Меню Рубрики

Метод анализа питьевой воды мутность

Будете ли вы плавать в мутной воде? А пить ее из скважины? Наверняка, вы предпочтете чистую прозрачную воду, в которой приятно понежиться и которую не опасно пить. Сегодня поговорим о том, что такое мутность воды. Пригодна ли она для использования, и какая опасность кроется в примесях? Как изучить качество? И как избавится от негативных явлений?

Под загрязнением воды принято понимать изменение ее свойств при воздействии химических или органических веществ. При обнаружении таковых использование живительной жидкости нужно приостановить, поскольку это может быть опасно для организма человека.

В лабораториях на очистительных станциях делают анализ на:

  • мутность и цветность воды;
  • запах и кислотность;
  • содержание органических элементов;
  • наличие тяжелых металлов;
  • химическое потребление кислорода и пр.

Загрязненная жидкость содержит неорганические и органические тонкодисперсные взвеси. Мутность воды — это показатель, характеризующий степень прозрачности.

О мутности говорят тогда, когда в воде чаще всего появляются твердые частицы песка, гальки, ила. Их смывают осадки, талые воды в реку, также они могут возникнуть в результате разрушения скважины.

Меньше всего примесей зимой. Больше всего — весной и летом, когда часто возникают паводки и наблюдается сезонный прирост планктона и водорослей.

В нашей стране мутность воды определяется путем сравнивания двух образцов: стандартной и взятой непосредственно из водоема. Используют фотометрический метод. Результат выражается в двух видах:

  • при использовании суспензии коалина — в мг/дм3;
  • при использовании формазина — ЕМ/дм3.

Последний принятый Международной организацией Стандартизации. Обозначается как ЕМФ (Единица мутности по формазину).

В России приняты такие нормы мутности воды. ГОСТ для питьевой — 2,6 ЕМФ, для обеззараживающей — 1,5 ЕМФ.

В любом водоканале есть лаборатория, в которой проводятся исследования качества воды, поставляемой в трубы. Замеры проводятся по несколько раз в день, чтобы не пропустить ни единого изменения. Рассмотрим основные методы определения мутности воды.

Суть любого метода состоит в том, чтобы через жидкость прошел луч света. В абсолютно прозрачной колбе он остается неизменным, лишь немного рассеивается и имеет незначительное отклонение угла. Если в воде присутствуют взвешенные частицы, они по-разному будут препятствовать прохождению луча света. Этот факт зафиксирует отражающий прибор.

На сегодняшний день мутность питьевой воды можно определять такими методами:

  1. Фотометрически. Есть два варианта исследования: турбидиметрический, который фиксирует ослабленные лучи, и нефелометрический, результатом которого является отражение рассеянного света.
  2. Визуально. Степень загрязнения оценивается по шкале, высотой 10-12 см, в специальной мутномерной пробирке.

Любые примеси, находящиеся в питьевой воде, имеют свои свойства. Они характеризуются по такому параметру, как гидравлическая крупность, которая выражается в скорости оседания на дно в неподвижной воде при температуре 10 °С. Приведем примеры взвешенных частиц в таблице.

Взвешенные частицы и их характеристики

Взвешенные вещества Размер, мм Гидравлическая крупность, мм/с Время оседания на глубину 1 м
Коллоидные частицы 2×10 -4 7×10 -6 4 года
Тонкая глина 1×10 -3 7×10 -4 0,5-2 месяца
Глина 27×10 -4 5×10 -3 2 суток
Ил 5×10 -2 1.7-0.5 10-30 минут
Мелкий песок 0,1 7 2,5 минуты
Средний песок 0,5 50 20 секунд
Крупный песок 1,0 100 10 секунд

Очевидно, что мутность воды — это один из самых важных факторов, влияющих на качество потребляемой жидкости. Даже небольшие изменения в стандартах свидетельствуют о наличии патогенной флоры, которая может привести к различным заболеваниям у человека. И как только человечество поняло, что чистота — залог здоровья, сразу возникла необходимость проверять воду.

Первыми людьми, придумавшими специальную технологию, чтобы в лабораторных условиях изучать жидкость, стали Уиппл и Джексон, а их прибор назвали «свечной турбидиметр Джексона». Он представлял собой колбу, которую держали над свечей. Внутрь помещалась вода для исследования, в которую наливали первую в мире суспензию на основе кизельгура. Жидкость наливалась медленно до тех пор, пока свет от свечи полностью не рассеивался. Затем смотрели на шкалу и переводили данные в джексоновские единицы мутности.

Несмотря на то что полимеров в те времена еще не было и для суспензий готовили материалы из природных ресурсов, этот метод хоть и давал погрешности, но использовали его очень долго.

Лишь в 1926 году ученые Кингсбери и Кларк химическим путем создали формазин. Это идеальное вещество для изучения мутности воды. Для приготовления суспензии необходимо взять литр дистиллированной воды, 5,00 г сульфата гидразина и 50,00 г гексаметилентетрамина.

Понадобятся пробирка высотой 10-12 см, лист черного картона.

  1. Наберите в пробирку воды.
  2. Колбу поставьте так, чтобы она стояла на черном фоне, а сбоку был источник света: солнце или лампа накаливания.
  3. Визуально определите степень мутности: прозрачная вода, слабо загрязненная, слабо мутная, мутная, очень мутная.

Понадобится: колба для анализа (высота 6 см, диаметр 2,5 см), экран для трубки, шприц, пипетка, образец шрифта (высота 3,5 мм, ширина линии 0,35 мм)

  1. В колбу наберите воду. Установите ее на штативе.
  2. Вниз под колбу положите образец шрифта. Это может быть просто буква.
  3. Вокруг трубки нужно создать экран для отражения света.
  4. Источник света поместите сверху прямо над трубкой.
  5. Пипеткой отбирайте воду до тех пор, пока не увидите букву.
  6. Замерьте высоту столба с водой. Данные должны быть с точностью до 10 мм.

Мутность воды — это важный фактор, определяющий степень загрязнения жидкости. В современном мире на всех очистительных станциях внимательно следят за этим показателем, чтобы правильно выбрать метод дальнейшей фильтрации воды. Проверить мутность можно и в домашних условиях, использовав методы качественного и количественного исследований.

источник

ПНД Ф 14.1:2:4.213-05
Количественный химический анализ вод. Методика выполнения измерений мутности питьевых, природных и сточных вод турбидиметрическим методом по каолину и по формазину

Купить ПНД Ф 14.1:2:4.213-05 — бумажный документ с голограммой и синими печатями. подробнее

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО «ЦНТИ Нормоконтроль».

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Документ устанавливает методику количественного химического анализа проб питьевых, природных и сточных вод для определения мутности в диапазоне 0,1-5,0 мг/дм5 (по каолину) и 1,0-100,0 ЕМФ (или ЕМ/дм3) — единицах мутности по формазину турбидиметрическим методом.

2 Приписанные характеристики погрешности измерений и ее составляющих

3 Средства измерений, вспомогательное оборудование, материалы, реактивы

4 Условия безопасного проведения работ

5 Требования к квалификации операторов

6 Условия выполнения измерений

8 Подготовка к выполнению измерений

11 Обработка результатов измерений

12 Оформление результатов измерений

13 Контроль качества результатов анализа при реализации методики в лаборатории

Приложение А Приготовление основной стандартной суспензии концентрацией 400 ЕМФ (о,4 ЕМ/см3) из формазина

Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку:

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ЭКОЛОГИЧЕСКОМУ,
ТЕХНОЛОГИЧЕСКОМУ И АТОМНОМУ НАДЗОРУ

_______________ М.Г. Цветков

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
МУТНОСТИ ПИТЬЕВЫХ, ПРИРОДНЫХ И СТОЧНЫХ
ВОД ТУРБИДИМЕТРИЧЕСКИМ МЕТОДОМ
ПО КАОЛИНУ И ПО ФОРМАЗИНУ

Методика допущена для целей государственного
экологического контроля

Настоящий документ устанавливает методику количественного химического анализа проб питьевых, природных и сточных вод для определения мутности в диапазоне 0,1 — 5,0 мг/дм 3 (по каолину) и 1,0 — 100,0 ЕМФ (или ЕМ/дм 3 ) — единицах мутности по формазину турбидиметрическим методом.

