Меню Рубрики

Методика анализа воды по ту

ПНД Ф 14.1;2;3;4.121-97 Количественный химический анализ вод. Методика выполнения измерений рН в водах потенциометрическим методом

МИНИСТЕРСТВО ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ И ПРИРОДНЫХ
РЕСУРСОВ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственного комитета РФ

по охране окружающей среды

____________ А.А. Соловьянов

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ рН В ВОДАХ
ПОТЕНЦИОМЕТРИЧЕСКИМ МЕТОДОМ

Методика допущена для целей государственного экологического контроля

Методика рассмотрена и одобрена Главным управлением аналитического контроля и метрологического обеспечения природоохранной деятельности (ГУАК) и Главным метрологом Минприроды РФ.

Настоящий документ устанавливает методику количественного химического анализа проб вод (природных, сточных, питьевых, подземных и т.д.) для определения величины рН в диапазоне от 1 до 14 потенциометрическим методом.

Метод определения величины рН проб воды основан на измерении ЭДС электродной системы, состоящей из стеклянного электрода, потенциал которого определяется активностью водородных ионов, и вспомогательного электрода сравнения с известным потенциалом.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведенных в таблице 1.

Диапазон измерений, значения показателей точности, повторяемости и воспроизводимости методики

Показатель точности (границы относительной погрешности при вероятности Р = 0,95), ±D

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), sr,

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), sr

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Универсальный иономер ЭВ-74 в комплекте с автоматическим термокомпенсатором ТКА-4 (ТКА-5) или рН-метр со стеклянным электродом измерения и электродом сравнения.

Весы лабораторные, 2-го класса точности, ГОСТ 24104.

Электрод измерительный типа ЭСЛ-43-07, ТУ 25-05.2224.

Электрод измерительный типа ЭСЛ-63-07, ТУ 25-05.2234.

Электрод вспомогательный типа ЭВЛ-1МЗ, ТУ 25-05.2181.

Колбы мерные 2-100(1000), ГОСТ 1770.

Пипетки мерные 6(7)-2-5, ГОСТ 29227 ( * ) .

ПНД Ф 14.1:2:3:4.121-97 ( * ) Внесены дополнения и изменения согласно протокола № 23заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

Стаканы химические Н-2-50(100), ГОСТ 25336.

Воронки конические В ХС, ГОСТ 25336.

Конические колбы Кн-2-200 ТХС, ГОСТ 25336.

Бутыли из полиэтилена для отбора и хранения проб и растворов.

Калий хлористый, ГОСТ 4234.

Стандарт-титр для приготовления буферных растворов, ГОСТ 8.135.

Вода дистиллированная, ГОСТ 6709.

Фильтры обеззоленные «белая лента», ТУ 6-09-1678.

Спирт этиловый ректификованный технический, ГОСТ 18300 ( * ) .

ПНД Ф 14.1:2.54-96 ( * ) Внесены дополнения и изменения согласно протокола № 23заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

Ткани хлопчатобумажные бязевой группы, ГОСТ 11680.

Все реактивы должны быть квалификации ч.д.а. или х.ч.

4.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

4.2. Электробезопасность при работе с электроустановками по ГОСТ 12.1.019.

4.3. Организация обучения работающих безопасности труда по ГОСТ 12.0.004.

4.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой потенциометрического анализа и изучивший инструкцию по эксплуатации иономеров и рН-метров.

Измерения проводятся в следующих условиях:

температура окружающего воздуха (20 ± 5) °С;

атмосферное давление (84,0 — 106,7) кПа (630 — 800 мм. рт. ст);

относительная влажность (80 ± 5) %;

напряжение сети (220 ± 10) В;

частота переменного тока (50 ± 1) Гц.

Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб» ( * ) .

ПНД Ф 14.1:2.54-96 ( * ) Внесены дополнения и изменения согласно протокола № 23заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

7.1. Пробы отбирают в полиэтиленовые бутыли, предварительно ополоснутые отбираемой водой. Объем пробы должен быть не менее 100 см 3 .

7.2. Пробу анализируют в день отбора проб, не консервируют.

7.3. При отборе проб составляют сопроводительный документ, в котором указывают:

цель анализа, предполагаемые загрязнители;

должность, фамилия отбирающего пробу, дата.

8.1.1. Подготовку иономера или рН-метра проводят в соответствии с руководством по его эксплуатации.

8.1.2. Настройку прибора проводят по буферным растворам, приготовленным по п. 8.2.1 — 8.2.5 (ежедневно прибор проверяют по двум буферным растворам и один раз в неделю по всем буферным растворам). После настройки прибора электроды промывают дистиллированной водой, удаляют избыток влаги фильтровальной бумагой или обтирают тонкой мягкой тканью.

В нерабочее время электроды хранят в дистиллированной воде.

Для приготовления буферных растворов используют дистиллированную воду с удельной электропроводностью не более 2 мкСм/см при 25 °С. Для приготовления боратных и фосфатных буферных растворов используют дистиллированную воду, не содержащую СО2. Удаление СО2 производят кипячением. При охлаждении дистиллированную воду защищают от атмосферной CO2. Дистиллированная вода, находящаяся в равновесии с воздухом (рН = 5,6 — 6,0), пригодна для фталатного буферного раствора.

8.2.1. Приготовление буферного раствора с рН = 1,68

Содержимое одной ампулы стандарт-титра гидрооксалата калия количественно переносят в мерную колбу вместимостью 1000 см 3 , растворяют в небольшом количестве дистиллированной воды, доводят до метки дистиллированной водой, перемешивают.

