досуха по п. 3.3. Чашку охлаждают, сухой остаток количественно переносят 3 см 3 воды в пробирку, прибавляют при перемешивании 0,8 см 3 раствора винной кислоты, 0,2 см 3 раствора лимонной кислоты, 0,8 см 3 раствора аммиака и 0,5 см 3 раствора сульфарсазена.

Воду считают соответствующей требованиям настоящего стандарта, если окраска анализируемого раствора, наблюдаемая по оси пробирки, в проходящем свете на белом фоне не будет интенсивнее окраски стандартного раствора, приготовленного одновременно с анализируемым и содержащего в таком же объеме: 0,001 мг Zn , 0,8 см 3 раствора винной кислоты, 0,2 см 3 раствора лимонной кислоты, 0,8 см 3 раствора аммиака и 0,5 см 3 раствора сульфарсазена.

3.15. Определение массовой концентрации веществ, восстанавливающих марганцовокислый калий

3.14.2, 3.15. (Измененная редакция, Изм. № 2).

3.15.1. Реактивы, растворы и аппаратура:

вода дистиллированная по настоящему стандарту, проверенная по п. 3.3;

калий марганцовокислый по ГОСТ 20490, раствор концентрации с ( 1/5 КМ n О4) = 0,01 моль/дм 3 (0,01 н.), свежеприготовленный, готовят по ГОСТ 25794.2;

кислота серная по ГОСТ 4204, раствор с массовой долей 20 %, готовят по ГОСТ 4517;

колба Кн-1-500-24/29 ТХС или Кн-2-500-34 ТХС по ГОСТ 25336;

пипетки 4(5)-2-1 и 6(7)-2-5 по ГОСТ 29169;

цилиндр 1(3)-250 по ГОСТ 1770.

250 см 3 анализируемой воды помещают цилиндром в колбу, прибавляют 2 см 3 раствора серной кислоты и 0,25 см 3 раствора марганцовокислого калия и кипятят в течение 3 мин.

Воду считают соответствующей требованиям настоящего стандарта, если при наблюдении в проходящем свете на белом фоне в анализируемом растворе будет заметна розовая окраска, при сравнении с равным объемом той же воды, к которой не прибавлены названные выше реактивы.

1 см 3 раствора марганцовокислого калия, концентрации точно с (КМ n О4) = 0,01 моль/дм 3 соответствует 0,08 мг кислорода.

3.15.1, 3.15.2. (Измененная редакция, Изм. № 1, 2).

3.16. Определение рН воды проводят на универсальном иономере ЭВ-74 со стеклянным электродом при 20 °С.

(Измененная редакция, Изм. № 2).

3.17. Удельную электрическую проводимость определяют на кондуктометре любого типа при 20 °С.

4.1. Воду хранят в герметически закрытых полиэтиленовых и фторопластовых бутылках или другой таре, обеспечивающей стабильное качество воды.

(Измененная редакция, Изм. № 2).

1. РАЗРАБОТАН И ВНЕСЕН Министерством химической промышленности СССР

Р.П. Ластовский, В.Г. Брудзь, И.Л. Ротенберг, Е.Н. Яковлева, З.М. Ривина, В.А. Раковская, Л.В. Кидиярова, Т.М. Сас

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 29.06.72 № 1334

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

источник

Как определить качество дистиллированной воды? Каким образом выполняется анализ и контроль показателей? Понятие дистиллированной воды и её характеристики. Основные химические показатели данной жидкости. Нормативные документы для контроля качества такой воды. Свойства дистиллированной воды и её влияние на человеческий организм. Методы контроля качества в домашних и лабораторных условиях. Качество дистиллированной воды проверяется по остатку примесей. Анализ и контроль показателей напрямую связан с составом исходной жидкости, способом производства дистиллята, исправностью устройства по перегонке, а также условиями, в которых хранится такая вода.

Дистиллированная вода – это жидкость, очищенная от веществ неорганического и органического происхождения. Сюда относятся соединения минеральных солей, взвешенные вещества, патогенные микроорганизмы, продукты распада после различных живых организмов и т.п. Важно понимать, что не каждая жидкость, которая прошла процесс испарения и осела в конденсат, может считаться дистиллятом.

Дистиллированную жидкость применяют для лечения людей, поэтому её состав и качество очень важны. От этого зависит здоровье человека. В связи с этим качество дистиллированной воды регламентируется нормами, а именно ГОСТ 6709-72. Главные характеристики дистиллированной воды описываются в этих документах.

Базовые показатели по воде, прошедшей дистилляцию

Концентрация в мг на дм³ Название элемента
Не > 5 Остатки примесей после испарения
Не > 0,02 Количество элементов аммонийных солей и частиц аммиака
Не > 0,2 Доля нитратов
Не > 0,5 Присутствие в составе сульфатов
Не > 0,02 Уровень хлорирования
Не > 0,05 Наличие частиц алюминия
Не > 0,05 Остатки железа
Не > 0,8 Доля элементов кальция
Не > 0,02 Наличие частиц меди
Не > 0,05 Присутствие свинца
Не > 0,2 Наличие частиц цинка
Не > 0,08 Концентрация восстанавливающих элементов
5,4-6,6 Кислотность жидкости
5 х 10 в -4 степени Удельная электропроводность состава

Дистиллированная вода бывает различной стадии очищения в зависимости от назначения жидкости. Анализ жидкости позволяет очень точно выявить степень её очистки и присутствие различных примесей в составе. Так, бывает апирогенная жидкость, которая отличает полным отсутствием пирогенных элементов в своём составе. К данным элементам относятся вещества органического происхождения, а также различные бактериальные компоненты. При этом данные составляющие в состоянии негативно влиять на человека, вызывая такие симптомы, как повышение температуры тела, нарушения в обмене веществ, изменения в системе кровообращения и тому подобное. Именно поэтому дистиллят, который предназначен для изготовления составов для инъекций, должен быть в обязательном порядке очищен от пирогенных веществ.

Очень важно отслеживать воздействие жидкости, прошедшей дистилляцию, на человеческий организм. Как мы уже говорили, дистиллят чаще всего используется для лечения человека. Именно поэтому в каждой аптеке должен вестись журнал анализа дистиллированной воды. Однако, несмотря на лечебные свойства такой жидкости, бесконтрольный приём её противопоказан, поскольку состав может оказывать негативное влияние на человеческий организм.

Если вы решите использовать дистиллированную воду вместо обычной питьевой, то рискуете нанести серьёзный вред своему здоровью, а именно:

  • Дистиллят способен очень быстро выводить из человеческого организма соединения хлоридов, что приведёт к стойкому дефициту этого микроэлемента.
  • Такая вода может приводить к нарушению объёмного и количественного равновесия меду жидкостными объёмами в теле человека.
  • Вода, прошедшая дистилляцию, плохо утоляет жажду, поэтому вы будете больше пить.
  • Данная жидкость вызывает учащённое мочеиспускание, что влечёт за собой потерю элементов калия, натрия и соединений хлоридов, и их нехватку в теле.
  • Концентрация гормонов, отвечающих за водно-солевой баланс, нарушается.

Контролировать состав данной жидкости можно несколькими способами:

  1. В домашних условиях, используя специально предназначенные для этого компактные приборы.
  2. Контроль по количеству органики в составе воды, способной восстанавливать марганцовокислый калий.
  3. Метод контроля по удельной электропроводности.

Рассмотрим каждый метод проверки подробнее.

В домашних условиях можно проверить качество дистиллированной воды, используя сразу несколько приборов. Так, для контроля жёсткости дистиллята используется прибор, называемый в народе, солемер (TDS-метр). Согласно ГОСТу номер 6702-72 допустимая концентрация солей в дистиллированной воде составляет 5 мг/л. Процент содержания хлоридов в такой воде определяют при помощи хлорметра. По ГОСТу этот показатель должен быть равен 0,02 мг/л. Кислотность воды измеряется рН-метром, который позволяет очень точно установить кислотно-щелочной баланс жидкости. Норма данного показателя должна быть в пределах 5,4-6,6 мг/л. Удельную электропроводность дистиллированной воды меряют кондуктометром. Показатель считается в пределах нормы, если прибор показывает значение 500.

