Меню Рубрики

Методика анализа воды на нитраты

Спектроскопические методы широко применяют для определения нитратов. Методы можно разделить на 4 группы.

  • 1. Методы, основанные на нитровании органических соединений, особенно фенолов. Применяют хромотроповую кислоту, 2,4-кесиленол, 2,6-ксиленол, фенолдиульфоновую кислоту и 1-амино-пирен.
  • 2. Методы, основанные на окислении органических соединений, например, бруцина.
  • 3. Методы, основанные на восстановления нитрата до нитрита или аммиака, которые затем определяют. Лучшим методом этой группы является восстановление до нитрита и определение последнего реактивом Грисса.
  • 4. Метод основанный на поглощении нитрата в УФ-области.

Принципиальная схема любого спектрального прибора (рис. 1.1) состоит из трех основных частей: осветительной I, спектральной (оптической) II, и приемно-регистрирующей III.

Спектроскопические методы подчиняются закону Бугера- Ламберта-Бера, который звучит так: определение ослабления пучка монохроматическим светом при его прохождении через поглощающее вещество.

Определения нитратов колориметрическим методом с бруцином.

Сущность метода состоит в том, что нитрат- и нитрит- ионы взаимодействуют с бруцином в среде серной кислоты при различной кислотности: Нитрит-ионы при более низкой концентрации (17 вес ,%), нитрат-ионы при более высокой (50 вес. %). Нитрат-ионы образуют с бруцином сначала соединение красного цвета, но затем окраска быстро изменяется на желтую, сильно поглощенную в области 400-420 нм. Чувствительность метода примерно 0,1 мкг NO3-/мл. Наилучшие результаты получаются в диапазоне 1-4 мкг/мл, когда кривая поглощение концентрация NO3- близка клинейной. В смеси H2SO4 и HCIO4 следует спектрофотометрировать раствор при 430 нм. Ошибка определения составляет «плюс, минус» 1,5%. Мешают Fe, Cu, K, Na, Mn, Zn, AI, CI-, F-, B-. В растворах, содержащих NO-3 и NO-2 , нитриты предварительно окисляют до NO-3 с помощью KMnO4. Определение NO-3 в присутствии NO-2 можно проводить также в более кислой среде (>6,5М), причем к анализируемому раствору добавляют KNO3, так как специальными опытами установлено, что присутствие 2-10 мкг NO-2 дает постоянное, легко учитываемое завышение оптической плотности фотометрируемого раствора. [4, c 99-100]

Определения нитратов колориметрическим методом с дифениламином.

Сущность метода определения нитратов колориметрическим методом с дифениламином основан на колориметрировании окрашенных продуктов реакции, получающихся при взаимодействии дифениламина с нитрат ионами в сильно кислой среде. При этом дифениламин окисляется азотной кислотой и образуется хиноидная аммониевая соль дифенилбензидина, окрашенная в интенсивно синий цвет. В пробирку наливают 1 мл анализируемой воды, прибавляют 1 каплю раствора NaCl и осторожно по стенкам пробирки, избегая перемешивания, приливают 2-3мл 0.017 % раствора дифениламина в серной кислоте. В присутствии нитратов на границе соприкосновения растворов образуется голубое кольцо, скорость появления которого и интенсивность окраски зависят от содержания нитратов. Примерное количество нитратов можно определить по данным табл. №1 Раствор дифениламина готовят растворением 170 мг дифениламина в серной кислоте. Для этого 170г дифениламина растворяют в мерной колбе на 1000 мл добавлением дистиллированной воды, в которую перед этим добавляют около 50-100мл концентрированной серной кислоты. После растворения дифениламина колба наполняется до метки серной кислотой. Раствор хлорида натрия готовят растворением 20г NaCl в колбе на 100 мл дистиллированной водой.

Объем воды для количественного

не появляется в течение 5 мин

через 5 мин слабо-голубое кольцо

через 5 мин явно-голубое кольцо

через 1 мин слабо-голубое кольцо, переходящее через 3-5мин в ярко-синее

Количественное определение нитрат ионов проводят фотоколориметрически на приборе ФЭК салицилатным методом. Сущность метода состоит в образовании нитратов с салицилатом натрия в присутствии серной кислоты комплексов желтого цвета.

К 20 мл пробы добавляют 2 мл салицилата натрия, выпаривают в фарфоровой чашке досуха, охлаждают, добавляют 2 мл концентрированной серной кислоты и оставляют на 10 минут. Добавляют 15 мл дистиллированной воды и 15 мл сегнетовой соли. Переносят в колбу на 50 мл, доводят раствор до метки дистиллированной водой и определяют оптическую плотность при 410 нм в кювете на 2 см. Содержание нитрат ионов определяют по градуировочной кривой, которая строится в диапазоне от 0,1 до 4,0 мг NO3-.

  • 1. Основной стандартный раствор КNO3 0,1 мг N/л : 0,7216 г КNO3 растворяют в мерной колбе на 1 литр и добавляют 1 мл хлороформа.
  • 2. Рабочий стандартный раствор: 10 мл раствора № 1 разбавляют в колбе на 100 мл и получают раствор 0,01 мг N/л.
  • 3. Раствор салицилата натрия, 0,5 %.
  • 4. Щелочной раствор сегнетовой соли. 400 г NaOH и 60 г сегнетовой соли растворяютв 1 литре дистиллированной воды.
  • 5. Серная кислота, х.ч или ч.д.а., концентрированная.
  • 6. Гидроксид алюминия, суспензия. Растворяют 125 г алюмокалиевых или алюмоаммонийных квасцов в 1 л дистиллированной воды, нагревают до 60° С и медленно при непрерывном перемешивании прибавляют 55 мл концентрированного раствора аммиака. Дают постоять 1 час, переносят в большую бутыль (8л) и промывают осадок многократной декантацией дистиллированной водой. [5, c 37-38]

Объем стандартного раствора, мл

Определение восстановлением до аммиака

Сущность методасостоит в том, что нитраты восстанавливаются до аммиака действием сплава Деварда или металлического алюминия в щелочной среде. Аммиак отгоняют в раствор борной кислоты и определяют титриметрическим или фотометрическим методом.

Мешающие вещества. Определению мешают ионы аммония и свободный аммиак. Для удаления их раствор подщелачивают и аммиак отгоняют, при этом можно его определить в отгоне. Нитриты восстанавливаются в ходе анализа вместе с нитратами до аммиака , их определяют вместе с последними. Если содержание нитритов велико, то лучше их предварительно разрушить, и затем отделить содержимое одних нитратов.

При относительно малом содержании нитритов. К 100 мл анализируемой воды приливают 2 мл раствора едкого натра или едкого кали и для удаления концентрируют кипячением до объема 20 мл. Затем переносят раствор в колбу или цилиндр Несслера , разбавляют до 50 мл дистиллированной, не содержащей аммиака водой и вводят 0,5 г сплава Деварда . Чтобы защитить сосуд от попадания в него пыли и в то же время не препятствовать выделению водорода, закрывают сосуд пробкой клапаном Бунзена и оставляют на 6 ч. Затем переносят раствор в колбу для перегонки, разбавляют 200 мл водой, не содержащей аммиака, отгоняют аммиак в раствор борной кислоты и заканчивают определение аммиака титриметрическим или фотометрическим методом.

Найденное содержание аммиака пересчитывают на азот и таким образом находят суммарное количество содержание азота нитритов и нитратов в пробе.

При высоком содержании нитритов. Пробу 100 мл анализируемой воды, нейтрализуют титрованным раствором кислоты или щелочи, прибавляют 10 мл буферного раствора, вводят 0,2 г хлорида аммония и выпаривают досуха на водяной бане. Нитриты при этом реагируют с ионами аммония, образуя азот. Остаток растворяют в 100 мл дистиллированной воды, прибавляют едкого натра и упаривают раствор при кипячении до объема 25 мл, удаляя таким способом аммиак. Дальше продолжают , как описано в разд. 1 , и получают содержание азота нитратов, поскольку нитриты были удалены предварительной обработкой.

Дистиллированная вода, не содержащая аммиака.

Едкий натр или едкое кали, раствор. Раствор 250 г NaOH или КОН в 1250мл дистиллированной воды, прибавляют несколько полосок алюминиевой фольги и дают водороду выделиться в течении ночи. Затем раствор доводят кипячением до 1 л.

Хлорид аммония и сплав Деварда. [9, c 125]

Определение нитратов восстановлением до нитритов.

Сущность метода. Предназначен для определения нитратов в поверхностных водах с содержанием 0,01-0,035 мг /л. В случае более высоких концентраций нитратов пробу перед определением необходимо разбавлять дважды дистиллированной водой.

Принцип метода метод основан на восстановлении нитратов металлическим кадмием

И последующем определении образующихся нитритов с реактивом Грисса или N-(нафтаил)- этилендиамином и сульфаниламидом. Эффективность кадмия как восстановителя значительно возрастает, если он предварительно обработан раствором соли меди. Восстановленная при этом медь оседает на поверхности кадмия, образуя с ним гальваническую пару. Степень восстановления нитратов зависит от pH раствора и максимальная при рН =9,6. Продолжительность работы кадмиевого редуктора достаточно велика несколько сотен проб.