Если при определении мутности по каолину ее величина превышает верхнюю границу диапазона (более 5 мг/дм 3 ), то допускается разбавление пробы таким образом, чтобы величина мутности соответствовала регламентируемому диапазону.

Значения мутности в диапазоне 40 — 100 ЕМФ определяют после предварительного разбавления пробы.

Турбидиметрический метод определения мутности основан на сравнении испытуемых проб со стандартными суспензиями каолина или формазина.

Оптическую плотность мутности измеряют при λ = 520 нм в кювете с толщиной оптического слоя 50 мм.

Методика выполнения измерений обеспечивает получение результатов измерений с погрешностью, не превышающей значений, приведённых в таблице 1.

Значения показателя точности методики используют при:

— оформлении результатов измерений, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов измерений при реализации методики выполнения измерений в конкретной лаборатории.

Таблица 1 — Диапазон измерений, относительные значения показателей точности, повторяемости и воспроизводимости методики при Р = 0,95

Показатель точности (границы относительной погрешности), ± δ, %

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), sr, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), sr, %

3.1 Средства измерений, вспомогательное оборудование

Спектрофотометр или фотоколориметр, позволяющий измерять оптическую плотность при λ = 520 нм

Кюветы с толщиной поглощающего слоя 50 мм

Весы лабораторные, например ВЛР-200, ГОСТ 24104-2001

Колбы мерные вместимостью 25, 100, 500, 1000 см 3 , ГОСТ 1770-74

Пипетки вместимостью 1, 2, 5, 10 см 3 , ГОСТ 29227-91

Цилиндры мерные вместимостью 100 см 3 , ГОСТ 1770-74

ГСО мутности водных растворов с аттестованным значением 4000 ЕМФ (ГСО 7271-96)

Каолин обогащенный для парфюмерной промышленности, ГОСТ 21285-75 или для кабельной промышленности, ГОСТ 21288-75

Пирофосфат калия или натрия

Гексаметилентетрамин (уротропин), ТУ 6-09-09-353-74

Вода бидистиллированная, ТУ 6-09-2502-77

Фильтры мембранные с диаметром пор 0,5 — 0,8 мкм

Шелковое сито (диаметр отверстий 0,1 мм)

Примечания. 1. Допускается применять средства измерения, устройства, материалы и реактивы, отличные от указанных выше, но не уступающие им по метрологическим и техническим характеристикам.

2. Все реактивы должны иметь квалификацию «хч» или «чда».

4.1 При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76.

4.2 Электробезопасность при работе с электроустановками по ГОСТ 12.1.019-79.

4.3 Организация обучения персонала безопасности труда по ГОСТ 12.0.004-90.

4.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.

К выполнению измерений и обработке их результатов допускают специалиста, имеющего опыт работы в химической лаборатории, прошедшего соответствующий инструктаж, освоившего метод в процессе тренировки и уложившегося в нормативы контроля при выполнении процедур контроля погрешности.

Измерения проводятся в следующих условиях:

Температура окружающего воздуха (20 ± 5) °С.

Атмосферное давление (84 — 106) кПа.

Относительная влажность воздуха до 80 % при t = 25°.

Частота переменного тока (50 ± 1) Гц.

Напряжение в сети (220 ± 22) В.

7.1 Отбор проб производят в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб» и ГОСТ Р 51593-2000 «Вода питьевая. Отбор проб».

7.2 Посуда для отбора проб и проведения анализа должна быть очищена соляной кислотой или хромовой смесью, хорошо промыта проточной и ополоснута дистиллированной водой.

7.3 Пробы воды отбирают в бутыли из полимерного материала или стекла, подготовленные по п. 7.2 и предварительно ополоснутые отбираемой водой. Объем отбираемой пробы должен быть не менее 500 см 3 . Пробы анализируют не позднее, чем через 24 часа после отбора. Проба может быть законсервирована добавлением хлороформа из расчета 2 — 4 см 3 на 1 дм 3 .

7.4 При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— должность, фамилия отбирающего пробу, дата.

Подготовку прибора к работе проводят в соответствии с рабочей инструкцией по эксплуатации прибора.

8.2 Подготовка мембранного фильтра

Мембранные фильтры проверяют на отсутствие трещин, помещают в стакан с дистиллированной водой, нагретой до 80 °С, доводят до кипения на слабом огне и кипятят в течение 10 минут.

Кипячение повторяют 2 — 3 раза с новыми порциями дистиллированной воды.

8.3 Приготовление растворов

8.3.1 Приготовление стандартных суспензий каолина

8.3.1.1 Приготовление основной стандартной суспензии каолина

Каолин просеивают через шелковое сито с диаметром отверстий 0,1 мм.

25 — 30 г каолина хорошо взбалтывают с 3 — 4 дм 3 дистиллированной воды и оставляют на 24 часа. После этого сифоном, не взмучивая осадка, отбирают среднюю неосветлившуюся часть жидкости. К оставшейся части вновь приливают 3 дм 3 дистиллированной воды, сильно взбалтывают, оставляют на 24 часа и вновь отбирают среднюю неосветлившуюся часть. Операцию повторяют трижды, каждый раз присоединяя неосветлившуюся в течение суток суспензию к ранее собранной. Накопленную суспензию хорошо взбалтывают и через 3 суток жидкость над осадком сливают, так как она содержит слишком мелкие частицы каолина.

К полученному осадку добавляют 100 см 3 дистиллированной воды, взбалтывают и получают основную стандартную суспензию. Концентрацию полученной суспензии определяют гравиметрически из двух или более параллельных проб. Для этого 5 см 3 суспензии помещают в доведенный до постоянной массы бюкс, высушивают при t = 105 °C до постоянной массы, взвешивают и рассчитывают содержание каолина в суспензии.

Основную стандартную суспензию каолина стабилизируют пирофосфатом калия или натрия (200 мг на 1 дм 3 ) и консервируют формалином (10 см 3 на 1 дм 3 ) или хлороформом (1 см 3 на 1 дм 3 ).

Основная стандартная суспензия должна содержать около 1 г/дм 3 каолина.

Раствор суспензии коалина стабилен в течение 6 месяцев.

8.3.1.2 Приготовление промежуточной стандартной суспензии каолина концентрацией 50 мг/дм 3

Промежуточную суспензию каолина готовят разведением основной стандартной суспензии бидистиллированной водой, исходя из точного содержания взвеси каолина в основной стандартной суспензии. Перед приготовлением основную стандартную суспензию тщательно перемешивают.

Промежуточную суспензию каолина хранят не более суток.

8.3.1.3 Приготовление рабочих стандартных суспензий каолина

0,2 — 0,4 — 1 — 2 — 3 — 4 — 6 — 10 см 3 тщательно перемешанной промежуточной суспензии вносят в мерные колбы вместимостью 100 см 3 и доводят до метки бидистиллированной водой. Полученные растворы имеют концентрации 0,1 — 0,2 — 0,5 — 1,0 — 1,5 — 2,0 — 3,0 — 5,0 мг/дм 3 .

Рабочие растворы суспензии каолина готовят в день проведения анализа.

8.3.2 Приготовление стандартных суспензий формазина

8.3.2.1 Приготовление основной стандартной суспензии формазина концентрацией 400 ЕМФ (0,4 ЕМ/см 3 )

Основную стандартную суспензию готовят из ГСО в соответствии с прилагаемой к образцу инструкцией.

Приготовление основной стандартной суспензии формазина изложено в Приложении А.

Срок хранения основной стандартной суспензии — 2 месяца в темноте при t = 25 ± 5 °C.

8.3.2.2 Приготовление промежуточной стандартной суспензии формазина концентрацией 40 ЕМФ (0,04 ЕМ/см 3 )

50 см 3 тщательно перемешанной основной стандартной суспензии формазина вносят в мерную колбу вместимостью 500 см 3 и доводят до метки бидистиллированной водой.