Второй метод контроля можно проводить только в лабораторных условиях. Суть его состоит в том, что при обнаружении в дистиллированной воде веществ, способных восстанавливать перманганат калия в концентрации более 0,08 мг/дм³, вода считается некачественной. В такой ситуации требуется выполнить её повторную перегонку с добавлением необходимых растворов.

Довольно распространённым методом оценки качества дистиллированной воды является её проверка по удельной электропроводности. О растворе отличного качества говорит показатель равный не меньше 2 мкСм/см.

Вам необходимо оценить качество дистиллированной воды, но нужных приспособлений для самостоятельного проведения оценки у вас нет? Тогда обращайтесь в нашу лабораторию, где вам проведут все анализы, необходимые для контроля качества жидкости. Чтобы заказать анализ, вам достаточно связаться с нами по указанным телефонам. Стоимость наших услуг вы можете уточнить у менеджера при звонке.

источник

2.1.4. ПИТЬЕВАЯ ВОДА И ВОДОСНАБЖЕНИЕ НАСЕЛЕННЫХ МЕСТ

Организация внутреннего контроля качества
санитарно-микробиологических исследований воды

1. РАЗРАБОТАНЫ Федеральным центром госсанэпиднадзора Минздрава России (Л.Г.Подунова, Н.С.Кривопалова, Р.С.Сорокина), Аналитическим центром контроля качества воды ЗАО «Роса» (Г.П.Кашкарова, Е.Н.Ахапкина, С.Н.Тымчук, А.И.Дородников, А.В.Карташова, В.Е.Ларин), Федеральным научным центром гигиены им. Ф.Ф.Эрисмана (Г.М.Трухина), Центром госсанэпиднадзора в Тульской области (Т.А.Попова).

2. УТВЕРЖДЕНЫ Главным государственным санитарным врачом Российской Федерации — Первым заместителем Министра здравоохранения Российской Федерации Г.Г.Онищенко 6 июля 2001 г.

3. ВВЕДЕНЫ ВПЕРВЫЕ.

ВНЕСЕНО Изменение N 1, утвержденные и введенные в действие Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г.Г.Онищенко от 12.07.2011 N 2.1.4.2899-11 c 12.07.2011.

Изменение N 1 внесено изготовителем базы данных.

Методические указания «Организация внутреннего контроля качества санитарно-микробиологических исследований воды» (далее — методические указания) предназначены для лабораторий, выполняющих санитарно-микробиологические исследования воды при обеспечении государственного санитарно-эпидемиологического и производственного контроля качества воды: питьевого, хозяйственно-бытового водоснабжения, водных объектов рекреации, спорта и др.

Настоящие методические указания являются первым опытом обобщения научных данных и практических рекомендаций международных и отечественных документов в этой области, а также результатов их использования в производственных условиях.

Авторы рассматривают представленный документ как один из этапов совершенствования организации внутреннего контроля в отношении качества микробиологических исследований.

Методические указания представляют собой свод отдельных методик и процедур контроля качества, выполняемых на различных этапах микробиологических исследований, и направлены на их унификацию в целях получения надежных и сопоставимых результатов анализа.

Данные методические указания являются обязательными для выполнения лабораториями, аккредитованными (аттестованными) на проведение санитарно-микробиологических исследований воды. Руководство по качеству аккредитованной испытательной лаборатории должно включать или иметь ссылки на процедуры, описанные в методических указаниях.

Документальное представление результатов выполнения методик и процедур, содержащихся в методических указаниях, является неотъемлемой частью при подтверждении технической компетенции лабораторий, аккредитуемых в области микробиологических исследований воды.

________________
* На территории Российской Федерации документ не действует. Действует ГОСТ ИСО/МЭК 17025-2009. — Примечание изготовителя базы данных.

_______________
* На территории Российской Федерации документ не действует. Действует ГОСТ ISO 7218-2011, здесь и далее по тексту. — Примечание изготовителя базы данных

5. XI Государственная Фармакопея СССР. — М., 1998.

7. Методические рекомендации к контролю питательных сред по биологическим показателям. — МЗ СССР. — М., 1980.

8. Методические рекомендации по контролю стерилизации с использованием индикаторов стерилизации НПФ «Винар» N 11-8\03-54 от 11.06.93. — МЗ РФ.

9. МУ 2.1.4.* Методические указания по внедрению и применению санитарных правил и норм СанПиН 2.1.4.559-96 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества».
_______________
* Вероятно ошибка оригинала. Следует читать МУ 2.1.4.682-97. — Примечание изготовителя баз данных.

11. МУК 4.2.557-96* «Методы микробиологического контроля продуктов детского питания и лечебного, их компонентов».
_________________
* Вероятно ошибка оригинала. Следует читать «МУК 4.2.577-96». — Примечание изготовителя баз данных.

14. Приказ N 720 Минздрава СССР от 31 июля 1978 г., п.4 «Мероприятия, обеспечивающие асептические условия при посевах».

* На территории Российской Федерации документ не действует. Действует «Руководство по гигиенической оценке факторов рабочей среды» (Р 2.2.2006-05). — Примечание изготовителя базы данных

18. Сборник инструкций по общим методам контроля стерильности, физико-химических свойств, пирогенности, на отсутствие контаминирующих агентов и токсичности медицинских иммунобиологических препаратов. Утв. приказом МЗ СССР N 31 от 13.01.83.

19. Система аккредитации испытательных лабораторий (центров) государственной санитарно-эпидемиологической службы Российской Федерации. — М., 1997.

______________
* На территории Российской Федерации документ не действует. Действует СП 1.3.2322-08, здесь и далее по тексту. — Примечание изготовителя базы данных

22. ФС 42-3377-97 «Питательный агар для культивирования микроорганизмов сухой (ГРМ-агар)».

23. ФС 42-3378-97 «Питательный бульон для культивирования микроорганизмов сухой (ГРМ-бульон)».

24. ФС 42-3504-97 «Питательная среда для выделения энтеробактерий сухая (агар Эндо)».

25. ФС 42-3588-98 «Питательная среда для выделения сальмонелл сухая (висмут-сульфит агар)».

Использованные документы международного уровня указаны в разделе «Библиография».

1. Бокс (боксированное помещение) — изолированное помещение с тамбуром (предбоксником).

2. Бокс биологической безопасности (ламинарное укрытие, ламинарный шкаф) — конструкция, используемая для физической изоляции (удержания и контролируемого удаления из рабочей зоны) микроорганизмов с целью предотвращения возможности заражения персонала и контаминации воздуха рабочей зоны и окружающей среды.

3. Запас рабочей культуры — культура эталонного штамма в условиях временного хранения (полужидкий агар, 4-8 °С).

4. Запас эталонной культуры — культура эталонного штамма в условиях длительного хранения (-70 °С, жидкий азот).

5. Культура для целевого использования — культура эталонного штамма, прошедшая не более 2 пассажей после высева со среды временного хранения (из запасов рабочей культуры), предназначенная для использования в анализе.

6. Лиофилизированная культура — лиофильно высушенная культура эталонного штамма.

7. Патогенные биологические агенты (ПБА) — патогенные для человека микроорганизмы (бактерии, вирусы, хламидии, риккетсии, простейшие, грибы, микоплазмы), генно-инженерно-модифицированные микроорганизмы, яды биологического происхождения (токсины), гельминты, а также материал, подозрительный на содержание перечисленных агентов (включая кровь, другие биологические жидкости и объекты окружающей среды).

8. Посевная — рабочее помещение, предназначенное для выполнение первого этапа санитарно-микробиологического исследования воды: концентрирования, разведения и/или посева в питательные среды.