Оптическую плотность раствора нитритов определяют при л = 536 нм (v=18600 см-1). Линейная зависимость между оптической плотностью растворов и концентраций нитритов сохраняется в пределах от 0,010 до 0,35 мг N/л.

Характеристики метода. Минимальная определяемая концентрация 0,010 мг N/л. Относительное стандартное отклонений U при концентрациях от 0,100 до 0,300 составляет 5,0 % (N=30). Продолжительность определения единичной пробы 1 ч. Серия из 6 проб определяется в течении 2 ч.

Мешающие влияния. Определению мешают гумусовые вещества. Последние вступают во взаимодействие с медью и кадмием с образованием комплексных соединений, накапливающихся на поверхности металла и нарушающих нормальную работу редуктора. Поэтому при анализе окрашенных вод необходима предварительная обработка исследуемой пробы активированной окисью алюминия, не содержащей нитратов.

Для этого в пробу окрашенной воды объемом 300-350 мл насыпают окись алюминия объемом примерно равным 25мл, хорошо взбалтывают, дают немного отстояться и фильтруют через неплотный фильтр (белая или красная лента).

При значительном содержании сероводорода предварительно добавляют CdCI2 в небольшом избытке к сульфид-иону и отфильтровывают или центрифугируют осадок CdS. В противном случае на поверхности кадмия образуется сульфид, нарушающий работу редуктора.

Для анализа отбирают две порции исследуемой воды: 25 и 100 мл. В первой из них определяют нитриты , а во второй проводят восстановление нитратов до нитритов. Для этого к 100 мл анализируемой воды, помещенным в колбу или стакан на 250 мл, прибавляют 2 мл раствора хлорида аммония. Содержимое колбы перемешивают и пропускают через кадмиевый редуктор со скоростью 8-10 мл/ мин по секундомеру. Первые 70 мл пробы, прошедшие через редуктор, отбрасывают, последующие 25мл отбирают в отдельный приемник и сразу добавляют около 10мг сухого реактива Грисса.

Смесь перемешивают и через 40 мин измеряют оптическую плотность раствора на спектрофтометре (л+536 нм, v=18600см-1 ) . Содержание нитритов находят по калибровочной кривой.

Построение калибровочной кривой.

Для построения калибровочной кривой в мерные колбы емкостью 100 мл приливают 0; 0,5; 1,0; 2,0; 3,0; 4,0; 5,0; 6,0 мл рабочего стандартного раствора и доводят объем до метки дистиллированной водой. Концентрации этих растворов соответственно равны 0; 0,025; 0,050; 0,10; 0,15; 0,20; 0,30 мг N/л. Проводят определение нитратов. Строят калибровочную кривую, откладывая на оси абсцисс концентрацию нитратов в мг N/л, на оси ординат- оптическую плотность.

Расчет. Содержание нитритов Cх в мг N/л рассчитывают по формуле: Cх= Сn- C1, где С-концентрация (мг N/л) нитратов и нитритов в растворе, пропущенном через редуктор. Последнюю находят по калибровочной кривой для нитритов; n- степень разбавления исходной пробы воды (в случае, если исследуемую пробу не разбавляю, n=1; если взято 20 мл и разбавлено до 100 мл, n=5 ); C1 — концентрация нитритов в исследуемой воде, найденная по калибровочной кривой для нитритов, мг N/л.

Раствор хлорида аммония х.ч. 175 мг хлорида аммония растворяют в дистиллированной воде и объем раствора доводят водой до 500 мл. Устойчив в течении нескольких месяцев.

Раствор сульфата меди х.ч. растворяют в дистиллированной воде и объем раствора доводят , до 1 л.

Кадмий металлический, 99,9% омедненный. Редуктор заполняют омедненным кадмием в виде опилок.

Соляная кислота, 5%-ная. 143 мл концентрированной соляной кислоты разбавляют до 1л. дистиллированной водой.

Реактив Грисса, х.ч. Готовый сухой реактив перед употреблением растирают в ступке.

Окись алюминия, квалифицированная. 50 г окиси алюминия заливают 200 мл 2 н. КОН на 10 ч, а затем деконтацией отмывают до нейтральной реакции по индикаторной бумаге. Хранят в склянке с притертой пробкой.

Раствор едкого кали КОН, х.ч. , 2 н 22,4 г КОН растворяют в небольшом количестве дистиллированной воды и объем раствора доводят до 200 мл. Раствор готовят перед употреблением. [6, c298-299]

источник

ПНД Ф 14.1:2:4.4-95
Количественный химический анализ вод. Методика измерений массовой концентрации нитрат-ионов в питьевых, поверхностных и сточных водах фотометрическим методом с салициловой кислотой

Купить ПНД Ф 14.1:2:4.4-95 — бумажный документ с голограммой и синими печатями. подробнее

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО «ЦНТИ Нормоконтроль».

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Документ устанавливает методику измерений массовой концентрации нитрат-ионов в питьевых, поверхностных и сточных водах фотометрическим методом

2 Приписанные характеристики показателей точности измерений

3 Средства измерений, вспомогательное оборудование, реактивы и материалы

5 Требования безопасности, охраны окружающей среды

6 Требования к квалификации операторов

7 Требования к условиям измерений

8 Подготовка к выполнению измерений

10 Обработка результатов измерений

11 Оформление результатов измерений

12 Контроль точности результатов измерений

13 Проверка приемлемости результатов, полученных в двух лабораториях

Приложение А (информационное). Бюджет неопределенности измерений (Таблица А.1)

Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку:

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ
В СФЕРЕ ПРИРОДОПОЛЬЗОВАНИЯ

И.о. директора ФБУ «Федеральный

центр анализа и оценки техногенного

_________________ С.А. Хахалин

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ИЗМЕРЕНИЙ МАССОВОЙ
КОНЦЕНТРАЦИИ НИТРАТ-ИОНОВ В ПИТЬЕВЫХ,
ПОВЕРХНОСТНЫХ И СТОЧНЫХ ВОДАХ
ФОТОМЕТРИЧЕСКИМ МЕТОДОМ
С САЛИЦИЛОВОЙ КИСЛОТОЙ

Методика допущена для целей государственного
экологического контроля

МОСКВА 1995 г.
(издание 2011 г.)

Методика рассмотрена и одобрена федеральным бюджетным учреждением «Федеральный центр анализа и оценки техногенного воздействия (ФБУ «ФЦАО»).

Главный инженер ФБУ «ФЦАО», к.х.н.

«Федеральный центр анализа и оценки техногенного воздействия» (ФБУ «ФЦАО»)

Настоящий документ устанавливает методику измерений массовой концентрации нитрат-ионов и питьевых, поверхностных и сточных водах фотометрическим методом.

Диапазон измерений от 0,1 до 100 мг/дм 3

Если массовая концентрация нитрат-ионов в анализируемой пробе превышает 10 мг/дм 3 , то пробу необходимо разбавлять.

Мешающие влияния, обусловленные присутствием взвешенных, окрашенных органических веществ, хлоридов в количествах, превышающих 200 мг/дм 3 , нитритов при содержании свыше 2,0 мг/дм 3 , железа при массовых концентрациях более 5,0 мг/дм 3 , устраняются специальной подготовкой пробы (п. 9.1).

Значения показателя точности измерений 1 — расширенной относительной неопределенности измерений по настоящей методике при коэффициенте охвата 2 приведены в таблице 1. Бюджет неопределенности измерений приведен в Приложении А

1 В соответствии с ГОСТ Р 8.563-2009 (п. 3.4) в качестве показателя точности измерений использованы показатели неопределенности измерений).

8.4.2 Раствор салициловой кислоты

Растворы переносят в фарфоровые чашки, добавляют 2 см 3 раствора салициловой кислоты (или 2 см 3 раствора натрия салициловокислого) и выпаривают в фарфоровой чашке на водяной бане досуха. После охлаждения сухой остаток смешивают с 2 см 3 концентрированной серной кислоты и оставляют на 10 мин. Затем содержимое чашки разбавляют 10 — 15 см 3 дистиллированной воды, приливают приблизительно 15 см 3 раствора гидроксида натрия и сегнетовой соли, переносят в мерную колбу вместимостью 50 см 3 , смывая стенки чашки дистиллированной водой, охлаждают колбу в холодной воде до комнатной температуры, доводят дистиллированной водой до метки и полученный окрашенный раствор сразу фотометрируют при l = 410 нм в кюветах с длиной поглощающего слоя 20 мм. Одновременно с обработкой градуировочных растворов проводят «холостой опыт» с дистиллированной водой, который используют в качестве раствора сравнения.

При построении градуировочного графика по оси ординат откладывают значения оптической плотности, а по оси абсцисс — величину концентрации нитрат-ионов в мг/дм 3 .

8.7 Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочной характеристики проводят не реже одного раза в квартал, а также при смене партий реактивов, после поверки или ремонта прибора. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведенных в п. 8.6).

Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия:

где X — результат контрольного измерения массовой концентрации нитрат-ионов в образце для градуировки;

С — аттестованное значение массовой концентрации нитрат-ионов;

uI(TOE) — стандартное отклонение результатов измерений, полученных в условиях промежуточной прецизионности, %.

Значения uI(TOE) приведены в Приложении А.