8.2.2. Приготовление буферного раствора с рН = 4,01

Содержимое одной ампулы стандарт-титра фталевокислого калия количественно переносят в мерную колбу вместимостью 1000 см 3 , растворяют в небольшом количестве дистиллированной воды, доводят до метки дистиллированной водой, перемешивают.

8.2.3. Приготовление буферного раствора с рН = 6,86

Содержимое одной ампулы стандарт-титра смеси калия фосфорнокислого однозамещенного и натрия фосфорнокислого двузамещенного количественно переносят в мерную колбу вместимостью 1000 см 3 , растворяют в небольшом количестве дистиллированной воды, доводят до метки дистиллированной водой.

8.2.4. Приготовление буферного раствора с рН = 9,18

Содержимое одной ампулы стандарт-титра тетраборнокислого натрия переносят в мерную колбу вместимостью 1000 см 3 , растворяют в небольшом количестве дистиллированной воды, доводят до метки дистиллированной водой.

8.2.5. Приготовления буферного раствора с рН = 12,45

Содержимое одной ампулы стандарт-титра гидрата окиси кальция, насыщенного при температуре 25 °С, количественно переносят в мерную колбу вместимостью 1000 см 3 , растворяют в небольшом количестве дистиллированной воды, доводят до метки дистиллированной водой, перемешивают.

Все буферные растворы хранят в полиэтиленовых бутылях.

8.2.6. Приготовление насыщенного раствора хлористого калия

35 г хлористого калия помещают в коническую колбу с притертой пробкой и добавляют 100 см 3 дистиллированной воды.

Анализируемую пробу объемом 30 см 3 помещают в химический стакан вместимостью 50 см 3 .

Электроды промывают дистиллированной водой, обмывают исследуемой водой, погружают в стакан с анализируемой пробой. При этом шарик стеклянного измерительного электрода необходимо полностью погрузить в раствор, а солевой контакт вспомогательного электрода должен быть погружен на глубину 5 — 6 мм. Одновременно в стакан погружают термокомпенсатор.

Отсчет величины рН по шкале прибора проводят, когда показания прибора не будут изменяться более чем на 0,2 единицы рН в течение одной минуты, через минуту измерение повторяют, если значения рН отличаются не более чем на 0,2, то за результат анализа принимают среднее арифметическое значение.

После измерений электроды ополаскивают дистиллированной водой и протирают фильтровальной бумагой или мягкой тканью.

Если возникает необходимость обезжирить электрод, то его протирают мягкой тканью, смоченной этиловым спиртом и затем несколько раз ополаскивают дистиллированной водой и протирают мягкой тканью.

При необходимости электрод регенерируют погружением на 2 часа в 2 %-ный раствор соляной кислоты и далее тщательно промывают дистиллированной водой.

10.1. За результат измерения принимают значение рН, которое определяют по шкале прибора.

10.2. За результат анализа Хср принимают среднее арифметическое значение двух параллельных определений Х1 и Х2

для которых выполняется следующее условие:

где r — предел повторяемости, значения которого приведены в таблице 2.

Значения предела повторяемости при вероятности Р = 0,95

Предел повторяемости (значение допускаемого расхождения между двумя результатами параллельных определений), r

При невыполнении условия (1) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6.

10.3. Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 3.

Значения предела воспроизводимости при вероятности Р = 0,95

Предел воспроизводимости (значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6.

Результат анализа Xср в документах, предусматривающих его использование, может быть представлен в виде: Хср ± D, Р = 0,95,

где D — показатель точности методики.

Значение D приведено в таблице 1.

Допустимо результат анализа в документах, выдаваемых лабораторией, представлять в видеХср ± Dл, Р = 0,95, при условии Dл

источник

Анализ питьевой воды позволяет точно понять, пригодна ли она для употребления человеком или может быть опасна для здоровья. Лабораторные исследования могут проводиться в разных вариантах, все зависит от поставленной задачи (от простого анализа на жёсткость до многоступенчатого исследования пробы на включение в состав редких элементов). Выбор методики зависит от типа пробы (из водопровода или забор на природе) и цели исследования. Есть контроль качества, соответствие нормам, степень превышения включения в состав примесей относительно ПДК. Стоит подробнее изучить вопросы о том, что включает в себя анализ, как проводится и какова его стоимость.

Основа в осуществлении анализов – полная качественная оценка качества воды из скважины, пробы из природного источника, осадков атмосферы, а также вод из стоков. Сегодня многие компании предоставляют квалифицированные услуги по определению физических и химических показателей качества и пригодности для употребления воды.

Благодаря анализу воды можно определить, пригодна ли она для употребления или нет

Обычно проводится проверка вод:

  1. Для питья центрального и нецентрального трубопровода снабжения водой. Эта жидкость, нужная для употребления людьми внутрь, в бытовых целях, для применения в процессе перерабатывания продовольствия и производства пищи. Регламент — СанПиН 2.1.4.1074-01.
  2. Из природных источников (поверхностная, подземная), осадки атмосферы. Задача охраны вод на поверхности от загрязнения актуальны для России, особенно для регионов вдоль реки Волги. Исследования поверхностных вод в лаборатории выполняются с целью выявления качества жидкости для питья и бытовых нужд, контроля за загрязнением производством, стоками в быту, а также для выявления качества объектов рыбно-хозяйственного назначения.
  3. Вода сточная.

При сбрасывании сточных вод в канализационную сеть необходимо проводить проверку результативности очищения и соответствия стоков прописанным в законе нормам. Проверка должна проводиться регулярно, сроки также указаны в законодательных документах.