9. Посевная доза — объем конкретного разведения, содержащий необходимое для посева количество жизнеспособных клеток тестового микроорганизма.

10. Разбавитель — жидкость определенного состава, служащая для приготовления серийных разведений исследуемой воды или модельных бактериальных культур.

11. Субкультура — культура бактерий, полученная путем пассажа через полноценные питательные среды.

4. Общие положения организации внутреннего контроля качества санитарно-микробиологического исследования воды

Ведущим аспектом деятельности современной лаборатории является разработка Системы качества и обеспечение ее функционирования.

Система качества — это совокупность организационной структуры, методик, процессов и ресурсов, необходимых для осуществления общего руководства качеством (ISO 8401: 1994-04-01).

Система качества охватывает широкий спектр позиций, начиная от нормативно-методической документации, всесторонне регламентирующей деятельность лаборатории, ее планировки и технического оснащения, квалификации, численности и расстановки кадров — до организации внутреннего контроля качества выполняемых анализов.

Согласно МУ 2.1.4.682-97 по внедрению и применению СанПиН 2.1.4.559-96*, внутрилабораторный (внутренний) контроль качества является обязательным звеном в обеспечении качества исследований воды.
_____________

* На территории Российской Федерации документ не действует. Действует СанПиН 2.1.4.1074-01. — Примечание изготовителя базы данных

Внутренний контроль качества микробиологических исследований — это комплекс выполняемых лабораторией мероприятий и процедур, направленных на обеспечение и контроль стабильности требуемых условий развития искомого микроорганизма, а также предупреждение неблагоприятного воздействия факторов, возникающих в процессе подготовки, выполнения и оценки результатов анализа, способных повлиять на достоверность результата.

Особенностью санитарно-микробиологических исследований воды является необходимость количественной оценки полученного результата.

Специфика объекта микробиологических исследований, живого микроорганизма, обладающего индивидуальными (родовыми, видовыми, штаммовыми) свойствами и особенностями жизнедеятельности в условиях водной среды, создает независящие от исследователя проблемы в оценке точности количественного результата и обусловливает погрешность микробиологических методов, достигающую сотен процентов.

К наиболее значимым объективным факторам, влияющим на результат анализа, относятся следующие:

— Неравномерность распределения микроорганизмов, обусловливающая разброс данных при анализе двух одинаковых объемов одной пробы воды.

— Способность адсорбироваться на взвешенных веществах с образованием трудноразделимых в процессе взбалтывания комплексов, которые при посевах могут регистрироваться как один микроорганизм.

— Влияние сопутствующих микробов-антагонистов, тормозящих развитие искомых микроорганизмов при их наличии в анализируемой пробе воды.

— Возможное присутствие в исследуемой воде посторонних химических веществ либо образование их соединений с компонентами питательной среды, которые могут угнетать /стимулировать/ рост исследуемых микроорганизмов, а также влиять на изменение видовых биохимических идентификационных признаков.

— Нахождение микроорганизма в «стрессовом» состоянии под воздействием неблагоприятных условий водной среды, в результате которого затормаживается его способность к развитию.

Исходя из этого, основной задачей микробиологических исследований является создание оптимальных условий для развития выделяемого микроорганизма в целях получения надежных, сопоставимых количественных результатов.

Организация внутреннего контроля качества на всех этапах выполнения микробиологического анализа воды является основой получения качественного результата.

Основные направления организации внутреннего контроля качества:

1. Контроль за соблюдением требований к условиям проведения анализа: (лабораторные помещения, воздушная среда, температурные режимы инкубации и хранения, режимы дезинфекции и стерилизации и т.д.).

2. Выполнение регламентированных процедур ведения тестовых культур.

3. Контроль качества питательных сред.

4. Контроль качества фильтрующих материалов (или далее — фильтров).

5. Контроль качества дистиллированной воды.

6. Оценка достоверности качественного результата путем использования заведомо положительных и отрицательных контролей.

7. Оценка доверительных границ полученного количественного результата.

8. Систематический анализ результатов контрольных процедур в целях совершенствования руководства по качеству.

Структура организации внутреннего контроля качества, периодичность и частота выполняемых процедур представлены в прилож.1, 2.

Описание процедур контроля соблюдения требований к условиям проведения анализа, ведения эталонных бактериальных культур, контроля качества питательных сред и фильтрующих материалов, постановки положительных и отрицательных контролей и др. представлены в тексте методических указаний и иллюстрированы в приложениях.

Документальное оформление результатов проведенных контрольных процедур осуществляется в произвольной форме, удобной исполнителю и наглядной для других специалистов, привлекаемых к участию в различных комиссиях по проверке работы лаборатории (по аттестации, аккредитации и др.). При этом могут быть использованы журнальные формы учета или формы отдельных контрольных листов, которые впоследствии брошюруются за определенный период времени (месяц, квартал, год) в зависимости от кратности и вида контроля.

Регистрация и хранение контрольных результатов могут осуществляться на электронных носителях.

Приведенные в приложении к методическим указаниям некоторые учетные формы носят информационный характер и даны в качестве возможного варианта учета результатов. Исключение составляют прилож.4 и 8.1, в которых приведены формы учета, утв. Минздравом России.

В информационном прилож.11 представлен перечень современного оборудования, применение которого будет способствовать повышению качества выполняемых санитарно-микробиологических исследований воды и надежности получаемых результатов.

Обязательным разделом внутреннего контроля качества является проведение периодического, но не реже 1 раза в год, анализа результатов выполненных контрольных процедур, с учетом которого осуществляется корректировка руководства по качеству испытательной лаборатории.

Обеспечение качества выполняемых исследований возможно только при наличии квалифицированного персонала. К работе по выполнению санитарно-микробиологических анализов воды допускаются специалисты с высшим и средним специальным медицинским/биологическим (микробиологическим) образованием, проходящие не реже 1 раза в пять лет курс повышения квалификации в объеме, определенном Минздравом России для бактериологов, с выдачей удостоверения установленного образца.

Требования к набору помещений и их размещению, организации и безопасности работ микробиологических лабораторий с патогенными биологическими агентами изложены в санитарных правилах «Безопасность работы с микроорганизмами III-IV групп патогенности и гельминтами». СП 1.2.731-99.

Требования к процедурам выполнения исследований и метрологическому обеспечению оборудования представлены в соответствующих нормативных документах и не являются предметом рассмотрения данных методических указаний.

Вопрос оценки достоверности количественных результатов микробиологических исследований воды на сегодняшний день в России остается не решенным. Действующий ГОСТ 27384-87, представляющий нормы погрешностей для бактериологических исследований воды, не обеспечивает возможности оценки получаемых результатов, т.к. входит в противоречие с реальными методиками анализа.

В случае возникновения проблем сопоставимости и достоверности результатов санитарно-микробиологических исследований воды ориентировочную оценку можно получить обращением к табл. ГОСТа 51446-99* «Продукты пищевые. Общие правила микробиологических исследований», разработанного на основе международного документа ИСО 7218:96.
____________
* Ошибка оригинала. Следует читать ГОСТ Р 51446-99. — Примечание изготовителя баз данных.

(Измененная редакция, Изм. N 1).

5.1. Процедура контроля температуры в термостатах

Контроль температуры в термостатах проводят ежедневно перед началом работы.

Для контроля используют поверенные термометры.

Цена деления термометра не должна превышать половины величины допустимого отклонения температуры инкубации, определенного нормативно-методической документацией. Например: для температуры 37 °С допустимое отклонение температуры составляет ±1 °С. Для контроля температуры в термостате, поддерживающем данную температуру, необходимо использовать термометры с ценой деления не более 0,5 °С. Соответственно, для температуры 44 °С, при допустимом отклонении температуры ±0,5 °С, цена деления контрольного термометра не должна превышать 0,25 °С.