Если условие стабильности градуировочной характеристики не выполняется только для одного образца для градуировки, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины и повторяют контроль с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график.

9.1 Освобождение от мешающих влияний

Читайте также:  Биологические методы анализа сточных вод

1. Взвешенные, окрашен, орган, в-ва. Железо (> 5 мг/дм 3 )

К 150 см 3 пробы добавляют 3 см 3 гидроксида алюминия, пробу перемешивают, дают отстояться и фильтруют через фильтр «белая лента», отбрасывая первую порцию фильтрата.

В ходе измерений добавляют сернокислое серебро в количестве, эквивалентном содержанию хлорид-ионов. Осадок хлорида серебра отфильтровывают через фильтр «белая лента».

К 20 см 3 пробы добавляют 0,05 г сернокислого аммония и упаривают досуха на водяной бане, доводят до первоначального объема дистиллированной водой.

Пробу воды объемом 150 см 3 обрабатывают, как указано в п. 9.1. Для измерений используют фильтрат. Отбирают 10 см 3 фильтрата и далее поступают, как описано в пункте 8.6.

Массовую концентрацию нитрат-ионов, X (мг/дм 3 ) вычисляют по формуле:

где С — содержание нитрат-ионов, найденное по графику, мг/дм 3 ;

К — коэффициент разбавления.

При необходимости за результат измерений Хср принимают среднее арифметическое значение двух параллельных определений Х1 и Х2

для которых выполняется следующее условие:

где r — предел повторяемости, значения которого приведены в таблице 2.

Таблица 2 — Значения предела повторяемости при вероятности Р = 0,95

Диапазон измерений, мг/дм 3

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r, %

источник

Цель работы: ознакомление с фотометрическим методом определения нитратов в питьевой, сточной и других видах вод.

1.1. Общие сведения и характеристика метода определения нитратов

Нитраты – соли азотной кислоты, например NaNO3,KNO3, NH4NO3, Mg(NO3)2. Они являются нормальными продуктами обмена азотистых веществ любого живого организма – растительного и животного, поэтому «безнитратных» продуктов в природе не бывает.

Нитраты встречаются почти во всех видах вод. Большое количество нитратов в поверхностных и подземных водах указывает иногда на загрязнение в прошлом фекальными водами. Значительные количества нитратов содержат некоторые промышленные сточные воды. При современной технологии внесения удобрений в почву растения усваивают только 50 % их, остальные уходят со стоком. Азот поступает в почву в нескольких формах. Нитратная форма вследствие подвижности легко вымывается из почвы. Вода с повышенным содержанием нитратов — потенциальная опасность для здоровья животных и человека. Для воды питьевой (ГОСТ 2874-82) содержание нитратов (NO3) должно составлять не более 45 мг/л. Предельно допустимая концентрация (ПДК) нитратов (по азоту) в воде водоемов хозяйственно-питьевого и культурно-бытового водопользования составляет (по ЛПВ)

В производственных сточных водах, а также сельскохозяйственных водах (стоки от животноводческих ферм) содержание нитратов может достигать до 1000 мг/л. Такая сточная вода должна подвергаться очистке на сооружениях перед ее сбросом в поверхностный водоем или повторном использовании в производстве. Внесение больших доз нитратов при несбалансированности по фосфору, калию, молибдену и др. приводит к накоплению нитратов в растениях.

Определение нитратов в грунтовых водах может служить оценкой характера процессов минерализации при фильтровании воды через почвенные соли. При исследовании поверхностных вод по содержанию нитратов можно судить о протекающих процессах самоочищения, а при биологической очистке сточных вод – о процессе нитрификации.

Содержание нитратов в растениях выше 0,5 % представляет потенциальную опасность отравления животных. В кишечнике нитраты способны под действием бактерий переходить в нитриты, которые характеризуются значительной токсичностью. Они способны соединяться с гемоглобином крови вместо кислорода, переводя его в метгемоглобин, препятствующего переносу кислорода кровеносной системой. Это заболевание называется метгемоглобинемией. Поэтому для профилактики загрязнения окружающей среды, особенно в районах высоких норм применения азотных удобрений, необходимо наблюдение за составом грунтовых и поверхностных вод и содержанием в них нитратов.

Вода, забираемая в водопроводную сеть в качестве питьевой, а также для нужд производства, контролируется на содержание нитратов.

В производстве вода, используемая в водооборотных системах, также должна контролироваться на содержание нитратов. Их высокая концентрация может спровоцировать рост водорослей и микроорганизмов в трубопроводах (застойные зоны) и вторичное загрязнение циркулируемой воды в системе продуктами их жизнедеятельности и, соответственно, инициировать процессы биохимической коррозии. Кроме того, биообрастание внутри систем теплообмена снижает теплопередачу и эффективность их работы.

Разработано и применяется несколько способов определения нитратов в воде. Выбор метода зависит от концентрации нитратов и цели исследования.

Хорошие результаты даёт фотометрический метод с применением химического реагента — салицилата натрия. Интервал определяемых концентраций нитратов — 0,1-20 мг/л. Это определение основано на реакции взаимодействия нитратов с салицилатом натрия в среде концентрированной серной кислоты. При этом образуется смесь 3-нитросалициловой и 5-нитросалициловой кислот, соли которых в щелочной среде имеют жёлтую окраску. Фотометрирование желтоокрашенных растворов проводят при длине волны = 410 нм.При необходимости мешающее влияние окрашенных органических веществ устраняют предварительной обработкой пробы суспензией гидроксида алюминия и ее последующего осветления (фильтрования).

1.2. Фотометрический метод анализа

Фотоколориметрический метод анализа основан на измерении интенсивности светового потока, прошедшего через окрашенный раствор (предложен русским ученым В.М. Севергиным, 1795 г.).

Сущность анализа заключается в переводе различных исследуемых соединений (в составе газов, воды и почвы) в раствор с последующим их окрашиванием. Через окрашенный раствор пропускают световой поток и по светопоглощению такого окрашенного раствора определяют содержание окрашенного исследуемого соединения в анализируемом растворе.

Зависимость между интенсивностью окрашивания раствора и содержанием в нем окрашенного соединения может быть выражена зависимостью

(закон Бугера-Ламберта-Бера), где, (1)

— интенсивность света, прошедшего через окрашенный раствор;

— интенсивность падающего света;

— коэффициент поглощения света (зависит от природы окрашенного вещества);

— концентрация окрашенного вещества в растворе;

— толщина слоя светопоглощающего раствора, см.

Если прологарифмировать уравнение (1) и изменить знаки на обратные, то уравнение примет вид:

(2)

— называют оптической плотностью (Д) раствора, которая прямо пропорциональна концентрации окрашенного вещества и толщине слоя раствора.

Прибор для фотоколориметрии – ФЭК (фотоэлектроколориметр).

В состав прибора КФК-2 входятLоптическая система) — источник света, светофильтры, линзы, фотоэлемент, преобразователь светового потока в электросигнал на гальванометре, гальванометр, кюветодержатель, ручки (чувствительность и длина волны), набор кювет для растворов.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1. Устройство и принцип работы фотоэлектроколориметра (КФК-2)

КФК-2 является однолучевым прибором и предназначен для измерения коэффициентов пропускания (в диапазоне длин волн 315-980 нм) и абсорбционности растворов. Пределы измерения коэффициентов пропускания от 100 до 5 % .

На рис. 1 приведена оптическая схема КФК-2.

Рис. 1 Оптическая схема КФК-2

1 — лампа накаливания ; 2 — конденсоры; 3 — диафрагма; 4,5 — объективы; 6,7,8 – светофильтры; 9,11 – защитные стекла ; 10 – кювета с раствором; 12 – фотодиод ; 13 – светофильтр ; 14 – делительная пластина ;15 – фотоэлемент.

Колориметр включают в сеть за 15 минут до начала измерений (кюветное отделение открыто).

Кюветы установленного размера подготавливают к работе следующим образом: рабочие поверхности кювет протирают обезжиривающей смесью. После каждого определения на приборе, кюветы промывают от рабочей смеси дистиллированной водой не менее трех раз и тщательно протирают фильтровальной бумагой.

В приборе КФК используют для измерения две кюветы. Одна – с «холостой» пробой и вторая – для анализа исследуемой пробы. Измерение оптической плотности начинают с «холостой» пробы (Д1), после нее измеряют оптическую плотность окрашенного исследуемого раствора (Д2). Разница между показаниями фиксируется в виде показателя Д – светопропускания. Данная величина будет расти по мере увеличения разницы концентраций «холостой» и контрольной пробами. Графическая зависимость оптической плотности (светопропускания) Д от концентрации анализируемого соединения называется калибровочным графиком. На нем принято указывать дату калибрования на приборе, чувствительность, светофильтр, размер кюветы для раствора.

На приборе левой ручкой устанавливают заданную измерением длину волны (светофильтр), а верхней правой — минимальную чувствительность прибора. В кюветодержатель прибора вставляют кювету с «холостой» пробой (дистиллированная вода + реактивы для определения анализируемого вещества), закрывают крышку кюветного отделения и ручками «чувствительность», «установка 100», «грубо» и «точно» устанавливают ноль по шкале абсорбционности (Д – оптическая плотность). Поворотом ручки кюветодержателя (снизу) кювету с «холостой» пробой заменяют на кювету с рабочим окрашенным раствором. Снимают отсчет по шкале микроамперметра. Измерения одной пробы проводят не менее 3-х раз и окончательное значение измеренной абсорбционности определяют как среднее арифметическое из полученных значений.

