Меню Рубрики

Метод анализа воды на хлор

Йодометрический метод

Метод основан на окислении йодида активным хлором до йода, который титруют тиосульфатом натрия. Окислы, содержащиеся в воде, выделяют йод из йодистого калия, поэтому пробы воды подкисляют буферным раствором с рН 4,5.

Йодометрический метод предназначен для анализа воды с содержанием активного хлора более 0,3 мг/л. Метод может использоваться также для окрашенных и мутных вод.

Используемые реактивы и оборудование.

· Колбы конические с притертыми крышками вместимостью 250 мл.

· Калий йодистый KJ по ГОСТ 4232 х.ч., 10% водный раствор.

· Натрий серноватистокислый (тиосульфат натрия) Na2S2O3 водный по ТУ 6-09-2540, 0,005 н раствор.

· Крахмал водорастворимый по ГОСТ 10163, 0,5%-ный раствор, приготовленный по ГОСТ 4919.1.

· Вода дистиллированная по ГОСТ 6709-72.

В 3 конические колбы с притертой пробкой вместимостью 250 мл вносят:

· 100 мл анализируемой водопроводной воды

· 5 мл 10%-ного раствора йодистого калия

· 5 мл ацетатной буферной смеси.

Содержимое колбы перемешивают. Выделившийся йод титруют 0,005 н. раствором серноватистокислого натрия до светло-желтой окраски, после чего прибавляют 1 мл 0,5%-ного раствора крахмала и раствор титруют до исчезновения синей окраски.

Результаты занести в таблицу

№ пробы Начальный объем серноватистокислого натрия в бюретке Vнач Конечный объем серноватистокислого натрия в бюретке Vкон V= Vкон-Vнач
V ср=

Обработка результатов.

Концентрацию Сах в мг/л вычисляют по формуле:

Сах =

где: V – средний объем 0,005 н. раствора серноватистокислого натрия, израсходованный на титрование пробы воды, мл; N – эквивалентная концентрация рабочего раствора серноватистокислого натрия; 35,45 – эквивалентная масса хлора, Vв — объем анализируемой пробы воды, мл.

За результат анализа принимают среднее арифметическое трех параллельных определений.

Сделайте вывод о соответствии полученной концентрации остаточного хлора в воде ПДК ГОСТ 2874-82

1. Приготовление 10%-ного раствора йодистого калия: 10 г йодистого калия растворяют в 90 мл свежеприготовленной и охлажденной дистиллированной воды.

2. Приготовление раствора буферной смеси: 102 1М уксусной кислоты ( 60г уксусной кислоты в 1 л воды) и 98 1М раствора уксуснокислого натрия (136,1 г уксуснокислого натрия в 1 л воды) наливают в мерную колбу вместимостью 1 л и доводят до метки дистиллированной водой.

3. Приготовление 0,1н раствора раствора серноватистокислого натрия: 25 г тиосульфата натрия растворяют в дистиллированной воде, добавляют 0,2 г углекислого натрия ( Na2CO3)доводят объем до 1л. Приготовление 0,005н раствора раствора серноватистокислого натрия: 50 мл 0,1 н раствора тиосульфата натрия разбавляют дистиллированной водой, добавляют 0,2 г углекислого натрия ( Na2CO3). доводят объем до 1л.

Определение свободного остаточного хлора титрованием метиловым оранжевым

Метод основан на окислении свободным хлором метилового оранжевого, в отличии от хлораминов, окислительный потенциал которых недостаточен для разрушения метилового оранжевого.

Используемые реактивы и оборудование.

· Колбы конические с притертыми крышками вместимостью 250 мл.

· Кислота соляная по ГОСТ 3118-67 плотностью1,19 г/см 3 .

· Метиловый оранжевый по ГОСТ 10816-64

· Вода дистиллированная по ГОСТ 6709-72.

Приготовление 0,005-ного раствора метилового оранжевого: 50 мг метилового оранжевого растворяют в дистиллированной воде, доводят до объема 1 л. 1 мл этого раствора соответствует 0,0217 мг свободного хлора.

Приготовление 5 н раствора соляной кислоты: в мерную колбу наливают дистиллированную воду, затем медленно добавляют 400 мл соляной кислоты и доводят дистиллированной водой до 1 л.

1. Заполнить бюретку 0,005 н раствором метилового оранжевого.

2. В 3 колбы отмерить по 100 мл анализируемой воды мерным сосудом.

3. Добавить в одну из колб с анализируемой водой 2-3 капли 5 н раствора соляной кислоты, перемешать.

4. Быстро оттитровать воду раствором метилового оранжевого до появления неисчезающей розовой окраски.

5. Повторить п.п 3 и 4 для двух оставшихся колб с анализируемыми пробами.

6.Полученные данные занести в таблицу

№ пробы Начальный объем метилового оранжевого в бюретке Vнач Конечный объем метилового оранжевого в бюретке Vкон Vмо= Vкон-Vнач
Vмо ср=

Обработка результатов

Содержание свободного остаточного хлора Сах в мг/л вычисляют по формуле

гдеVмо – объем раствора метилового оранжевого, израсходованного на титрование, мл;

0,0217 – титр раствора метилового оранжевого;

0,04 – эмпирический коэффициент;

Vв – объем воды, взятый для анализа, мл

Сделайте вывод о соответствии полученной концентрации остаточного хлора в воде ПДК ГОСТ 2874-82

источник

Принцип метода основан на взаимодействии хлора с йодидами калия в кислой среде. Активный остаточный хлор разлагает йодид калия, а выделившийся йод в количестве, эквивалентном содержанию хлора, оттитровывают раствором тиосульфата (гипосульфита) натрия в присутствии крахмала.

Концентрированная соляная кислота;

0,01 н. р-р тиосульфита натрия;

Ход анализа. В стакан наливают 200 мл хлорированной воды, прибавляют 1 мл соляной кислоты, 1 мл 5% раствора йодида калия и 1 мл 1% раствора крахмала. Посиневшую воду титруют 0,01 н. раствором тиосульфита натрия до полного обесцвечивания.

В полевых условиях титруют из пипетки с точным подсчетом капель, в лаборатории титруют из бюретки.

В лаборатории расчет ведется по формуле:

Х- количество остаточного хлора в 1 л хлорированной воды, мг;

а — количество 0,01 н. раствора тиосульфита натрия, пошедшего на титрование, мл;

5 — коэффициент для проведения к 1 л;

0,355 — количество мг хлора, соответствующее 1 мл 0,01 н. раствора тиосульфита натрия.

b — количество капель в 1 мл 0,01 н. раствора тиосульфита натрия в применяемой пипетке.

По саннормативу концентрация остаточного хлора в питьевой воде должно быть не менее 0,3 и не более 0,5 мг/л.

Дехлорированием называют процесс инактивирования хлора в воде. Проводят дехлорирование для предупреждения токсического воздействия свободного хлора на организм человека и животных.

Обеззараживание воды высокими дозами хлора требует обязательного дехлорирования с таким расчетом, чтобы содержание остаточного хлора после дехлорирования составляло 0,3-0,5 мг/л.

Для дехлорирования обычно применяют тиосульфат натрия. При количестве остаточного хлора в воде больше 0,5 мг/л расчет ведут по формуле:

Х- количество тиосульфата натрия, необходимое для дехлорирования 1 л воды, мг;

а — количество 0,1 н. раствора тиосульфита натрия, пошедшее на титрование остаточного хлора в 200 мл воды;

5 — коэффициент для привидения к 1 л;

0,355 — количество хлора, эквивалентное 1 мл 0,01 н. раствора тиосульфата натрия;

2,48 — содержание тиосульфита натрия в 1 мл 0,01 н. раствора, мг.

При количестве остаточного хлора менее 0,5 мг/л расчет ведут по формуле:

9.ТРЕБОВАНИЯ К КАЧЕСТВУ ВОДЫ НЕЦЕНТРАЛИЗОВАННОГО ВОДОСНАБЖЕНИЯ. ОПРЕДЕЛЕНИЕ ОБЩЕЙ ТОКСИЧНОСТИ ВОДЫ

Цель занятия: познакомиться с нормативами СанПиН(а) 2. 1.4.1175-02, методикой определения общей токсичности воды.

Воду из нецентрализованных источников ( колодцев, озер и прочие), не подвергнутой очистке и обеззараживанию, которые обязательны для водопроводной воды, оценивают по нормативам СанПиН(а) 2.1.4.1175-02. «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников».

По своему составу вода нецентрализованного водоснабжения должна соответствовать нормативам, приведённым в таблице 14.

