Меню Рубрики

Использование химического анализа в воде

Вода требуется любому организму, но из источника жизни она способна превратиться в причину болезней и отравлений. Помимо полезных микроэлементов, в воде растворяются многие химические соединения и могут развиваться микробы.

В современных условиях нельзя быть уверенным даже в чистоте воды из родника. Прежде чем применять воду для хозяйственных нужд либо питья, следует убедиться в ее качестве и безопасности. Это позволяет сделать лабораторный анализ воды.

Перед применением воды на производстве либо для хознужд проводится предварительная водоподготовка, предполагающая удаление из состава жидкости вредных компонентов, снижение ее жесткости и очистку от тяжелых металлов. Для определения конкретных веществ, подлежащих удалению, существуют химические методы анализа качества воды. Полученные данные позволяют правильно выбрать и установить требуемые очистные установки.

Эффективность работы фильтров проверяется аналогичным способом: анализ проводится повторно, а полученные данные сравниваются с первоначальными результатами. Если показатели улучшились, значит, установленные фильтры выбраны верно.

Для проведения проверки разработаны специальные методы химического анализа воды, при этом каждый из них направлен на установление содержания в жидкости определенного вещества либо группы веществ:

  1. Фотометрия и люминесценция. В основе методики лежит эффект свечения. Тестируемая жидкость обрабатывается ультрафиолетом, в ответ на обработку разные вещества светятся по-разному. Зафиксировать реакцию позволяют специальные приборы. Подобная методика дает возможность установить присутствие в воде нитратов, растворенного сероводорода, отравляющих цианидов, анионных веществ и других компонентов.
  2. ИК-спектрометрия – используется для выявления присутствия жиров и нефтепродуктов. Через воду пропускается инфракрасное излучение, заставляющее молекулы неравномерно колебаться. Длина волн служит маркером для определения примеси конкретного вещества.
  3. Полярография – позволяет установить концентрацию в воде ионов свинца, цинка и органических веществ. Метод основан на движении ионов при проведении электролитической диссоциации.
  4. Масс-спектрометрия – анализирует структуру вещества с помощью данных о его массе и заряде ионов. Применяется для определения изотопного состава молекул.
  5. Потенциометрия – методика химического анализа воды, позволяющая установить наличие фторидов и водородный показатель (pH). В основе способа лежит измерение электродвижущих сил.
  6. Дозиметрия – устанавливает наличие в жидкости радиоактивных примесей.

Многообразие существующих методик позволяет провести общий и полный анализ. При общем качество жидкости проверяется по уровню главных показателей каждой группы. С его помощью делаются выводы о качественном составе воды, однако не определяется концентрация конкретных веществ. Для ее определения проводится полный анализ, предполагающий углубленное исследование исходных образцов.

С помощью общего анализа устанавливаются следующие характеристики:

  • Жесткость.
  • Органолептика.
  • Состав по основным хим. элементам.
  • Кислотность.

Полный анализ предполагает углубленные исследования показателей каждой группы, что позволяет определить точную концентрацию веществ в растворе. Данный метод химического анализа питьевой воды можно использовать для проверки жидкости на содержание патогенной микрофлоры, токсинов, химических компонентов.

Для получения достоверных данных анализ любого вида должен выполняться при строгом соблюдении условий, установленных нормативами. То же самое относится к методике отбора проб воды для химического анализа, их хранению и транспортировке.

Для проб воды применяется тара из стекла или пластика, а колпачки должны закрываться герметично. Хранение исходного материала для последующих анализов происходит при условии их консервации в специальном водном растворе. Максимальный срок хранения – две недели.

Оптимальный объем воды для проведения исследований составляет не менее 3,5 дм3. При взятии образцов составляется акт, в котором указываются причины анализа и его назначение, определяются показатели для проверки, отмечается место и время забора жидкости.

При появлении сомнений относительно качества водопроводной воды либо воды, поступающей в дом из колодца и скважины, лучше не рисковать собственным здоровьем, а обратиться в нашу компанию. По результатам выполненной проверки вы сможете понять, есть ли необходимость устанавливать системы очистки воды. Опытные специалисты подберут подходящие фильтры, а также выполнят их монтаж и последующее обслуживание на выгодных условиях.

Автор: Андрей Караим, технический специалист
Дата публикации: 14 Марта 2017 года

Понравилась статья? Расскажите друзьям:

источник

Объем гидрохимических работ, количество, сроки, место и способы взятия проб зависят от целей гидрохимических исследований.

Для рыбохозяйственных целей могут быть выполнены:

1)газовый анализ воды (определяют физические свойства воды, содержание растворенного кислорода, углекислого газа, концентрацию ионов водорода (рН), наличие и количество сероводорода, аммиака);

2)краткий анализ воды (кроме определений, перечисленных в газовом анализе, определяют окисляемость, щелочность, карбонатную жесткость воды и общее содер­жание растворенного железа);

3)полный общий анализ воды, который включает определение физических свойств (температуры, прозрачности, цвета, запаха и вкуса); содержания кислорода, углекислого газа, сероводорода, аммиака; концентрации ионов водорода (рН) и ще­лочности, общей, карбонатной жесткости; окисляемости нефильтрованной и фильт­рованной воды; содержания альбуминоидиого азота, солевого аммиака, нитритов, нитратов, фосфатов, различных форм железа, кремния; сульфатов, хлоридов, кальция и магния.

Целью специальных исследований может быть определение содержания метал­лов и микроэлементов.

Полученные результаты сравнивают с нормативными значениями показателей качества воды, приведенными в таблице.

Большинство природных вод мало минерализовано, поэтому для количественно­го определения многих компонентов, растворенных в воде, требуются точные мето­дики. Вместе с тем они должны быть достаточно простыми, не требующими сложного и дорогостоящего оборудования, доступными для выполнения в полевых условиях и в относительно небольших гидрохимических лабораториях рыбоводных хозяйств.

Методики исследования химического состава воды должны быть едиными при изучении водоемов в различных целях; для того чтобы полученные данные можно было сравнить и использовать.

Определения не должны занимать много времени, так как надо стремиться все необходимые показатели определить в течение 1 -2 сут.

Используемые в настоящее время в практических целях методы химического анализа природных вод можно разделить на:

1) химические (весовые, объемный ана­лиз); 2) электрохимические (потенциометрический, кондуктометрический, поляро­графический); 3) оптические (фотометрические и спектрофотометрические, люминес­центный, спектральный анализ); 4) фотохимические, 5) хроматографичсские (жидко­стная колоночная хроматография, тонкослойная хроматография, газовая хроматография и т.д.).