8.3.2.3 Приготовление рабочих стандартных суспензий формазина

2,5 — 5 — 10 — 20 — 40 — 50 — 75 — 100 см 3 предварительно перемешанной промежуточной суспензии формазина вносят в мерные колбы на 100 см 3 , доводят до метки бидистиллированной водой. Полученные рабочие стандартные суспензии имеют концентрации: 1 — 2 — 4 — 8 — 16 — 20 — 30 — 40 ЕМФ.

Рабочие растворы стабильны в течение недели.

8.4 Построение градуировочного графика

Для построения градуировочного графика необходимо приготовить образцы для градуировки с массовой концентрацией мутности 0,1 — 5,0 мг/дм 3 или 1,0 — 40,0 ЕМФ.

Условия анализа, его проведение должны соответствовать п.п. 6 и 10.

Читайте также:  Методика анализа пробы сточной воды

Анализ образцов для градуировки проводят в порядке возрастания их концентрации. Для построения градуировочного графика каждую искусственную смесь необходимо фотометрировать 3 раза с целью исключения случайных результатов и усреднения данных. При построении градуировочного графика по оси ординат откладывают значения оптической плотности, а по оси абсцисс — величину мутности в мг/дм 3 (ЕМФ).

8.5 Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочной характеристики проводят не реже одного раза в квартал. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведенных в п.8.3.1.3 или п.8.3.2.3).

Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия:

где X — результат контрольного измерения мутности в образце для градуировки, мг/дм 3 (ЕМФ);

С — аттестованное значение мутности в образце для градуировки, мг/дм 3 (ЕМФ);

sR, — среднеквадратическое отклонение внутрилабораторной прецизионности, установленное при реализации методики в лаборатории.

Примечание. Допустимо среднеквадратическое отклонение внутрилабораторной прецизионности при внедрении методики в лаборатории устанавливать на основе выражения: sR, = 0,84 sR, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Значения sR приведены в таблице 1.

Если условие стабильности градуировочной характеристики не выполняется только для одного образца для градуировки, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины и повторяют контроль с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график.

Определению мутности мешает окраска пробы. Окраску воды (кроме желтых оттенков) определяют после удаления мутности центрифугированием и вычитают эту величину из общей измеренной величины.

Желтый цвет пробы не оказывает влияния на значение мутности.

В кювету с толщиной оптического слоя 50 мм вносят тщательно перемешанную испытуемую пробу и снимают показания прибора при λ = 520 нм. Если цветность исследуемой пробы ниже 10° (по хром-кобальтовой шкале), то в качестве фона используют бидистиллированную воду. Если цветность исследуемой пробы выше 10°, то фоном служит исследуемая проба, из которой удалены взвешенные вещества центрифугированием или фильтрованием через обработанные по п. 8.2 мембранные фильтры.

При анализе пробы воды выполняют не менее двух параллельных определений.

Величину мутности X (мг/дм 3 , ЕМФ) находят по соответствующему градуировочному графику. Если пробы была разбавлена, то учитывается коэффициент разбавления.

За результат анализа Хср принимают среднее арифметическое значение двух параллельных определений X1 и Х2:

для которых выполняется следующее условие:

где r — предел повторяемости, значения которого приведены в таблице 2.

Таблица 2 — Значения предела повторяемости при Р = 0,95

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r, %

источник

Настоящий документ устанавливает методику количественного химического анализа проб питьевых, природных и сточных вод для определения мутности в диапазоне 0,1 — 5,0 мг/дм 3 (по каолину) и 1,0 — 100,0 ЕМФ (или ЕМ/дм 3 ) — единицах мутности по формазину турбидиметрическим методом.

Если при определении мутности по каолину ее величина превышает верхнюю границу диапазона (более 5 мг/дм 3 ), то допускается разбавление пробы таким образом, чтобы величина мутности соответствовала регламентируемому диапазону.

Значения мутности в диапазоне 40 — 100 ЕМФ определяют после предварительного разбавления пробы.

Турбидиметрический метод определения мутности основан на сравнении испытуемых проб со стандартными суспензиями каолина или формазина.

Оптическую плотность мутности измеряют при λ = 520 нм в кювете с толщиной оптического слоя 50 мм.

Методика выполнения измерений обеспечивает получение результатов измерений с погрешностью, не превышающей значений, приведённых в таблице 1.

Значения показателя точности методики используют при:

— оформлении результатов измерений, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов измерений при реализации методики выполнения измерений в конкретной лаборатории.

Таблица 1 — Диапазон измерений, относительные значения показателей точности, повторяемости и воспроизводимости методики при Р = 0,95

Показатель точности (границы относительной погрешности), ± δ, %

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), s r, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), s r, %

3.1 Средства измерений, вспомогательное оборудование

Спектрофотометр или фотоколориметр, позволяющий измерять оптическую плотность при λ = 520 нм

Кюветы с толщиной поглощающего слоя 50 мм

Весы лабораторные, например ВЛР-200, ГОСТ 24104-2001

Колбы мерные вместимостью 25, 100, 500, 1000 см 3 , ГОСТ 1770-74

Пипетки вместимостью 1, 2, 5, 10 см 3 , ГОСТ 29227-91

Цилиндры мерные вместимостью 100 см 3 , ГОСТ 1770-74

ГСО мутности водных растворов с аттестованным значением 4000 ЕМФ (ГСО 7271-96)

Каолин обогащенный для парфюмерной промышленности, ГОСТ 21285-75 или для кабельной промышленности, ГОСТ 21288-75

Пирофосфат калия или натрия

Гексаметилентетрамин (уротропин), ТУ 6-09-09-353-74

Вода бидистиллированная, ТУ 6-09-2502-77

Фильтры мембранные с диаметром пор 0,5 — 0,8 мкм

Шелковое сито (диаметр отверстий 0,1 мм)

Примечания. 1. Допускается применять средства измерения, устройства, материалы и реактивы, отличные от указанных выше, но не уступающие им по метрологическим и техническим характеристикам.

2. Все реактивы должны иметь квалификацию «хч» или «чда».

4.1 При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76 .

4.2 Электробезопасность при работе с электроустановками по ГОСТ 12.1.019-79 .

4.3 Организация обучения персонала безопасности труда по ГОСТ 12.0.004-90 .

4.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83 .

К выполнению измерений и обработке их результатов допускают специалиста, имеющего опыт работы в химической лаборатории, прошедшего соответствующий инструктаж, освоившего метод в процессе тренировки и уложившегося в нормативы контроля при выполнении процедур контроля погрешности.

Измерения проводятся в следующих условиях:

Температура окружающего воздуха (20 ± 5) °С.

Атмосферное давление (84 — 106) кПа.

Относительная влажность воздуха до 80 % при t = 25°.

Частота переменного тока (50 ± 1) Гц.

Напряжение в сети (220 ± 22) В.

7.1 Отбор проб производят в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб» и ГОСТ Р 51593-2000 «Вода питьевая. Отбор проб».

7.2 Посуда для отбора проб и проведения анализа должна быть очищена соляной кислотой или хромовой смесью, хорошо промыта проточной и ополоснута дистиллированной водой.

7.3 Пробы воды отбирают в бутыли из полимерного материала или стекла, подготовленные по п. 7.2 и предварительно ополоснутые отбираемой водой. Объем отбираемой пробы должен быть не менее 500 см 3 . Пробы анализируют не позднее, чем через 24 часа после отбора. Проба может быть законсервирована добавлением хлороформа из расчета 2 — 4 см 3 на 1 дм 3 .

7.4 При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— должность, фамилия отбирающего пробу, дата.

Подготовку прибора к работе проводят в соответствии с рабочей инструкцией по эксплуатации прибора.

8.2 Подготовка мембранного фильтра

Мембранные фильтры проверяют на отсутствие трещин, помещают в стакан с дистиллированной водой, нагретой до 80 °С, доводят до кипения на слабом огне и кипятят в течение 10 минут.

Кипячение повторяют 2 — 3 раза с новыми порциями дистиллированной воды.

8.3 Приготовление растворов

8.3.1 Приготовление стандартных суспензий каолина

8.3.1.1 Приготовление основной стандартной суспензии каолина

Каолин просеивают через шелковое сито с диаметром отверстий 0,1 мм.