Требования к качеству воды нецентрализованного водоснабжения.

ЕМФ (единицы мутности по формазину)

Общая минерализация (сухой остаток)

Химические вещества неорганической и органической природы

Общие колиформные бактерии

Число бактерий в 100 мл 30

число образующих колонии микробов в 1 мл

Термотолетарные колиформные бактерии*

число бляшкообразующих единиц в 100 мл

*при отсутствии общих колиформных бактерий проводится определение глюкозоположительных колиформных бактерий (БГКП) с постановкой оксидазного теста;

**дополнительные показатели в соответствии с примеч. 1

1. В зависимости от местных природных и санитарных условий, а также эпидемической обстановки в населенном месте, перечень контролируемых показателей качества воды, приведенных в п. 4.1, расширяется по постановлению Главного государственного санитарного врача по соответствующей территории с включением дополнительных микробиологических и (или) химических показателей.

2. На территориях, официально признанных зонами радиационного загрязнения, качество воды в источниках нецентрализованного водоснабжения по показателям радиационной безопасности оценивается в соответствии с СанПиН 2.1.4.1074-01 (зарегистрированы в Минюсте РФ 31 октября 2001 г. Регистрационный № 3011).

Требования к качеству воды, расходуемой для приготовления кормов должны быть такие же, как и к используемой для поения животных.

Вода для очистки и дезинфекции помещений, инвентаря, ухода за животными, как и для поения, должна быть качественной. Это связанно с тем, что растворимость дезинфицирующих средств зависит от уровня ее минерализации. Очень жесткая вода способствует образованию в организме почечных, желчных и других камней, кроме того, из-за быстро выводится из строя водонагревательное оборудование.

В отдельных районах страны с солончаковыми грунтами, содержащими гипс, вода отличается высокой минерализацией, в этих местностях допускается применять воду для поения животных со следующим предельным содержанием минеральных веществ (табл. 15).

источник

Во многих областях Украины водопроводная вода обрабатывается хлором. Хлорирование воды – распространённая практика в коммунальном хозяйстве, так как позволяет дезинфицировать воду и избежать размножения инфекций. Многие считают, что единственный недостаток хлорированной воды – неприятный запах. Но превышение хлоридов в воде может негативно отразиться на здоровье. Именно поэтому в спорных случаях необходим анализ воды на хлор. Почему норма хлоридов в питьевой воде может быть превышена и насколько это опасно – узнаете из нашей статьи.

Хлор – один из элементов необходимых для нормальной жизнедеятельности человеческого организма. Дефицит хлора может спровоцировать общую слабость, снижение давления, ухудшение аппетита и т.п. В основном суточная потребность в хлоридах восполняется организмом за счёт обыкновенной поваренной соли. Содержится хлор и в ряде продуктов нашего повседневного рациона (хлеб, масло, сыр, яйца и т.п.). Также хлор может попадать в организм и с питьевой водой. Предельно допустимая концентрация хлоридов в воде устанавливается по органолептическому показателю – вкусовым качествам. При концентрации хлорида натрия больше 250 мг/л вода уже имеет солоноватый вкус. А вот хлоридов кальция или магния для такого же эффекта нужно не менее 1000 мг/л. Усреднённая норма хлоридов в питьевой воде составляет не более 250 мг/л. (В отдельных случаях, связанных с природными условиями и технологией подготовки воды в Украине до 2020 года допускается концентрация до 350 мг/л).

Если же анализ воды на хлор показывает превышение нормы, употребление её может негативно отразиться на здоровье.

Вообще, хлориды в воде в природе содержатся как в поверхностных, так и в грунтовых водах. В коммунальном хозяйстве хлор широко применяется для дезинфекции воды и уничтожения бактерий, но вместе с тем это достаточно опасное токсичное вещество. Среди наиболее распространённых хлоридов: хлорид натрия (обычная поваренная соль), хлорид водорода, хлорид магния, диоксид хлора и т.д. Анализ воды на хлориды и хлор обязательно входит в перечень показателей химического анализа, помогающего определить качество воды. С одной стороны, хлор эффективно борется с бактериями и решает проблему чистоты воды. Но, в то же время, в воде после добавления хлора могут возникать так называемые тригалометаны. Это токсины, которые образуются при реакции хлора с природными элементами в воде. Вот эти-то вещества, попадая в наш организм с водопроводной водой, могут привести к серьёзным проблемам со здоровьем. Например, таким как:

  • астма
  • кожные заболевания
  • заболевания сердечнососудистой системы

Но самое опасное, что эти вещества являются канцерогенами и провоцируют развитие онкологических заболеваний. Украинские учёные пришли к выводу, что для оценки концентрации тригалометанов, которые образуются в процессе водоподготовки, можно использовать такой показатель как общий органический углерод. Он также, как и хлориды, определяется при химическом анализе воды.

Если анализ воды на хлориды и хлор показал превышение нормы, то опасно не только пить такую воду, но и купаться в ней. Поскольку хлор легко проникает в организм и через кожу.

Повышенное содержание хлора и хлоридов в воде не только делает её неприятной на вкус, при этом она становится практически непригодной для многих хозяйственных нужд (в частности, для полива).

Существенное превышение хлоридов в воде говорит о том, что, скорее всего, где-то была нарушена технология водоподготовки. Поскольку постоянное использование воды с превышенным уровнем хора может негативно отразиться на здоровье, не лишним будет перестраховаться и при малейшем подозрении сдать воду на анализ. Заподозрить неладное можно, например, если вы почувствовали, что характерный запах хлора усилился.

При заборе пробы для анализа воды на хлор обратите внимание, что для получения объективных результатов образец должен оказаться в лаборатории максимум через два часа.

Что же делать, если лабораторные исследования подтвердили превышение хлоридов в воде? Сразу отметим, что кипячение никоим образом не помогает снизить уровень хлора. Более того, при нагревании хлор реагирует с солями находящимися в воде и образует ещё более опасные вещества. Поэтому к способам, которые «реально работают» стоит отнести два:

  • отстаивание (хлор очень летучий и на воздухе его содержание в воде резко снижается)
  • фильтрация

Это может показаться парадоксальным, но даже установка недешёвого фильтра окупится достаточно быстро. Не говоря уже об удобстве. Ведь отстаивать воду для того, чтобы принять ванну – занятие хлопотное, а покупка бутилированной воды для питья и готовки влетит «в копеечку». При этом с проблемой избыточного хлора справляются даже недорогие угольные фильтры.

Заботьтесь о здоровье и следите за качеством питьевой воды!

источник

Требования к умениям бакалавров

Формирование знаний о основных приемах анализа параметров гидросферы

2. Систематизация знаний о физико-химических методах анализа

3. Формирование знаний по оценке современного состояния отдельных геосфер или их частей, прогноза изменения их состояния в условиях антропогенного воздействия, разработки мероприятий по снижению уровня воздействия на геосферы или их составные части.

4. готовность использовать основные методы защиты от возможных последствий аварий, катастроф, стихийных бедствий (ОК-11);

Проведение анализа воды из различных источников (водопроводная, артезианская, родниковая)

Обработка результатов анализа

Работа с вопросами и расчетными задачами

Основы метода редоксометрии

Технику безопасности при работе в химической лаборатории

Негативное влияние примесей в воде на биоту

Решать задачи по соответствующему разделу

Проводить количественный анализ

1. Сущность метода

Метод основан на окислении йодида активным хлором до йода, который титруют тиосульфатом натрия. Озон, нитриты, окись железа и другие соединения в кислом растворе выделяют йод из йодистого калия, поэтому пробы воды подкисляют буферным раствором с pH 4,5.

Йодометрический метод предназначен для анализа воды с содержанием активного хлора более 0,3 мг/л при объеме пробы 250 мл. Метод может быть рекомендован также для окрашенных и мутных вод.

Читайте также:  Количественный анализ на хлор в воде

Посуда мерная лабораторная стеклянная по ГОСТ 1770, ГОСТ 29169 и ГОСТ 29251, вместимостью: колбы 100 и 1000 см 3 ; пипетки без делений 5, 10, 25 см 3 ; бюретка с краном 25, 50 см 3 ; микробюретка 5 см 3 , колбы конические с пришлифованными пробками вместимостью 250 см 3 по ГОСТ 25336, калий йодистый по ГОСТ 4232, х. ч. в кристаллах, вода дистиллированная по ГОСТ 6709, хлороформ (трихлорметан), кислота салициловая, кислота уксусная ледяная по ГОСТ 61, калий двухромовокислый по ГОСТ 4220, кислота серная по ГОСТ 4204, крахмал растворимый по ГОСТ 10163, натрий углекислый кристаллический по ГОСТ 84, натрий серноватистокислый (тиосульфат натрия) по ГОСТ 27068, все реактивы, используемые в анализе, должны быть квалификации чистые для анализа (ч. д. а.).