Наиболее распространены в гидрохимии первые три группы методов. К химиче­ским методам относятся методы, предусматривающие проведение химической реак­ции и последующее количественное определение образующихся продуктов. Из хими­ческих методов при анализе природных вод широко используется метод объемного анализа. Основным преимуществом объемного анализа являются простота, быстрота определения, а также широкие возможности использования разнообразных химиче­ских свойств веществ. Именно благодаря этим достоинствам метода объемного ана­лиза в настоящее время являются основными при определении макрокомпонентов природных вод. Суть объемного метода заключается во взаимодействии исследуемо­го компонента с реактивом, который добавляется в виде раствора определенной концентрации (титрованный раствор) до того момента, когда количество прибавленного реактива не станет эквивалентно количеству определяемого компонента в растворе. Этот процесс называется титрованием, а момент окончания титрования — точкой эквивалентности. Конец титрования обычно устанавливают по изменению цвета индикатора, т.е. вещества, которое изменяет вою окраску при концентрациях реаги­рующих веществ, близких к точке эквивалентности. Индикатор и условия титрования выбирают так, чтобы точка титрования индикатора совпадала с точкой эквивалентно­сти или была, возможно, ближе к последней.

Процесс титрования осуществляется следующим образом.

В коническую колбу помещают исследуемую пробу воды, раствор индикатора, по каплям добавляют из бюретки титрующий раствор при постоянном перемешива­нии. Титрование продолжают до изменения цвета окраски в колбе. Обычно для уста­новления конечной точки титрования используют «свидетель», в качестве которого обычно применяется проба, оттитрованная до эквивалентной точки. Сравнение окра­сок следует производить на белом фоне. По окончании титрования по бюретке отме­чают количество затраченного на титрование раствора.

В зависимости от типа реакций методы объемного анализа делятся на четыре большие группы: 1) кислотно-основное титрование, 2) титрование окислителями и восстановителями; 3) методы осаждения; 4) методы, основанные на образовании ком­плексов.

При кислотно-основном титровании в качестве титрованных растворов обычно применяют кислоты и щелочи. Определять этим методом можно кислоты, щелочи, соли слабых кислот и оснований; в частности, в гидрохимии этим методом определя­ют диоксид углерода и гидрокарбонаты.

Титрование окислителями и восстановителями применяется в гидрохимии в ос­новном при определении растворенного кислорода и окисляемости.

Методы объемного анализа, основанные на реакциях осаждения, используются при определении сульфатов и хлоридов.

Примером титрования с образованием комплексов могут служить реакции взаи­модействия ионов кальция и магния с трилоном Б, которые лежат в основе определе­ния общей жесткости воды.

Электрохимические методы основаны на измерении электрохимических свойств компонентов — окислительного потенциала, электрической проводимости, силы полярографического тока и т.д. Простота выполнения определений, легкость ав­томатизации, высокая чувствительность делают эти методы весьма перспективными в анализе вод.

В основе оптических методовлежит способность всех веществ поглощать лу­чистую энергию в виде квантов, соответствующих определенным длинам волн. Ли­нии или полосы поглощения при этом располагаются в ультрафиолетовой, видимой или инфракрасной областях спектра и могут использоваться для количественной оценки (см. лаб. раб.№2.).

В процессе выполнения анализа записи следует вести в табличной форме. При применении объемного метода рекомендуется форма табл.1(приложение), фотоколо­риметрического — табл.2(приложение) и при определении окисляемости перманганатным методом — табл.3 (приложение).

Такие таблицы позволяют легко произвести расчет, устранить неясности и при необходимости быстро проверить правильность вычислений.

Пользуясь указанными выше методами, результаты анализа выражают в виде

источник

Вода – это источник жизни, но она может стать и причиной отравления или заболевания.

Кроме полезных минералов вода растворяет в себе вредные химические вещества, а также является благоприятной средой для обитания микроорганизмов.

Прежде, чем использовать воду в хозяйстве, нужно убедиться в ее безопасности.

Перед использованием воды в хозяйстве или на производстве необходимо произвести предварительную подготовку: из питьевой воды нужно удалить все вредные вещества и оставить питательные минералы, а для производства нужно понизить жесткость воды и содержание тяжелых металлов.

Чтобы узнать, какие именно вещества нужно удалить из воды производится химический и бактериологический анализ. На основании полученных результатов можно подобрать подходящее очистное оборудование.

Контроль эффективности работы фильтрации воды можно определить путем проведения повторного анализа. Сравнив результаты двух последних отборов проб можно судить о правильности выбора очистного оборудования.

Минерализация – это сумма всех растворенных веществ в воде. Этот параметр еще называют солесодержанием. Единицей измерения минерализации является миллиграмм на литр (мг/л.). Существуют нормы, определяющие пригодность воды для питья. Предельно-допустимый уровень минерализации для питьевой воды составляет 500 мг/л.

Для проведения анализа на уровень минерализации в воде необходимо произвести предварительную подготовку пробы. Она заключается в разложении органических веществ и выделения определяемых элементов, которые остаются в виде неорганических соединений. Выделяется два основных метода подготовки проб: сухой – нагревание в печи, мокрый – использование кислот-окислителей.

Одним из приборов для подготовки проб является СВЧ минерализатор. Его принцип действия: подготавливаемая проба и окислительные реагенты помещаются в стеклянный сосуд, плотно закрытый крышкой. Колба переносится в СВЧ минерализатор, и прибор включается в работу. При повышении температуры ускоряется процесс окисления, и все органические примеси разлагаются за короткий промежуток времени.

Проведение анализа воды осуществляется несколькими методами, каждый из которых предназначен для определения конкретного вещества или группы веществ.

Люминесценция и фотометрия – этот метод основан на явлении люминесценции, то есть свечении. Тестируемая вода подвергается действию ультрафиолета, и различные вещества проявляют свою реакцию: ответное свечение определенного цвета.

Для фиксации этой реакции применяются регистрирующие приборы. С помощью этого метода определяется содержание следующих примесей: нефтепродукты, нитриты, нитраты, фосфаты, анионные вещества, цианиды, формальдегидов и сероводород.

ИК-спектрометрия – это анализ воды для определения наличия нефтепродуктов и жиров. Принцип действия инфракрасного спектрометра – пропускание инфракрасного излучения через воду, что вызывает колебание молекул, распространяющееся неравномерно. По длинам волн определяется примесь того или иного вещества.

Полярография – это метод анализа воды для определения концентрации ионов кадмия, цинка, свинца, органических веществ. В его основе лежит движение ионов в результате электролитической диссоциации.

Масс-спектрометрия – это анализ структуры вещества на основании отношения массы вещества к заряду ионов. Этот метод позволяет определить изотопный состав молекул.

Потенциометрия – это метод анализа воды, позволяющий определить водородный показатель (рН) и наличие фторидов. Он основан на измерении электродвижущих сил.

Дозиметрия – это метод анализа воды, выявляющий радиоактивные примеси.