Первостепенно нужно определение элементарного состава воды (30 самых распространенных химических элементов). Второй момент — выявление присутствия в нем дополнительных химических веществ, если это нужно или если проба имеет особенности (забор воды из грязных водоносных горизонтов или стоки промышленного предприятия).

В целом мощности хороших лабораторий дают возможность выполнять анализ проб на выявление 72 химических элементов разного рода.

Залог успеха и правильного исследования жидкости – это качественно взятая проба. Важно обращать внимание на требования к забору проб для исследования.\

Для проведения анализа воды нужно обладать специальными знаниями и оборудованием

Требования к таре и объёму воды следующие:

  1. Применение стерильной емкости из пластика или тары из-под дистиллированной воды. Запрещается использовать в качестве тары емкости из-под газировки, бутылки, в которых находились агрессивные среды.
  2. Минимум воды для исследования, взятой из скважины, колодца, крана – не меньше 0,5 л.
  3. Перед тем как забирать пробу для исследований, нужно, чтобы вода протекла в течение 5 минут, следует предварительно ополоснуть тару водой из этого источника.

Период, на протяжении которого взятая проба должна быть отправлена на исследование, не может быть больше 2 суток. Взятую пробу необходимо хранить в холодильнике. Также на каждой емкости должны быть нанесены данные о времени, дате и месте забора, а также о виде источника.

Исследование обычно состоит из 30 самых распространенных элементов. Образец следует передать на анализ в лабораторию не позже 48 часов с момента забора жидкости. Промаркированный образец нельзя оставлять без присмотра.

Цена исследования высчитывается в зависимости от его сложности.

Если это стандартная услуга (на выявление 30 веществ), то стоимость классическая (комплекс, примерно 60 руб./вещество). За каждый дополнительный элемент берется дополнительная сумма, все зависит от типа пробы. Однако в лабораториях для постоянных клиентов, а также при больших объёмах заказа на исследования предоставляются скидки.

Хорошая лаборатория должна иметь аттестат аккредитации на выполнение исследований воды из разных источников, а именно:

  • Водопроводной воды;
  • Питьевой;
  • Минеральной;
  • Из скважины;
  • Колодезной.

Анализ воды выполняется достаточно быстро и стоит это недорого

Лабораторный анализ воды в хорошем центре основан на инновационной методике исследования – масс-спектрометрии, которая дает возможность выявлять присутствие в пробе элементов даже в микроскопических дозах. Аккредитованная лаборатория гарантирует качественный результат проведенных исследований.

Химический анализ воды направлен на определение органики и неорганики, а также степени жёсткости, мутности и прочих важных показателей пригодности и качества. Сегодня разработано больше 100 разнообразных методов, часть которых применяется на практике только в единичных лабораториях.

В перечне самых актуальных методик находятся:

  • Спектрофотометрия;
  • Биотестирование;
  • Кондуктометрия;
  • Фотометрия;
  • Капиллярный электрофорез;
  • Турбидиметрия;
  • Газовая хроматография;
  • Гравиметрия;
  • Нефелометрия.

После выполнения анализа воды результаты будут перенесены на листок в виде таблицы

Обычно центры, которые специализируются на диагностировании качества воды, предлагают сокращенное и полное химическое исследование пробы. Первая методика включает диагностирование по 25 пунктам и выявляет соответствие на нормы: присутствие посторонних запахов, жесткость, мутность, общая минерализация, окисляемость, присутствие железа и магния. Сокращенный метод можно применять при переезде на новое место и для выбора фильтра в домах с централизованным снабжением водой.

Полное исследование дает возможность с высочайшей точностью выявить процент включения в состав образца следующих веществ: металлов, газов, нефтепродуктов, щелочей, мочевины, нитритов, аммиака.

Расширенное диагностирование предполагает тест по 100 и больше пунктам. Эта методика должна быть выбрана владельцами частных скважин и колодцев ещё во время стройки. Для тех, кто не может обратиться в лабораторию, выпускают уникальные наборы для химического диагностирования воды из источника своими руками дома.

Наборы для анализа в домашних условиях дают возможность в общих чертах понять, какова жёсткость воды, увеличен ли уровень солей и металлов:

Можно найти дешевые тесты, созданные специально для водопроводной системы, скважин, природных источников и колодцев. Это могут быть наборы для выявления одного или нескольких видов веществ. Тесты реализуются с описанием, оно поможет выполнить экспресс-анализ жидкости дома, понять результат и правильно подобрать устройство для фильтрации воды.

Исследование проб воды требует профессионализма, поэтому для своей же безопасности правильно будет доверить дело экспертам.

источник

Методические рекомендации по применению методики выполнения измерений рН в водах потенциометрическим методом

Документ устанавливает методику количественного анализа проб вод (природных, сточных, питьевых, подземных и т.д.) для определения величины рН в диапазоне от 1 до 14 потенциометрическим методом.

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ
В СФЕРЕ ПРИРОДОПОЛЬЗОВАНИЯ

Директор ФГБУ «Федеральный
центр анализа и оценки
техногенного воздействия»

_______________ В.В. Новиков

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ
ПО ПРИМЕНЕНИЮ МЕТОДИКИ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
pH В ВОДАХ ПОТЕНЦИОМЕТРИЧЕСКИМ МЕТОДОМ

ПНД Ф 14.1:2:3:4.121-97 (ФР.1.31.2007.03794)

Данный документ регламентирует методику измерений ПНД Ф 14.1:2:3:4.121-97 (Издание 2004 г.) [1], определяет порядок и правила выполнения работы, подготовлен по результатам поступающих запросов от пользователей методики и носит информационно-разъяснительный характер.