3. Подготовка к анализу

3.1. Приготовление 0,1 н раствора серноватистокислого натрия 25 г тиосульфата натрия Na2S2O3 · 5H2O растворяют в свежепрокипяченной и охлажденной дистиллированной воде, добавляют 0,2 г углекислого натрия (Nа2СО3) и доводят объем до 1 дм 3 .

3.2. Приготовление 0,01 н раствора серноватистокислого натрия 100 см 3 0,1 н раствора тиосульфата натрия разбавляют свежепрокипяченной и охлажденной дистиллированной водой, добавляют 0,2 г углекислого натрия и доводят раствор до 1 дм 3 . Раствор применяют при содержании активного хлора в пробе более 1 мг/дм 3 .

3.3. Приготовление 0,005 н раствора серноватистокислого натрия 50 см 3 0,1 н раствора тиосульфата натрия разбавляют свежепрокипяченной и охлажденной дистиллированной водой, добавляют 0,2 г углекислого натрия и доводят раствор до 1 дм 3 . Раствор применяют при содержании активного хлора в пробе менее 1 мг/дм 3 .

3.4. Приготовление 0,01 н раствора калия двухромовокислого 0,4904 г двухромовокислого калия К2Сr2О7, взвешенного с точностью до ± 0,0002 г, перекристаллизованного и высушенного при 180 °C до постоянной массы, растворяют в дистиллированной воде и доводят объем до 1 дм 3 .

3.5. Приготовление 0,5 %-ного раствора крахмала 0,5 г растворимого крахмала смешивают с небольшим объемом дистиллированной воды, приливают к 100 мл кипящей дистиллированной воды и кипятят несколько минут. После охлаждения консервируют, добавляя хлороформ или 0,1 г салициловой кислоты.

3.6. Приготовление буферного раствора pH 4,5 102 см 3 1 М уксусной кислоты ( 60 г ледяной уксусной кислоты в 1 дм 3 воды) и 98 см 3 1 М раствора уксуснокислого натрия (136,1 г уксуснокислого натрия СН3СОONа · 3Н2О в 1 дм 3 воды) наливают в мерную колбу вместимостью 1 дм 3 и доводят до метки дистиллированной водой (предварительно прокипяченной и охлажденной до 20 °C, свободной от двуокиси углерода).

3.7. Поправочный коэффициент 0,01 н раствора серноватисто-кислого натрия определяют по 0,01 н раствору двухромовокислого калия следующим образом: в коническую колбу и с пришлифованной пробкой помещают 0,5 г йодистого калия, проверенного на отсутствие йода, растворяют в 2 см 3 дистиллированной воды, прибавляют 5 см 3 серной кислоты (1:4), затем 10 см 3 0,01 н раствора двухромовокислого калия, добавляют 80 см 3 дистиллированной воды, закрывают колбу пробкой, перемешивают и ставят в темное место на 5 мин. Выделившийся йод титруют тиосульфатом натрия в присутствии 1 см 3 крахмала, прибавленного в конце титрования.

Поправочный коэффициент (K) (0,01; 0,005 н растворов серноватистокислого натрия) вычисляют по формуле

где v — количество серноватистокислого натрия, израсходованное на титрование, мл.

4. Проведение анализа

В коническую колбу насыпают 0,5 г йодистого калия, растворяют его в 1 — 2 см 3 дистиллированной воды, затем добавляют буферый раствор в количестве, приблизительно равном полуторной величине щелочности анализируемой воды, после чего добавляют 250 — 500 см 3 анализируемой воды. Выделившийся йод оттитровывают 0,005 н раствором тиосульфата натрия из микробюретки до появления светло-желтой окраски, после чего прибавляют 1 мл 0,5 %-ного раствора крахмала и раствор титруют до исчезновения синей окраски. При определении щелочности воду предварительно дехлорируют с помощью тиосульфата натрия в отдельной пробе.

При концентрации активного хлора менее 0,3 мг отбирают для титрования большие объемы воды.

4. Обработка результатов

Содержание суммарного остаточного хлора (X), мг/дм 3 вычисляют по формуле

где v — количество 0,005 н раствора тиосульфата натрия, израсходованное на титрование, см 3 ;

K — поправочный коэффициент нормальности раствора тиосульфата натрия;

0,177 — содержание активного хлора, соответствующее 1 см 3 0,005 н раствора тиосульфата натрия;

V — объем пробы воды, взятый для анализа, см 3 .

1. Сущность метода

Метод основан на окислении свободным хлором метилового оранжевого, в отличие от хлораминов, окислительный потенциал которых недостаточен для разрушения метилового оранжевого.

Посуда мерная лабораторная стеклянная по ГОСТ 1770 и ГОСТ 29251 вместимостью: колбы мерные 100 и 1000 см 3 ; микробюретка с краном 5 см 3 , капельница по ГОСТ 25336, чашки фарфоровые выпарительные по ГОСТ 9147, кислота соляная по ГОСТ 3118, плотностью 1,19 г/см 3 , метиловый оранжевый (пара-диметиламино-азобензолсульфокислый натрий) по ТУ 6-09-5171, вода дистиллированная по ГОСТ 6709, все реактивы, применяемые для анализа, должны быть квалификации чистые для анализа (ч. д. а.).

3. Подготовка к анализу

3. 1. Приготовление 0,005 %-ного раствора метилового оранжевого 50 мг метилового оранжевого растворяют в дистиллированной воде в мерной колбе и доводят дистиллированной водой до 1 дм 3 . 1 см 3 этого раствора соответствует 0,0217 мг свободного хлора.

3. 2. Приготовление 5 н раствора соляной кислоты. В мерную колбу наливают дистиллированную воду, затем медленно добавляют 400 см 3 соляной кислоты HCl и доводят дистиллированной водой до 1 дм 3 .

4. Проведение анализа

100 мл анализируемой воды помещают в фарфоровую чашку, добавляют 2 — 3 капли 5 н раствора соляной кислоты и, помешивая, быстро титруют раствором метилового оранжевого до появления неисчезающей розовой окраски.

5. Обработка результатов

Содержание свободного остаточного хлора (X1), мг/л, вычисляют по формуле

где v — количество 0,005 %-ного раствора метилового оранжевого, израсходованного на титрование, см 3 ;

0,0217 — титр раствора метилового оранжевого;

0,04 — эмпирический коэффициент;

V — объем воды, взятый для анализа, см 3 .

По разности между содержанием суммарного остаточного хлора, определенного методом титрования, метилоранжевым, находят содержание хлораминового хлора (Х2)

Контрольные вопросы и задачи.

1. По какой причине для обеззараживания воды используется хлор. Ответ обосновать.

2. Написать уравнения реакций галогенов с водой.

3. Может ли свободный хлор в воде окислить ионы Fe 2+ , Fe 3+ ?

Методический инструментарий преподавателя:

-активные формы: фронтальный опрос.

Средства контроля: Тест № (см. фонд оценочных средств)

Содержание внеаудиторной работы бакалавра при подготовке к занятию

1. Владеть содержанием вопросов (по лекции).

2. Законспектировать вопрос о методах очистки воды.

3. Подготовиться к диагностической самостоятельной работе в форме опроса и теста

4. Изучить термины по данной теме

1. Голдовская Л.Ф. Химия окружающей среды. — М.: МИР, 2005. — 294 с. (Библиотека УлГПУ)

2. Гусакова Н.В. Химия окружающей среды: учебное пособие для вузов. — Ростов на Дону: Феникс, 2004. — 84 с. (Библиотека УлГПУ)

3. Голицын А.Н. Промышленная экология и мониторинг загрязнения природной среды. — М.: ОНИКС, 2010. — 336 с. (Электронный ресурс.- Режим доступа: http://www.knigafund.ru/books/42468)

4. Хентов В.Я. Химия окружающей среды для технических вузов: учеб. пособие. — Ростов на Дону: Феникс, 2005. – 141 с. (Библиотека УлГПУ)

5. Тарасова Н. П. Химия окружающей среды. Атмосфера: учеб. пособие для вузов. — М.: Академ.книга, 2007. — 227 с. (Библиотека УлГПУ).