Электроосмос – это процесс движения жидкости через капилляры под воздействием электрического поля.

Цель физико-химического анализа воды – выявление состава растворенных веществ. Полученная информация дает возможность применить подходящее очистное сооружение, чтобы предотвратить отравление человека, загрязнение окружающей среды или нарушения технологического процесса.

Химический анализ воды применяется во многих сферах жизни: в быту – для получения чистой и полезной питьевой воды, в промышленности – для контроля очистных сооружений сточных вод, в промышленных технологических процессах – для получения конденсата с минимальным содержанием растворенных примесей.

Читайте также:  Анализ биологической очистки сточных вод

Существует различное оборудование для проведения анализа воды: портативные приборы для бытового использования и высокоточное лабораторное оборудование, способное проводить анализы бытовой и промышленной воды.

Анализатор жидкости «ФЛЮОРАТ – 02 – 5М» выполняет функции флуориметра, фотометра, хемилюминоминометра. Этот прибор позволяет определять содержание в воде следующих веществ: алюминия, бериллия, бора, ванадия, марганца, меди, молибдена, взвешенных частиц, мышьяка, нефтепродуктов, никеля, нитрита, общего железа, общего хрома, олова, селена, фенолов, флуоресцеина, формальдегида, цианидов и цинка.

Технические характеристики аппарата:

  1. Время измерения – не более 16 с.
  2. Допустимая погрешность 0.02.
  3. Рабочий спектральный диапазон 200-900 мм.
  4. Температура окружающего воздуха 10-350С.
  5. Средний срок службы – не менее 5 лет.
  6. Габариты: 305х320х110 мм.
  7. Масса – 6,5 кг.
  8. Питание от электросети 220 В.
  9. Питание от батареи 12 В.
  10. Частота тока 50 Гц.

Цена прибора: 564 000 рублей.

Экотестер «СОЭКС» — это дозиметрический прибор для бытового пользования, позволяющий определить радиоактивные излучения гамма-частиц и бета-частиц. Этот прибор обладает второй функцией – определение содержания нитратов в воде и продуктах питания.

  • диапазон измерения радиоактивности 3-100000 мкР/ч;
  • диапазон измерения концентрации нитратов: 20-5000 мг./кг;
  • время измерения: 10 сек;
  • питание: 2 батареи аккумуляторы, заряжаемые от электросети 220 В. 10 часов непрерывной работы.

Спектрометр TRIDION™-9 GC-TMS способен производить анализ воды, воздуха и почвы. Это портативный анализатор, производящий качественный и количественный анализ воды (химический и биологический состав воды).

  • размеры 380*390*229 мм;
  • вес: 14,5 кг;
  • рабочая температура: 5-400С;
  • влажность: до 100%;
  • электропитание: от литиевой батареи;
  • ввод пробы: впрыск жидкости;
  • предел обнаружения: от РРВ до РРМ для большинства веществ;
  • запись данных: USB накопитель.

СВЧ-минерализатор «МИНОТАВР®-2» — прибор минерализации воды под воздействием микроволнового поля. Его назначение – разложение органических веществ в воде для проведения физико-химического анализа.

Цена прибора: 357 000 рублей.

Чтобы получить официальный документ о пригодности воды к использованию в хозяйстве или на производстве нужно обратиться в сертифицированную лабораторию.

Корректность анализов будет зависеть от соблюдения технологии отбора проб и возможностей оборудования. Гарантию на чистоту анализа можно получить только в лаборатории.

источник

Требования, предъявляемые к качеству воды, могут быть самыми различными и определяются её целевым назначением. Для оценки качества пластовых, природных и сточных вод их образцы подвергают анализу. На основании результатов анализа делаются выводы о пригодности воды для конкретного вида потребления, возможности применения тех или иных методов очистки. Анализы подземных вод позволяют прогнозировать сопутствующие месторождения полезных ископаемых. При анализе вод для характеристики их свойств определяют химические, физические и бактериологические показатели. Основными показателями, определяющими пригодность воды для определенной отрасли народного хозяйства, являются химические, так как физические (содержание взвешенных частиц, температура, цвет, запах, плотность, сжимаемость, вязкость, поверхностное натяжение) и бактериологические (наличие бактерий) показатели зависят от химического состава воды.

К химическим показателям качества воды относятся:

состав растворенных газов.

Общее солесодержание характеризует присутствие в воде минеральных и органических примесей, количество этих примесей в виде общей минерализации, сухого и плотного остатков. Общая минерализация представляет собой сумму всех найденных в воде анализом катионов и анионов. Минерализацию выражают в миллиграмм-эквивалентах солей, находящихся в I л воды, или в процентах, то есть числом граммов растворенных веществ, содержащихся в 100 г раствора. Сухим остатком называется суммарное количество нелетучих веществ, присутствующих в воде во взвешенном, коллоидном и растворенном состоянии, выраженное в мг/л. Сухой остаток определяют путем выпаривания пробы воды, последующего высушивания при 105 о С и взвешивания. Плотный остаток – это сухой остаток, определенный из профильтрованной пробы воды. Следовательно, разница двух показателей соответствует содержанию взвешенных веществ пробы. Если сухой остаток прокалить при температуре 500-600 о С, то масса его уменьшится и получится остаток, называемый золой. Уменьшение массы происходит за счет сгорания органических веществ, удаления кристаллизационной воды, разложения карбонатов. Потери при прокаливании приближенно относят за счет органических примесей.

Жесткость воды обусловливается наличием в ней ионов Са 2+ и Mg 2+ . Для большинства производств жесткость воды является основным показателем её качества. В жесткой воде плохо пенится мыло. При нагревании и испарении жесткой воды образуется накипь на стенках паровых котлов, труб, теплообменных аппаратов, что ведет к перерасходу топлива, коррозии металлов и авариям.

Жесткость количественно выражается числом миллиграмм-эквивалентов ионов кальция и магния в 1 л воды (мг-экв/л); 1 мг-экв/л жесткости соответствует содержанию в воде 20,04 мг/л ионов Са 2+ или

12,16 мг/л ионов Mg 2 + . Различают жесткость общую, карбонатную и некарбонатную.

Карбонатная жесткость связана с присутствием в воде в основном гидрокарбонатов и карбонатов кальция и магния, которые при кипячении воды переходят в нерастворимые средние или основные соли и выпадают в виде плотного осадка:

Таким образом, при кипячении карбонатная жесткость устраняется. Поэтому она называется также временной жесткостью. Следует сказать, что при переходе HCO3 – в CO32 – и при выпадении карбонатов кальция и магния в воде остается некоторое количество ионов Са 2+ , Mg 2+ , CO32 – , соответствующее произведению растворимости СаСО3 и (MgOH)2CO3. В присутствии посторонних ионов растворимость этих соединений повышается.