ПНД Ф 14.1:2:3:4.121-97 (Издание 2004 г.) устанавливает методику количественного химического анализа проб вод для определения величины водородного показателя pH от 0 до 14 потенциометрическим методом (концентрация ионов гидроксония [OH3 + ] в интервале от 1 до 10 -14 мг ⋅ экв/л, для удобства используется «концентрация ионов водорода Н + »). Величина pH = 7 отвечает нейтральному состоянию раствора (дождевая вода, дистиллированная вода, лесные реки Европейской части России), меньшие её значения — кислотному (болотные воды, талые воды, природные воды после кислотных дождей), а более высокие — щелочному (сточные воды, содержащие моющие растворы для шелка, хлопка, содовые озёра).

В большинстве природных вод концентрация водородных ионов обусловлена лишь отношением концентраций свободной двуокиси углерода и бикарбонат-ионов и карбонатных ионов, pH колеблется от 4,5 до 8,3. На величину pH может оказать влияние повышенное содержание гуминовых веществ, фульвокислот, органических кислот, основных карбонатов и гидроокисей, возникающих вследствие поглощения СO2 в процессе фотосинтеза, в отдельных случаях — также и повышенное содержание солей, подверженных гидролизу. В сточных водах могут также содержаться сильные кислоты и основания [2].

Методика обеспечивает выполнение требований к точности измерений, установленных для измерений водородного показателя в водах Приказом Минприроды от 7 декабря 2012 г. № 425 «Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений и выполняемых при осуществлении деятельности в области охраны окружающей среды, и обязательных метрологических требований к ним, в том числе показателей точности измерений», так как предельно допустимая погрешность измерений не превышает 20 %.

Методику измерений ПНД Ф 14.1:2:3:4.121-97 можно использовать для анализа разных типов вод: природных, сточных, подземных, попутных (пластовых, попутно-добываемых), питьевых, бутилированных; для морских вод она не предназначена ввиду того, что морские воды имеют повышенную соленость, их анализ необходимо проводить с использованием методик, учитывающих этот фактор.

Использование методики для определения pH минеральных, газированных вод, вод горячего водоснабжения возможно при условии их документального оформления, технического обоснования, одобрения и согласия заказчика согласно п 5.4.1 ГОСТ Р ИСО/МЭК 17025-2006 «Общие требования к компетентности испытательных и калибровочных лабораторий»: «Лаборатория должна регистрировать полученные результаты, процедуру, использованную для оценки пригодности (внутрилабораторный контроль), и решение о том, подходит ли метод для целевого использования. Данное решение должно быть согласовано с заказчиком и зафиксировано в договоре, согласно которому осуществляется анализ проб».

Показатель концентрации ионов водорода pH является важным показателем степени щелочности (кислотности) среды и свидетельствует о содержании веществ, которые эту среду обусловливают. Величина pH является необходимой вспомогательной величиной во многих аналитических расчетах и при выполнении различных измерений.

Значение pH является обязательным параметром при контроле качества вод, указывая на агрессивность окружающей среды, и в зависимости от типа анализируемой воды к нормативу pH предъявляются различные требования. Например, в соответствии с Постановлением Правительства РФ от 29.07.2013 № 644 «Об утверждении Правил холодного водоснабжение и водоотведения и о внесении изменений в некоторые акты Правительства Российской Федерации» реакция среды pH сточных вод, допущенных к сбросу в централизованную систему водоотведения, должна находиться в пределах 6,0 — 9,0 ед. pH (то же и для питьевой воды, в качестве нормативного документа применяется СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества»); в соответствии с ГОСТ 6709 «Вода дистиллированная. Технические условия» pH дистиллированной воды должен находиться в пределах 5,4 — 6,6 ед. pH; для бутилированной воды водородный показатель нормируется согласно СанПиН 2.1.4.1116-02 «Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества» и должен быть равным от 6,5 до 8,5 ед. pH. Определение pH оборотной воды важно для прогнозирования скорости коррозии сталей в водной среде — значение pH оборотной воды рекомендуется поддерживать в интервале 6,5 — 8,8 ед. pH [3].

Вода, являясь слабым электролитом, в малой степени диссоциирует на ионы Н + и ОН — . В водных растворах произведение концентрации этих ионов называется ионным произведением воды (Kв, Kw), которое является постоянным и равно 10 -14 при 25 °С. Для работы на практике используется отрицательный десятичный логарифм концентрации ионов водорода pH = -log10[H + ], введенный в использование Соренсеном в 1909 году.

Метод определения величины pH проб воды основан на определении концентрации иона водорода, которую находят по величине электродвижущей силы гальванического элемента, состоящего из двух полуэлементов — электродов (ЭДС равна разности потенциалов этих электродов).

Измерение pH — это перевод значений концентрации ионов водорода в электрическое напряжение, возникающее между измерительным электродом и электродом сравнения.

Потенциометрический (от лат. Potentia — сила мощность) метод исследования основан на зависимости равновесного электродного потенциала Е от термодинамической активности компонентов электрохимической реакции: аА + bВ + . ↔ mМ + рР + . и описывается уравнением Нернста.

где Е — стандартный потенциал, R — газовая постоянная, Т — абсолютная температура, F — постоянная Фарадея, n — число электронов, участвующих в реакции, а, b, …, m, р … — стехиометрические коэффициенты при компонентах реакции А, В, …, М, Р [4].