2.2. Методика проведения работы

2.2.1. Построение калибровочного графика.

Используя рабочий раствор нитрата калия, согласно таблице 1 готовят серию стандартных растворов, содержащих NO3. Рабочий раствор KNO3 содержит 10 мг/л . Для этого в мерные колбы на 50 мл вносят определенное количество рабочего раствора и доводят дистиллированной водой до метки.

Растворы для приготовления шкалы стандартов при определении

№ колбы Количество рабочего раствора, мл Содержание , мг/л
1.
2. 0,2
3. 0,4
4. 0,6
5. 1,0
6. 2,0
7. 3,0
8. 4,0
9. 5,0
10. 6,0
11. 7,0
12. 8,0
13.

В фарфоровые чашки отбирают пробы по 20 мл с различным содержанием NO3, добавляют по 2 мл салицилата натрия и выпаривают на песчаной бане досуха. Затем охлаждают чашки с осадком, добавляют в них по 2 мл концентрированной серной кислоты и оставляют на 10 минут. По истечении этого времени в чашки приливают 15 мл дистиллированной воды, 15 мл раствора едкого натра и сегнетовой соли. Внимание. Реагенты приливать в указанном порядке! Далее полученную смесь количественно переносят в мерные колбы ёмкостью 50 мл, обмывая стенки чашек дистиллированной водой, колбы охлаждают до комнатной температуры.

После охлаждения доводят объём дистиллированной водой до метки и измеряют оптическую плотность растворов при длине 410 нм (фиолетовый фильтр) в кюветах толщиной слоя 5 см. Измерение нужно проводить не позднее, чем через 10 мин. после приливания гидрооксида натрия, в противном случае окраска раствора изменяется.

Для построения калибровочного графика можно сократить количество замеров (колб с пробами) до 4-5 штук.

Калибровочный график строят в координатах: оптическая плотность Д – концентрация нитрат-ионов ( )

2.2.2. Определение нитратов в пробах воды

Проводят анализ проб воды различных источников (по заданию преподавателя).

Перед началом работы необходимо внимательно осмотреть пробу. Если очевидно, что в ней присутствуют окрашенные органические соединения, необходимо отобрать 150 мл пробы, прибавить к ней 3 мл суспензии гидроксида алюминия. После тщательного перемешивания пробу воды отстаивают, затем фильтруют, отбрасывая первые порции фильтрата.

Затем отбирают 20 мл фильтрата и анализируют пробу как указано выше (см. п. 2.2.1.).

Параллельно проводят холостую пробу с 20 мл дистиллированной воды. Результаты анализов заносят в таблицу 2.

2.3. Обработка результатов эксперимента

Обработка результатов измерений ведется МНК с использованием ПЭВМ и представляется в графическом виде (см. рисунок 1) с указанием ошибки в определении ( ).

По полученным данным строится график зависимости оптической плотности Д от концентрации нитратов в пробах (шкала стандартов). На графике приводят данные по условиям анализа (номер светофильтра, толщина кюветы, чувствительность и дату выполнения калибровочного графика).

Рис.2. Калибровочный график

По оптической плотности анализируемых проб воды на калибровочном графике находят содержание нитратов в растворе. По найденным значениям рассчитывают содержание нитрат-ионов в исследуемых пробах (мг/л):

,

где С – концентрация нитрат-ионов, найденная по калибровочной кривой, мг/л;

V – объём пробы, взятой для анализа, мл.

Результаты анализа и расчета концентрации нитратов в пробах воды приводят в таблицу 2.

Результаты анализа воды различного происхождения

№ п/п Образец пробы воды Оптическая плотность, Д Концентрация нитратов, , мг/л
Вода водопроводная сырая
Вода водопроводная кипяченая
Сточная вода НПЗ
Сточная вода химкомбината

1. Построить калибровочный график.

2. Провести анализ проб воды различных источников (по заданию преподавателя).

3. На основании результатов анализа сделать вывод о качестве воды и ее пригодности для целевого использования (питьевое снабжение, водооборотная система производства, сброс в поверхностный водоем).

1. Опасно ли использовать воду как питьевую, если в ней содержание нитратов 35 мг/л?

2. Устройство и принцип работы фотоэлектроколориметра.

3. Теоретические основы колориметрии.

4. Принцип построения калибровочного графика. Точность определения анализируемого компонента.

5. С каким содержанием нитратов (после сооружений очистки сточных вод) можно сбрасывать очищенную сточную воду в поверхностный водоем?

6. Почему вводят ограничения на содержание в воде нитратов?

1. Перед работой ознакомиться с устройством и принципом работы фотоэлектроколориметра (КФК).

2. Всю работу с фарфоровыми чашками проводить только в вытяжном шкафу при включенной тяге.

3. С реактивами работать в резиновых перчатках.

4. Отбор серной кислоты проводить под тягой с помощью пипетки.

5. Реагенты приливать в строго указанном порядке.

6. По окончании работы вымыть руки с мылом.

ОПРЕДЕЛЕНИЕ ФОСФАТОВ В ПРИРОДНОЙ И СТОЧНОЙ ВОДЕ

В сточных водах, как и в природных водах, фосфор может присутствовать в различных видах. В жидкой фазе анализируемой воды он может быть в виде ортофосфорной кислоты и её ионов ( ), в виде мета-, пиро- и полифосфатов органических соединений (нуклеиновых кислот, нуклеопротеиды, фосфоролипиды и др.)

При взаимодействии ортофосфат-ионов с молибдатом в кислой среде образуется жёлтая гетерополикислота, которая под действием восстановителей превращается в интенсивно окрашенное синее соединение. Восстановление можно проводить оловом или аскорбиновой кислотой.

Восстановление аскорбиновой кислотой, сравнительно слабым восстановителем, происходит только при повышенной температуре, т.е. в условиях, когда полифосфат и органические эфиры фосфорной кислоты гидролизуются с образованием ортофосфорной кислоты. Для ускорения реакции при комнатной температуре и интенсификации окраски вводят соль сурьмы (антимонилтартрат калия – КSbH4O6·0,5H2O).

Мешающие вещества. Сильнокислые и сильнощелочные пробы предварительно нейтрализуют. Определению мешают сульфиды и Н2S, в концентрации, превышающих 3 мг/л. Мешающие влиянию можно устранить, прибавляя несколько мг КMnО4 на 100 мл пробы и встряхивая 1-2 мин; раствор должен быть розовым. Затем прибавляют требуемые для определения реактивы, но в обратном порядке: сначала раствор аскорбиновой кислоты, перемешивают и вливают раствор молибтана.

Для устранения влияния нитритов вводят сульфаминовой кислоты, которую вводят в состав применяемого реактива. При большом содержании железа следует ввести эквивалентное количество ЭДТА.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Концентрацию фосфатов определяем в питьевой и сточной воде.

К 50 мл пробы, профильтрованной в день отбора через мембранный фильтр № 1 или через плотный бумажный фильтр (синяя лента), приливают 2 мл смешанного раствора через короткое время – 0,5 мл раствора аскорбиновой кислоты (в присутствии мешающих веществ, реактивы приливают в обратном порядке). Смесь перемешивают. Одновременно проводят холостое определение с 50 мл дистиллированной воды. Через 15 мин (20 мин.) определяют оптическую плотность. Измерение проводят при = 800 нм или при максимально возможном для данного прибора значении.

Содержание растворённых неорганических фосфатов (мг/л) ( ) определяют по формуле:

где С – концентрация фосфатов, определённая по калибровочной кривой, мг/л;

V – объём пробы, взятой для анализа, мл.

В диапазоне концентраций до 1 мг/л результаты округляют до сотых долей мг/л, свыше 1 мг/л – до десятых долей мг/л.

Построение калибровочного графика

Берут 0; 1,0; 2,5; 5,0…..50,0 мл рабочего стандартного раствора 2 фосфата калия, разбавляют каждый раствор до 50 мл дистиллированной Н2О и далее продолжают, как в ходе определения (общее содержание растворённых ортофосфатов, найденных экспериментально, выражают в мг/л ).

Измеряют оптическую плотность и строят график зависимости оптической плотности от концентрации ионов фосфорной кислоты.

Построение калибровочной кривой.

Реактивы Номер мерной колбы
Количество ст. раствора 2, мл 1,0 2,5 5,0 10,0
Количество дист. Н2О, мл 49,0 47,5 45,0 40,0 25,0
Содержание , мг/л 0,02 0,05 0,1 0,2 0,5 1,0

1. Построить калибровочную кривую в диапазоне 0-1 мг/л (табл.1).

2. Провести определение фосфата в водопроводной воде (сравнить данные с ГОСТ на воду питьевую).

3. Рассчитать и построить калибровочную кривую на содержание фосфатов до 50 мг/л.

4. Провести определение содержание в пробе сточной воды (с учётом мешающего влияния отдельных компонентов сточной воды).