Некарбонатная (постоянная) жесткость не разрушается кипячением. Она обусловливается присутствием в воде кальциевых и магниевых солей сильных кислот, главным образом сульфатов и хлоридов.

Общаяжесткость воды представляет собой сумму карбонатной и некарбонатной жесткости и обусловливается суммарным содержанием в воде растворенных солей кальция и магния. По величине общей жесткости принята следующая классификация природных вод:

Если известны концентрации (мг/л) в воде Ca 2+ , Mg 2+ и HCO3 – , то жесткость рассчитывается по следующим формулам:

Общая жесткость

Карбонатная жесткость равна концентрации (мг/л) [HCO3 ]; в случае, если содержание ионов кальция и магния в воде выше, чем количество гидрокарбонатов:

, где 61,02 – эквивалентная масса иона HCO3 – .

Если же количество гидрокарбонатов в воде превышает содержание ионов кальция и магния, то карбонатная жесткость соответствует общей жесткости. Разность между общей и карбонатной жесткостью составляет некарбонатную жесткость: ЖНК= ЖО– ЖК . Следовательно, ЖНК – это содержание Ca 2+ и Mg 2 + , эквивалентное концентрации всех остальных анионов, в том числе и некомпенсированных гидрокарбонатов.

Окисляемость характеризует содержание в воде восстановителей, к которым относятся органические и некоторые неорганические (сероводород, сульфиты, соединения двухвалентного железа и др.) вещества. Величина окисляемости определяется количеством затраченного окислителя и выражается числом миллиграммов кислорода, необходимого для окисления веществ, содержащихся в 1 л воды. Различают общую и частичную окисляемость. Общую окисляемость определяют обработкой воды сильным окислителем – бихроматом калия K2Cr2O7 или йодатом калия KIO3. Частичную окисляемость определяют по реакции с менее сильным окислителем – перманганатом калия КMnO4. По этой реакции окисляются только сравнительно легко окисляющиеся вещества.

Для полного окисления содержащихся в воде органических веществ, при котором происходят превращения по схеме

требуется количество кислорода (или окислителя в расчете на кислород), называемое химическим потреблением кислорода (ХПК) и выражаемое в мг/л.

При любом методе определения ХПК вместе с органическими веществами окисляются и неорганические восстановители, содержащиеся в пробе. Тогда содержание неорганических восстановителей в пробе определяют отдельно специальными методами и результаты этих определений вычитают из найденного значения ХПК.

Реакция среды характеризует степень кислотности или щелочности воды. Концентрация водородных ионов природных вод зависит главным образом от гидролиза солей, растворенных в воде, количества растворенных угольной кислоты и сероводорода, содержания различных органических кислот. Обычно для большинства природных вод величина рН изменяется в пределах 5,5-8,5. Постоянство рН природных вод обеспечивается наличием в ней буферных смесей. Изменение значения рН свидетельствует о загрязнении природной воды сточными водами.

Определение иона Cl . В основу определения иона хлора положен аргентометрический метод Мора. Принцип анализа заключается в том, что при прибавлении к воде раствора AgNO3 образуется белый осадок хлорида серебра:

Определение хлорид-ионов ведут в интервале рН = 6,5 ÷ 10, чтобы одновременно с AgCl не выпадал осадок Ag2CO3. Проведению определения Сl мешает наличие в воде ионов брома, йода, сероводорода, от которых освобождаются предварительной обработкой воды.

Определение иона SO42– . Метод определения сульфат-ионов основан на малой растворимости сульфата бария, количественно выпадающего в кислой среде при добавлении к воде раствора хлорида бария: Ba 2+ + SO42– = BaSO4

По массе образовавшегося осадка рассчитывают содержание иона SO42– .

Определение ионов CO32– и HCO3 . Эти ионы определяют титрованием пробы воды растворами серной или соляной кислот последовательно с индикаторами фенолфталеином и метилоранжем. Реакция нейтрализации протекает в две стадии.

Первые порции кислоты вступают в реакции с карбонат-ионом, образуя гидрокарбонат-ион:

Окраска фенолфталеина при рН = 8,4 переходит из розовой в бесцветную, что совпадает с таким состоянием раствора, когда в нем остаются лишь гидрокарбонаты. По количеству кислоты, пошедшей на титрование, рассчитывают содержание карбонат-иона. Расход кислот на титрование с фенолфталеином эквивалентен содержанию половины карбонатов, т.к. последние нейтрализуются только наполовину до HCO3 – . Поэтому общее количество CO32 – эквивалентно удвоенному количеству кислоты, затраченной на титрование. При дальнейшем титровании в присутствии метилоранжа происходит реакция нейтрализации гидрокарбонатов:

Метилоранж меняет окраску при pH = 4,3, т.е. в момент, когда в растворе остается только свободный диоксид углерода.

При расчете содержания ионов HCO3 – в воде следует из количества кислоты, пошедшей на титрование с метилоранжем, вычесть количество кислоты, идущей на титрование с фенолфталеином. Общее количество кислоты, затраченной на нейтрализацию ионов ОН , СО32– и НСО3 , характеризует общую щелочность воды. Если рН воды ниже 4,3, то её щелочность равна нулю.

Определение ионов Ca 2+ , Mg 2+ . Имеется несколько методов обнаружения и определения содержания ионов Са 2+ и Mg 2+ . При добавлении в воду оксалата аммония (NH4)2C2O4 в случае присутствия ионов кальция образуется белый осадок оксалата кальция:

После отделения осадка оксалата кальция в воде можно определить ионы Mg 2+ с помощью раствора гидрофосфата натрия Na2HPO4 и аммиака. При наличии иона Mg 2 + образуется мелкокристаллический осадок соли магния:

Полученные осадки прокаливают и взвешивают. На основании полученных результатов вычисляется величина кальциевой и магниевой жесткости.

Наиболее быстрым и точным методом определения Са 2 + и Mg 2 + является комплексонометрический метод, основанный на способности двунатриевой соли этилендиаминотетрауксусной кислоты (трилон Б)

NaOOCCH2 CH2COONa

N––CH2––CH2––N

образовывать с ионами кальция и магния прочные комплексные соединения.

При титровании пробы воды трилоном Б происходит последовательное связывание в комплекс сначала ионов кальция, а затем ионов магния. Содержание ионов кальция определяют, титруя воду в присутствии индикатора — мурексида. Мурексид образует с ионами кальция малодиссоциированное комплексное соединение, окрашенное в малиновый цвет.