Для устранения искажения показаний термометра из-за быстрого изменения температуры в термостате при открывании дверцы, термометр помещают в пробирку с глицерином либо с расплавленным парафином. После застывания парафина подготовленный термометр можно размещать в горизонтальном положении.

Термометр размещают в центре камеры. При выявлении в процессе аттестации термостата экстремальных точек, термометры размещают в экстремальных точках.

Ежедневно перед началом работы снимают показания контрольного термометра, результаты измерений заносят в журнал (контрольный лист) и заверяют подписью исполнителя (прилож.3).

В журнале для каждого термостата должно быть отмечено допустимое отклонение температуры с учетом требований методов, для исполнения которых используется конкретный термостат.

В случае превышения допустимых отклонений температуры сотрудник, проводящий регистрацию, должен немедленно сообщить об этом руководителю подразделения для принятия мер.

5.2. Процедура контроля температуры в холодильниках

Контроль температуры в холодильниках проводят один раз в неделю. Температура в холодильнике должна быть в пределах (4-8) °С. Для контроля используют поверенные термометры, подготовленные как указанно в п.5.1.

Термометр помещают в центр камеры холодильника.

Один раз в неделю перед началом работы снимают показания контрольных термометров, результаты измерений заносят в журнал (контрольный лист) и заверяют подписью исполнителя (прилож.3).

В случае превышения допустимых отклонений температуры сотрудник, проводящий регистрацию, должен поставить в известность руководителя подразделения и провести регулировку для компенсации выявленных отклонений. Регулировку проводят переводом регулятора температуры холодильника в нужное положение. После приведения температуры до уровней допустимых значений, двукратно, через 4 часа и на следующий день, проводят регистрацию температуры.

После приведения к норме режима работы холодильника переходят к обычной схеме контроля температуры.

6.1. Процедура контроля режимов паровой и суховоздушной стерилизации

Для контроля режимов стерилизации необходимо использовать три вида контроля.

Термический и химический контроль режима стерилизации проводится оператором парового стерилизатора, прошедшим курс специальной подготовки по безопасной эксплуатации автоклавов.

Биологический контроль осуществляется бактериологом лаборатории, проводящей санитарно-бактериологические исследования воды, или дезинфекционными станциями по заказу лаборатории.

Обо всех случаях неудовлетворительного прохождения какого-либо из видов контроля стерилизации ответственный исполнитель информирует руководителя подразделения.

При неудовлетворительном прохождении контроля использование всей партии материалов запрещается. Материал требует повторной обработки. До выяснения причин неудовлетворительной работы стерилизатор не используется.

Причину неудовлетворительной работы стерилизатора устанавливают представители «Медтехники» или технических служб предприятия. После устранения причины процедуру контроля работы стерилизатора повторяют.

6.1.1. Химический тестовый контроль

Химический контроль проводят при каждом рабочем цикле. Для контроля используют бумажные индикаторы стерилизации (НПО «Винар») или тестовые химические вещества, рекомендованные в прилож.7.6 санитарных правил 1.2.731-99.

Методика контроля паровой стерилизации

В контрольных точках рабочей камеры укладывают герметично запаянные ампулы с химическим тестовым веществом или индикаторные полоски ИС длиной 2-3 см, которые прикрепляют к стерилизационным коробкам или стерилизуемым изделиям.

Число контрольных точек зависит от емкости камеры.

Емкость камеры
парового стерилизатора (л)

Число контрольных точек
в стерилизационной камере

Для стерилизатора объемом до 100 л точки 1 и 2 находятся: для горизонтального автоклава 1-я — у загрузочной двери, 2-я — у противоположной стенки, для вертикального автоклава — в верхней и нижней части камеры, соответственно. В точках 1 и 2 тесты располагают вне стерилизуемых изделий. В остальных точках тесты располагают в центре стерилизационных коробок или внутри стерилизуемых упаковок.

Для стерилизаторов больших объемов тесты располагают согласно схеме, приводимой в инструкции по использованию индикаторов стерилизации.

Методика контроля суховоздушной стерилизации

В контрольных точках рабочей камеры укладывают герметично запаянные ампулы с химическим тестовым веществом или индикаторные полоски ИС длиной 2-3 см, которые прикрепляют к упаковкам или стерилизуемым изделиям.

Число контрольных точек зависит от емкости камеры.

Емкость камеры
воздушного стерилизатора (л)

Число контрольных точек
в стерилизационной камере

В случае 5 точек — точка 1 располагается в центре камеры, а точки 2, 3, 4 и 5 располагаются в нижней части камеры по углам. Точки 2 и 5 находятся перед загрузочной дверью справа и слева (соответственно), а точки 3 и 4 в глубине камеры у задней стенки также справа и слева.

В случае 15 точек — точки 1, 2 и 3 располагаются в центре камеры на трех уровнях (полках) сверху вниз, соответственно, а точки 4-15 по углам также на трех уровнях (точки 4-7 — низ; точки 8-11 — середина; точки 12-15 верх). Угловые точки нумеруются против часовой стрелки, начиная с правого ближнего угла.

В случае 30 точек — расположение как для 15 точек повторяется для каждой камеры.

Каждая контрольная точка должна быть расположена на расстоянии не ближе 5 см от стенок камеры.

По окончании цикла стерилизации ИС (ампулы с химическим тестовым веществом) извлекают из контрольных точек и сравнивают с эталоном. Цвет индикатора стерилизации светлее эталона или нерасплавленный химический тест в пробирке в какой-либо точке указывают на неэффективную стерилизацию. Результаты контроля заносят (вклеивают ИС) в журнал по регистрации режимов стерилизации и заверяют подписью сотрудника осуществляющего контроль (прилож.4). Один раз в неделю результаты просматриваются и заверяются ответственным бактериологом.

Термический контроль проводят 2 раза в месяц. Для контроля используют поверенный максимальный термометр с ценой деления не более 1 °С и диапазоном измерений, превышающим контролируемую температуру. Термометр размещают в середине стерилизационной камеры. После окончания цикла стерилизации и остывания термометра до комнатной температуры, снимают показания. Для определения истинного значения максимальной температуры цикла стерилизации к снятому с термометра показанию прибавляют соответствующую поправку, указанную в паспорте на данный термометр.

Результаты заносят в журнал по регистрации режимов стерилизации и заверяют подписями исполнителя и ответственного бактериолога (прилож.4).

6.1.3. Биологический контроль

Биологический контроль осуществляется 2 раза в год. При выполнении биологического контроля используют биотесты, в т.ч. коммерческие, предназначенные для конкретного вида паровой или суховоздушной стерилизации, разрешенные к применению Минздравом РФ.

Методика контроля
(на примере использования коммерческого набора Испытательного лабораторного центра
Московского городского центра дезинфекции)

Процедуру контроля осуществляют в соответствии с паспортом биотеста. Пронумерованные пакеты с биотестами размещают в контрольных точках стерилизатора. Количество контрольных точек и правила размещения тестов указаны в п.6.1.1. После завершения процесса стерилизации в пробирки с биотестами асептически вносят 0,5 мл цветной питательной среды, начиная со стерильной пробирки для контроля питательной среды и заканчивая контрольным тестом, не подвергавшимся стерилизации (контроль культуры). Далее осуществляют инкубацию пробирок согласно паспорту на набор.

После термостатирования проводят учет изменения цвета питательной среды. В отрицательном контроле (стерильная пробирка) цвет среды не должен измениться. В пробирке с контролем культуры цвет среды должен измениться на цвет, указанный в паспорте, что свидетельствует о наличии жизнеспособных спор.

Работа парового стерилизатора считается удовлетворительной, если цвет питательной среды во всех биотестах, подвергавшихся стерилизации, остался неизменным. Если цвет изменился хотя бы в одном тесте, стерилизация признается неэффективной.

Результат заносят в журнал по регистрации режимов стерилизации и заверяют подписью исполнителя (прилож.4).