Давление насыщенного водяного пара

при температурах от 10 до 39 °С

, °C , мм.рт.ст. , °C , мм.рт.ст. , °C , мм.рт.ст.
9.2 9.8 10.5 11.2 12.0 12.8 13.6 14.5 15.5 16.5 17.5 18.7 19.8 21.1 22.4 23.8 25.2 26.7 28.3 30.0 31.8 33.7 35.7 37.7 39.9 42.2 44.6 47.1 49.7 52.4

Десятибалльная шкала коррозионной стойкости металлов

Группа стойкости Скорость коррозии металла, мм/год Балл
Совершенно стойкие Весьма стойкие Стойкие Пониженно-стойкие Малостойкие Нестойкие Менее 0,001 Свыше 0,001 до 0,005 Свыше 0,005 до 0,01 Свыше 0,01 до 0,05 Свыше 0,05 до 0,1 Свыше 0,1 до 0,5 Свыше 0,5 до 1,0 Свыше 1,0 до 5,0 Свыше 5,0 до 10,0 Свыше 10,0

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9043 — | 7269 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Содержание азота нитра­тов, мг/л

Содержание азота нитра­тов, мг/л

Улавливается при сравне­нии с контролем

Хлориды в воде осаждаются титрованным раствором нитрата серебра с образованием малорастворимого хлорида серебра (выявляет хлориды в пределах от 2 до 400 мг/л).

титрованный раствор хлорида натрия — растворяют 1,694 г препарата в 1 л дистиллированной воды, в 1 мл раствора содержится 1 мг хлора-иона;

титрованный раствор нитрата серебра — 4,8 г препарата растворяют в 1 л дистиллированной воды, в 1 мл такого раствора осаждается 1 мг иона-хлора;

5% -й раствор хромата калия — 50 г препарата растворяют в небольшом количестве бидистиллированной воды, через 2 ч фильтруют и объем воды доводят до 1 л этой же водой.

Определение поправочного коэффициента нитрата серебра: в мерную колбу на 100 мл наливают точно 10 мл титрованного раствора хлорида натрия, доводят объем до 100 мл и добавляют 2 мл 5%-го раствора хромата калия. Титруют раствором нитрата серебра до появления оранжево-бурого окраши­вания. Вычисляют поправочный коэффициент (К) для раствора нитрата серебра по формуле:

где 10 — количество хлорида натрия, взятого для титрования, мл; А —количество нитрата серебра, пошедшего на титрование, мг.

Методика исследования. Для определения берут 100 мл профиль­трованной пробы воды или меньшее ее количество и доводят до 100 мл дистиллированной водой. Затем к пробе добавляют 1 мл раствора хромата калия и при помешивании титруют раствором нитрата серебра до перехода лимонно-желтого окрашивания в оранжево-желтое. Содержание хлорида (X) вычисляют по формуле:

где а — количество раствора нитрата серебра, пошедшего на титрование, мл; k — поправочный коэффициент раствора нитрата серебра; l — количество хлора в мг, эквивалентного 1 мл титрованного раствора нитрата серебра; 1000 — перерасчет на 1 л; b — объем исследуемой воды в мл, взятой для титрования.

По данной методике точности определения хлоридов мешают сероводо­род, органические вещества, очень кислые или щелочные воды и большое количество железа. Кислые пробы воды нейтрализуют бикарбонатом нат­рия, щелочные — азотной кислотой. Железо осаждают окисью цинка и осадок фильтруют, сульфиды и сульфиты окисляют перманганатом калия при нагревании (2 мл перекиси водорода на 100 мл воды, кипятить 10 мин).

Приближенный метод определения хлоридов: в пробирку наливают 5 мл исследуемой воды, добавляют 2-3 капли азотной кислоты (1 : 3) и вносят 3 капли 10%-го раствора азотнокислого серебра. Раствор встряхивают и по объему выпавшего осадка определяют содержание хлоридов в мг/л. Сильная муть — 1-10, образуются хлопья, оседают не сразу — 10-50; белый объеми­стый осадок — 50-100.

Определение сульфатов. Комплекснометрический метод определения ос­нован на осаждении иона сульфата хлористым барием. Осадок сернокислого бария растворяют в титрованном растворе трилона Б, избыток которого определяют титрованием раствора хлористого магния. Количество трилона Б, израсходованное на растворение сернокислого бария, эквивалентно содер­жанию сульфат-ионов во взятом объеме воды.

Оптимальные интервалы концентрации для комплекснометрического определения сульфат-ионов в пределах 5-25 мг.

1) 0,05 н раствор хлористого бария (6,108 г препарата растворяют в 1 л дистиллированной воды);

0,05 н раствор хлористого натрия (5,085 г препарата растворяют в 1 л дистиллированной воды);

0,05 н раствор трилона Б (9,30 г препарата растворяют в 1 л дистиллированной воды);

аммиачный буферный раствор (100 мл 20%-го раствора хлористого аммония смешивают со 100 мл 25%-го раствора аммиака, смесь доводят до 1 л дистиллированной водой); раствор хранят в плотно закрытой склянке во избежание потерь аммиака;

9 н раствор водного аммиака (67 мл 25%-го раствора аммиака разбавляют дистиллированной водой до 100 мл);

индикатор хромоген черный ЕТ-00 (0,5 г препарата растворяют в 20 мл аммиачного буферного раствора, доводят до 100 мл этиловым спиртом); можно пользоваться сухим индикатором (0,25 г препарата смешивают с 50 г предварительно тщательно растертого в ступке хлористого калия).

Методика исследования. 100 мл испытуемой воды помещают в коническую колбу емкостью 250 г, затем приливают 3 капли концентриро­ванной соляной кислоты и 25 мг 0,05 н раствора хлористого бария. Нагрева­ют до кипения, кипятят 10 мин и оставляют на водяной бане около 1 ч. Затем раствор фильтруют через беззольный фильтр «синяя лента», предва­рительно промытый горячей дистиллированной водой. Колбу с осадком про­мывают 5-6 раз умеренно горячей водой и, не счищая со стенок колбы осадка, пропускают промывные воды. Фильтр промывают 2-3 раза водой до отрицательной реакции на ион-хлор. Далее осадок помещают в эту же колбу и приливают 5 мл 9 н раствора аммиака. Фильтр осторожно разворачивают стеклянной палочкой и расправляют по дну колбы, добавляют 6 мл 0,05 н раствора трилона Б на каждые 5 мг предполагаемого содержания ионов суль­фата во взятом для определения объеме испытуемой воды.

Содержимое колбы осторожно нагревают на песочной бане до кипения, кипятят до растворения осадка 3-5 мин, колбу держат под наклоном, периоди­чески перемешивая жидкость. Раствор охлаждают, приливают 50 мл дистил­лированной воды, 5 мл аммиачного буферного раствора и добавляют 0,1 г су­хой смеси индикатора или 5 капель спиртового раствора индикатора. Избыток трилона Б титруют раствором хлористого магния до перехода синей окраски в лиловую. 1 мл 0,05 н раствора трилона Б соответствует 2,4 мг иона сульфата.

Содержание сульфатов (X), мг/л вычисляют по формуле:

где n — количество прибавленного раствора трилона Б, мл; К — поправоч­ный коэффициент к нормальности раствора трилона Б; m — количество хлористого магния, пошедшее на титрование, мл; К1 — поправочный коэф­фициент к нормальности раствора хлористого магния; Y — объем исследуе­мой воды, взятой для определения, мл.

При содержании в воде сульфат-ионов больше 250 мг/л пробу воды раз­бавляют, а при уровне ниже 50 мг/л берут больший объем испытуемой воды и концентрируют его.

Приближенный метод определения сульфатов (качественная реакция). В пробирку наливают 5 мл исследуемой воды, добавляют 3 капли 10% -го раствора хлорида бария и 3 капли 25%-го раствора соляной кислоты. По объему выпавшего осадка определяют содержание сульфатов в мг/л: слабая муть через несколько минут — 1-10; слабая муть сразу — 10-100; сильная муть — 100-150; большой осадок, быстро оседающий на дно, — 500.

источник

Методы определения азотсодержащих веществ

Water. Methods for determination of nitrogen-containing matters

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

1 ПОДГОТОВЛЕН Обществом с ограниченной ответственностью «Протектор» совместно с Закрытым акционерным обществом «Центр исследования и контроля воды»

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии, Техническим комитетом по стандартизации ТК 343 «Качество воды»

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 20 октября 2014 г. N 71-П)

За принятие проголосовали:

Краткое наименование страны по
МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Госстандарт Республики Беларусь

Госстандарт Республики Казахстан

4 Приказом Федерального агентства по техническому регулированию и метрологии от 11 ноября 2014 г. № 1535-ст межгосударственный стандарт ГОСТ 33045-2014 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2016 г.