25 — 30 г каолина хорошо взбалтывают с 3 — 4 дм 3 дистиллированной воды и оставляют на 24 часа. После этого сифоном, не взмучивая осадка, отбирают среднюю неосветлившуюся часть жидкости. К оставшейся части вновь приливают 3 дм 3 дистиллированной воды, сильно взбалтывают, оставляют на 24 часа и вновь отбирают среднюю неосветлившуюся часть. Операцию повторяют трижды, каждый раз присоединяя неосветлившуюся в течение суток суспензию к ранее собранной. Накопленную суспензию хорошо взбалтывают и через 3 суток жидкость над осадком сливают, так как она содержит слишком мелкие частицы каолина.

К полученному осадку добавляют 100 см 3 дистиллированной воды, взбалтывают и получают основную стандартную суспензию. Концентрацию полученной суспензии определяют гравиметрически из двух или более параллельных проб. Для этого 5 см 3 суспензии помещают в доведенный до постоянной массы бюкс, высушивают при t = 105 °C до постоянной массы, взвешивают и рассчитывают содержание каолина в суспензии.

Основную стандартную суспензию каолина стабилизируют пирофосфатом калия или натрия (200 мг на 1 дм 3 ) и консервируют формалином (10 см 3 на 1 дм 3 ) или хлороформом (1 см 3 на 1 дм 3 ).

Основная стандартная суспензия должна содержать около 1 г/дм 3 каолина.

Раствор суспензии коалина стабилен в течение 6 месяцев.

8.3.1.2 Приготовление промежуточной стандартной суспензии каолина концентрацией 50 мг/дм 3

Промежуточную суспензию каолина готовят разведением основной стандартной суспензии бидистиллированной водой, исходя из точного содержания взвеси каолина в основной стандартной суспензии. Перед приготовлением основную стандартную суспензию тщательно перемешивают.

Промежуточную суспензию каолина хранят не более суток.

8.3.1.3 Приготовление рабочих стандартных суспензий каолина

0,2 — 0,4 — 1 — 2 — 3 — 4 — 6 — 10 см 3 тщательно перемешанной промежуточной суспензии вносят в мерные колбы вместимостью 100 см 3 и доводят до метки бидистиллированной водой. Полученные растворы имеют концентрации 0,1 — 0,2 — 0,5 — 1,0 — 1,5 — 2,0 — 3,0 — 5,0 мг/дм 3 .

Рабочие растворы суспензии каолина готовят в день проведения анализа.

8.3.2 Приготовление стандартных суспензий формазина

8.3.2.1 Приготовление основной стандартной суспензии формазина концентрацией 400 ЕМФ (0,4 ЕМ/см 3 )

Основную стандартную суспензию готовят из ГСО в соответствии с прилагаемой к образцу инструкцией.

Приготовление основной стандартной суспензии формазина изложено в Приложении А .

Срок хранения основной стандартной суспензии — 2 месяца в темноте при t = 25 ± 5 ° C .

8.3.2.2 Приготовление промежуточной стандартной суспензии формазина концентрацией 40 ЕМФ (0,04 ЕМ/см 3 )

50 см 3 тщательно перемешанной основной стандартной суспензии формазина вносят в мерную колбу вместимостью 500 см 3 и доводят до метки бидистиллированной водой.

8.3.2.3 Приготовление рабочих стандартных суспензий формазина

2,5 — 5 — 10 — 20 — 40 — 50 — 75 — 100 см 3 предварительно перемешанной промежуточной суспензии формазина вносят в мерные колбы на 100 см 3 , доводят до метки бидистиллированной водой. Полученные рабочие стандартные суспензии имеют концентрации: 1 — 2 — 4 — 8 — 16 — 20 — 30 — 40 ЕМФ.

Рабочие растворы стабильны в течение недели.

8.4 Построение градуировочного графика

Для построения градуировочного графика необходимо приготовить образцы для градуировки с массовой концентрацией мутности 0,1 — 5,0 мг/дм 3 или 1,0 — 40,0 ЕМФ.

Условия анализа, его проведение должны соответствовать п.п. 6 и 10.

Анализ образцов для градуировки проводят в порядке возрастания их концентрации. Для построения градуировочного графика каждую искусственную смесь необходимо фотометрировать 3 раза с целью исключения случайных результатов и усреднения данных. При построении градуировочного графика по оси ординат откладывают значения оптической плотности, а по оси абсцисс — величину мутности в мг/дм 3 (ЕМФ).

8.5 Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочной характеристики проводят не реже одного раза в квартал. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведенных в п.8.3.1.3 или п.8.3.2.3).

Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия:

где X — результат контрольного измерения мутности в образце для градуировки, мг/дм 3 (ЕМФ);

С — аттестованное значение мутности в образце для градуировки, мг/дм 3 (ЕМФ);

s R, — среднеквадратическое отклонение внутрилабораторной прецизионности, установленное при реализации методики в лаборатории.

Примечание . Допустимо среднеквадратическое отклонение внутрилабораторной прецизионности при внедрении методики в лаборатории устанавливать на основе выражения: s R, = 0,84 s R, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Значения s R приведены в таблице 1.

Если условие стабильности градуировочной характеристики не выполняется только для одного образца для градуировки, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины и повторяют контроль с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график.

Определению мутности мешает окраска пробы. Окраску воды (кроме желтых оттенков) определяют после удаления мутности центрифугированием и вычитают эту величину из общей измеренной величины.

Желтый цвет пробы не оказывает влияния на значение мутности.

В кювету с толщиной оптического слоя 50 мм вносят тщательно перемешанную испытуемую пробу и снимают показания прибора при λ = 520 нм. Если цветность исследуемой пробы ниже 10° (по хром-кобальтовой шкале), то в качестве фона используют бидистиллированную воду. Если цветность исследуемой пробы выше 10°, то фоном служит исследуемая проба, из которой удалены взвешенные вещества центрифугированием или фильтрованием через обработанные по п. 8.2 мембранные фильтры.

При анализе пробы воды выполняют не менее двух параллельных определений.

Величину мутности X (мг/дм 3 , ЕМФ) находят по соответствующему градуировочному графику. Если пробы была разбавлена, то учитывается коэффициент разбавления.

За результат анализа Хср принимают среднее арифметическое значение двух параллельных определений X 1 и Х2:

для которых выполняется следующее условие:

где r — предел повторяемости, значения которого приведены в таблице 2 .

Таблица 2 — Значения предела повторяемости при Р = 0,95

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r, %

источник

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

(ИСО 8586:2012, NEQ) (ИСО 3972:2011, NEQ) (ИСО 7027:1999, NEQ)

1 РАЗРАБОТАН Техническим комитетом ло стандартизации ТК 343 «Качество воды» и ЗАО «Центр исследования и контроля воды»

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 343 «Качество воды»

3 УТВЕРЖДЕН И 8ВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому ре* гулированию и метрологии от 17 октября 2016 г. № 1412-ст

4 В настоящем стандарте учтены основные нормативные положения следующих международных стандартов: ИСО 6586:2012 «Сенсорный анализ. Общие руководящие указания ло отбору, обучению и контролю за работой отобранных испытателей и экспертов*испытателей в области сенсорного ана* лиэа» (ISO 8586:2012 «Sensory analysts — General guidelines for the selection, training and monitoring of selected assessors and expert sensory assessors». NEQ). ИСО 3972:2011 «Органолептический анализ. Методология. Метод исследования вкусовой чувствительности» (ISO 3972:2011 «Sensory analysis — Methodology — Method of investigating sensitivity of taste». NEO). ИСО 7027:1999 «Качество воды. Олре* деление мутности» (ISO 7027:1999 «Water quality — Determination of turbidity». NEO)

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. №162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официапьный текст изменений и поправок — е ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубпиковано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (wmv.gost.rti).