Раздел составлен на основе:

СП 1.2.731-99 «Безопасность работы с микроорганизмами III-IV групп патогенности и гельминтами»;

Методических рекомендаций по контролю стерилизации с использованием индикаторов стерилизации НПФ «Винар» N 11-8\03-54 от 11.06.93 Министерства здравоохранения Российской Федерации.

6.2. Процедура контроля микробной обсемененности воздуха

В производственных лабораториях бактериологические исследования воздуха на обсемененность предусматривают определение общего содержания микроорганизмов в 1 м воздуха.

Контроль воздуха на микробную обсемененность проводят в посевных комнатах, боксах или в ламинарных укрытиях перед началом проведения работ.

Контроль выполняет ответственный исполнитель.

Для контроля используют плотную полноценную неселективную среду (питательный агар, ГРМ-агар и др.) проверенной ранее серии. Проверка среды осуществляется как указано в разделе 11.

Питательный агар разливают в чашки Петри диаметром 90-100 мм слоем не менее 2 мм. Для контроля стерильности среды одну чашку из приготовленной и разлитой партии среды инкубируют при температуре 37 °С в течение 24 часов. Учитывают наличие/отсутствие/ пророста среды. При обнаружении роста микроорганизмов среду выбраковывают.

Контроль воздуха на обсеменность проводят седиментационным или аспирационным методом.

Седиментационный метод

В двух точках посевной комнаты, бокса и (или) ламинарного шкафа ставят открытые чашки Петри с питательным агаром на 15 мин. После экспозиции чашки закрывают, переворачивают и помещают в термостат. Посевы инкубируют при температуре (37±1) °С в течение (24±2) часов. После инкубации проводят учет количества выросших колоний микроорганизмов.

Аспирационный метод

Отбор проб воздуха проводят с помощью пробоотборных устройств для бактериологического анализа, зарегистрированных в Госстандарте Российской Федерации. Отбор пробы воздуха в количестве 100 л проводят согласно инструкции к пробоотборнику. После отбора пробы снимают чашку Петри и термостатируют при температуре (37±1) °С в течение (24±2) часов. После инкубации проводят учет количества выросших колоний микроорганизмов.

Использование аспирационного метода не допускается для контроля воздуха укрытий с ламинарным потоком.

Результат заносят в журнал регистрации микробной обсемененности воздуха и заверяют подписью исполнителя (прилож.5).

Допускается пророст не более 3 колоний на чашке при исследовании седиментационным методом и не выше 500 КОЕ/м при использовании аспирационного метода. При превышении указанных уровней общего содержания микроорганизмов немедленно извещают руководителя подразделения. Работы в боксах приостанавливают. Проводят внеплановую генеральную уборку бокса с обработкой всех поверхностей с использованием дезинфицирующих средств и обеззараживанием воздуха ультрафиолетовым облучением. После окончания мероприятий контроль микробной обсемененности воздуха повторяют. При повторном получении неудовлетворительных результатов производят оценку эффективности применения ультрафиолетового бактерицидного излучения для обеззараживания воздуха как указано в разделе 6.4.

Лаборатории центров госсанэпиднадзора для контроля микробной обсемененности воздуха руководствуются соответствующими приказами Минздрава (N 720 и др.).

Раздел составлен на основе:

МУК 4.2.734-99 «Микробиологический мониторинг производственной среды»;

приказа МЗ СССР N 720 от 31.07.78 «Об улучшении медицинской помощи больным с гнойными хирургическими заболеваниями и усилении мероприятий по борьбе с внутрибольничной инфекцией».

6.3. Процедура исследования микробной обсемененности поверхностей

В производственных лабораториях бактериологическое исследование микробной обсемененности поверхностей помещений и оборудования проводится с целью проверки эффективности их дезинфекции и направлено на обнаружение общих и термотолерантных колиформных бактерий.

Исследование проводят перед работой методом смыва, не реже одного раза в месяц. Смывы проводят с поверхности рабочих столов на каждом рабочем месте, с дверных ручек, наружных деталей приборов, со стен бокса.

Для контроля используют:

— пробирки с 5 мл стерильной 1%-ной пептонной воды, в пробки которых вмонтированы стерильные ватные тампоны на палочках. Тампоны не должны смачиваться питательной средой;

— среду Эндо проверенной ранее серии (раздел 11).

1%-ную пептонную воду предварительно проверяют на стерильность. Для этого 2 пробирки от приготовленной партии среды инкубируют при температуре 37 °С в течение 24 часов. Учитывают наличие /отсутствие/ пророста среды.

В зависимости от применяемого дезинфицирующего агента в качестве нейтрализатора используют стерильные растворы следующих химических веществ:

— тиосульфат натрия (0,5%-ный раствор) — при использовании для дезинфекции хлорсодержащих, перекисных, йодсодержащих препаратов. Препарат может быть добавлен в 1%-ный раствор пептонной воды;

— сульфонол с молоком (на 1 л раствора используют 200 г сульфонола, 100 мл обезжиренного молока и 700 мл дистиллированной воды) — при использовании четвертичных аммониевых соединений;

— мыло банное (0,5%-ный раствор) — при использовании препаратов на основе анионных поверхностно активных веществ, гибитана;

— водопроводная вода — при использовании препаратов на основе фенола, глютарового альдегида;

— аммиак (0,5%-ный раствор) — при использовании формальдегида или препаратов на его основе.

Стерильный тампон, вмонтированный в пробку пробирки, погружают в 1%-ную пептонную воду. Смоченным тампоном тщательно протирают исследуемую поверхность. При контроле мелких предметов смывы проводят с поверхности всего предмета. При контроле предметов с большой поверхностью смывы проводят с площади не менее 100 см .

После взятия смыва тампон помещают на 10-15 мин в пробирку с раствором нейтрализатора, затем переносят в пробирку с питательной средой, погрузив тампон в пептонную воду.

Контрольные смывы инкубируют при температуре (37±1) °С в течение 18-24 часов.

После инкубации проводят высев из 1%-ной пептонной воды на среду Эндо.

Посевы на среде Эндо и незасеянную чашку среды этой же партии (отрицательный контроль) инкубируют при температуре (37±1)°С в течение 18-24 часов.

При отсутствии роста на контрольной чашке и наличии роста в посевах смывов, дальнейшее исследование проводят согласно МУК по санитарно-микробиологическому анализу воды.

Результат заносят в журнал по регистрации микробной обсемененности поверхностей и заверяют подписью исполнителя.

Обнаружение микроорганизмов в смывах с исследуемых поверхностей свидетельствует об их неадекватной дезинфекции. В этом случае, извещают руководителя подразделения и выясняют возможные причины неэффективной дезобработки поверхностей.

Лаборатории центров госсанэпиднадзора для контроля микробной обсемененности поверхностей руководствуются соответствующими приказами Минздрава (N 720 и др.), согласно которым предусматривается выявление стафилококка, синегнойной палочки, бактерий группы кишечной палочки и, строго по показаниям, аэромонад.

Раздел составлен на основе:

МУК 4.2.734-99 «Микробиологический мониторинг производственной среды»;

руководства Минздрава России Р 3.1.683-98 «Использование ультрафиолетового излучения для обеззараживания воздуха и поверхностей в помещениях»;

приказа МЗ СССР N 720 от 31.07.78 «Об улучшении медицинской помощи больным с гнойными хирургическими заболеваниями и усилении мероприятий по борьбе с внутрибольничной инфекцией».

6.4. Оценка эффективности ультрафиолетового бактерицидного излучения

Качество обеззараживания воздуха ультрафиолетовым облучением зависит от мощности бактерицидного излучения. Мощность бактерицидного излучения определяется количеством облучателей и эффективностью их функционирования.