При замене логарифма на десятичный уравнение принимает вид:

где [Ох] — концентрация окисленной формы, моль/л; [Red] — концентрация восстановленной формы моль/л.

В потенциометрии один из электродов является индикаторным, а другой — электродом сравнения (вспомогательным электродом). Потенциал индикаторного электрода зависит от активности определяемого иона. Потенциал электрода сравнения нечувствителен к изменению активности определяемого иона и имеет постоянное значение. Таким образом, ЭДС гальванического элемента, составленного из индикаторного электрода и электрода сравнения, задается активностью определяемого иона в растворе.

Наиболее широкое практическое применение нашел стеклянный индикаторный электрод, который можно использовать в широком диапазоне pH и в присутствии окислителей.

Стеклянный электрод — это ион-селективный мембранный электрод, состоящий из ион-селективной мембраны (рис. 1) на конце тонкостенной стеклянной трубки, наполненной раствором кислоты или соли (электролита), в который для контакта погружен внутренний электрод сравнения (например, хлорсеребряный). Поверхность стекла такого шарика в растворе приобретает потенциал, величина которого зависит от концентрации водородных ионов в растворе [5].

Рис. 1. Схематическое изображение стеклянной мембраны [6]

Содержащиеся в стекле ионы натрия обмениваются в растворе с ионами водорода, которые с анионным остатком образуют слабодиссоциированные кремниевые кислоты до установления равновесия. На границе «стекло-раствор» возникает потенциал, величина которого определяется только концентрацией ионов водорода.

Особенностью стеклянного электрода является его потенциал асимметрии, появляющийся в связи с наличием разных потенциалов на внутренней и на внешней поверхности стеклянного электрода. Потенциал асимметрии зависит от состава и толщины стекла электрода и может иметь значение от нескольких милливольт в случае тонкостенных электродов из мягкого стекла до сотых долей вольта у толстостенных электродов из тугоплавкого стекла.

Величина потенциала асимметрии изменяется, поэтому определение pH растворов производят по калибровочному графику «pH — потенциал». В случае если потенциометр для измерения pH градуирован в единицах pH, прибор следует каждый раз регулировать по точному буферному, раствору. Для уменьшения потенциала асимметрии стеклянный электрод выдерживают в воде или в 0,1 М соляной кислоте.

Стандартные потенциалы и крутизна электродной функции электродов зависят от температуры, поэтому pH-метры имеют приспособления для коррекции последнего эффекта. Современные измерительные приборы в основном снабжены автоматической температурной компенсацией, осуществляемой с помощью электрической цепи, в которую включена термопара, погруженная в анализируемый раствор. Такая компенсация влияния температур позволяет прокалибровать электрод при одной какой-либо температуре и затем — без дополнительной корректировки — работать с ним при любой температуре [7]. При ручной температурной компенсации требуется ввод значения температуры раствора для корректировки показаний pH в соответствии с температурой. При работе с pH-метром для исключения вероятности ошибки оператора, следует учитывать, позволяет ли использование данного прибора автоматически учитывать разность температур электрода сравнения и анализируемого раствора либо существует необходимость осуществлять температурную компенсацию вручную. Перед проведением температурной компенсации необходимо внимательно ознакомиться с инструкцией по эксплуатации выбранного прибора.

Постоянные времени стеклянных электродов пропорциональны толщине мембраны и лежат в пределах 1 — 10 с. Время установления потенциала увеличивается с понижением температуры, с уменьшением скорости протекания раствора и при загрязнении электродов. Существуют электроды, которые можно использовать при повышенных температурах [8]. Со стеклянными электродами можно проводить измерения pH даже в присутствии окислителей, восстановителей, каталитических ядов, а также в присутствии ионов тяжёлых металлов.

Электродом сравнения, отражающим эталонное напряжение системы, служит насыщенный хлорсеребряный электрод. В последнее время появились в продаже комбинированные электроды, которые интегрируют цепи измерительного электрода и электрода сравнения в один корпус и снабжены хлорсеребряными внутренними электродами сравнения.

Хлорсеребряный электрод (Ag/AgCl) состоит из серебряной (платиновой) проволоки, покрытой хлоридом серебра, и погруженной в раствор хлорида калия — обычно молярной концентрации 3 (3,5) моль/л (во избежание растворения хлористого серебра в концентрированном хлоридном растворе с образованием хлорсеребряных комплексов раствор хлористого калия перед погружением электрода насыщают хлористым серебром).

Методика ПНД Ф 14.1:2:3:4.121-97 (издание 2004 г) обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1.

Диапазон измерений, значения показателей точности, повторяемости
и воспроизводимости методики

Показатель точности (границы погрешности при вероятности Р = 0,95), ±Δ

Показатель повторяемости (среднеквадратическое отклонение повторяемости), σ r

Показатель воспроизводимости (среднеквадратическое отклонение воспроизводимости), σ R

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Универсальный иономер ЭВ-74 в комплекте с автоматическим термокомпенсатором ТКА-4 (ТКА-5) или pH-метр со стеклянным электродом измерения и электродом сравнения

Весы лабораторные, 2-го класса точности по ГОСТ 24104 1 (Весы лабораторные общего назначения специального или высокого класса точности, с наибольшим пределом взвешивания 300 г по ГОСТ OIML R 76-1 или по ГОСТ Р 53228 )

1 ссылочный стандарт утратил силу, поэтому следует руководствоваться заменяющим стандартом