Лабораторная работа №5 (2 часа)

Дата добавления: 2014-01-04 ; Просмотров: 4055 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Свободный хлор- хлор, присутствующий в воде в виде хлорноватистой кислоты ион гипохлоритов или растворенного элементарного хлора.

Связанный хлор-часть общего хлора присутствующая в воде в виде хлораминов и органических хлораминов.

Общий хлор— хлор, присутствующий в воде в виде свободного хлораили связанного или обоих вместе.

Хлорамины- производные аммиака, образованные путём замещения одного, двух или трех атомов водорода атомами хлора (монохлорамин NH2Cl, дихлорамин NHCl2 , трихлорид азота NCl3) и все хлорированные производные соединения органического азота определённые по ИСО 7393-1

Термины и их синонимы, относящиеся к соединениям хлора в воде

Элементарный хлор, хлорноватистая кислота

Потенциально свободный хлор

Элементарный хлор, хлорноватистая кислота, гипохлорит, хлорамины

ИСО 7393-1 устанавливает титриметрический метод с использованием N2N-диэтил-1,4-фенилендиаминсульфата (ЦПВ-1) для определения свободного и общего хлора в воде (от 0,0004 до 0,07 ммоль/л или от 0,03 до 5 мг/л).

Морская вода и вода, содержащая бромиды и йодиды, составляют группу веществ, для анализа которых необходимы особенные методики.

Данный метод применяют для обычных концентраций общего хлора в питьевой воде в пересчете на хлор (Cl2),а при более высоких концентрациях контроль проводят путем разбавления проб.

Для концентраций свыше 0,07 ммоль/л можно применять метод, описанный в ИСО 7393-3

Сущность метода заключается во взаимодействии свободного хлора с ЦПВ-1 с образованием при рН 6,2-6,5 соединения красного цвета. Затем проводят титрирование соединения стандартным раствором соли Мора до исчезновения красного цвета.

Вода, не содержащая окисляющих и восстанавливающих веществ. Чтобы получить воду нужного качества, деминерализованную или дистиллированную, воду сначала хлорируют до концентрации хлора 0,14 ммоль/л (10 мг/л) и хранят в плотно закрываемой стеклянной бутыли для кислот. Затем воду дехлорируют ультрафиолетовым излучением или солнечным светом в течение нескольких часов или активированным углём. Окончательно проверяют качество, применяя методику описанную ниже:

в две конические колбы вместимостью 250 мл помещают последовательно: а) в первую — 100 мл воды, качество которой нужно определить, и около 1 г иодида калия; перемешивают и через 1 мин добавляют 5 мл буферного раствора или 5 мл реактива ЦВП-1.

б) во вторую — 100 мл воды, качество которой необходимо проверить, добавив одну или две капли раствора гипохлорита натрия, затем через 2 мин 5 мл буферного раствора или 5 мл реактива ЦВП-1.

В первой колбе не должно происходить окрашивание, в то время как во второй появляется бледно-розовая окраска.

Буферный раствор рН 6,5 . Последовательно растворяют в воде 24 г безводного двухзамещенного фосфорита натрия (Na2 НPO4) или 60,5 г двенадцативодного двухзамещенного фосфорита натрия (Na2 PO4 *12H2O) или 46 г однозамещенного фосфата калия (KH2PO4). Добавляют 100 мл раствора трилона Б концентрацией 8 г/л (или 0,8 г твердого вещества).

Если нужно добавляют 0,020 г хлорида ртути (II)(HgCl2), чтобы предотвратить рост плесени и мешающее влияние следов иодида в реактивах при проведении испытаний на имеющийся свободный хлор.

Полученный раствор разбавляют до 1 л перемешивают.

Раствор ЦВП-1, 1,1 г/л. Смешивают 250 мл воды, 2,1 мл серной кислоты (g=1,84) и 25 г раствора трилона Б концентрацией 8 г/л (или 0,2 твердого вещества). В этой смеси растворяют 1,1 г безводного ЦВП-1 или 1,5 г пентагидрата ЦВП-1, разбавляют водой до 1 л и перемешивают.

Реактив хранят в темной бутылке, защищенной от нагревания. Раствор обновляют через месяц хранения или после его обесцвечивания.

Соль Мора, основной раствор [Fe(NH4)2(SO4)2*6H2O] — 0,056 моль/л. Растворяют 22 г гексагидрата аммоний-сернокислого железа (II) (соли Мора) приблизительно в 250 мл воды, содержащей примерно 5 мл серной кислоты (g=1,84) в мерной колбе вместимостью 1 л. Разбавляют водой до метки и перемешивают. Хранят в затемненной склянке.

Стандартный раствор перед использованием или ежедневно при большом количестве определений готовят следующим образом:

в мерную коническую колбу 250 мл помещают 50 мл основного раствора соли Мора, приблизительно 50 мл воды, 5 мл ортофосфорной кислоты (g=1,71), и 4 капли индикатора дефениламинсульфоната бария. Титруют раствором бихромата калия. Конечная точка титрования наступает, когда одна капля вызывает интенсивное темно-красное окрашивание, которе не изменяется после последующего добавления раствора бихромата калия.

Концентрацию (C1) Cl2, выраженную в ммоль/л, вычисляют по формуле:

где C2 — концентрация стандартного раствора бихромата калия, в данном случае 100 ммоль/л;

V1 — объем основного раствора соли Мора, мл; в данном случае 50 мл;

V2 — объем стандартного раствора бихромата калия, использованный при титровании, мл.

Примечание. Когда V2 становится меньше чем 22 мл, готовят свежий раствор.

Помещают 50 мл свежестандартизированного основного раствора в мерную колбу вместимостью 1 л. Разбавляют до метки и перемешивают. Помечают темную бутылку.

Такой раствор готовят по мере необходимости или ежедневно, если делают большое количество определений.

Концентрацию (C1) Cl2, выраженную в ммоль/л, вычисляют по уравнению:

Раствор арсената натрия (NaAsO2) c=2г/л, или раствором тиоацетамида (CH3CSNH2).

Раствор хлорноватистого натрия, с(Cl2), около 0,1 г/л. Готовят путем разбавления концентрированного раствора хлорноватистого натрия.

Раствор индикатора дефениламинсульфоната бария, 3 г/л. Разбавляют дефениламин-сульфонат бария [(C2H5-NH-C2H4SO3)Ba] в 100 мл воды.

Стандартный раствор бихромата калия, с(1/6K2Cr2O7)=100 ммоль/л. Взвешивают в точности до миллиграмма 4,904 г безводного бихромата калия. Растворяют в мерной колбе вместимостью 1 л.

Используется обычное лабораторное оборудование и микробюретку вместимостью до 5 мл с делением 0,02 мл.

Необходимую посуду готовят путем заполнения ее хлорноватистого натрия, затем через 1 час тщательно ополаскиваю водой. Во время исследований одну партия посуды следует иметь для определения свободного хлора, а другую для определения общего хлора, чтобы избежать загрязнения.

Определение начинают сразу же после отбора проб. Во всех случаях следует избегать яркого света, взбалтывания, подогрева.

Берут две исследуемые порции, каждую по 100 мл. Если концентрация превышает 0,07 ммоль/л (5 мг/л), необходимо брать меньший объем исследуемой пробы или разбавлять водой до 100 мл.

Определение свободного хлора

Быстро помещают в коническую колбу вместимостью 250 мл, последовательно 5 мл буферного раствора, 5 мл реактивного раствора ЦВП-1 и первую исследуемую порцию. Перемешивают и сразу же титруют до обесцвечивания раствором соли Мора. Записывают объем V3 мл, использованный при титрировании.

Если качество воды не известно, возможна сильно кислая или сльно щелочная, или же вода с высоким содержанием солей, то следует убедиться, что объем добавленного буферного раствора достаточно для доведения рН воды до 6,2-6,5. Если же этого нет, используют большой объем буферного раствора.

Быстро помещают в коническую колбу вместимостью 250 мл, последовательно 5 мл буферного раствора, 5 мл реактивного раствора ЦВП-1, вторую порцию и около 1 г иодида калия.

Перемешивают и через 2 мин титруют до обесцвечивания раствором соли Мора. Если в течении 2 мин наблюдается изменения окраски, то продолжают титровать до обесцвечивания. Записывают объем V4 мл, использованный при титрировании.

Читайте также:  Количественный химический анализ сточных вод

Если качество воды не известно, возможна сильно кислая или сльно щелочная, или же вода с высоким содержанием солей, то следует убедиться, что объем добавленного буферного раствора достаточно для доведения рН воды до 6,2-6,5. Если же этого нет, используют большой объем буферного раствора.