Ионы магния не дают комплекса с мурексидом. Трилон Б извлекает Са 2+ из его растворимого комплекса с мурексидом, вследствие чего окраска раствора, изменяется на сиреневую:

По количеству трилона Б, расходуемого на титрование, определяют содержание Са 2 + . Титрованием пробы воды трилоном Б в присутствии индикатора хромогена черного определяют суммарное содержание Са 2 + и Mg 2 + , то есть общую жесткость воды. Вода, содержащая Са 2 + и Mg 2 + , в присутствии хромогена черного окрашивается в красный цвет вследствие образования комплекса с Mg 2 + . При титровании воды в точке эквивалентности происходит изменение цвета на синий вследствие протекания следующей реакции:

Содержание Mg 2+ вычисляют по разности между общим содержанием (Са 2+ + Mg 2+ ) и содержанием Са 2 + . Трилонометрическое определение каждого иона производится при том значении рН, при котором этот ион образует с трилоном Б соединение более прочное, чем с индикатором. Для поддержания заданного значения рН к титруемому раствору добавляют буферные растворы. Кроме того, поддержание заданной величины рН обеспечивает определенную окраску индикатора. Общую жесткость воды определяют при рН > 9, кальциевую – при рН = 12.

Определение ионов Na + , K + . Производится вычислением по разности между суммой мг-экв найденных анионов и катионов, поскольку вода электронейтральна:

С достаточно высокой точностью все присутствующие в воде катионы можно определить эмиссионной спектроскопией сухого остатка.

Растворенные в воде газы определяют химическими методами или газовой хроматографией.

Определение диоксида углерода производят титрованием пробы воды щелочью в присутствии индикатора–фенолфталеина:

Читайте также:  Анализ дистиллированной воды в ростове

Определение растворенного кислорода производится йодометрическим методом.

Для анализа в пробу воды поcледовательно добавляют раствор хлорида марганца и щелочной раствор йодида калия. Метод основан на окислении свежеполученного гидроксида двухвалентного марганца содержащимся в воде кислородом:

Количество образовавшегося в воде бурого осадка гидроксида четырехвалентного марганца эквивалентно количеству растворенного кислорода. При последующем добавлении к пробе соляной или серной кислоты четырехвалентный марганец вновь восстанавливается до двухвалентного, окисляя при этом йодид калия. Это приводит к выделению свободного йода, эквивалентного содержанию четырехвалентного марганца, или, что то же самое, растворенного кислорода в пробе:

Выделившийся свободный йод определяется количественно путем титрования раствором тиосульфата натрия:

I2+ 2Na2S2O32NaI + Na2S4O6

Йодометрический метод определения растворенного кислорода неприменим для вод, содержащих сероводород, так как сероводород вступает во взаимодействие с йодом и занижает результат. Во избежание этой ошибки предварительно связывают содержащийся в пробе сероводород в соединение, не препятствующее нормальному течению реакции. Для этой цели обычно используют хлорид ртути (II):

Определение H2S. Прежде чем приступить к количественному определению сероводорода, определяют его качественное присутствие по характерному запаху. Более объективным качественным показателем служат свинцовые индикаторные бумажки (фильтровальная бумага, пропитанная раствором ацетата свинца). При опускании в воду, содержащую сероводород, свинцовая бумага темнеет, принимая желтую (малое содержание), бурую (среднее содержание) или темно-коричневую (высокое содержание) окраску.

В водных растворах сероводород присутствует в трех формах: недиссоциированный H2S, в виде ионов HS и S 2 – . Относительные концентрации этих форм в воде зависят от рН этой воды и в меньшей степени от температуры и общего солесодержания.

Если анализируемая вода не содержит веществ, реагирующих с иодом, то сероводород и его ионы можно определить следующим образом.

В основе количественного метода определения H2S лежит реакция окисления сероводорода йодом:

К точно отмеренному подкисленному раствору йода, взятого в избытке по отношению к ожидаемому содержанию сероводорода, прибавляют определенное количество воды. Количество йода, израсходованное на окисление сероводорода, определяется обратным титрованием остатка йода тиосульфатом. Разница между количеством раствора тиосульфата, соответствующим всему количеству взятого для анализа йода, и количеством этого же раствора, затраченного на титрование остатка йода в пробе, эквивалентна содержанию сероводорода в исследуемой пробе.

источник

В нашей жизни огромное значение имеет вода. Каждый человек использует ее дома в пищевых и гигиенических целях. Немаловажную роль она играет и в промышленности. Поэтому был создан ряд документов относительно стандартов качества, которым должна отвечать вода, в частности, питьевая. Нормы и правила, существующие в каждой стране, закрепляют порог концентрации различных веществ, которые могут находиться в составе питьевой воды. Речь может идти об ионах тяжелых металлов, нефтепродуктах и других веществах, наличие которых не вызывает специфического запаха или вкуса. Для того чтобы обнаружить их, необходимо провести анализ питьевой воды. В наши дни создано множество методов такого анализа, позволяющих точно определить наличие и концентрацию этих веществ.

Из этой статьи вы узнаете:

Для чего делают анализ питьевой воды

Какими методами проводится анализ питьевой воды

Какие показатели учитываются при анализе питьевой воды

Для чего нужен анализ воды из скважины

Сколько стоит анализ питьевой воды

Где лучше провести анализ питьевой воды

Сейчас даже дети знают, что перед применением питьевой воды ее нужно подвергнуть очистке. Однако необходимо понимать, что перед очисткой должен быть проведен анализ. Ни в коем случае не следует пропускать этот этап, поскольку без него нельзя подобрать правильный метод очистки. Дело в том, что источник воды, особенности трубопровода и многие другие факторы определенным образом влияют на качество жидкости и на то, какие примеси будут преобладать в ее составе. При этом универсального фильтра, который мог бы справляться со всеми примесями, не существует. Но если провести анализ питьевой воды, вы будете знать, от каких элементов ее требуется очистить, и сможете подобрать именно тот фильтр, который будет полезен в данном случае.

Статьи, рекомендуемые к прочтению:

Анализ качества питьевой воды предполагает определение ее состава на химическом и физическом уровнях. Особое внимание уделяется вредным примесям, среди которых:

Бактерии и микроорганизмы;

Другие химические соединения и элементы;

Примеси механического характера.

Загрязняющие вещества могут иметь разное происхождение. В частности, питьевая вода может являться средой обитания различных микроорганизмов, поэтому их в первую очередь стремятся обнаружить при анализе. Самым распространенным способом борьбы с бактериями в городах является хлорирование, которое не только эффективно удаляет загрязнение, но и не требует больших затрат. Однако анализ такой воды показывает повышенный уровень хлора, соответственно, ее нежелательно употреблять в качестве питьевой.

Также анализ питьевой воды может выявить примеси, наличие которых связано непосредственно с деятельностью людей. Некоторые загрязнители могут попадать в водоемы вследствие слива промышленных отходов или попадания в реки и озера сточных вод. Еще один фактор риска – старые коммуникации. В городах, где давно не меняли трубы, анализ часто показывает превышенную концентрацию некоторых вредных веществ.