Электрод измерительный типа ЭСЛ-43-07, ТУ 25-05.2224

Электрод измерительный типа ЭСЛ-63-07, ТУ 25-05.2234

Электрод вспомогательный типа ЭВЛ-1МЗ, ТУ 25-05.2181

(или электрод стеклянный типа ЭС-1, исп. ЭС-10301, ЭС-10302, ЭС-10601, ЭС-10602 по ГОСТ 22261-94 и ТУ 4215-012-89650280-2009 типа ЭСЛ-43-07, ТУ 25-05.2224)

Термостат или баня водяная, поддерживающие постоянную температуру с точностью ±0,2 °С (при необходимости исключения погрешности, возникающей при отсутствии автоматического термокомпенсатора, измерение проводят в термостатируемой пробе)

Секундомер механический (часы или таймер лабораторный)

Промывалка полиэтиленовая вместимостью 250 см 3

Мешалка магнитная и палочка для извлечения магнитных элементов

Дистиллятор или установка любого типа для получения воды дистиллированной по ГОСТ 6709 или воды для лабораторного анализа степени чистоты 2 по ГОСТ Р 52501

Допускается использование средств измерения, вспомогательного оборудования с аналогичными или лучшими метрологическими и техническими характеристиками.

Возможность использования других средств измерений подтверждается в ходе процедуры оценки пригодности методики при внедрении прибора и методики измерений в конкретной лаборатории.

Колбы мерные 2 — 100 (1000) по ГОСТ 1770 (вместимостью 100 и 1000 см 3 , 2 класс точности)

Стаканы химические Н-2-50 (100) по ГОСТ 25336 (из термостойкого стекла вместимостью 50; 100 см 3 )

Воронки конические В ХС по ГОСТ 25336

Конические колбы Кн-2-200 ТХС по ГОСТ 25336

Бутыли из полиэтилена (ПЭНД) и стекла для отбора и хранения проб и растворов с плотно закрывающейся крышкой.

Цилиндры мерные вместимостью 50 и 100 см 3 по ГОСТ 1770 , 2 класс точности

Пипетки градуированные вместимостью 5 и 10 см 3 по ГОСТ 29227 , 2 класс точности.

Допускается использование лабораторной посуды с аналогичными или лучшими характеристиками.

Калий хлористый по ГОСТ 4234

Соляная кислота по ГОСТ 3118

Стандарт-титр для приготовления буферных растворов по ГОСТ 8.135

Вода дистиллированная по ГОСТ 6709 или вода для лабораторного анализа 2-ой степени чистоты по ГОСТ Р 52501

Фильтры обеззоленные «белая лента» по ТУ 6-09-1678

Спирт этиловый ректификованный технический

Ткани хлопчатобумажные бязевой группы по ГОСТ 11680 ( ГОСТ 29298-2005 )

Все реактивы должны быть квалификации ч.д.a.(analytical reagent grade) или х.ч.

Можно также использовать уже готовые буферные растворы производства фирмы HANNA, Testo и т.д.

4.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007 .

4.2. Электробезопасность при работе с электроустановками по ГОСТ Р 12.1.019 .

4.3. Организация обучения работающих безопасности труда по ГОСТ 12.0.004 .

4.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009 .

Помещение, рабочие столы и поверхности должны содержаться в чистоте. После завершения работ проводится влажная уборка рабочих поверхностей дезинфицирующими средствами, разрешенными к использованию в установленном порядке. Работник, выполняющий анализ, использует в ходе работы перчатки, халат и закрытую сменную обувь.

Выполнение измерений может производить химик-аналитик, владеющий техникой потенциометрического анализа и изучивший инструкцию по эксплуатации иономеров и рН-метров.

Измерения проводятся в следующих условиях:

температура окружающего воздуха (20 ± 5) °С;

атмосферное давление (84,0 — 106,7) кПа (630 — 800 мм рт. ст.);

относительная влажность не более 80 % при t = 25 °C;

напряжение сети (220 ± 22) В;

частота переменного тока (50 ± 1) Гц.

Нормальное условие работы большинства приборов производится от сети переменного тока напряжением (220 ± 22) В, частотой (50 ± 1,0) Гц.

При напряжении питания сети, отличным от 220 В, оборудование может комплектоваться дополнительно трансформатором, что позволит всегда обеспечивать необходимые условия выполнения измерений.

Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб» (следует использовать в работе ГОСТ 31861-2012 «Вода. Общие требования к отбору проб», ГОСТ Р 56237-2014 «Вода питьевая. Отбор проб на станциях водоподготовки и в трубопроводных распределительных системах»).

7.1. Пробы отбирают в полиэтиленовые бутыли до края, предварительно ополоснутые отбираемой водой, не оставляя пузырьков воздуха (особенно важно при отборе водопроводной или грунтовой воды, так как СO2 в воздухе образовывает угольную кислоту, что может привести к уменьшению pH). Объем пробы должен быть не менее 100 см 3 .

7.2. В связи с тем, что на величину pH влияют газы (двуокись углерода, которая дополнительно может абсорбироваться из воздуха; аммиак, сероводород, газы, образующиеся в ходе биологических процессов, связанных с жизнедеятельностью планктонных организмов) пробу анализируют в день отбора проб (не позднее 6 часов с момента отбора пробы в соответствии с ГОСТ 31861-2012 «Вода. Общие требования к отбору проб», для чего в лаборатории должна быть грамотно построена логистическая система, позволяющая доставлять образцы в лабораторию в течение нескольких часов, учитывая возможные проблемы на дорогах и при осуществлении проботобора), не консервируют. Транспортируют отобранные пробы при температуре ниже температуры отбора проб.