Если в пробе присутствует марганец, то определяют влияние окисленного марганца, выполняя дополнительное определение. Используют порцию исследуемой пробы, предварительно обработанной раствором арсенита натрия или тиоацетамида, чтобы нейтрализовать все окисленные соединения, кроме окисленных соединений марганца. Для этого исследуемую порцию помещают в коническую колбу вместимостью 250 мл, добавляют 1 мл раствора арсенита натрия или раствором тиоацетамидаи перемешивают. Вновь добавляют 5 мл буферного раствора и 5 мл реактива ЦВП-1. Сразу же титруют до обесцвечивания раствором соли Мора. Записывают объем V5, мл, соответствующий окисленному марганцу.

Расчет концентрации свободного хлора

Концентрацию свободного хлора c(Cl2), выраженную в ммоль/л, вычисляю по уравнению:

где c3 -концентрация раствора соли Мора, ммоль/л;

V3 — объем раствора соли Мора, используемый при титрировании, мл;

V5 — объем соли Мора, используемый для устранения влияния марганца. При отсутствии марганца V5=0 мл.

Расчет концентрации общего хлора

Концентрацию общего хлора c(Cl2), выраженную в ммоль/л, вычисляю по уравнению:

где V4 — объем раствора соли Мора, используемый при титровании, мл.

Переход от молярной концентрации к массовой. Концентрация хлора, выраженная в моль/л, может быть выражена в г/л умножением на коэффициент пересчета 70,91.

Могут быть выделены два вида мешающих влияний.

  • 1)Мешающее влияние соединений хлора, содержащих диоксид хлора. Эти влияния могут корректироваться путем определения диоксида хлора в воде.
  • 2)Мешающее влияние других соединений, кроме соединений хлора. Окисление ЦВП-1 вызывается не только соединениями хлора. В зависимости от концентрации и потенциала химического окисления реактив подвергается воздействию и других окислителей. Особенно следует упомянуть следующие вещества: бром, йод, бромамиды, иодамиды, озон, перекись водорода, хромат, окисленный марганец, нитрат, железо (III) и медь. При наличии меди (II) (менее 8 мг/л) и ионов железа (III) (менее 20 мг/л) помехи устраняют добавлением трилона Б в буферный раствор и в раствор ЦВП-1.

Отчет об определении должен содержать следующую информацию:

  • а) ссылку на международный стандарт ИСО 7393-1
  • б) всю информацию, необходимую для полной идентификации пробы
  • в) результаты и использованный метод их выражения
  • г) детали какого-либо процесса, не включенные в данный стандарт или рассматриваемые как не обязательные совместно с какими-либо подробностями, которые могут повлиять на результат.

Метод иодиметрического титрирования

ИСО 7393-3 устанавливает метод иодиметрического титрирования для определения общего хлора в воде.

Данный метод рекомендуется для измерений концентраций хлора c(Cl2) от 0,01 до 0,21 ммоль/л (0,71 — 15 мг/л).

Некоторые вещества оказывают мешающие в ходе определения, о чем будет сказано ниже.

В приложении стандарта представлен метод прямого титрирования. Его обычно применяют для определения концентраций хлора выше 7 мкмоль/л (0,5 мг/л) в обработанной питьевой воде.

Сущность метода заключается во взаимодействии проб воды с общим хлором и раствором иодида калия с выделением свободно йода, который сразу же восстанавливается известным избытком стандартного раствора тиосульфата, предварительно добавленного в раствор. Затем титруют избытком тиосульфата стандартным раствором иодида калия.

Вода, не содержащая хлора и других восстанавливающих веществ.

Раствор фосфорной кислоты(H3PO4), приблизительно 0,87 моль/л. Растворяют 64 г фосфорной кислоты, охлаждают и разбавляют до 1 л.

Стандартный титрированный раствор иодида калия, с(1/6KIO3)=10 ммоль/л. Взвешивают 0,36 г с точностью до 1 г сухого иодида калия.

Стандартный титрированный раствор тиосульфата натрия с(Na2S2O3*5H2O)=10ммоль/л. Растворяют 2,48г тиосульфата натрия приблизительно в 250мл воды в мерной колбе вместимостью 1л, разбавляют до метки водой и перемешивают.

Проверку титра раствора проводят ежедневно или непосредственно перед использованием следующим образом: помещают 200мл воды в коническую колбу вместимостью 500 мл. Добавляют приблизительно 1г иодида калия, затем вводят с помощью пипетки 10мл раствора тиосульфата натрия, 2мл фосфорной кислоты и 1 мл раствора крахмала. Сразу же титруют стандартным титрованным раствором иодида калия до появления синей окраски, сопровождающейся не менее 30с. Записывают объем иодида калия, использованный на титрирование. Титр С1 раствора тиосульфата натрия, выраженный в ммоль/л вычисляют по уравнению

Где С2 — концентрация стандартного титрированного раствора иодида калия, ммоль/л

V1 — объем раствора тиосульфата натрия, использованный при установлении титра, мл (V1=10мл)

V2 — объем стандартного титрированного раствора иодида калия, использованного при титрировании, мл

Раствор крахмала, 5 г/л или подобный индикатор, выпускаемый в промышленности.

Используют обычное лабораторное оборудование и бюретку с тонким наконечником со скоростью подачи 30капель/мл, объемом до 25мл с ценой деления 0,05мл.

Нужную посуду готовят, заполняя её раствором гипохлорита натрия с=0,1г/л, затем через 1 час тщательно ополаскивают дистиллированной водой и водой, не содержащей хлора.

Определение начинает сразу же после отбора проб. При проведении анализа следует избегать воздействия на пробу яркого света, перемешивания, подогрева.

Отбирают исследуемую порцию (V6), объем котрого не превышает 200мл, содержащую не более чем 0,21 ммоль/л (15г/л) общего хлора. Если количество общего хлора превышает эту концентрацию, разбавляют исследуемую порцию водой и отбирают часть исследуемой порции, объем которой не превышает 200мл.

Помещают исследуемую порцию в коническую колбу вместимостью 500мл. Добавляют поочередно 1г иодида калия, 2мл фосфорной кислоты и с помощью пипетки 10мл (V4) стандартного раствора тиосульфата натрия и затем 1мл раствора крахмала. Реагенты должны вводиться в строго определенной последовательности, так как в противном случае может иметь место нестехиометрическое превращение гипохлорита при воздействии тиосульфата.

Сразу же титруют стандартным титрированным раствором иодида калия до установления постоянной синей окраски в течении 30с., записывают объем иодида калия использованный на титрирование (V3)

Концентрация общего хлора c(Cl2), выраженную ммоль/л, вычисляют по формуле

где С1 — фактическая концентрация стандартного титрированного раствора тиосульфата натрия, ммоль/л

V2 — объем исследуемой порции перед разбавлением (если оно было), мл

V3 — объем стандартного раствора иодида калия, используемый на титрирование, мл

V4 — объем стандартного раствора тиосульфата натрия, использованный на титрирование, мл (V4=10).

Окисление иодида-иона до иона вызывается не только хлором. В зависимости от концентрации и химического потенциала окисления вызывают все окислители. Поэтому данный метод может применяться только при отсутствии других окисляющих веществ; особо следует отметить бром, йод, бромамины, йодамины, озон, перекись водорода, перманганат, иодат, бромат, хромат, диоксид хлора, хлорит, окисленный марганец, нитрит, ионы железа (III), ионы меди ( II) и марганца (III).

Отчет об определении должен содержать следующую информацию:

  • а) ссылку на международный стандарт ИСО 7393-1
  • б) всю информацию, необходимую для полной идентификации пробы
  • в) результаты и использованный метод их выражения
  • г) детали какого-либо процесса, не включенные в данный стандарт или рассматриваемые как не обязательные совместно с какими-либо подробностями, которые могут повлиять на результат.

источник

Купить ГОСТ 18190-72 — бумажный документ с голограммой и синими печатями. подробнее

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО «ЦНТИ Нормоконтроль».

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Распространяется на питьевую воду и устанавливает методы определения содержания остаточного активного хлора.

Переиздание. Ноябрь 2009 г.

3 Метод определения свободного остаточного хлора титрованием метиловым оранжевым

4 Метод раздельного определения свободного хлора, связанного монохлорамина и дихлорамина по методу Пейлина

Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку:

Методы определения содержания
остаточного активного хлора

Методы определения
содержания остаточного активного хлора

Drinking water. Methods for determination
of chlorine residual content

Настоящий стандарт распространяется на питьевую воду и устанавливает методы определения содержания остаточного активного хлора.