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Читайте также:  Методика анализа содержания примесей в воде

3 Термины и определения. 2

5 Определение органолептических показателей. 2

7 Оформление результатов анализа. 9

Приложение А (справочное) Классификация некоторых запахов естественного происхождения____10

Приложение Б (рекомендуемое) Приготовление образцов сравнения. 11

Приложение 8 (рекомендуемое) Отбор и обучение испытателей, выполняющих

органолептический анализ. 13

Причины возникновения запаха, вкуса и мутности воды

Химически чистая вода совершенно лишена вкуса и запаха. Однако в природе такая вода не встречается — она всегда содержит в своем составе растворенные вещества. По мере роста концентрации неорганических и органических веществ вода начинает принимать тот или иной привкус и/или запах. Запах и вкус — это свойство веществ вызывать у человека и животных специфическое раздражение рецепторов слизистой оболочки носоглотки и языка.

Следует иметь в виду, что запах и привкус может появиться в воде на нескольких этапах: в природной воде, в процессе водоподготовки, при транспортировке по трубопроводам.

Основными причинами возникновения запаха и привкуса в воде являются:

Гниющие растения. Водоросли и водные растения в процессе гниения могут вызвать рыбный, травяной, гнилостный запах воды и аналогичный неприятный привкус.

Грибки и плесень. Эти микроорганизмы вызывают возникновение плесневого, землистого или затхлого запаха и приводит к появлению привкуса. Тенденция к размножению этих микроорганизмов возникает в местах застоя воды и там. где вода может нагреваться (например, в системах водоснабжения больших зданий с накопительными емкостями).

Железистые и сернистые бактерии. Оба типа бактерий выделяют продукты жизнедеятельности. которые при разложении создают резко неприятный запах.

Соединения тяжелых металлов, особенно продукты коррозии железа, марганца, меди, которые вызывают незначительный запах воды, недостаточно отчетливый металлический привкус.

Соли щелочных и щелочно-земельных металлов, которые в больших концентрациях придают воде соленый или горький вкус, а также может придавать воде щелочной привкус.

Различные добавки могут придавать воде кислый и сладкий вкусы. Кислый вкус могут иметь воды, насыщенные углекислым газом или солями сильных кислот.

Промышленные отходы. Многие вещества, содержащиеся в сточных водах промышленного производства, могут вызвать сильный лекарственный или химический запах воды. В частности, проблемой являются фенольные соединения, которые при хлорировании воды создают обладающие характерным запахом хлорфенольные соединения.

Хлорирование воды. Вопреки широко распространенному мнению, сам хлор при правильном использовании не вызывает возникновения сколько-нибудь заметного запаха или привкуса. 8 то же время, хлор способен вступать в химические реакции с различными растворенными в воде веществами. образуя при этом соединения, которые собственно и придают воде хорошо известный многим запах и привкус «хлорки».

По происхождению запахи, вкусы и привкусы делятся на две группы:

— естественного происхождения (связаны с наличием живущих в воде организмов, загнивающих растительных и животных остатков, наличием солей, как правило в морских или подземных водах);

— искусственного происхождения (обусловлены примесями промышленных сточных вод. реагентами процессов водоподготовки, материалами труб и т. д.).

Запах воды естественного происхождения обычно связан с наличием фитопланктона и с деятельностью бактерий, разлагающих органические вещества. Поэтому вода родников, ключей, артезианских скважин обычно не имеет запаха.

Известно более 200 веществ, выделяемых только водорослями различных видов, способных восприниматься обонятельными рецепторами, но реально проблемы появления возникающих посторонних запахов водопроводной воды связывают только с некоторыми из них: 2-метилизоборнеол (МИБ). геосмин. меркаптаны, диметилдисульфид, диметилсульфид, 2.4-гепгадиекал, 2.6-нонадиенал.

Число разных видов запахов достаточно велико. Наиболее часто встречаются следующие запахи воды поверхностных водоемов: гнилостный, травянистый, землистый, навозный. Некоторые виды водорослей вызывают специфические запахи. Например, из группы диатомовых водорослей одорирующие вещества продуцируют представители родов Asterionella (герани и рыбы). Cyctotella (травянистый. герани, рыбы), Tabellaria (травянистый, герани, затхлости). Представители родов золотистых водорослей (хризофитов) Synura. Dinobryon. Uroglenopsis способны придавать воде сильный рыбный запах. Этот запах, как и в случае диатомовых водорослей, имеют альдегиды и кетоны, образующиеся в результате ферментативного преобразования ненасыщенных жирных кислот при отмирании клеток.

Основными причинами запахов подземных вод являются сероводород и соединения железа.

Сероводород появляется в результате воздействия анаэробных восстанавливающих серных бак» терий на органическую и элементарную серу, сульфаты и сульфиты. В малых концентрациях он может производить болотистый, затхлый запах. Часто вода из скважин пахнет железом — самым распростра» ненным загрязнителем, который при взаимодействии с кислородом воздуха переходит в трехвалентную форму. Поэтому вода, только что добытая из скважины выглядит чистой и только потом приобретает бурый цвет и неприятный металлический, железистый запах и привкус.

Качественной воду централизованного водоснабжения можно считать лишь такую, которая, по мнению потребителей, не имеет запаха, вкуса и привкуса. Обычно люди не чувствуют запаха, вкус и привкус интенсивностью 0 и 1 балл по пятибалльной шкале. Запах интенсивностью 2 балла чувствуют лишь некоторые потребители (до 10 % населения), и лишь в том случае, если обратить на это их внимание. При повышении интенсивности запах становится ощутим для всех потребителей без какого-либо предупреждения. Поэтому интенсивность запаха питьевой водопроводной воды не должна превышать двух баллов. Кроме того, следует учитывать, что воду подогревают для приготовления горячих напитков и первых блюд, а это может привести к усилению ее запаха. Именно поэтому питьевая вода, как правило, не должна иметь запах интенсивностью свыше двух баллов при температуре как 20 *С. так и 60 в С.

Мутность воды — показатель, характеризующий уменьшение прозрачности воды в связи с на» личием неорганических и органических тонкодисперсных взвесей, а также развитием планктонных организмов. Причинами мутности воды может быть наличие в ней глины, неорганических соединений (гидроксида алюминия, карбонатов различных металлов), а также органических примесей или жмых организмов, например бактерио. фито» или зоопланктона. Также причиной может быть окисление соединений железа и марганца кислородом воздуха, что приводит к образованию коллоидов.

Мутность воды в реках и прибрежных районах водоемов повышается при дождях, паводках, таянии ледников. Как правило, зимой уровень мутности в водоемах наиболее низкий, наиболее высокий весной и во время летних дождей.

Мутность питьевой воды нормируется в основном из-за того, что мутная вода защищает микроорганизмы при ультрафиолетовом обеззараживании и облегчает рост бактерий, а также из эстетических соображений.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Методы определения запаха, вкуса и мутности

Drinking water. Methods for determination of odour, taste and turbidity

Настоящий стандарт распространяется на природную и питьевую воду, в том числе расфасован* ную в емкости, и устанавливает:

• органолептические методы определения запаха, вкуса и привкуса:

• определение мутности с использованием оптических приборов.

Определение этих показателей качества воды имеет большое значение, так как наличие е воде постороннего запаха, вкуса, привкуса и повышенной мутности может указывать на загрязнение воды посторонними веществами, плохую ее очистку, а кроме того, отталкивает потребителя, действуя на его эстетические чувства, даже если она безвредна.

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 1770—74 (ИСО 1042—83. ИСО 4786—80) Посуда мерная лабораторная стеклянная. Цилин* дры. мензурки, колбы, пробирки. Общие технические условия

ГОСТ 2053—77 Реактивы. Натрий сернистый 9*еодный. Технические условия

ГОСТ ISO 3972—2014 Методология. Метод исследования вкусовой чувствительности

ГОСТ 4233—77 Реактивы. Натрий хлористый. Технические условия

ГОСТ ISO 8586*1—2011 Органолептический анализ. Общее руководство по отбору, обучению и контролю испытателей. Часть 1. Отобранные испытатели

ГОСТ 11086—76 Гипохлорит натрия. Технические условия

ГОСТ ИСО/МЭК 17025—2009 Общие требования к компетентности испытательных и калибровочных лабораторий

ГОСТ 25336—82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 28311—89 Дозаторы медицинские лабораторные. Общие технические требования и методы испытаний

ГОСТ 28498—90 Термометры жидкостные стеклянные. Общие Технические условия. Методы испытания.