7.3. При отборе проб составляют сопроводительный документ, в котором указывают:

цель анализа, предполагаемые загрязнители (необходимые по усмотрению пробоотборщика, примечания);

дата, место, время, метод отбора;

тип воды (питьевая ((не)центрапизованного водоснабжения), бутилированная, сточная, техническая и т.д) номер пробы;

должность, фамилия отбирающего пробу, температура окружающего воздуха, пробы воды.

Необходимо учитывать, что определение pH относится к измерению изменяющейся во времени и при контакте с атмосферным воздухом величины и не подлежит параллельному отбору. Определение pH сточных вод рекомендуется проводить как в испытательной лаборатории , так и на месте отбора проб (с использованием калиброванного перед выездом портативного pH-метра, включенного в Госреестр СИ, руководствуясь инструкцией по пользованию) параллельно с измерением температуры воды, окружающего воздуха и визуального осмотра пробы и места её отбора для выявления нестабильности определяемого показателя [9].

При измерении pH питьевой воды необходимо руководствоваться требованиями ГОСТ Р 56237-2014 , в п. 4 которого указана необходимость проведения расширенных исследований, подтверждающих отсутствие статистически достоверных различий между результатами, полученным на месте отбора проб и в лаборатории, для определения pH в испытательной лаборатории (центре).

8.1.1. Подготовку иономера или pH-метра, а также электродов, проводят в соответствии с руководством (инструкцией) по эксплуатации.

Перед проведением измерений следует открыть заливочное отверстие, закрытое пробкой или съемным кольцом на поверхности проточного вспомогательного электрода сравнения (в зависимости от конструкции электрода). После завершения цикла измерений отверстие проточного вспомогательного электрода сравнения следует закрыть.

Сосуд проточного вспомогательного электрода сравнения должен периодически пополняться электролитом — раствором хлористого калия (или гелем в зависимости от конструкции электрода).

До и после калибровки или проверки прибора электроды промывают дистиллированной водой, удаляют избыток влаги фильтровальной бумагой или обтирают тонкой мягкой тканью.

8.1.2. Калибровку 2 прибора проводят по буферным растворам согласно инструкции к прибору.

2 Калибровка ( РМГ 29-2013 ) — «Совокупность операций, устанавливающих соотношение между значением величины, полученным с помощью данного средства измерений и соответствующим значением величины, определенным с помощью эталона с целью определения действительных метрологических характеристик этого средства измерений». Калибровка осуществляется для установления эмпирической связи между измеряемой ЭДС и pH.

Перед каждой серией измерений проводят проверку работы прибора по буферным растворам с целью контроля стабильности градуировочной характеристики (ежедневно прибор проверяют по двум буферным растворам и один раз в неделю по всем буферным растворам (1,65 (1,68); 4,01; 6,86 (7,01); 9,18; 12,43 (12,45)), охватывающим диапазон pH анализируемых растворов, который указан в области аккредитации испытательной лаборатории. Для уменьшения погрешности измерений рекомендуется проводить калибровку при температуре близкой к температуре анализируемых растворов.

Измерение pH в буферных растворах повторяют три раза, каждый раз вынимая электроды из него и вновь погружая их в буферный раствор при измерении.

В современных приборах встроен микропроцессор, благодаря которому значения pH стандартных буферных растворов запоминаются, и рассчитывается уравнение градуировочной характеристики в координатах «потенциал — pH» методом наименьших квадратов.

За норматив контроля при настройке прибора по буферным растворам используется норматив точности, указанный в эксплуатационной документации на средство измерения.

В нерабочее время электроды хранят в дистиллированной воде, либо согласно условиям хранения, прописанным в инструкции по его эксплуатации (водопроводная вода, 0,1 Н раствор хлорида калия и т.д.).

При измерении pH и калибровке pH-метров и иономеров используются буферные растворы — это растворы специального состава, содержащие смесь слабой кислоты и её соли (или слабого основания и его соли) и обладающие способностью сохранять pH при разбавлении, добавлении небольшого количества сильных кислот и оснований. Как правило, буферные растворы представляют собой смеси растворов слабых кислот, слабых оснований и их солей.

Буферные растворы, используемые в качестве рабочих эталонов pH, готовят в соответствии с ГОСТ 8.135 или инструкцией изготовителя (не относится к уже готовым буферным растворам).

Как правило, для определения pH применяют 5 основных модификаций стандарт-титров с характеристиками, указанными в таблице ГОСТ 8.135 «ГСИ. Стандарт-титры для приготовления буферных растворов — рабочих эталонов pH 2-го и 3-го разрядов. Технические и метрологические характеристики. Методы их определения», в соответствии с требованиями стандарта и технических условий на стандарт-титры (3,56; 4,01; 6,86; 9,18; 12,45). Рабочие эталоны буферных растворов 2-го разряда готовят из стандарт-титров, изготавливаемые с навесками соответствующих химических веществ, упакованных в герметичную тару.

Эксплуатационная документация на стандарт-титры должна содержать следующую информацию: назначение; разряд рабочих эталонов pH — буферных растворов, приготавливаемых из стандарт-титров; номинальное значение pH буферных растворов при 25 °С; объем буферных растворов в дм 3 ; методику (инструкцию) приготовления буферных растворов из стандарт-титров; срок годности стандарт-титра.