5 Настоящий стандарт соответствует международному стандарту ISO 6777:1984* «Качество воды. Определение нитритов. Молекулярно-абсорбционный спектрометрический метод» («Water quality — Determination of nitrites. Molecular absorption spectrometric method», NEQ) в части раздела 7

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

6 ВЗАМЕН ГОСТ 4192-82, ГОСТ 18826-73

7 ИЗДАНИЕ (февраль 2019 г.) с Поправкой (ИУС 1-2017)

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Настоящий стандарт распространяется на питьевую (в том числе расфасованную в емкости), природную (поверхностную и подземную) и сточную воду и устанавливает следующие методы определения содержания минеральных азотсодержащих веществ:

— фотометрический метод определения содержания аммиака и ионов аммония (суммарно) с реактивом Несслера при массовой концентрации от 0,1 до 3,0 мг/дм без разбавления пробы. При необходимости определения более высоких концентраций пробу разбавляют, но не более чем в 100 раз (метод А);

— фотометрический метод определения содержания нитритов с использованием сульфаниловой кислоты при массовой концентрации от 0,003 до 0,3 мг/дм без разбавления пробы. При необходимости определения более высоких концентраций пробу разбавляют, но не более чем в 100 раз (метод Б);

— фотометрический метод определения азота нитритов с использованием 4-аминобензолсульфонамида при массовой концентрации от 0,25 до 10,0 мг/дм (метод В);

— фотометрический метод определения содержания азота нитратов с использованием фенолдисульфоновой кислоты при массовой концентрации от 0,1 до 6,0 мг/дм (метод Г);

— фотометрический метод определения содержания нитратов с использованием салициловокислого натрия при массовой концентрации от 0,1 до 2,0 мг/дм без разбавления пробы. При необходимости определения более высоких концентраций пробу разбавляют, но не более чем в 100 раз (метод Д).

Для определения нитритов арбитражным является метод Б, для нитратов — метод Д.

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ OIML R 76-1-2011 Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков

ГОСТ 61-75 Реактивы. Кислота уксусная. Технические условия

ГОСТ 83-79 Реактивы. Натрий углекислый. Технические условия

ГОСТ 1277-75 Реактивы. Серебро азотнокислое. Технические условия

ГОСТ 1770-74 (ISO 1042-83, ISO 4788-80) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 2493-75 Реактивы. Калий фосфорнокислый двузамещенный 3-водный. Технические условия

ГОСТ 3760-79 Реактивы. Аммиак водный. Технические условия

ГОСТ 3773-72 Реактивы. Аммоний хлористый. Технические условия

ГОСТ 4197-74 Реактивы. Натрий азотистокислый. Технические условия

ГОСТ 4198-75 Реактивы. Калий фосфорнокислый однозамещенный. Технические условия

ГОСТ 4199-76 Реактивы. Hатрий тетраборнокислый 10-водный. Технические условия

ГОСТ 4204-77 Реактивы. Кислота серная. Технические условия

ГОСТ 4217-77 Реактивы. Калий азотистокислый. Технические условия

ГОСТ 4238-77 Реактивы. Квасцы алюмоаммонийные. Технические условия

ГОСТ 4328-77 Реактивы. Натрия гидроокись. Технические условия

ГОСТ 4329-77 Реактивы. Квасцы алюмокалиевые. Технические условия

ГОСТ 4517-87 Реактивы. Методы приготовления вспомогательных реактивов и растворов, применяемых при анализе

ГОСТ 4525-77 Реактивы. Кобальт хлористый 6-водный. Технические условия

ГОСТ ИСО 5725-6-2003* Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике*
_________________
* В Российской Федерации действует ГОСТ Р ИСО 5725-6-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике».

ГОСТ 5845-79 Реактивы. Калий-натрий виннокислый 4-водный. Технические условия

ГОСТ 6552-80 Реактивы. Кислота ортофосфорная. Технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 9147-80 Посуда и оборудование лабораторные фарфоровые. Технические условия

ГОСТ 12026-76 Бумага фильтровальная лабораторная. Технические условия

ГОСТ ИСО/МЭК 17025-2009 Общие требования к компетентности испытательных и калибровочных лабораторий

ГОСТ 18190-72 Вода питьевая. Методы определения содержания остаточного активного хлора

ГОСТ 20298-74 Смолы ионообменные. Катиониты. Технические условия

ГОСТ 20015-88 Хлороформ технический. Технические условия

ГОСТ 24147-80 Аммиак водный особой чистоты. Технические условия

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 27068-86 Реактивы. Натрий серноватистокислый (натрия тиосульфат) 5-водный. Технические условия

ГОСТ 28311-89 Дозаторы медицинские лабораторные. Общие технические требования и методы испытаний

ГОСТ 29227-91 (ИСО 835-1-81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ 31861-2012 Вода. Общие требования к отбору проб

ГОСТ 31862-2012 Вода питьевая. Отбор проб**
__________________
** В Российской Федерации действует ГОСТ Р 56237-2014 (ИСО 5667-5:2006).

ГОСТ 31868-2012 Вода. Методы определения цветности

ГОСТ 32220-2013 Вода питьевая, расфасованная в емкости. Общие технические условия

(Поправка).

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3.2 Пробы воды, если они не могут быть проанализированы сразу, хранят при температуре от 2°С до 8°С не более 1 сут.

3.3 Пробы консервируют добавлением серной кислоты из расчета 1 см концентрированной серной кислоты на 1000 см воды (метод А) или добавлением хлороформа из расчета 2-4 см хлороформа на 1000 см воды (методы Б, В, Г и Д) и проводят определение не позднее чем через 2 сут.

3.4 Отбор проб питьевой воды, расфасованной в емкости, сроки и условия хранения — по ГОСТ 32220.

4.1 При подготовке и проведении измерений необходимо соблюдать условия, установленные в руководствах по эксплуатации или в паспортах средств измерений и вспомогательного оборудования.

4.2 Измерения объемов воды и растворов проводят при температуре окружающей среды от 15°С до 25°С. Допускается готовить растворы других номинальных объемов при условии соблюдения соотношений между объемами растворов и аликвот или массами навесок реагентов, регламентированных в настоящем стандарте.

Растворы следует хранить при комнатной температуре, если условия хранения не оговорены отдельно.

4.3 Лаборатории, проводящие определения, а также компетентность испытателей, должны соответствовать требованиям ГОСТ ИСО/МЭК 17025.

5 Фотометрический метод определения содержания аммиака и ионов аммония (суммарно) с использованием реактива Несслера (метод А)

5.1 Сущность метода

Настоящий метод основан на способности аммиака и ионов аммония взаимодействовать с реактивом Несслера с образованием окрашенного в желто-коричневый цвет соединения с последующим фотометрическим определением и расчетом массовой концентрации определяемых компонентов в пробе исследуемой воды.

5.1.1 Мешающие влияния

Мешающее влияние остаточного активного хлора устраняют добавлением эквивалентного количества серноватистокислого натрия; жесткости — добавлением раствора виннокислого калия-натрия и большого количества железа; цветности и мутности — осветлением гидроокисью алюминия, сульфатом алюминия, сульфатом цинка или сульфатом меди с последующей фильтрацией осветленных растворов.

5.2 Средства измерений, вспомогательное оборудование, реактивы, материалы

Фотометр, спектрофотометр, фотоэлектроколориметр, фотометрический анализатор (далее — прибор), позволяющие измерять оптическую плотность раствора в диапазоне длин волн от 400 до 600 нм при допускаемой абсолютной погрешности измерения спектрального коэффициента пропускания не более ±2% в оптических кюветах с толщиной поглощающего свет слоя от 1 до 5 см.

Межгосударственные стандартные образцы (МСО) состава водных растворов ионов аммония массовой концентрации 1 г/дм , с допускаемой относительной погрешностью аттестованного значения при доверительной вероятности =0,95 не более ±2%.

Весы неавтоматического действия по ГОСТ OIML R 76-1 высокого или специального класса точности с ценой деления (дискретностью отсчета) 0,1 мг, с наибольшим пределом взвешивания 220 и 500 г.

Читайте также:  Биохимический анализ можно пить воду

pH-метр любого типа, обеспечивающий измерение pH с допускаемой абсолютной погрешностью ±0,05 единиц pH.

Колбы мерные 2-50-2, 2-100-2, 2-200-2, 2-1000-2 по ГОСТ 1770.

Цилиндры мерные 2-10, 2-100, 2-500, 2-1000 по ГОСТ 1770.

Пипетки градуированные 1-1-2-1; 1-1-2-2; 1-1-2-5; 1-1-2-10 или других типов и исполнений по ГОСТ 29227.

Дозаторы пипеточные переменного объема с метрологическими характеристиками по ГОСТ 28311.

Колбонагреватель любого типа или водяная баня любого типа.

Электропечь лабораторная муфельная, поддерживающая температуру от 80°С до 300°С с погрешностью не более ±20°С.

Холодильник бытовой любого типа, обеспечивающий температуру от 2°С до 8°С.

Колбы конические по ГОСТ 25336, вместимостью 100, 1000, 1500 см .

Чашки выпарительные по ГОСТ 9147, вместимостью 100 или 150 см .

Стаканы по ГОСТ 9147, вместимостью 500 и 1000 см .

Воронки стеклянные для фильтрования по ГОСТ 25336.

Стаканы лабораторные по ГОСТ 25336.

Колбы плоскодонные по ГОСТ 25336, вместимостью 500 и 250 см .

Установка для обыкновенной перегонки или перегонки с водяным паром.

Фильтр мембранный с диаметром пор 0,45 мкм.

Бумага фильтровальная лабораторная по ГОСТ 12026.