В связи с тем, что количество облучателей определяют при организации лаборатории согласно требованиям, предъявляемым к помещениям данного назначения, методика расчета количества установок для ультрафиолетового облучения в настоящем документе не рассматривается. Правильность расчета можно проверить по паспорту на используемый бактерицидный облучатель (УФ-лампы) или согласно руководству МЗ РФ Р 3.1.683-98 «Использование ультрафиолетового излучения для обеззараживания воздуха и поверхностей в помещениях».

В процессе работы мощность потока бактерицидного излучения лампы снижается. В связи с этим при выработке 1/3 ресурса (ресурс лампы указан в паспорте на лампу) время экспозиции необходимо увеличить в 1,2 раза, а после 2/3 номинального срока службы — в 1,3 раза. При выработке гарантированного срока службы лампа подлежит замене, даже если она функционирует.

Для обеспечения качественной работы ультрафиолетовых ламп необходимо:

— фиксировать дату начала эксплуатации, вести учет времени работы лампы, вносить коррективы времени экспозиции и осуществлять замену согласно отработанному ресурсу лампы;

— не менее 1 раза в месяц протирать лампы от пыли.

Эффективность ультрафиолетового облучения помещения оценивают по результатам микробной обсемененности воздуха.

Применение ультрафиолетового бактерицидного излучения для обеззараживания воздуха считают эффективным, если уровень микробной обсемененности после облучения не превышает допустимых пределов — пророст не более 3 колоний на чашке при использовании седиментационного метода и не выше 500 КОЕ/м при использовании аспирационного метода.

В случаях пророста на чашках более 3 колоний или обсемененности воздуха >500 КОЕ/м выполняют внеплановую генеральную уборку бокса с обработкой всех поверхностей с использованием дезинфицирующих средств и обеззараживанием воздуха ультрафиолетовым облучением.

После окончания мероприятий контроль микробной обсемененности воздуха повторяют.

Если при повторном определении уровень обсемененности воздуха снова превышает нормативы, определяют бактерицидную эффективность облучения.

Бактерицидная эффективность является процентным выражением степени снижения микробной обсемененности воздуха после ультрафиолетового облучения.

Для расчета бактерицидной эффективности производят определение микробной обсемененности воздуха аспирационным методом, как указано в п.6.2, до и после облучения. Бактерицидную эффективность рассчитывают по формуле:

— бактерицидная эффективность облучения в данном помещении;

— число микроорганизмов до облучения;

— число микроорганизмов после облучения.

Применение ультрафиолетового бактерицидного излучения для обеззараживания воздуха считают эффективным, если бактерицидная эффективность составляет не менее 99%.

При получении неудовлетворительных результатов контроля ставят в известность руководителя лаборатории и принимают меры по выяснению причин недостаточной эффективности обеззараживания.

Если установленная бактерицидная эффективность ультрафиолетового облучения в пределах нормы, а микробная обсемененность воздуха превышает нормативы, необходимо выяснить источник контаминации воздуха.

Раздел составлен на основе:

руководства Минздрава России Р 3.1.683-98 «Использование ультрафиолетового излучения для обеззараживания воздуха и поверхностей в помещениях».

6.5. Процедура контроля стерильности фильтровальных установок

Контроль стерильности фильтровальных установок проводят перед началом посева методом мембранной фильтрации.

Для контроля используют:

— плотную полноценную неселективную среду (питательный агар, ГРМ-агар и др.) проверенной ранее серии (раздел 11);

— стерильный фильтрующий материал для микробиологических целей (мембранные фильтры, аналитические трековые мембраны и другие фильтрующие материалы с диаметром пор не более 0,45 мкм и размером диска 35 или 47 мм), проверенной ранее партии (раздел 12);

— стерильная водопроводная вода;

— спирт ректификат 96°-ный.

Накануне исследования питательный агар проверенной серии разливают в чашки Петри слоем не менее 2 мм и проверяют на стерильность. Для этого одну чашку из приготовленной среды инкубируют при температуре 37 °С в течение 24 часов. При наличии роста микроорганизмов приготовленную среду выбраковывают.

Фильтровальные воронки устанавливают в гнезда фильтровальных столиков. Внутренние поверхности воронки фильтровальной установки смачивают 96°-ным спиртом и фламбируют. После сгорания спирта и остывания воронок одну из воронок снимают. С помощью стерильного пинцета помещают фильтрующий материал на основание держателя фильтра, затем снова присоединяют фильтровальную воронку.

При отключенном вакууме воронку заполняют стерильной водой таким образом, чтобы вода обмыла внутренние стенки воронки. Объем стерильной воды должен составлять не менее половины максимального объема воронки.

Включают вакуум и отфильтровывают содержимое воронки. Вакуум отключают, снимают фильтровальную воронку и стерильным пинцетом переносят фильтрующий материал с основания на чашку со средой. Между фильтрующим материалом и поверхностью агара не должно быть пузырьков воздуха. Чашки с посевами переворачивают и инкубируют в термостате при (37±1) °С в течение (24±2) ч.

Рост микроорганизмов свидетельствует о неэффективной обработке фильтровальной установки. Результаты заносят в журнал контроля стерильности фильтровальных установок и визируют подписью сотрудника, выполнившего контроль (прилож.6). Обо всех случаях не стерильности фильтровальных установок ставят в известность руководителя подразделения.

(Измененная редакция, Изм. N 1).

6.6. Процедура контроля обсемененности флаконов для отбора проб

Контролю подвергаются все виды флаконов, используемые для отбора проб: стеклянные, многоразового использования после стерилизации и пластиковые одноразового использования, поступающие стерильными от производителя.

Условия проведения испытаний в значительной мере обусловливают качество данного вида контроля. В этой связи его неотъемлемой частью является следующий комплекс мероприятий.

1. Анализ проводят в боксе для разливки сред или в посевных комнатах (боксах) для посева питьевой воды.

2. Непосредственно перед исследованием проводят дезинфекционную обработку помещения (мытье бокса). После дезобработки включают дополнительно бактерицидные лампы на 1,5-2 часа.

— Спецодежду для проведения анализа (халат, шапочку, четырехслойную марлевую маску) стерилизуют. Режим стерилизации спецодежды: автоклавирование при температуре (120±1) °С в течение 45 минут или при температуре (132±2) °С в течение 20 минут.

Перед входом в бокс сотрудник, проводящий испытания, тщательно моет руки теплой водой с мылом и щеткой, вытирает стерильным полотенцем, одевается в стерильный халат, шапочку, маску, надевает перчатки, обрабатывает их 70%-ным этиловым спиртом.

При наличии ламинарного укрытия исследование выполняют в спецодежде с использованием стерильных перчаток.

Во время испытаний проводят контроль воздуха на обсемененность в соответствии с процедурой, описанной в п.6.2. Результаты контроля заносят в протокол испытания.

Контроль обсемененности стеклянных флаконов для отбора проб

Целью проведения данного вида контроля является выборочный контроль качества подготовки посуды в отношении различных по устойчивости микроорганизмов, учитываемых при проведении анализа питьевой воды: контроль на общую обсемененность, контроль на наличие спор сульфитредуцирующих клостридий.

При проведении контроля режимов суховоздушной стерилизации в полном объеме (биологический, термический, химический) с рекомендуемой периодичностью, контроль обсемененности стеклянных флаконов для отбора проб в зависимости от объема стерилизуемых партий проводят не реже 1 раз в квартал.

Для каждого вида анализа отбирают флаконы в количестве 1%, но не менее 3 от общего количества партии стерилизованной посуды. Партией флаконов считают все флаконы, прошедшие стерилизацию за один цикл работы одного стерилизатора.

В случае получения результата, свидетельствующего о нестерильности хотя бы одного флакона, все партии флаконов, прошедшие обработку в данном стерилизаторе, бракуют. Забракованные партии флаконов подлежат повторной стерилизации. Выясняют возможные причины нарушения стерильности. Проводят комплексную проверку стерилизатора с одновременным использованием химического, термического (в 5 точках) и биологического контроля согласно п.6.1.