1.1. Пробы воды отбирают по ГОСТ 24481* и ГОСТ 2874**.

* На территории Российской Федерации действует ГОСТ Р 51593-2000.

** На территории Российской Федерации действует ГОСТ Р 51232-98.

1.2. Объем пробы воды для определения содержания активного хлора не должен быть менее 500 см 3 .

1.3. Пробы воды не консервируют. Определение следует проводить немедленно после отбора пробы.

Метод основан на окислении йодида активным хлором до йода, который титруют тиосульфатом натрия. Озон, нитриты, окись железа и другие соединения в кислом растворе выделяют йод из йодистого калия, поэтому пробы воды подкисляют буферным раствором с pH 4,5.

Йодометрический метод предназначен для анализа воды с содержанием активного хлора более 0,3 мг/дм 3 при объеме пробы 250 см 3 . Метод может быть рекомендован также для окрашенных и мутных вод.

2.2. Аппаратура, материалы и реактивы

Посуда мерная лабораторная стеклянная по ГОСТ 1770, ГОСТ 29169 и ГОСТ 29251, вместимостью: колбы 100 и 1000 см 3 ; пипетки без делений 5, 10, 25 см 3 ; бюретка с краном 25, 50 см 3 ; микробюретка 5 см 3 .

Колбы конические с пришлифованными пробками вместимостью 250 см 3 по ГОСТ 25336.

Калий йодистый по ГОСТ 4232, х. ч. в кристаллах.

Кислота уксусная ледяная по ГОСТ 61.

Калий двухромовокислый по ГОСТ 4220.

Натрий углекислый кристаллический по ГОСТ 84.

Натрий серноватистокислый (тиосульфат натрия) по ГОСТ 27068.

Все реактивы, используемые в анализе, должны быть квалификации «чистые для анализа» (ч. д. а.).

2.3.1. Приготовление 0,1 н раствора серноватистокислого натрия

25 г тиосульфата натрия Na2S2O3 · 5H2O растворяют в свежепрокипяченной и охлажденной дистиллированной воде, добавляют 0,2 г углекислого натрия (Nа2СО3) и доводят объем до 1 дм 3 .

2.3.2. Приготовление 0,01 н раствора серноватистокислого натрия

100 см 3 0,1 н. раствора тиосульфата натрия разбавляют свежепрокипяченной и охлажденной дистиллированной водой, добавляют 0,2 г углекислого натрия и доводят раствор до 1 дм 3 . Раствор применяют при содержании активного хлора в пробе более 1 мг/дм 3 .

2.3.3. Приготовление 0,005 н. раствора серноватистокислого натрия

50 см 3 0,1 н. раствора тиосульфата натрия разбавляют свежепрокипяченной и охлажденной дистиллированной водой, добавляют 0,2 г углекислого натрия и доводят раствор до 1 дм 3 . Раствор применяют при содержании активного хлора в пробе менее 1 мг/дм 3 .

2.3.4. Приготовление 0,01 н. раствора калия двухромовокислого

0,4904 г двухромовокислого калия К2Сr2О7, взвешенного с точностью до ± 0,0002 г, перекристаллизованного и высушенного при 180 °C до постоянной массы, растворяют в дистиллированной воде и доводят объем до 1 дм 3 .

2.3.5. Приготовление 0,5 %-ного раствора крахмала

0,5 г растворимого крахмала смешивают с небольшим объемом дистиллированной воды, приливают к 100 мл кипящей дистиллированной воды и кипятят несколько минут. После охлаждения консервируют, добавляя хлороформ или 0,1 г салициловой кислоты.

2.3.6. Приготовление буферного раствора pH 4,5

102 см 3 1 М уксусной кислоты (60 г ледяной уксусной кислоты в 1 дм 3 воды) и 98 см 3 1 М раствора уксуснокислого натрия (136,1 г уксуснокислого натрия СН3СОONа · 3Н2О в 1 дм 3 воды) наливают в мерную колбу вместимостью 1 дм 3 и доводят до метки дистиллированной водой (предварительно прокипяченной и охлажденной до 20 °C, свободной от двуокиси углерода).

2.3.7. Поправочный коэффициент 0,01 н. раствора серноватисто-кислого натрия определяют по 0,01 н раствору двухромовокислого калия следующим образом: в коническую колбу и с пришлифованной пробкой помещают 0,5 г йодистого калия, проверенного на отсутствие йода, растворяют в 2 см 3 дистиллированной воды, прибавляют 5 см 3 серной кислоты (1:4), затем 10 см 3 0,01 н. раствора двухромовокислого калия, добавляют 80 см 3 дистиллированной воды, закрывают колбу пробкой, перемешивают и ставят в темное место на 5 мин. Выделившийся йод титруют тиосульфатом натрия в присутствии 1 см 3 крахмала, прибавленного в конце титрования.

2.3.8. Поправочный коэффициент (K) (0,01; 0,005 н. растворов серноватистокислого натрия) вычисляют по формуле

где v — количество серноватистокислого натрия, израсходованное на титрование, см 3 .

В коническую колбу насыпают 0,5 г йодистого калия, растворяют его в 1 — 2 см 3 дистиллированной воды, затем добавляют буферый раствор в количестве, приблизительно равном полуторной величине щелочности анализируемой воды, после чего добавляют 250 — 500 см 3 анализируемой воды. Выделившийся йод оттитровывают 0,005 н. раствором тиосульфата натрия из микробюретки до появления светло-желтой окраски, после чего прибавляют 1 см 3 0,5 %-ного раствора крахмала и раствор титруют до исчезновения синей окраски. При определении щелочности воду предварительно дехлорируют с помощью тиосульфата натрия в отдельной пробе.

При концентрации активного хлора менее 0,3 мг отбирают для титрования большие объемы воды.

Содержание суммарного остаточного хлора (X), мг/дм 3 вычисляют по формуле

где v — количество 0,005 н. раствора тиосульфата натрия, израсходованное на титрование, см 3 ;

K — поправочный коэффициент нормальности раствора тиосульфата натрия;

0,177 — содержание активного хлора, соответствующее 1 см 3 0,005 н. раствора тиосульфата натрия;

V — объем пробы воды, взятый для анализа, см 3 .

Метод основан на окислении свободным хлором метилового оранжевого, в отличие от хлораминов, окислительный потенциал которых недостаточен для разрушения метилового оранжевого.

3.2. Аппаратура, материалы, реактивы

Посуда мерная лабораторная стеклянная по ГОСТ 1770 и ГОСТ 29251 вместимостью: колбы мерные 100 и 1000 см 3 ; микробюретка с краном 5 см 3 .

Чашки фарфоровые выпарительные по ГОСТ 9147.

Кислота соляная по ГОСТ 3118, плотностью 1,19 г/см 3 .

Метиловый оранжевый (пара-диметиламиноазобензолсульфокислый натрий) по ТУ 6-09-5171.

Все реактивы, применяемые для анализа, должны быть квалификации чистые для анализа (ч. д. а.).

3.3.1. Приготовление 0,005 %-ного раствора метилового оранжевого

50 мг метилового оранжевого растворяют в дистиллированной воде в мерной колбе и доводят дистиллированной водой до 1 дм 3 . 1 см 3 этого раствора соответствует 0,0217 мг свободного хлора.

3.3.2. Приготовление 5 н. раствора соляной кислоты

В мерную колбу наливают дистиллированную воду, затем медленно добавляют 400 см 3 соляной кислоты HCl и доводят дистиллированной водой до 1 дм 3 .

100 см 3 анализируемой воды помещают в фарфоровую чашку, добавляют 2 — 3 капли 5 н. раствора соляной кислоты и, помешивая, быстро титруют раствором метилового оранжевого до появления неисчезающей розовой окраски.

Содержание свободного остаточного хлора (X1), мг/дм 3 , вычисляют по формуле

где v — количество 0,005 %-ного раствора метилового оранжевого, израсходованного на титрование, см 3 ;

Читайте также:  Когда сдаешь анализы можно пить воду

0,0217 — титр раствора метилового оранжевого;

0,04 — эмпирический коэффициент;

V — объем воды, взятый для анализа, см 3 .