Фильтр обеззоленный «белая» и «синяя» лента.

Аммиак по ГОСТ 3760, 25%-ный водный раствор.

Аммоний хлористый по ГОСТ 3773, ч.д.а.

Натрий серноватистокислый (тиосульфат натрия) 5-водный по ГОСТ 27068, х. ч. или стандарт-титр (фиксанал) тиосульфата натрия.

Калий-натрий виннокислый 4-водный по ГОСТ 5845, ч.д.а.

Калий фосфорнокислый однозамещенный по ГОСТ 4198, х.ч. или ч.д.а.

Калий фосфорнокислый двузамещенный по ГОСТ 2493, х.ч. или ч.д.а.

Натрия гидроокись по ГОСТ 4328, х.ч. или ч.д.а.

Натрий тетраборнокислый по ГОСТ 4199, х.ч. или ч.д.а.

Натрий углекислый по ГОСТ 83, х.ч.

Квасцы алюмокалиевые по ГОСТ 4329 или квасцы алюмоаммонийные по ГОСТ 4238, ч.д.а.

Кислота серная по ГОСТ 4204, ч.д.а.

Реактив Несслера.

Вода, не уступающая по значениям массовой концентрации веществ, восстанавливающих КМnO , и удельной электрической проводимости значениям по ГОСТ 6709 (далее — дистиллированная вода).

Хлороформ (трихлорметан) по ГОСТ 20015.

Уголь активированный марки БАУ.

Катиониты по ГОСТ 20298.

Примечание — Допускается применять другие средства измерений, вспомогательные устройства с метрологическими и техническими характеристиками и реактивы по качеству не ниже указанных в настоящем стандарте.

5.3 Подготовка к проведению измерений

5.3.1 Приготовление безаммиачной воды

Дистиллированную воду проверяют на содержание аммиака и ионов аммония (к 5 см воды прибавляют 0,1 см реактива Несслера, приготовленного, например, по ГОСТ 4517, пункт 2.134). При обнаружении аммиака (появляется желтоватое окрашивание) дистиллированную воду пропускают через колонку с активированным углем, катионитом в Н -форме или кипятят в колбе до уменьшения объема на 1/3. Затем повторно проверяют на отсутствие аммиака и ионов аммония.

На безаммиачной дистиллированной воде (далее — дистиллированная вода) готовят реактивы и растворы, ее используют в анализе для разбавления пробы.

5.3.2 Приготовление основного раствора массовой концентрации ионов аммония 1 мг/см (при отсутствии МСО по 5.2)

В мерную колбу вместимостью 1000 см вносят 2,965 г хлористого аммония, предварительно высушенного до постоянной массы при температуре от 100°С до 105°С, растворяют в небольшом количестве дистиллированной воды (5.3.1) и доводят до метки этой же водой.

Срок хранения раствора в емкости из темного стекла — не более 1 года.

Раствор пригоден к использованию, если нет помутнения, хлопьев, осадка.

5.3.3 Приготовление рабочего раствора массовой концентрации ионов аммония 0,05 мг/см

В мерную колбу вместимостью 100 см вносят 5 см основного раствора (5.3.2) или стандартного образца (СО) состава водных растворов ионов аммония номинальной массовой концентрацией 1 г/дм (5.2) и доводят до метки дистиллированной водой (5.3.1).

Раствор готовят в день использования.

5.3.4 Приготовление реактива Несслера

Применяют готовый реактив по 5.2 или готовят его по ГОСТ 4517 пункт 2.134 на безаммиачной дистиллированной воде (5.3.1).

Срок хранения раствора — не более 3 лет.

5.3.5 Приготовление раствора виннокислого калия-натрия

В мерную колбу вместимостью 1000 см , наполовину заполненную дистиллированной водой (5.3.1) вносят 500 г виннокислого калия-натрия и доводят до метки дистиллированной водой (5.3.1). Затем прибавляют 5-10 см реактива Несслера (5.3.4).

После осветления раствор не должен содержать ион аммония (контроль по качественной реакции раствора с реактивом Несслера — отсутствие окраски), в противном случае прибавляют еще 2-5 см реактива Несслера (5.3.4).

Срок хранения раствора — не более 6 мес.

5.3.6 Приготовление суспензии гидроокиси алюминия

В колбу вместимостью 1000 см вносят 125 г алюмокалиевых квасцов (5.2) и растворяют в 1000 см дистиллированной воды (5.3.1), нагревают до 60°С и постепенно прибавляют 55 см 25%-ного раствора аммиака (5.2) при постоянном перемешивании.

После отстаивания осадок переносят в большой стакан и промывают декантацией дистиллированной водой (5.3.1) до отсутствия реакции на аммиак. Контроль промывки осуществляют по качественной реакции промывной воды с реактивом Несслера (5.3.4). Промывку проводят до исчезновения окраски при контроле.

Срок хранения — не более 1 года.

5.3.7 Приготовление основного раствора серноватистокислого натрия молярной концентрации 0,1 моль/дм

В мерной колбе вместимостью 1000 см , наполовину заполненной дистиллированной водой, растворяют 25,0 г серноватистокислого натрия, добавляют 0,2 г углекислого натрия и доводят объем раствора в колбе до метки дистиллированной водой. В случае применения стандарт-титра (фиксанала) раствор готовят в соответствии с инструкцией по приготовлению.

Срок хранения раствора в емкости из темного стекла в защищенном от прямых солнечных лучей месте — не более 3 мес.

5.3.8 Приготовление рабочего раствора серноватистокислого натрия молярной концентрации 0,01 моль/дм

В мерную колбу вместимостью 1000 см вносят 100 см основного раствора серноватистокислого натрия молярной концентрации 0,1 моль/дм (5.3.7), добавляют 0,2 г углекислого натрия и доводят объем раствора в колбе до метки дистиллированной водой по 5.3.1.

Срок хранения раствора в емкости из темного стекла — не более 3 мес.

5.3.9 Приготовление раствора тетраборнокислого натрия молярной концентрации 0,025 моль/дм

9,5 г 10-водного тетраборнокислого натрия растворяют в мерной колбе вместимостью 1000 см в дистиллированной воде по 5.3.1.

Срок хранения раствора — не более 3 мес.

5.3.10 Приготовление раствора гидроокиси натрия молярной концентрации 0,1 моль/дм

В мерной колбе вместимостью 1000 см , наполовину заполненной дистиллированной водой по 5.3.1, растворяют 4 г гидроокиси натрия и доводят объем раствора до метки дистиллированной водой по 5.3.1.

Срок хранения раствора в емкости из полимерных материалов — не более 3 мес.

5.3.11 Приготовление боратного буферного раствора со значением pH 9,5

В мерной колбе вместимостью 1000 см к 500 см раствора тетраборнокислого натрия молярной концентрации 0,025 моль/дм (5.3.9) приливают 88 см раствора гидроокиси натрия молярной концентрации 0,1 моль/дм (5.3.10) и разбавляют до 1 дм дистиллированной водой по 5.3.1.

Срок хранения раствора — не более 3 мес.

5.3.12 Приготовление фосфатного буферного раствора со значением pH 7,4

В мерной колбе вместимостью 1000 см растворяют 14,3 г безводного однозамещенного фосфорнокислого калия и 68,8 г безводного двузамещенного фосфорнокислого калия в дистиллированной воде по 5.3.1.

Срок хранения раствора — не более 3 мес.

5.3.13 Приготовление раствора серной кислоты молярной концентрацией 1 моль/дм

В мерную колбу вместимостью 1000 см , заполненную на 150-200 см дистиллированной водой по 5.3.1, вносят небольшими порциями при перемешивании 27,3 см серной кислоты и доводят объем раствора до метки дистиллированной водой (5.3.1).

Срок хранения раствора — не более 1 года.

5.3.14 Приготовление раствора гидроокиси натрия массовой долей 40%

В фарфоровом стакане вместимостью 500 см в 60 см дистиллированной воды по 5.3.1 осторожно при перемешивании порциями растворяют 40 г гидроокиси натрия.

Срок хранения раствора в емкости из полимерных материалов — не более 1 года.

5.3.15 Приготовление градуировочных растворов

5.3.15.1 В мерные колбы вместимостью 50 см каждая вносят 0,0; 0,1; 0,2; 0,5; 1,0; 1,5; 2,0; 3,0 см рабочего раствора (5.3.3) и доводят до метки дистиллированной водой (5.3.1).

Массовая концентрация ионов аммония в приготовленных градуировочных растворах составляет соответственно 0,0; 0,1; 0,2; 0,5; 1,0; 1,5; 2,0; 3,0 мг/дм .

Градуировочный раствор, не содержащий ионов аммиака, является холостой пробой для градуировки.

Градуировочные растворы готовят в день использования.

5.3.15.2 Подготовка градуировочных растворов к измерениям

В каждую колбу с градуировочными растворами (5.3.15.1) прибавляют 1 см раствора виннокислого калия-натрия (5.3.5), перемешивают, затем прибавляют 1 см реактива Несслера (5.3.4) и снова перемешивают. Через 10 мин проводят градуировку по 5.3.17.

5.3.16 Подготовка прибора

Подготовку прибора к работе проводят в соответствии с руководством (инструкцией) по эксплуатации прибора.