Для контроля используют:

— жидкую полноценную неселективную среду (питательный бульон, ГРМ-бульон и др.), проверенной ранее серии (раздел 11);

— плотную полноценную неселективную среду (питательный агар, ГРМ-агар и др.), проверенной ранее серии (раздел 11);

— железосульфитный агар, приготовленный согласно МУК 4.2.1018-01, либо зарубежные аналоги, предназначенные для определения сульфитредуцирующих клостридий в воде;

— стерильный фильтрующий материал для микробиологических целей (мембранные фильтры, аналитические трековые мембраны и другие фильтрующие материалы с диаметром пор не более 0,45 мкм и размером диска 35 или 47 мм), проверенной ранее партии (раздел 12);

— стерильные чашки Петри диаметром 90 мм;

— стерильную водопроводную воду;

— спирт ректификат 96°-ный для фламбирования;

— спирт ректификат 70%-ный для дезинфекции.

Питательный бульон предварительно проверяют на стерильность. Для этого 2 пробирки от приготовленной партии среды инкубируют при температуре 37 °С в течение 48 часов — учитывают наличие (отсутствие) пророста среды. При наличии пророста партию бульона выбраковывают. Контроль стерильности питательного агара и железосульфитного агара проводят в процессе исследования путем постановки отрицательного контроля.

Контроль на общую обсемененность

В исследуемые флаконы вносят питательный бульон в количестве 20% от объема флакона (например, во флакон 500 мл вносят 100 мл питательного бульона). Флаконы закрывают стерильными резиновыми (силиконовыми) пробками.

Переворачиванием или встряхиванием флаконов трехкратно обмывают всю внутреннюю поверхность флакона, включая пробку. Инкубацию посевов проводят в этих же флаконах при (37±1) °С в течение (48±2) часа. При видимом росте (помутнение бульона) в каком-либо флаконе результат учитывают как «не стерильно». При сохранении прозрачности питательного бульона проводят контроль пророста бульона: из каждого флакона отбирают по 1 мл содержимого, вносят в 2 стерильные чашки Петри и заливают питательным агаром. Параллельно для контроля стерильности используемого питательного агара стерильную чашку Петри заливают тем же питательным агаром (отрицательный контроль).Чашки с посевами инкубируют при температуре 37 °С в течение 48 часов.

Наличие бактериального роста при условии отсутствия роста микроорганизмов в отрицательном контроле свидетельствует о не стерильности флакона. Результаты заносятся в протокол исследования.

Контроль на наличие спор сульфитредуцирующих клостридий

В исследуемые флаконы вносят стерильную водопроводную воду в количестве 20% от объема флакона (например, во флакон 500 мл вносят 100 мл воды). Флаконы закрывают стерильными резиновыми пробками.

Переворачиванием или встряхиванием флаконов трехкратно обмывают (смачивают) всю внутреннюю поверхность флакона, включая пробку. Фильтровальную установку фламбируют, после чего производят фильтрацию 100 мл стерильной водопроводной воды (отрицательный контроль), затем через другой фильтрующий материал без дополнительного обжига установки фильтруют весь объем смыва с флакона.

Дальнейшие исследования обоих фильтров («смыва» и «контроля») выполняют аналогично по схеме анализа на выявление спор сульфитредуцирующих клостридий по МУК 4.2.1018-01.

Наличие роста колоний сульфитредуцирующих клостридий при отсутствии роста в отрицательном контроле свидетельствует о не стерильности флакона. Результаты заносятся в протокол исследования.

Раздел составлен на основе:

МУ 24-92 Министерства медицинской промышленности «Контроль стерильности материалов первичной упаковки».

(Измененная редакция, Изм. N 1).

В микробиологических исследованиях воды дистиллированная вода используется для приготовления питательных сред, различных растворов, мытья лабораторной посуды, заправки паровых стерилизаторов.

Дистиллированная вода, применяемая в микробиологических лабораториях, должна соответствовать требованиям ГОСТа 6709-72 и проходить контроль не реже 1 раза в месяц.

Хранить дистиллированную воду следует в стеклянных или пластиковых бутылях, желательно с нижним сливом, закрытых крышками или пробками.

Примечание. Документы Международного комитета по стандартизации предъявляют более жесткие требования к воде, предназначенной для приготовления питательных сред. Разный состав воды может обусловливать отличия по качеству питательных сред, приготовленных в разных лабораториях или даже в одной и той же лаборатории из обезвоженной среды одной серии одного производителя, и, как следствие, существенные различия в результатах анализа.

В качестве оптимального варианта для приготовления питательных сред, а также реактивов, используемых непосредственно в анализе, предлагается применение бидистиллированной или деминерализованной воды.

Стандарт ISO 7218:1996, а также ГОСТ Р 51446-99 качество воды, предназначенной для приготовления питательных сред, оценивают по удельному сопротивлению, которое должно быть не менее 300000 Ом/см (либо по электропроводности — не более 3 МкС/см).

Об этом необходимо помнить при использовании для приготовления питательных сред дистиллированной воды, полученной с помощью дистилляторов и контролируемой по ГОСТу 6709-72.

При использовании деминерализованной воды необходимо обращать внимание на содержание микроорганизмов, которые могут размножаться на фильтрах, и при прохождении через ионообменник попадать в воду. При высокой контаминации воды микроорганизмами продукты их жизнедеятельности могут оказывать ингибирующее действие на рост исследуемых микроорганизмов. Наиболее адекватным методом контроля в этих случаях является определение общего числа микроорганизмов, выросших на питательном агаре при температуре 22 °С в течение 72 часов.

При приобретении установок деионизированной воды для микробиологических анализов, необходима консультация с производителями в целях выбора способов обработки, предотвращающих вторичное микробное загрязнение воды.

Раздел составлен на основе:

ГОСТа 6709-72 «Вода дистиллированная»;

ГОСТа 51446-99* (ISO 7218-96) «Микробиология. Продукты пищевые. Общие правила микробиологических исследований»;
____________
* Ошибка оригинала. Следует читать ГОСТ Р 51446-99. — Примечание изготовителя базы данных.

ISO 7218:1996 «Микробиология продуктов питания и кормов для животных. Общие правила микробиологических исследований»;

ISO 3696-87 «Вода для аналитических лабораторных исследований. Спецификация и методы испытания»;

ISO 9998:1991(Е) «Качество воды. Методы оценки и контроля микробиологического подсчета колоний в средах с применением тестов качества воды».

Одним из факторов, оказывающих влияние на результаты проводимых исследований воды, является недостаточная чистота посуды.

Вся лабораторная посуда, вышедшая после проведения исследования (чашки, колбы, пробирки со средами), помещается в специальные биксы или ведра с крышками и обеззараживается автоклавированием при 126 °С в течение 60 мин или 132 °С в течение 20 мин. Категорически запрещается освобождать использованную посуду от содержимого (питательных сред, растворов с посевами) до обеззараживания.

В исключительных случаях допускается обеззараживание кипячением в 2%-ном растворе пищевой соды или 0,5%-ном растворе нейтрального моющего средства в течение 60 мин с момента закипания. Кипячение должно происходить в закрытой емкости с полным погружением в раствор.

Отработанные пипетки обеззараживают в высоком сосуде с полным погружением в дезраствор. Продолжительность обеззараживания зависит от применяемого дезсредства.

При выборе методов обеззараживания необходимо руководствоваться санитарными правилами СП 1.2.731-99 «Безопасность работы с микроорганизмами III-IV групп патогенности и гельминтами». Допускаются также к использованию новые дезинфекционные средства, получившие разрешение Минздрава России на применение. В этих случаях следует руководствоваться рекомендациями производителя.

Для мытья посуды необходимо применять нейтральные моющие средства: лучше всего применять жидкое моющее средство «Прогресс». Допустимо также использовать с этой целью нейтральные синтетические моющие средства, не содержащие биодобавок (например, «Лотос», «Кристалл», «Эра»).