По разности между содержанием суммарного остаточного хлора, определенного методом титрования, метилоранжевым, находят содержание хлораминового хлора (Х2):

4. МЕТОД РАЗДЕЛЬНОГО ОПРЕДЕЛЕНИЯ СВОБОДНОГО ХЛОРА,
СВЯЗАННОГО МОНОХЛОРАМИНА И ДИХЛОРАМИНА ПО МЕТОДУ ПЕЙЛИНА

Метод основан на способности разных видов хлора превращать в определенных условиях восстановленную бесцветную форму диэтилпарафенилендиамина в полуокисленную окрашенную форму, которую восстанавливают опять до бесцветной ионами двухвалентного железа. Используются серия титрований раствором соли Мора для определения свободного хлора, монохлорамина и дихлорамина в присутствии диэтилпарафенилендиамина, как индикатора. Свободный хлор образует окраску индикатора в отсутствии йодистого калия, монохлорамин дает окраску в присутствии очень маленьких количеств йодистого калия (2 — 3 мг), а дихлорамин образует окраску лишь в присутствии больших количеств KI (около 1 г) и при стоянии раствора в течение 2 мин. По количеству раствора соли Мора, израсходованному на титрование, определяют содержание того вида активного хлора, за счет которого образуется окрашенная форма индикатора.

4.2. Аппаратура, материалы, реактивы

Посуда мерная стеклянная лабораторная по ГОСТ 1770 и ГОСТ 29251 вместимостью: колбы мерные 100 и 1000 см 3 ; цилиндры мерные 5 и 100 см 3 ; микробюретки 1 и 2 см 3 .

Колбы конические вместимостью 250 мл; склянки из темного стекла вместимостью 100 — 200 см 3 .

Двойная сернокислая соль закиси железа и аммония (соль Мора) по ГОСТ 4208.

Калий фосфорнокислый однозамещенный по ГОСТ 4198, х. ч.

Натрий фосфорнокислый двузамещенный безводный по ГОСТ 11773.

Трилон Б (комплексон III, двунатриевая соль этилендиаминтетрауксусной кислоты) по ГОСТ 10652.

Диэтилпарафенилендиамин оксалат или сульфат.

Все реактивы, применяемые для анализа, должны быть квалификации «чистые для анализа» (ч. д. а.).

4.3.1. Приготовление стандартного раствора соли Мора

1,106 г соли Мора Fe(NH4)2(SO4)2 · 6H2O растворяют в дистиллированной воде, подкисляют 1 см 3 25 %-ного раствора серной кислоты H2SO4 и доводят свежепрокипяченной и охлажденной дистиллированной водой до 1 дм 3 . 1 см 3 раствора соответствует 0,1 мг активного хлора. Если определение проводится в 100 см 3 воды, то количество миллилитров соли Мора, израсходованное на титрование, соответствует мг/дм 3 хлора, или монохлорамина или дихлорамина. Раствор устойчив в течение месяца. Хранить его следует в темном месте.

4.3.2. Приготовление фосфатного буферного раствора

К 2,4 г фосфорнокислого натрия двузамещенного Na2HPO4 и 4,6 г фосфорнокислого калия однозамещенного КН2РО4 приливают 10 см 3 0,8 %-ного раствора трилона Б и доводят дистиллированной водой до 100 см 3 .

4.3.3. Приготовление индикатора диэтилпарафенилендиамин (оксалат или сульфат) 0,1 %-ного раствора

0,1 г диэтилпарафенилендиамина оксалата (или 0,15 г соли сульфата) растворяют в 100 см 3 дистиллированной воды с добавлением 2 см 3 10 %-ного раствора серной кислоты. Раствор индикатора следует хранить в склянке из темного стекла.

4.4.1. Определение содержания свободного хлора

В коническую колбу для титрования помещают 5 см 3 фосфатного буферного раствора, 5 см 3 раствора индикатора диэтилпарафенилендиамин оксалата или сульфата и приливают 100 см 3 анализируемой воды, раствор перемешивают. В присутствии свободного хлора раствор окрашивается в розовый цвет, его быстро титруют из микробюретки стандартным раствором соли Мора до исчезновения окраски, энергично перемешивая. Расход соли Мора, пошедший на титрование (А, см 3 ), соответствует содержанию свободного хлора, мг/дм 3 .

При наличии в анализируемой воде значительных количеств свободного хлора (более 4 мг/дм 3 ) для анализа следует брать менее 100 см 3 воды, так как большие количества активного хлора могут разрушить полностью индикатор.

4.4.2. Определение содержания монохлорамина

В колбу с оттитрованным раствором добавляют кристаллик (2 — 3 мг) йодистого калия, раствор перемешивают. В присутствии монохлорамина мгновенно появляется розовая окраска, которую тотчас же оттитровывают стандартным раствором соли Мора. Количество миллилитров соли Мора, пошедших на титрование (B, см 3 ), соответствует содержанию монохлорамина, мг/дм 3 .

4.4.3. Определение содержания дихлорамина

К оттитрованному раствору после определения содержания монохлорамина вновь добавляют около 1 г йодистого калия, перемешивают до растворения соли и оставляют раствор стоять в течение 2 мин. Появление розовой окраски свидетельствует о наличии в воде дихлорамина. Раствор титруют стандартным раствором соли Мора до исчезновения окраски. Расход соли Мора (С, см 3 ) соответствует содержанию дихлорамина, мг/дм 3 .

Содержание суммарного остаточного активного хлора (X3), мг/дм 3 , вычисляют по формуле

где А — содержание свободного хлора, мг/дм 3 ;

В — содержание монохлорамина, мг/дм 3 ;

С — содержание дихлорамина, мг/дм 3 .

1. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 25.10.72 № 1967

3. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

источник

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Методы определения содержания хлоридов

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Методы определения содержания хлоридов

Drinking water.
Method for determination
of chloride content

Настоящий стандарт распространяется на питьевую воду и устанавливает методы определения содержания хлоридов (хлор-иона).

Определение содержания хлор-иона в питьевой воде производят:

при содержании хлор-иона от 10 мг/дм 3 и выше титрованием азотнокислым серебром в присутствии хромовокислого калия в качестве индикатора;

при содержании хлор-иона до 10 мг/дм 3 титрованием азотнокислой ртутью в присутствии индикатора дифенилкарбазона.

1.1. Отбор проб производят по ГОСТ 2874 и ГОСТ 4979.

1.2. Объем пробы воды для определения содержания хлоридов должен быть не менее 250 см 3 .

1.3. Пробы воды, предназначенные для определения хлоридов, не консервируют.

Метод основан на осаждении хлор-иона в нейтральной или слабощелочной среде азотнокислым серебром в присутствии хромовокислого калия в качестве индикатора. После осаждения хлорида серебра в точке эквивалентности образуется хромовокислое серебро, при этом желтая окраска раствора переходит в оранжево-желтую. Точность метода 1-3 мг/дм 3 .

2.2 Аппаратура, материалы и реактивы

Посуда мерная стеклянная лабораторная по ГОСТ 1770, ГОСТ 29227, ГОСТ 29251, вместимостью: пипетки 100, 50 и 10 см 3 без делений; пипетка 1 см 3 с делением через 0,01 см 3 ; цилиндр мерный 100 см 3 ; бюретка 25 см 3 со стеклянным краном.

Колбы конические по ГОСТ 25336, вместимостью 250 см 3 .

Пробирки колориметрические с отметкой на 5 см 3 .

Воронки стеклянные по ГОСТ 25336.

Фильтры беззольные «белая лента».

Серебро азотнокислое по ГОСТ 1277.

Натрий хлористый по ГОСТ 4233.

Квасцы алюмокалиевые (алюминий-калий сернокислый) по ГОСТ 4329.

Калий хромовокислый по ГОСТ 4459.

Аммиак водный по ГОСТ 3760, 25 %-ный раствор.

Вода дистиллированная по ГОСТ 6709.

Все реактивы, используемые для анализа, должны быть квалификации чистые для анализа (ч. д. а.).

2.3.1. Приготовление титрованного раствора азотнокислого серебра.

2,40 г химически чистого AgNO 3 растворяют в дистиллированной воде и доводят объем раствора дистиллированной водой до 1 дм 3 .

1 см 3 раствора эквивалентен 0,5 мг С l — .

Раствор хранят в склянке из темного стекла.

2.3.2. Приготовление 10%-ного раствора (подкисленного азотной кислотой) азотнокислого серебра

10 г AgNO 3 растворяют в 90 см 3 дистиллированной воды и добавляют 1-2 капли HNO 3 .

2.3.3. Приготовление титрованного раствора хлористого натрия

0,8245 г химически чистого NaCl , высушенного при 105 °С, растворяют в дистиллированной воде и доводят объем раствора дистиллированной водой до 1 дм 3 .

1 см 3 раствора содержит 0,5 мг С l — .