ГОСТ 29169—91 (ИСО 648—77) Посуда лабораторная стеклянная. Пипетки с одной отметкой

ГОСТ 29227—91 (ИСО 835-1—81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ 30813—2002 Вода и водоподготовка. Термины и определения ГОСТ 31861—2012 Вода. Общие требования к отбору проб

ГОСТ 32220—2013 Вода питьевая, расфасованная в емкости. Общие технические условия ГОСТ Р 56237—2014 (ИСО 5665-5:2006) Вода питьевая. Отбор проб на станциях водоподготовки и в трубопроводных распределительных системах

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана осыпка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять е части, не затрагивающей эту ссылку.

В настоящем стандарте применены термины по ГОСТ ISO 8586-1. ГОСТ ISO 3972 и ГОСТ 30813.

4.1 Пробы воды отбирают по ГОСТ 31861, ГОСТ Р 56237 в стеклянные емкости с притертыми ипи плотно завинчивающимися пробками. Отбор и хранение проб для определения мутности допускается проводить в пластиковые емкости. Минимальный объем пробы 300 см 3 . При определении всех показателей по данному стандарту рекомендуется отбирать не менее 500 см 3 воды.

4.2 Пробы воды для определения запаха, вкуса, привкуса и мутности не консервируют. Анализ проводят в лаборатории как можно быстрее, но не позднее, чем через 6 ч после отбора проб, а для определения мутности не позднее 24 ч после отбора.

4.3 Отбор проб питьевой воды, расфасованной в емкости, сроки и условия хранения — по ГОСТ 32220.

5.1 Сущность органолептических методов

В основе методов лежит способность человека ощущать и воспринимать растворенные в воде вещества как запахи, вкусы и привкусы. В зависимости от объективных условий (температура, влажность) и функционального состояния организма (например, суточных колебаний) интенсивность обоняния может колебаться в достаточно широких пределах.

Органолептическая оценка выполняется прямым методом распознавания запахов, вкусов и привкусов — по ощущению воспринимаемого вкуса. Данные показатели не поддаются формальному измерению — определение проводится экспертным путем.

Для оценки интенсивности запаха и привкуса пользуются системой баллов.

5.2 Средства измерений, вспомогательное оборудование

Цилиндры или мензурки по ГОСТ 1770 вместимостью 100 см 3 .

Термометр стеклянный лабораторный по ГОСТ 28498 с диапазоном измерения температур от 0 *С до 100 *С.

Колбы плоскодонные с притертыми пробками вместимостью 250—350 см 3 по ГОСТ 2S336 или аналогичные с делениями, указывающими объем жидкости (для определения запаха).

Водяная баня, обеспечивающая равномерный нагрев плоскодонных колб и поддержание темпе* ратуры (60 + 5) *С.

Вода без запаха и вкуса по 5.6.

Стаканы вместимостью 50—100 см 3 (для определения вкуса и привкуса).

Допускается использование других средств измерений, вспомогательного оборудования и реактивов с метрологическими и техническими характеристиками не хуже указанных.

5.3.1.1 Для определения запаха рекомендуется использовать плоскодонные колбы вместимостью 250—350 см 3 с притертой стеклянной пробкой.

Накануне проведения анализа, как минимум за 12 часов до его начала, колбы заполняют «под пробку» водой без запаха и закрывают пробками. Перед использованием воду выливают, колбы ополаскивают свежей порцией этой воды.

5.3.1.2 Для определения вкуса и привкуса рекомендуется использовать стаканы одноразовые пластиковые вместимостью 50—100 см 3 .

5.3.1.3 Посуду, если она не одноразовая, необходимо мыть с применением моющих средств, не имеющих запаха.

5.4 Помещения и условия окружающей среды

Температура и относительная влажность воздуха в помещении для органолептического анализа при проведении испытаний должны находиться в диапазоне от 18 е С до 24 *С и от 15 % до 75 % соответственно.

Для проведения органолептического анализа оптимальным является наличие двух помещений:

• помещение для проведения исследований:

• помещение для приготовления образцов.

Помещение для приготовления образцов должно находиться в непосредственной близости от помещения для проведения исследований. При этом оно должно быть расположено таким образом, чтобы испытателям не нужно было проходить через него, чтобы попасть к месту проведения исследований.

8 случае отсутствия отдельного помещения органолептический анализ допускается проводить в общем лабораторном помещении, в котором отсутствуют посторонние запахи (химические реактивы, цветы, парфюмерия и пр.).

Помещения лаборатории, в которых выполняется органолептический анализ, должны быть защищены от резких посторонних шума, вибраций и других отвлекающих факторов. Рекомендуется, чтобы помещения были окрашены в светлые тона.

К проведению органолептического анализа допускают испытателей, имеющих физические возможности для его проведения, прошедших подготовку и проверку практического умения в области органолептического анализа по данному стандарту.

Испытатели должны уметь выражать и интерпретировать свои первоначальные ощущения. Особенно важно умение концентрироваться и не поддаваться внешнему воздействию.

Испытатели не должны принимать лекарств, которые могут ослабить чувственное восприятие (например. спиртосодержащие настойки), до и во время проведения тестов.

Испытатели не должны использовать ароматизированную косметику до и во время проведения исследований. Кроме того, следует воздержаться от курения или контакта с курильщиками или сильными запахами по крайней мере за 1 ч до выполнения анализа.

Испытатели не допускаются к выполнению органолептических определений при наличии факторов здоровья, влияющих на исполнение работ и их результаты. Испытатель должен сообщить ответственному исполнителю (руководителю лаборатории) о наличии у него таких факторов, как:

В лаборатории должны быть в наличии образцы сравнения (контрольные образцы), которые используются при обучении испытателей и контроле качества испытаний. Они должны иметь запах, вкус (привкус) стабильный в течение определенного времени, интенсивность которого можно воспроизвести при использовании соответствующего алгоритма приготовления.

Необходимо подобрать как минимум по два исходных вещества для подготовки образцов сравнения при обучении испытателей определению запаха и вкуса (привкуса).

В том случае, если вода на стадии водоподготовки хлорируется, один из образцов сравнения должен иметь «хлорный» запах. Если используется подземная вода, то один из образцов сравнения должен иметь «соленый» вкус и т. п. «Нулевым» образцом сравнения (холостой пробой) служит вода без запаха и вкуса, идентичная воде, используемой для приготовления разведений.

Дистиллированная вода может иметь своеобразный запах и даже привкус. В этом случае в качестве образца сравнения можно использовать бидистиплированную воду или воду, приготовленную при помощи специализированных установок, например, деионизации, или питьевую воду, расфасованную в емкости, или кипяченую водопроводную воду, обработанную активированным углем. Для этого кипяченую водопроводную воду пропускают через колонку с гранулированным активированным углем при небольшой скорости. Можно также взболтать воду с активированным углем в колбе (0,6 г на 1 дм 3 ) с последующим ее фильтрованием.

Все образцы сравнения должны быть однозначно идентифицированы. Для каждого наименования должны быть определены срок годности, условия хранения, особенности использования, инструкция по приготовлению (если требуется).

Читайте также:  Методика анализа нефтепродуктов сточных вод

В приложении А в качестве примера приведена схема приготовления средств контроля (образцы сравнения) с использованием гипохлорита натрия (хлорный запах при 20 *С). натрия сернистого (сероводородный запах при 20 *С). натрия хлористого (соленый вкус), кофеина (горький вкус). Лаборатория может выбрать другие вещества и способы приготовления из ГОСТ ISO 8586-1. ГОСТ ISO 3972.

5.7 Тестирование и обучение

Для допуска к проведению органолептического анализа необходимо проводить предварительное тестирование и обучение испытателей.

Выбор тестов, которые будут использоваться для проверки работников, осуществляется в соответствии с предстоящей работой.

Один из возможных вариантов предварительного тестирования и обучения приведен в приложении Б.