Анализ питьевых и природных вод может показывать совершенно разные результаты в разных городах и регионах. Без предварительного анализа правильный фильтр подобрать невозможно.

Когда проводится анализ питьевой воды, показателями, по которым судят о ее качестве, являются следующие:

Активность ионов водорода. В норме содержание этих ионов колеблется от 6 до 9 (pH). Если показатель превышен, это зачастую можно определить самостоятельно, поскольку питьевая вода будет казаться мыльной и иметь неприятные привкус и запах. Однако опасен и низкий уровень, так как он говорит о высокой кислотности.

Уровень жесткости. За этим термином скрывается анализ питьевой воды по показателям концентрации таких веществ, как кальций и магний. Всем известны свойства «жесткой» воды: ее не стоит использовать не только в качестве питьевой, но и для бытовых целей, поскольку упомянутые выше вещества провоцируют образование накипи на элементах бытовой техники. Нормальный уровень жесткости устанавливает СанПиН 2.1.4.1074-01. Он составляет от 7 до 10 мг-экв/л (или не более 350 мг/л).

Минерализация (сухой остаток) – показатель, который информирует о наличии в воде растворенных веществ органического и неорганического происхождения. Анализ питьевой воды по этому критерию основывается на нормах СанПиН 2.1.4.1175-02 – «Питьевая вода. Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников». В норме минерализация составляет от 1000 до 1500 мг/л. Также существует рекомендация от Всемирной организации здравоохранения, что данный показатель не должен быть выше 1000 мг/л.

Нитраты. Здесь при анализе ориентируются на максимальный уровень в 45 мг/л. Причиной более высокого показателя часто бывает загрязнение почвы.

Сульфаты и хлориды. Норма содержания этих веществ указана в СанПиН 2.1.4.1175-02: для сульфатов – до 500 мг/л, для хлоридов – до 350.

Окисляемость. Максимально допустимая при анализе питьевой воды цифра, отражающая данный показатель, – 5–7 мг/л.

Микробиологический анализ воды служит для определения количества микроорганизмов, содержащихся в 1 мл питьевой воды. Так, ГОСТ устанавливает, что наличие бактерий в водах скважин и колодцев недопустимо. Если анализ выявляет эти элементы, то, скорее всего, источник был загрязнен продуктами жизнедеятельности людей или животных.

Анализ питьевой воды включает в себя также не менее важные органолептические показатели, связанные с восприятием вкуса, запаха и цвета воды.

После проведения анализа полученные показатели сравнивают с нормативными, указанными в нормах СанПиН. Здесь отмечается допустимый уровень содержания всех микроэлементов, органических веществ, солей и т. д. Подразумевается, что если все проанализированные показатели соответствуют норме, эта питьевая вода может быть использована человеком и не принесет вреда его здоровью. Методы анализа питьевых и сточных вод основываются на аналогичных принципах. После очистки сточных вод проводят физико-химический и токсический анализ их состава, и если все показатели находятся в допустимых пределах, разрешается выброс таких вод. В этом случае анализ проводится для того, чтобы предотвратить загрязнение водоемов и почвы сточными водами.

Анализ питьевой воды необходимо проводить не только в промышленных масштабах, но и в масштабах отдельной квартиры. Вне зависимости от того, используете вы воду из скважины, колодца или водопровода, она может содержать вредные примеси. А чтобы подобрать оптимальный способ очистки, необходим ее предварительный анализ.

Поскольку на станциях подготовки воды ее обрабатывают с использованием разных химических веществ, методика анализа питьевой воды в зависимости от ее источника будет отличаться.

Водопроводная вода. Перед тем как эта вода окажется в городских квартирах, она подвергается анализу по 130-ти физико-химическим и микробиологическим показателям. Основная проблема состоит в том, что различные элементы и бактерии могут повторно загрязнить воду на пути к потребителям. В итоге вода, которая изначально соответствовала качествам питьевой, может приобрести даже заметные неестественные цвет и запах, не говоря уже о том, что ее употребление отрицательно скажется на здоровье человека. Если вы столкнулись с такой ситуацией, необходимо сдать питьевую воду на анализ и с полученными результатами обратиться в коммунальные службы.

Бутилированная вода (в то числе из кулеров и минеральная). Ее все чаще используют в качестве замены водопроводной питьевой воде. Однако и здесь провести анализ проб питьевой воды не будет лишним, поскольку в некоторых случаях из-за недобросовестности поставщика она может по качеству даже уступать водопроводной. Санитарно-микробиологический анализ питьевой воды в бутылках, обычной и минеральной, производится по разным показателям. Их устанавливают СанПиН и ГОСТ, соответствующие каждому из видов.

Скважины и родники. Особенность этих источников в том, что они не подвергаются обязательной проверке санэпидстанциями. Соответственно, их использование без предварительного анализа может привести к неблагоприятным последствиям для здоровья. Жители сел и деревень, которые используют эти источники, должны понимать, что существует огромное количество вредных веществ, которые не выдают свое присутствие в питьевой воде через вкус и запах. Так что даже особенно вкусная вода из родника может содержать некоторые примеси. Узнать об этом можно, лишь проанализировав ее.

Анализу в обязательном порядке подлежат воды общественных бассейнов, системы городского водоснабжения, а также сливаемые предприятиями. Проводить его могут как специалисты самого предприятия, так и приглашенные эксперты.

Для каждой разновидности воды существует свой ГОСТ. Анализ воды питьевой производится в соответствии со стандартами, которые там закреплены. Приведем некоторые из них:

ГОСТ Р 51232-98 «Вода питьевая. Общие требования к организации и методам контроля качества»;

ГОСТ 32220-2013 «Вода питьевая, расфасованная в емкости. Общие технические условия»;

ГОСТ Р 54316-2011 «Воды минеральные природные питьевые. Общие технические условия»;

ГОСТ 31952-2012 «Устройства водоочистные. Общие требования к эффективности и методы ее определения»;

ГОСТ Р ИСО 24510-2009 «Деятельность, связанная с услугами питьевого водоснабжения и удаления сточных вод. Руководящие указания по оценке и улучшению услуги, оказываемой потребителям»;

ГОСТ Р ИСО 24512-2009 «Деятельность, связанная с услугами питьевого водоснабжения и удаления сточных вод. Руководящие указания для менеджмента систем питьевого водоснабжения и оценке услуг питьевого водоснабжения»;

СанПиН 2.1.4.1116-02 «Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества»;

СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Гигиенические требования к обеспечению безопасности систем горячего водоснабжения»;

СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Санитарные правила и нормы»;

СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников» и др.