5.3.17.1 Измеряют оптическую плотность подготовленных градуировочных растворов и холостой пробы (5.3.15.2) три раза при длине волны от 400 до 425 нм в оптической кювете с выбранной толщиной поглощающего слоя, используя в качестве раствора сравнения дистиллированную воду (5.3.1).

Для каждого градуировочного раствора и холостой пробы рассчитывают среднеарифметическое значение полученных значений оптической плотности.

где — массовая концентрация ионов аммония в i -м градуировочном растворе, мг/дм ;

— среднеарифметическое значение оптической плотности i -ого градуировочного раствора за вычетом среднеарифметического значения оптической плотности для холостой пробы, ед.опт.пл.;

— число градуировочных растворов.

Примечание — В случае, если компьютерная (микропроцессорная) система сбора и обработки информации прибора рассчитывает угловой коэффициент b , то коэффициент градуировочной характеристики (К) устанавливают равным 1/ b .

где — массовая концентрация ионов аммония в i-м градуировочном растворе, мг/дм ;

— среднеарифметическое значение оптической плотности i -гo градуировочного раствора за вычетом среднеарифметического значения оптической плотности холостой пробы, ед.опт.пл.

Результаты контроля признают удовлетворительными, если выполняется условие

где — значение коэффициента градуировочной характеристики i -го градуировочного раствора, рассчитанного по формуле (2);

К — значение коэффициента градуировочной характеристики, рассчитанного по формуле (1) при градуировке прибора;

N — норматив контроля приемлемости градуировочной характеристики, равный 10%.

Если условие (3) не выполняется, то установление градуировочной характеристики повторяют. Градуировку также проводят после ремонта прибора и смены реактивов.

5.3.17.4 Контроль стабильности градуировочной характеристики

Стабильность градуировочной характеристики контролируют с каждой серией проб. Для контроля используют два или три градуировочных раствора по 5.3.15.

Проводят измерение контрольных градуировочных растворов по 5.3.17.1.

Градуировочную характеристику считают стабильной при выполнении условия

где — массовая концентрация ионов аммония в градуировочном растворе, полученная при контрольном измерении, мг/дм ;

С — массовая концентрация ионов аммония в градуировочном растворе, полученная по процедуре приготовления, мг/дм ;

— норматив контроля стабильности градуировочной характеристики, равный 10%.

Если условие (4) не выполняется, то проводят повторное измерение для этого градуировочного раствора (свежеприготовленного). Если градуировочная характеристика вновь нестабильна, выясняют причины нестабильности, устраняют их и повторяют контроль с использованием не менее двух других свежеприготовленных градуировочных растворов. При повторном обнаружении нестабильности устанавливают новую градуировочную характеристику.

5.3.18 Подготовка пробы исследуемой воды

5.3.18.1 Устранение мешающих влияний

При содержании в пробе исследуемой воды активного остаточного хлора в количестве более 0,5 мг/дм добавляют эквивалентное количество раствора серноватистокислого натрия по 5.3.8 (определяют в отдельной аликвоте пробы исследуемой воды по ГОСТ 18190).

Мутную или цветную воду (при цветности выше 20°, например, по ГОСТ 31868) подвергают коагуляции гидроокисью алюминия следующим образом: на 250-300 см исследуемой воды прибавляют 2-5 см суспензии гидроокиси алюминия (5.3.6), встряхивают вручную, после осветления отбирают прозрачный слой для анализа. При необходимости воду с коагулянтом фильтруют через обеззоленный фильтр «синяя лента», предварительно промытый горячей дистиллированной водой (5.3.1) до отсутствия в фильтрате ионов аммония. Контроль промывки осуществляют по качественной реакции промывной воды с реактивом Несслера (5.3.4). Промывку проводят до исчезновения окраски при контроле. При фильтровании пробы первые порции фильтрата от 30 до 50 см отбрасывают.

5.3.18.2 Подготовка проб с отгонкой

5.3.18.2.1 Отгонку аммиака из исследуемой пробы (раздел 3) выполняют, как правило, для проб сточных вод. Отгонку аммиака из исследуемой пробы (раздел 3), содержащей легко гидролизуемые органические соединения, проводят при значении pH 7,4, добавляя к пробе фосфатный буферный раствор (5.3.12). В присутствии цианатов и большинства азотсодержащих органических соединений используют боратный буферный раствор со значением pH 9,5 (5.3.11). При необходимости анализа сточных вод предприятий, образующих в процессе производства фенолы (сбрасывающие содержащие фенол сточные воды), к пробе добавляют раствор гидроокиси натрия массовой долей 40% до значения pH 9,5 (5.3.14). Если присутствуют вещества, гидролизующиеся в щелочной среде, то отгонку проводят дважды: сначала при значении pH 7,4, собирая отгон в разбавленный раствор серной кислоты, потом подщелачивают этот отгон до сильнощелочной реакции и отгоняют повторно, собирая отгон в раствор борной кислоты или дистиллированную воду (5.3.1).

5.3.18.2.2 Если проба содержит большое количество взвешенных веществ или нефтепродуктов, ее предварительно фильтруют через фильтр «белая лента». Мешающие влияния (5.1.1) устраняют по 5.3.18.1.

5.3.18.2.3 В колбу для отгона помещают 400 см анализируемой пробы или отгона при pH 7,4, или меньший объем, доведенный до 400 см дистиллированной водой по 5.3.1. Затем, в зависимости от предполагаемых загрязнений, приливают 25 см буферного раствора со значением pH 9,5 (5.3.11), или 20 см раствора гидроокиси натрия с массовой долей 40% (5.3.14). В приемник наливают 50 см раствора борной кислоты и устанавливают объем жидкости так, чтобы конец холодильника был погружен в нее, добавляя при необходимости дистиллированную воду по 5.3.1. Отгоняют примерно 300 см жидкости, отгон количественно переносят в мерную колбу вместимостью 500 см , добавляют водный раствор серной кислоты молярной концентрации 1 моль/дм (5.3.13) до значения pH 6,0, и разбавляют до метки дистиллированной водой по 5.3.1. Далее пробу готовят по 5.3.18.3.

5.3.18.3 К 50 см исследуемой (раздел 3), осветленной (5.3.18.1) или подготовленной (5.3.18.2) пробы (или к меньшему объему, содержащему не более 0,15 мг NH и разбавленному дистиллированной водой по 5.3.1 до 50 см ) прибавляют 1 см раствора виннокислого калия-натрия (5.3.5), перемешивают, затем прибавляют 1 см реактива Несслера (5.3.4) и снова перемешивают. Через 10 мин проводят определение по 5.4.

5.4 Проведение измерений

Измеряют оптическую плотность аликвоты подготовленной пробы исследуемой воды (5.3.18.3), как при построении градуировочной характеристики (5.3.17.1) с последующим расчетом массовой концентрации аммиака и ионов аммония (5.5). В качестве холостой пробы используют дистиллированную воду, подготовленную аналогично пробе исследуемой воды (5.3.18.3).

5.5 Обработка результатов измерений

5.5.1 При наличии компьютерной (микропроцессорной) системы сбора и обработки информации порядок обработки результатов определяется руководством (инструкцией) по эксплуатации прибора.

где К — коэффициент градуировочной характеристики, рассчитанный по формуле (1), мг/(дм · ед.опт.пл.);

А — измеренное значение оптической плотности пробы анализируемой воды за вычетом измеренного значения оптической плотности холостой пробы, ед.опт.пл.;

V — объем аликвоты пробы, взятой для анализа, см ;

f — коэффициент разбавления пробы анализируемой воды, при этом если пробу не разбавляли, то принимают равным 1, если разбавляли, то f рассчитывают по формуле

где — вместимость мерной колбы, использованной при разбавлении пробы анализируемой воды, см ;

— объем аликвоты пробы анализируемой воды, взятый для разбавления, см .

Примечание — При расчете учитывают объемы кислоты, добавленной в пробу (раздел 3).

Для проб, подготовленных по 5.3.18.2, значение X , мг/дм , рассчитывают по формуле:

где — вместимость мерной колбы, использованной при подготовке пробы анализируемой воды для измерения (в данном случае равен 50 см ), см ;

5.5.3 При необходимости представления результата в пересчете на массовую концентрацию аммонийного азота результат, полученный по формуле (5) или (7), умножают на коэффициент 0,78.

где R — значение предела воспроизводимости по таблице 1, %.

При невыполнении условия (9) для проверки приемлемости в условиях воспроизводимости каждая лаборатория должна выполнить процедуры согласно ГОСТ ИСО 5725-6 (пункты 5.2.2; 5.3.2.2)*.
________________
* В Российской Федерации — согласно Рекомендации МИ 2881-2004 «Государственная система обеспечения единства измерений. Методики количественного химического анализа. Процедуры проверки приемлемости результатов анализа».

5.6 Метрологические характеристики

Метод обеспечивает получение результатов измерения с метрологическими характеристиками, не превышающими значений, приведенных в таблице 1, при доверительной вероятности Р= 0,95.

Таблица 1

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений, полученными в условиях повторяемости при Р =0,95) r , %

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами определений, полученными в условиях воспроизводимости при Р= 0,95) R, %

источник