В лаборатории должна существовать процедура проверки обнаружения и распознавания запахов и вкусов испытателями. Данная процедура должна быть организована многократно, поскольку чувствительность к запахам и вкусам может меняться с течением времени.

5.8 Порядок проведения анализа

Характер запаха воды определяют по ощущению воспринимаемого запаха.

Запахи естественного происхождения определяют по классификации, например, приведенной в таблице А.1 приложения А.

Запахи искусственного происхождения классифицируют по названию тех веществ, запах которых они представляют, например, химический, хлорфенольный. камфорный, бензинный, хлорный, нефтяной и т. д.

5.8.1.2 Интенсивность запаха

Интенсивность запаха воды оценивают по пятибалльной системе согласно требованиям таблицы 1.

источник

Определение мутности питьевой воды. Органолептическая оценка качества воды – обязательная начальная процедура санитарно – химического контроля воды

Органолептическая оценка качества воды – обязательная начальная процедура санитарно – химического контроля воды. Органолептические наблюдения осуществляют с помощью органов чувств человека (зрение, обоняние, вкус). К органолептическим показателям относят запахи, вкусы и привкусы, мутность, цветность и прозрачность. Международные стандарты ИСО 6658 и другие устанавливают специальные требования к дегустаторам (лицам, привлекаемым к органолептической оценке) и методам проведения дегустации. Перед исследованием запаха или вкуса проводят предварительные испытания образца, свободного от посторонних запахов и привкусов, и такой образец шифрованным образом включается в серию анализируемых проб. При конкретной оценке органолептических показателей (т.е. с использованием таблиц, шкал, различных критериев сопоставления) специалисты говорят об органолептических измерениях. Определение органолептических показателей не ограничивается только интенсивностью их воздействия на органы чувств, а для ряда соединений указаны предельно допустимые концентрации (ПДК) их в воде, превышение которых ухудшает органолептические свойства воды. 1.1. Определение запаха и вкуса воды Запах и вкус природных вод зависят от ряда причин: температуры воды; газов, насыщающих воду; химического состава примесей. По характеру запахи делятся на 2 группы: — запахи естественного происхождения, причиной которых являются живущие и отмершие в воде организмы, загнивающие растительные остатки и т.д. Их описывают, придерживаясь следующей терминологии (табл.2). Таблица 2 Характер и обозначение запахов естественного происхождения
— запахи искусственного происхождения, вызываемые примесями некоторых промышленных сточных вод. Их называют по соответствующим веществам: фенольный, хлорфенольный, камфорный, бензинный, хлорный и т.д. Интенсивность запаха оценивают по 5-бальной шкале, приведенной в табл. 3 (ГОСТ 3351). Таблица 3 Шкала интенсивности запахов в воде

запах не замечаемый потребителем, но об-наруживаемый при тщательном исследовании (при нагревании воды)

потребителем, если обратить на это внимание

запах,легко обнаруживаемый; вода неприятна для питья

запах, настолько сильный что делает воду непригодной для питья

Чистые природные воды запахов не имеют. Вкус и привкус также определяют органолептически по 5-бальной шкале (ГОСТ 3351). Различают 4 вида вкуса: соленый, горький, сладкий, кислый. Остальные виды вкусовых ощущений называют привкусами (щелочной, железистый, металлический, вяжущий и др.) Вкус и запах воды, предназначенной для питьевых целей при 20С не должны быть более 2 баллов.Аппаратура: коническая колба 150 – 250 мл; часовое стекло; электроплитка. Материал: вода водоема. Ход определения. Исследуемой водой наполняют 2/3 объема колбы емкостью 150 – 250 мл, накрывают часовым стеклом и встряхивают вращательными движениями. Затем открывают колбу и определяют запах. Оценку интенсивности запаха проводят при 60 0 С, для чего воду в колбе нагревают. Определение вкусов и привкусов ведется с заведомо безопасной в эпидемиологическом отношении водой при 20 0 С. Воду набирают в рот малыми порциями и задерживают на 3 – 5 сек, не проглатывая. Отмечают наличие вкуса (соленый, горький, кислый, сладкий) или привкуса и их интенсивность в баллах по шкале, аналогично определению интенсивности запаха.

      . Определение цветности и окраски воды

Цветность – показатель качества воды, характеризующий интенсивность ее окраски и обусловленный содержанием окрашенных соединений. Цветностьприродных вод обусловлена наличием в воде гуминовых и фульвокислот, их солей и соединений железа. Ее определяют после предварительного отстаивания пробы. Можно определять цветность качественно (ГОСТ 1030), характеризуя цвет воды в пробирке высотой 10 – 12 см, рассматривая ее сверху на белом фоне при достаточном боковом освещении. Например, слабо-желтая, желтая, интенсивно-желтая, коричневая, красно-коричневая и т.д. Однако, чаще используют метод количественного определения цветности (ГОСТ 3351). Измерение проводят визуально- колориметрическим сравниванием цвета пробы со стандартным раствором, имитирующим природную цветность и приготовленным из бихромата калия и сульфата кобальта в разных соотношениях (табл. 4). Прямого соответствия между цветностью и количеством веществ, вызывающих окраску нет, поэтому степень цветности выражают не в мг/л, а в градусах хромово-кобальтовой шкалы. Предельно допустимая величина цветности в питьевых водах 20по хромово- кобальтовой шкале цветности. В отдельных случаях, по согласованию с органами санитарного надзора, допускается цветность до 35 0 . Материал : вода водоема.Ход определения . Приготавливают шкалу цветности, для чего смешивают раствор №1(0,0875 г K 2 Cr 2 O 7 + 2 г CoSO 4 7H 2 O + 1мл H 2 SO 4конц + дистиллированная вода до 1 л), который соответствует цветности 500 и раствор №2 (1 мл H 2 SO 4конц, доведенный дистиллированной водой до объема 1 л). Таблица 4 Соотношение растворов для приготовления шкалы цветности.

Растворы наливают в цилиндры емкостью 100 мл. и получают шкалу цветности.Шкалу хранят в темном месте и через 1 – 2 месяца ее заменяют. В цилиндр наливают 100 мл профильтрованной воды и сравнивают со шкалой цветности (рис.1), просматривая цилиндры сверху на белом фоне. У сточных вод определяют окраску, которая обусловлена, в основном, красителями, используемыми особенно широко на предприятиях легкой промышленности. Окраска определяется визуально в фильтрованных пробах в цилиндрах из бесцветного стекла (розовая, слабо- желтая, буроватая и т.д.), интенсивность окраски характеризуют степенью разбавления исследуемой воды дистиллированной, при которой окраска исчезает. Цилиндры, в которые наливают исследуемую и дистиллированную воду просматривают сверху на белом фоне. Результат записывают отношением, например, 1: 500 (1 часть исследуемой пробы, 500 — сумма 499 частей разбавляющей воды и 1 части исследуемой). Рис. 1. Цилиндры для колориметрирования Цветность можно более точно определить на фотоколориметре. Для этого строят градуировочный график по хромово-кобальтовой шкале цветности. Растворы с различной цветностью фотометрируют в кювете на 5 см в синей части спектра относительно профильтрованной дистиллированной воды.

      Определение мутности воды

Мутность природных вод обусловлена присутствием нерастворимых и коллоидных веществ неорганического (глина, песок, гидроксид железа) и органического (илы, микроорганизмы, планктон, нефтепродукты) происхождения. Качественное определение степени мутности проводят визуально- по степени мутности столба высотой 10 – 12 см в мутномерной пробирке. Пробу описывают следующим образом: прозрачная; слабо опалесцирующая; опалесцирующая; слабо мутная; мутная; очень мутная (ГОСТ 1030) Количественно мутность определяют фотометрически: турбидиметрически — по ослаблению проходящего света или нефелометрически – по светорассеянию в отраженном свете (ИСО 7027). Для этого сравнивают пробу со стандартным раствором, мутность которого создается внесением в дистиллированную воду стандартной суспензии диоксида кремния SiO 2 или каолина (тонкодисперсной породы продуктов выветривания полевых шпатов) . Результаты выражают в мг/л. Мутность питьевой водысогласно санитарным нормам, действующим в нашейстране не должна превышать 1,5 мг/л по каолину.Аппаратура, реактивы: фотоэлектроколориметр; цилиндр на 100 мл; стандартные суспензии каолина. Материал: вода водоема. Ход определения . Мутность воды определяют турбидиметрически путем сравнения проб исследуемой воды со стандартными суспензиями (0,1; 0,2; 0,3; 0,4; 0,5; 1,0; 1,5, 5,0 мг/л каолина). По оптическим плотностям стандартных суспензий и соответствующим им концентрациям строят калибровочный график. Для измерений используют ФЭК с зеленым светофильтром.