Вопрос качества питьевой воды сейчас очень важен для большинства горожан. Однако использование фильтра будет эффективным только тогда, когда он будет подобран в соответствии с наличествующими примесями. Анализ питьевой воды в первую очередь необходим для того, чтобы выбрать адекватную загрязнениям систему очистки, а во-вторых – чтобы периодически проверять работу фильтра.

Распространено убеждение, что любая скважина – источник чистой и полезной воды, которой не требуются анализ и очистка. Однако и в ней можно обнаружить химические вещества, примеси различного происхождения и микроорганизмы. Риск загрязнения особенно высок в неглубоких скважинах. В любом случае использовать этот источник без предварительного анализа не стоит, потому что нередко вода из него может быть непригодной для употребления.

Конечно, никто не обяжет вас проводить анализ питьевой воды из скважины. Однако специалисты считают необходимым сделать это в следующих случаях:

Продажа или покупка недвижимости. При продаже участка вашим преимуществом может стать результат анализа воды из источника, который на нем располагается. Не менее важен анализ питьевой воды при покупке земли, если предыдущий владелец не предоставил вам данных о ее качестве. Результат проверки расскажет вам, является ли данная питьевая вода безопасной для человека.

Читайте также:  Анализ азота общий в сточных водах

Проблемы со здоровьем у членов семьи. Употребление воды с вредными примесями может привести к некоторым заболеваниям. Это могут быть аллергия, хроническая простуда или заболевания ЖКТ. Если вы заметили у себя или членов семьи подобные симптомы, стоит провести анализ питьевой воды, которую вы употребляете.

Подготовка к открытию детского или оздоровительного учреждения. Анализ питьевой воды необходимо обязательно провести перед открытием детского сада, санатория или медицинского учреждения.

Расчет параметров системы очищения воды. Анализ поможет выявить степень загрязнения и уточнить, какие именно примеси в ней присутствуют, а значит, правильно подобрать фильтр.

Сдавать питьевую воду из скважины на анализ необходимо регулярно, хотя бы раз в несколько лет. Это обусловлено тем, что различные природные факторы, а также деятельность человека могут изменить ее состав. К примеру, через почву в этот источник могут попасть токсины из выгребных ям или из отходов, сливаемых близлежащими предприятиями. При этом не всегда вы сможете без проведения анализа определить, что в питьевой воде появились какие-либо примеси и ее качество ухудшилось. Также вы не всегда будете достоверно знать и о наличии факторов, которые могут сделать ее непригодной для употребления.

Если говорить о проверке воды вновь создаваемых скважин, ее рекомендуют проводить через три-четыре недели. Этот промежуток нужен, чтобы не брать в расчет загрязнения, связанные с самим бурением скважины, которые нейтрализуются самостоятельно.

Чтобы быть уверенным, что вода из определенного источника является безвредной, необходимо провести ее анализ. В результате исследования станет известно о наличии в ней вредных для человека элементов, в том числе токсинов, микроорганизмов, гельминтов и т. д., а также об уровне радиоактивности. Эти данные могут служить основанием для решения того, в каком способе очистки нуждается питьевая вода. Методы санитарно-бактериологического анализа могут быть различными, но все они направлены на обнаружение опасных примесей.

Результат исследования будет верен только в том случае, если образец для анализа взят с соблюдением всех правил. Воду на анализ нужно собирать в чистую посуду, например в бутылку из-под чистой питьевой воды без каких-либо добавок. Тару нужно также промыть той же жидкостью, которая будет исследована. Есть несколько правил, касающихся того, как правильно собирать образцы из разных источников:

Если это водопровод, перед сбором материала кран оставляют открытым на 15 минут.

В случае со скважиной воду также собирают не сразу, а только через 5–10 минут. Особенно важно правильно взять образец из скважины, которую не использовали в течение длительного времени. Перед этим необходимо прокачивать ее на протяжении как минимум двух часов.

Для анализа питьевой воды из колодца образец собирают с четырехметровой глубины, а для некоторых исследований – со дна. Конечно же, ведро должно быть чистым.

Наливать воду в бутылку нужно медленно и тонкой струей, при этом заполняя тару до самого края (это нужно, чтобы уменьшить насыщение кислородом). Бутылку нужно плотно закрыть и как можно скорее отнести в лабораторию. Анализ питьевой воды возможен и в течение ближайших двух суток, однако образец необходимо хранить в холодильнике. Материал отправляют в лабораторию с сопроводительным листом, где указывают адрес, дату и время сбора, а также вид источника.

Лаборатории, которые проводят анализ питьевой воды, имеют возможность оценить ее качество по огромному количеству критериев. В частности, исследование проводится на наличие в составе более чем 13 тысяч токсичных элементов. Достоверно узнать об их наличии можно только обратившись к профессионалам, однако каждый человек сам в состоянии провести предварительный анализ питьевой воды.

Без применения каких-либо препаратов и использования специальной техники можно исследовать только органолептические свойства, то есть цвет, запах и вкус.

Если питьевая вода в вашем источнике имеет коричневатый оттенок или содержит осадок в форме хлопьев, это свидетельствует о высоком уровне железа. Это свойство может проявляться при нагревании или взбалтывании. Если содержание железа немного выше нормы, это сложно определить визуально, однако сигналом может стать привкус металла.

Серый цвет воды и налет на посуде сигнализируют о наличии в составе марганца.

Вода с белым оттенком, который исчезает спустя некоторое время, имеет высокий уровень газов (метан, хлор и другие).

Химический запах может возникнуть вследствие того, что в источник попадают химикаты из сточных вод близлежащих предприятий.

Запах рыбы или земли говорит о том, что питьевая вода в вашем источнике содержит вредные примеси органического происхождения.

Анализ питьевой воды по органолептическим свойствам не дает конкретных и достоверных результатов. Он может служить лишь поводом для того, чтобы проверить воду в лаборатории, если вы замечаете ее необычный цвет или вкус.

Этот вид исследования призван определить наличие в питьевой воде примесей органического и неорганического происхождения, а также таких характеристик, как мутность, жесткость и многие другие. В наши дни существуют сотни методов, с помощью которых определяется качество воды по этим критериям. Чаще всего используют такие методики, как:

Химический анализ делится на два вида: сокращенный и полный. Анализ питьевой воды будет включать определение уровня жесткости, окисляемости, мутности, содержания магния и железа, минерализации и т. д. Общее количество исследуемых показателей достигает 25 наименований.

Полный анализ включает в четыре раза больше пунктов, по которым проводится исследование. В частности, в составе воды определяют наличие нитратов, металлов, газов, щелочей, нефтепродуктов и многих других элементов. Расширенное исследование необходимо проводить для проверки воды из скважин и колодцев.

Если необходимо сделать анализ используемой вами воды, а возможности обратиться в лабораторию нет, используйте специальные наборы для диагностики в домашних условиях. Тест-наборы помогут определить примерную жесткость, а также возможное превышение допустимого уровня концентрации различных солей и металлов.