Схема мытья посуды для исследования воды

Для облегчения процесса мытья посуды после автоклавирования обеззараженную посуду следует замочить в 1%-ном растворе моющего средства «Прогресс» в горячей воде на 1-2 часа. Всю посуду тщательно промыть с помощью ершей и щеток. Отполоснуть от моющего средства в проточной водопроводной воде (8-10 раз при использовании моющего средства «Прогресс» и до 15 раз при использовании других порошков). Прополоскать в проточной дистиллированной воде 3-4 раза. Высушить при комнатной температуре или в сушильном шкафу при температуре 80-100 °С.

Перед мытьем обеззараженных пипеток удаляют «ватики», промывают водопроводной водой под давлением и кипятят в 1%-ном растворе бикарбоната натрия в течение 45 мин, многократно промывают водопроводной, затем дистиллированной водой. Высушивают, вставляют «ватики» и стерилизуют в суховоздушном стерилизаторе в завернутом виде или пенале.

Новую посуду, предназначенную для бактериологических исследований, моют в 0,5%-ном растворе моющего средства, ополаскивают проточной водопроводной водой и кипятят в течение 15-20 мин в 1-2%-ном растворе соляной кислоты, затем ополаскивают дистиллированной водой.

Проверка качества мытья лабораторной посуды

При обработке и мытье стеклянной лабораторной посуды используются моющие и дезинфицирующие средства, содержащие вещества, которые могут влиять на рост микроорганизмов. Контроль на наличие остаточных количеств моющих средств имеет важное значение.

Контроль чистоты мытья лабораторной посуды осуществляют путем визуального наблюдения и выборочного проведения тестов.

Стекло вымытой и высушенной посуды должно быть прозрачным, без подтеков, пятен и посторонних включений. При ополаскивании вымытой посуды вода стекает равномерно со стенок флаконов, пробирок, по поверхности чашек и пр.

Качество удаления синтетических моющих и моюще-дезинфицирующих средств оценивают по величине рН. Для этих целей используют рН-индикаторную бумагу с шагом измерительного диапазона не более 0,3 ед. Предварительно определяют рН воды, применяемой для ополаскивания посуды на конечном этапе. Контрольные измерения рН проводят путем прикладывания рН-индикаторной бумаги к поверхности вымытого мокрого стекла, прошедшего обработку. Для контроля произвольно выбирают 3-10 ед. посуды. Значение рН воды, полученной в результате контроля, должно соответствовать рН дистиллированной воды, примененной для ополаскивания.

Наличие остаточных жировых загрязнений может быть определено с помощью реактива, содержащего Судан III. Для этого внутреннюю поверхность вымытой и высушенной посуды смачивают 3-5 мл красящего раствора, распределяют его по исследуемой поверхности в течение 10 с, затем быстро смывают обильной струей воды. На внутренней поверхности посуды не должно оставаться желтых пятен и подтеков.

Приготовление красящего раствора: в 70 мл нагретого до 60 °С 90%-ного этилового спирта растворяют по 0,2 г измельченной краски Судан III и метилового синего, затем добавляют 10 мл 20-25%-ного раствора аммиака, 20 мл дистиллированной воды и взбалтывают. Раствор годен в течение 6 месяцев.

Методика проверки качества промывки лабораторной посуды от моющих средств и подбора режима мытья посуды при использовании нового моющего средства, рекомендованная ИСО 9998:1991Е, приведена в прилож.12 в качестве справочной информации.

Подготовка посуды к использованию

Лабораторную посуду (флаконы, пробирки, бутылки, колбы) закрывают силиконовыми пробками. Поверх пробки (кроме пробирок) надевают бумажный (из фольги) колпачок. Бумажный колпачок обвязывают вокруг горлышка ниткой или закрепляют резиновым кольцом.

Чашки Петри, пипетки стерилизуют завернутыми в плотную оберточную бумагу или в пеналах.

При использовании специальной лабораторной посуды и расходных материалов (флаконов с завинчивающимися пробками, металлических или силиконовых колпачков, выдерживающих автоклавирование, микробиологических пробок многоразового использования и других материалов) следует руководствоваться рекомендациями производителя.

Стерилизацию лабораторной посуды осуществляют сухим жаром в сушильном шкафу при 160 °С — в течение 2 часов, 180 °С — в течение 60 мин или паром в автоклаве при 1 атм. 121 °С — в течение 30 мин с последующим подсушиванием в сушильном шкафу при отсутствии вакуумной сушки в автоклаве.

После стерилизации посуду хранят до использования в закрытом шкафу или ящиках с крышками не более 10 суток при ненарушенной упаковке или невскрытом пенале.

Пробирки и другую лабораторную посуду до стерилизации следует хранить в чистых коробках или ящиках столов, выложенных чистой фильтровальной бумагой. Сверху подготовленную посуду также следует прикрыть фильтровальной бумагой от пыли и случайной грязи.

Вымытые предметные стекла вытирают чистой салфеткой и помещают в склянку с притертой пробкой со смесью Никифорова (смесь этилового спирта и эфира в соотношении 1:1).

Обработка резиновых пробок

Новые пробки кипятят 30 мин в 2%-ном растворе бикарбоната натрия, многократно промывают горячей проточной водопроводной водой (кипячение и промывание повторяют дважды). Затем пробки кипятят 30 мин в дистиллированной воде, промывают и высушивают.

Пробки, бывшие в употреблении, после кипячения в 2%-ном растворе бикарбоната натрия ополаскивают проточной водопроводной водой, кипятят 30 мин в дистиллированной воде, ополаскивают дистиллированной водой, высушивают.

Резиновые пробки для флаконов заворачивают в бумагу или фольгу и стерилизуют автоклавированием.

Раздел составлен на основании:

СП 1.2.731-99 «Безопасность работы с микроорганизмами III-IV групп патогенности и гельминтами»;

МУК 4.2.577-96 «Методы микробиологического контроля продуктов детского питания и лечебного, их компонентов»;

инструкции по микробиологическому контролю производства на предприятиях молочной промышленности, 1987;

ОСТа 42-21-2-85 «Стерилизация и дезинфекция изделий медицинского назначения. Методы, средства и режимы»: МЗ, 1985;

приказа МЗ РФ N 309 «Об утверждении инструкции по санитарному режиму аптечных организаций (аптек)»;

XI Государственной фармакопеи СССР. — Вып.2, 1990.

Разведением для микробиологических исследований служит раствор или суспензия исследуемого образца, смешанные с девятикратным количеством жидкости для разведения — разбавителем.

Приготовление разведений необходимо:

— при исследовании загрязненных вод в целях снижения количества микроорганизмов на единицу объема, для обеспечения возможности наблюдения за их ростом или подсчетом колоний;

— для постановки исследований, требующих количественного учета используемых модельных микроорганизмов, например при количественной оценке качества питательных сред, фильтрующих материалов и т.д.

Приемлемое для учета число микроорганизмов составляет:

— для метода подсчета колоний на чашках Петри (90-100 мм) — от 15 до 300;

— для учета колоний на фильтре (47-50 мм) — от 15 до 100 колоний;

— для учета колоний на фильтре (35 мм) — от 15 до 60 колоний.

Важным моментом в процедуре приготовления разведений является равномерность распределения внесенных микроорганизмов по объему разбавителя. Равномерность распределения достигается тщательным перемешиванием полученной смеси. Достичь более качественных результатов позволяет использование специальных приборов — встряхивателей.

В процессе приготовления разведений каждый образец с помощью прибора тщательно взбалтывают в течение 5-10 с. Частоту вращения подбирают так, чтобы жидкость, которая образует воронку, не доходила до края пробирки на 2-3 см.

В качестве разбавителей при приготовлении разведений используют:

источник

Читайте также:  Хим анализ воды для котельной