      Определение прозрачности воды

Прозрачность, или светопропускание воды обусловлена ее цветом и мутностью, т.е. содержанием в ней различных окрашенных и минеральных веществ. Прозрачность определяют наряду с мутностью, особенно в тех случаях, когда вода имеет незначительную окраску и мутность, которые затруднительно обнаружить. Прозрачность определяют в цилиндрах из бесцветного стекла высотой 30 – 50 см с плоским дном (рис.2). Мерой прозрачности служит высота столба воды, через который можно прочитать текст , напечатанный специальным шрифтом (средней жирности, высотой 3,5 мм) или же четко видеть крест, нанесенный черными линиями толщиной 1 мм (ИСО 7027).Результаты выражают в сантиметрах с указанием способа измерения (“по шрифту Снеллена» или “по кресту”). Воды, подаваемые для питьевого водоснабжения должны иметь прозрачность не менее 30 см.Аппаратура: цилиндр с плоским дном; шрифт, высота букв которого составляет 3,5 мм, а ширина линий букв – 0,35 мм. Материал : вода водоема. Ход определения. Исследуемую воду наливают в цилиндр, который устанавливают на высоте 4см над штифтом и через краник сливают воду до тех пор, пока можно будет прочитать отдельные слова текста. Рис. 2 Цилиндр для определения прозрачности воды Таблица 5 Взаимосвязь прозрачности с содержанием взвешенных веществ При содержании взвешенных веществ менее 3мг/л определение прозрачности становится затруднительным из-за применения цилиндра большой высоты. В этом случае определяют величину, обратную прозрачности – мутность воды (см. раздел 1.3). Прозрачность природных вод также определяют по опускаемой в водоем белой пластине определенных размеров, известной как диск Секки (ИСО 7027). Диск Секки представляет собой диск, отлитый из бронзы, покрытый белой краской и прикрепленный к цепи (шнуру).диск обычно имеет диаметр 200 мм с шестью отверстиями, каждое диаметром 55 мм, расположенными по кругу диаметром 120 мм. Его опускают в воду настолько, чтобы он был едва заметен. Измерения проводят с моста, обрывистого берега или наклонных над водой деревьев. Контрольные вопросы

  1. Как производится определение физических и органолептических свойств воды? Что такое балльная система оценки вкуса и запаха? Как определяются прозрачность, мутность и цветность воды? При определении цветности воды ее окраска совпала с 5-м цилиндром хромовокобальтовой шкалы. Какова цветность воды и соответствует ли она нормам? Какой из показателей качества воды определяют с помощью текста, напечатанного специальным шрифтом? Какому баллу соответствует заметная интенсивность запаха питьевой воды? Какая цветность и прозрачность допускается нормативами для питьевой воды? Дайте гигиеническую оценку органолептическим свойствам воды из шахтного колодца: прозрачность – более 30 см, цветность – 30 0 , запах и вкус – землистые, 2 балла. Для чего при определении показателей качества воды используется каолин? Какой из показателей качества воды характеризуется степенью разбавления исследуемой воды дистиллированной?

Работа №2. Определение в воде взвешенных и оседающих веществ и сухого остатка

      Определение в воде взвешенных веществ

Взвешенные вещества (грубодисперсные примеси) – количество загрязнений, которые задерживаются на бумажном фильтре при фильтрации пробы. Они представляют частицы глины, песка, ила, планктона и различных микроорганизмов. Для фильтрования загрязненных вод используют фильтры типа “ белая лента” или “синяя лента”, а при исследовании воды с загрязнением не более 25 мг/л – тонкие мембранные фильтры. Аппаратура: аналитические весы; сушильный шкаф; фильтры. Материал : вода водоема. Ход определения. Фильтр со взвешенными веществами высушивается при 105 0 С до постоянной массы, количество примесей определяют гравиметрическим методом по разнице массы фильтра до и после фильтрации. Этот показатель используют для расчета отстойников и определения количества образующихся осадков. В городских сточных водах концентрация взвешенных веществ достигает 100 — 500 мг/л.

      Определение в воде оседающих веществ

Оседающие вещества – часть взвешенных веществ, которые оседают на дно отстойного цилиндра за 2 часа отстаивания. Время отстаивания определено экспериментально и является оптимальным. Осадок характеризуют по следующим параметрам: — нет, незначительный, заметный, большой с указанием толщины слоя в мм; — хлопьевидный, илистый, песчаный; — по цвету: серый, бурый, черный и т.д. Аппаратура: цилиндры Лысенко (рис. 3) объемом 0,5 или 1 л, нижняя часть их представляет пробирку с тонкой градуировкой до 0,1 мл. Материал : вода водоема. Ход определения. Исследуемую воду наливают в цилиндр Лысенко и через 2 часа отстаивания характеризуют осадок по внешнему виду и указывают толщину слоя в мм. Затем осадок переносят в стакан и определяют оседающие вещества по массе также как и взвешенные вещества. В городских сточных водах оседающие вещества составляют 65-75% взвешенных веществ по массе. Рис. 3. Цилиндр Лысенко 2.3. Определение сухого остаткаСухой остаток характеризует общее содержание в воде растворенных минеральных и частично органических веществ, температура кипения которых превышает 105 — 110 0 С, нелетучих с водяным паром и не разлагающихся при этой температуре. В водоемах — источниках водоснабжения сухой остаток не должен превышать 1000 мг/л. Употребление человеком воды с повышенным солесодержанием вызывает различные заболевания. Лишь в отдельных случаях, по согласованию с органами санитарно-эпидемиологической службы допускается его содержание до 1500 мг/л. Сухой остаток определяют гравиметрическим методом, основанном на определении веса высушенного остатка, полученного после выпаривании пробы. Перед определением пробу необходимо фильтровать либо отстаивать для отделения от взвешенных веществ. Аппаратура: муфельная печь; тигли; мерный цилиндр; аналитические весы. Материал : вода водоема. Ход определения. Пробы воды выпаривают и высушивают остаток при 110 0 С до постоянной массы. Величину сухого остатка (в мг/л) вычисляют по формуле: М СО =

, где: М 1 , М 2 – масса тигля с сухим остатком и пустого тигля, мг V – объем воды, взятой для определения, мл 10 6 – коэффициент пересчета единиц измерения из г/мл в мг/л. Для многих технологических целей определяют потери при прокаливании и зольность (%). Зольность характеризует содержание примесей, не улетучивающихся при температуре «красного каления». Для этого проводят прокаливание при температуре 500 – 600 0 С. Выгорают, т.е. улетучиваются в виде оксидов, углерод, водород, азот, сера и другие примеси. Остаток, называемый золой, после охлаждения взвешивают. Потери при прокаливании — это абсолютное количество улетучившихся примесей (мг/л).

4. Ограничение срока действия снято по протоколу N 4-93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 4-94)

5. ИЗДАНИЕ (сентябрь 2003 г.) с Изменением N 1, утвержденным в феврале 1985 г. (ИУС 5-85)

Настоящий стандарт распространяется на питьевую воду и устанавливает органолептические методы определения запаха, вкуса и привкуса и фотометрические методы определения цветности и мутности.

1.1. Отбор проб — по ГОСТ 24481 *.

________________
* На территории Российской Федерации действует ГОСТ Р 51593-2000 .

1.2. Объем пробы воды не должен быть менее 500 см.

1.3. Пробы воды для определения запаха, вкуса, привкуса и цветности не консервируют. Определение производят не позднее чем через 2 ч после отбора пробы.

источник