Выбирать набор стоит в соответствии с тем, какой источник вы собираетесь исследовать (выпускают специальные наборы для скважин, колодцев и т. д.). Также наборы для экспресс-анализа могут быть рассчитаны на определение одного или нескольких видов примесей.

Анализ питьевой воды проводят также с помощью портативных лабораторий, которые дают возможность самостоятельно провести расширенное химическое исследование. Однако для их правильного применения нужны особые навыки, да и стоимость такого набора будет выше, чем цена на услуги лаборатории.

Все методы бактериологического анализа направлены на то, чтобы обнаружить в составе питьевой воды наличие микроорганизмов, таких как сальмонеллы, легионеллы, кишечная палочка и т. д. Также проверяется и количество непатогенных бактерий: хотя сами по себе они безвредны, но их повышенное содержание плохо влияет на свойства воды. В ней может быть увеличено содержание железа и серы, а также такая вода способна оставлять налет.

Анализ питьевой воды проводится с использованием специального оборудования. При помощи него создается благоприятная среда для жизнедеятельности бактерий, что позволяет выявить их количество. В ходе исследования специалисты применяют микроскопы высокой мощности и ряд других инструментов.

Такой анализ питьевой воды особенно важно проводить в местах с неблагоприятной экологической обстановкой. Источники проверяют на наличие трития и радия, радиоактивных элементов, которые разрушают человеческие клетки и способны привести к серьезным последствиям для здоровья. Особенность этих изотопов в том, что они могут легко попасть в источник через подземные воды и накапливаться там.

Для проведения радиологического анализа применяются дозиметры, радиометры и спектрометры. Радиологическое исследование состоит из двух частей. В ходе предварительной оценки специалисты получают данные об общей активности альфа- и бета-излучающих радионуклидов. Если этот показатель превышен, проводится полная проверка с целью выяснения уровня активности всех радиоактивных элементов в отдельности.

Чтобы быть уверенным в том, что вода из вашего источника пригодна для употребления и не содержит никаких вредных примесей, необходимо провести комплексный анализ. Одновременное применение всех методов исследования обязательно для колодцев и скважин, а для проверки воды из водопровода можно остановиться лишь на химических, поскольку эта жидкость проходит предварительную проверку. Наиболее достоверные результаты можно получить в лабораториях.

Существуют различные организации, которые проводят анализ питьевой воды. Конечно, лаборатории отличаются друг от друга качеством работы и стоимостью услуг. Где сделать анализ питьевой воды, чтобы в результатах можно было не сомневаться? Лучше отдать предпочтение компании с большим опытом, которая оказывает подобные услуги длительное время. Они всегда будут более ответственны, чем мелкие и недавно организованные фирмы, поскольку дорожат своим хорошим имиджем. Также крупная компания, скорее всего, проведет анализ питьевой воды быстрее, поскольку имеет собственные лаборатории и не нуждается в услугах других учреждений. Прежде чем определиться с предприятием, которому вы доверите исследования, узнайте о том, какие тесты оно проводит, имеет ли свою лабораторию и свидетельство об аккредитации.

Услуги лабораторий оказываются в соответствии с договором. В нем перечисляется весь перечень проводимых исследований, способ предоставления результатов, срок их получения и стоимость проводимой работы.

Цена анализа питьевой воды варьируется в зависимости от вида и сроков проводимого исследования. Стоимость будет тем выше, чем больше характеристик необходимо определить.

Экспресс-анализ. Срок его проведения – три рабочих дня. Анализируется лишь несколько базовых параметров: запах, pH, уровень жесткости, содержание железа и марганца. Для исследования требуется проба объемом не менее одного литра. Стоимость относительно низкая – всего около одной тысячи рублей.

Стандартный анализ. Срок проведения – пять рабочих дней. Помимо основных параметров, которые включает экспресс-анализ, здесь проверяются уровень мутности, щелочность и окисляемость воды, содержание соли, а также таких веществ, как хлориды, сульфаты, фториды, алюминий. Требуется объем пробы не менее двух литров. Стоимость проверки – три с половиной тысячи рублей.

Расширенный анализ. Срок проведения – семь рабочих дней. Добавляются такие параметры, как концентрация СПАВ, цинка, хлора, карбонатов и гидрокарбонатов, аммоний-ионов. Потребуется проба объемом в три с половиной литра. Цена исследования – от пяти с половиной тысяч рублей.

Полный химический анализ воды. Срок проведения также составляет семь рабочих дней. Помимо характеристик, по которым проводится предыдущее исследование, вы узнаете также о возможном содержании кадмия, хрома, никеля, меди, мышьяка, ртути и свинца в вашем источнике. Объем пробы превышает пять литров. Стоить такое исследование может от 12 тысяч рублей.

Проверку по минимальному количеству критериев выбирать не стоит, если вы замечаете выраженные признаки содержания каких-то примесей в вашей питьевой воде.

Цена на исследование воды из скважины не так уж высока, и затраты в этом случае оправданы. В зависимости от того, какую компанию вы выберете, стоимость услуг будет разной. Средняя цена составляет от трех до пяти тысяч рублей для стандартного анализа, от пяти до шести тысяч – для расширенного и от восьми до девяти тысяч рублей – для полного. Конечная цифра складывается из количества анализируемых характеристик и дополнительных услуг.

Если вас не удовлетворили результаты анализа питьевой воды, то отчаиваться не стоит. Существует огромное количество фильтров для воды, которые очищают ее до первозданного вида. Однако на российском рынке присутствует немало компаний, которые занимаются разработкой систем водоочистки. Самостоятельно, без помощи профессионала, выбрать тот или иной вид фильтра воды довольно сложно. И уж тем более не стоит пытаться в одиночку смонтировать систему водоочистки, даже если вы прочитали несколько статей в интернете и вам кажется, что вы во всем разобрались.

Надежнее обратиться в компанию по установке фильтров, которая предоставляет полный спектр услуг: консультацию специалиста, анализ воды из скважины или колодца, подбор подходящего оборудования, доставку и подключение системы. Кроме того, важно, чтобы компания предоставляла и сервисное обслуживание фильтров.

Компания Biokit предлагает широкий выбор систем обратного осмоса, фильтры для воды и другое оборудование, способное вернуть воде из-под крана ее естественные характеристики.

Специалисты нашей компании готовы помочь вам:

Подключить систему фильтрации самостоятельно;

Разобраться с процессом выбора фильтров для воды;

Подобрать сменные материалы;

Устранить неполадки или решить проблемы с привлечением специалистов-монтажников;

Найти ответы на интересующие вопросы в телефонном режиме.

Доверьте очистку воды системам от Biokit – пусть ваша семья будет здоровой!

источник