2.3.4. Приготовление гидроокиси алюминия

125 г алюмокалиевых квасцов [ AlK ( SO 4 )2 × 12H2O] растворяют в 1 дм 3 дистиллированной воды, нагревают до 60 °С и постепенно прибавляют 55 см 3 концентрированного раствора аммиака при постоянном перемешивании. После отстаивания в течение 1 ч осадок переносят в большой стакан и промывают декантацией дистиллированной водой до исчезновения реакции на хлориды.

2.3.5. Приготовление 5 %-ного раствора хромовокислого калия

50 г К2С r О4 растворяют в небольшом объеме дистиллированной воды и доводят объем раствора дистиллированной водой до 1 дм 3 .

2.3.6. Установка поправочного коэффициента к раствору азотнокислого серебра.

В коническую колбу вносят пипеткой 10 см 3 раствора хлористого натрия и 90 см 3 дистиллированной воды, добавляют 1 см 3 раствора хромовокислого калия и титруют раствором азотнокислого серебра до перехода лимонно-желтой окраски мутного раствора в оранжево-желтую, не исчезающую в течение 15-20 с. Полученный результат считают ориентировочным. К оттитрованной пробе прибавляют 1-2 капли раствора хлористого натрия до получения желтой окраски. Эта проба является контрольной при повторном, более точном определении. Для этого отбирают новую порцию раствора хлористого натрия и титруют азотнокислым серебром до получения незначительной разницы оттенков слабо-оранжевого в титруемом растворе и желтого в контрольной пробе. Поправочный коэффициент ( К) вычисляют по формуле

,

где v — количество азотнокислого серебра, израсходованное на титрование, см 3 .

2.4.1. Качественное определение

В колориметрическую пробирку наливают 5 см 3 воды и добавляют три капли 10 %-ного раствора азотнокислого серебра. Примерное содержание хлор-иона определяют по осадку или мути в соответствии с требованиями таблицы.

Характеристика осадка или мути

1. Опалесценция или слабая муть

3. Образуются хлопья, осаждаются не сразу

2.4.2. Количественное определение

В зависимости от результатов качественного определения отбирают 100 см 3 испытуемой воды или меньший ее объем (10-50 см 3 ) и доводят до 100 см 3 дистиллированной водой. Без разбавления определяются хлориды в концентрации до 100 мг/дм 3 . p Н титруемой пробы должен быть в пределах 6-10. Если вода мутная, ее фильтруют через беззольный фильтр, промытый горячей водой. Если вода имеет цветность выше 30°, пробу обесцвечивают добавлением гидроокиси алюминия. Для этого к 200 см 3 пробы добавляют 6 см 3 суспензии гидроокиси алюминия, а смесь встряхивают до обесцвечивания жидкости. Затем пробу фильтруют через беззольный фильтр. Первые порции фильтрата отбрасывают. Отмеренный объем воды вносят в две конические колбы и прибавляют по 1 см 3 раствора хромовокислого калия. Одну пробу титруют раствором азотнокислого серебра до появления слабого оранжевого оттенка, вторую пробу используют в качестве контрольной пробы. При значительном содержании хлоридов образуется осадок AgCl , мешающий определению. В этом случае к оттитрованной первой пробе приливают 2-3 капли титрованного раствора NaCl до исчезновения оранжевого оттенка, затем титруют вторую пробу, пользуясь первой, как контрольной пробой.

Определению мешают: ортофосфаты в концентрации, превышающей 25 мг/дм 3 ; железо в концентрации более 10 мг/дм 3 . Бромиды и йодиды определяются в концентрациях, эквивалентных С l — . При обычном содержании в водопроводной воде они не мешают определению.

Содержание хлор-иона ( X), мг/дм 3 , вычисляют по формуле

где v — количество азотнокислого серебра, израсходованное на титрование, см 3 ;

К — поправочный коэффициент к титру раствора нитрата серебра;

g — количество хлор-иона, соответствующее 1 см 3 раствора азотнокислого серебра, мг;

V — объем пробы, взятый для определения, см 3 .

Расхождения между результатами повторных определений при содержании С l — от 20 до 200 мг/дм 3 — 2 мг/дм 3 ; при более высоком содержании — 2 отн. %.

3. ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ХЛОР-ИОНА В ВОДЕ ТИТРОВАНИЕМ АЗОТНОКИСЛОЙ РТУТЬЮ В ПРИСУТСТВИИ ИНДИКАТОРА ДИФЕНИЛКАРВАЗОНА

Хлориды титруют в кислой среде раствором азотнокислой ртути в присутствии дифенилкарбазона, при этом образуется растворимая, почти диссоциирующая хлорная ртуть. В конце титрования избыточные ионы ртути с дифенилкарбазоном образуют окрашенное в фиолетовый цвет комплексное соединение. Изменение окраски в эквивалентной точке выражено четко, в связи с этим конец титрования определяется с большой точностью.

Точность метода 0,5 мг/дм 3 .

3.2. Аппаратура, материалы и реактивы.

Посуда мерная стеклянная лабораторная по ГОСТ 1770, ГОСТ 29227, ГОСТ 29251, вместимостью: пипетки 100 и 50 см 3 без делений, цилиндр мерный 100 см 3 микробюретка 2 см 3 .

Колбы конические по ГОСТ 25336, вместимостью 250 см 3 .

Ртуть азотнокислая окисная по ГОСТ 4520.

Натрий хлористый по ГОСТ 4233.

Кислота азотная по ГОСТ 4461.

Спирт этиловый ректификованный по ГОСТ 5962.

Бромфеноловый синий (индикатор).

Все реактивы, используемые для анализа, должны быть квалификации чистые для анализа (ч. д. а.).

3.3.1. Приготовление 0,0141 н. раствора азотнокислой ртути

2,42 г Hg ( N О3)2 × 1 /2Н2 O растворяют в 20 см 3 дистиллированной воды к которой прибавлено 0,25 см 3 концентрированной азотной кислоты, затем объем раствора доводят дистиллированной водой до 1 дм 3 .

1 см 3 этого раствора эквивалентен 0,5 мг С l — .

Раствор устойчив в течение четырех месяцев.

Поправочный коэффициент к титру раствора азотнокислой ртути определяют титрованием 5 см 3 хлористого натрия (1 см 3 — 0,5 мг С l — ), разбавленного до 100 см 3 дистиллированной водой, в тех же условиях, как при анализе пробы воды.

3.3.2. Приготовление дифенилкарбазона, спиртового раствора смешанного индикатора

0,5 г дифенилкарбазона и 0,05 г бромфенолового синего растворяют в 100 см 3 95 %-ного этилового спирта. Хранят в склянке из темного стекла.

3.3.3. Приготовление 0,2 н. раствора азотной кислоты

12.8 мл концентрированной азотной кислоты разводят дистиллированной водой до 1 дм 3

Все растворы готовят на дважды перегнанной дистиллированной воде.

Отбирают 100 см 3 испытуемой воды, прибавляют 10 капель смешанного индикатора и по каплям 0,2 н. раствор HNO 3 до появления желтой окраски (рН 3,6), после чего прибавляют еще пять капель 0,2 н. раствора HNO 3 и титруют из микробюретки раствором азотнокислой ртути. К концу титрования окраска раствора приобретает оранжевый оттенок. Титрование продолжают медленно, по каплям добавляя раствор азотнокислой ртути, сильно взбалтывая пробу до появления слабо-фиолетового оттенка.

Для определения более четкого конца титрования используют контрольную пробу, в которой к 100 см 3 дистиллированной воды прибавляют индикатор, 0,2 н. раствор азотной кислоты и одну каплю раствора азотнокислой ртути.

Метод может быть использован для определения и более высоких концентраций хлоридов в воде (более 10 мг/дм 3 ). В этом случае отбирают меньший объем воды (содержание С l — в отобранном объеме должно быть не менее 10 мг) и разбавляют дистиллированной водой до 100 см 3 прибавляют те же реактивы и в том же количестве и титруют из бюретки раствором азотнокислой ртути, как описано выше.

Определению не мешают цветность воды выше 30° и железо в концентрации, превышающей 10 мг/дм 3 . Йодиды и бромиды определяют в концентрациях, эквивалентных С l — .

Содержание хлор-иона ( X) в мг/дм 3 вычисляют по формуле

,

где v — количество азотнокислой ртути, израсходованное на титрование, см 3 ;

К — поправочный коэффициент к титру раствора азотнокислой ртути;

V — объем воды, взятый для определения, см 3 .

Расхождения между результатами повторных определений при содержании С l — в воде до 10 мг/дм 3 — 0,5 мг/дм 3 .

1. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР

3. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

источник