Рабочие эталоны pH готовят растворением содержимого стандарт-титров в свежеперегнанной дистиллированной воде. Для приготовления растворов со значением pH > 6 дистиллированную воду необходимо прокипятить в течение 30 минут для удаления растворенной углекислоты, быстро охладить и плотно закрыть флакон. Использовать дистиллированнную воду, освобожденную от СО2 следует в день приготовления. При подготовке стеклянной посуды не допускается использовать синтетические моющие средства.

В процессе приготовления буферного раствора из стандарт-титров исполнитель может допустить ошибку, вследствие чего погрешность pH раствора будет превышать нормируемую (для 2 разряда погрешность составляет ±0,01 ед. рН), об этом необходимо помнить при выполнении измерений и сравнивать показания прибора для установленного значения pH, фиксируя значения ЭДС в милливольтах.

В продаже так же имеются уже расфасованные по ампулам модификации стандарт-титров со значениями pH 1,68; 7,01; 12,45. Приготовление из них рабочих эталонов проводится согласно с инструкцией изготовителя.

Рабочие эталоны pH хранят в плотно закрытой стеклянной или пластмассовой (полиэтиленовой) посуде в затемненном месте при температуре не выше 25 °С. Срок хранения рабочих эталонов не более 1 месяца с момента приготовления, за исключением насыщенных растворов гидротартрата калия и гидрооксида кальция, которые готовят непосредственно перед измерением pH и которые хранению не подлежат

Буферные растворы должны быть использованы только один раз. Не следует выливать обратно во флакон использованный раствор.

8.2.6. Приготовление насыщенного раствора хлористого калия (для вспомогательного электрода).

35 г хлористого калия помещают н коническую колбу с притертой пробкой и добавляют 100 см 3 дистиллированной воды.

Срок хранения в закрытой стеклянной емкости не ограничен.

8.2.7. Приготовление раствора соляной кислоты молярной концентрации 0,1 М

Раствор готовят соответствующим разбавлением концентрированной соляной кислоты. 9 см 3 концентрированной соляной кислоты плотностью 1,17 г/см 3 (8,5 см 3 концентрированной соляной кислоты плотностью 1,19 г/см 3 ) медленно вливают в колбу вместимостью 1000 см наполовину заполненную дистиллированной водой, и медленно доводят объем раствора дистиллированной водой.

Возможно использование стандарт-титров, содержащих определенное количество соляной кислоты.

Срок хранения — не более 6 месяцев.

Измерения pH на приборе проводят согласно инструкции к прибору. Для удобства использования прибором, а также для единообразной эксплуатации всеми сотрудниками лаборатории, допущенными к проведению анализа, для каждого имеющего в лаборатории прибора необходимо составлять краткую инструкцию по эксплуатации средства измерений и размещать ее на рабочем месте.

В случае использования ЭВ-74:

Анализируемую пробу объемом около 30 см 3 помещают в химический стакан вместимостью 50 см 3 . Объём пробы должен полностью покрывать чувствительные элементы электродов и оставлять достаточный зазор для магнитной мешалки.

Электроды промывают дистиллированной водой, обмывают исследуемой водой, погружают в стакан с анализируемой пробой. При этом шарик стеклянного измерительного электрода необходимо полностью погрузить в раствор, а солевой контакт вспомогательного электрода должен быть погружен на глубину 5 — 6 мм. Электроды не должны касаться стенок химического стакана. Одновременно в стакан погружают термокомпенсатор.

Отсчет величины pH по шкале прибора проводят, когда показания прибора не будут изменяться более чем на 0,2 ед. рН 3 в течение одной минуты 4 , через минуту измерение повторяют, если значения pH отличаются не более чем на 0,2 ед. рН, то за результат анализа принимают среднее арифметическое значение. Если желаемая точность не достигается, то необходимо определить причину расхождения. 5

3 Погрешность измерения не должна превышать столько ед. pH, сколько прописано в инструкции на прибор.

4 Время установления стабильного значения определяется в соответствии с инструкцией прибора.

5 Возможные источники ошибок: температурный эффект (если электрод прокалиброван при одной температуре, а измерения проводятся при другой температуре, то погрешность измерений зависит от примененного способа температурной компенсации. Для наиболее точных измерений анализируемый и буферный растворы должны быть одной температуры); недостаточное перемешивание; загрязнение электрода, мембраны; влияние посторонних веществ (щелочная ошибка, взаимодействие фторид-ионов со стеклянной мембраной); недостаточное время установления постоянного потенциала на электроде (при очень высоких и низких значениях pH реакция будет медленной и иногда требует нескольких минут)

После измерений электроды ополаскивают дистиллированной водой и протирают фильтровальной бумагой или мягкой тканью.

Если возникает необходимость обезжирить электрод, то его протирают мягкой тканью, смоченной этиловым спиртом и затем несколько раз ополаскивают дистиллированной водой и протирают мягкой тканью.

При необходимости электрод регенерируют погружением на 2 часа в 0,1 М раствор соляной кислоты и далее тщательно промывают дистиллированной водой.

При измерении pH в газированной воде по запросу заказчика и при условии документального оформления можно делать ее дегазацию, т.е. удаление из воды свободной углекислоты, путем ее аэрации и создание тем самым условий, при которых растворимость газа в воде становится близкой к нулю и как следствие наблюдается повышение pH.

Парциальное давление диоксида углерода в атмосферном воздухе близко к нулю (0,03 — 0,04 %), поэтому создаются благоприятные условия для диффузии удаляемого газа из воды в пропускаемый через нее воздух. Вода аэрируется в дегазаторах согласно их инструкции.

10.1. За результат измерения принимают значение pH, которое определяют по шкале прибора.

10.2. За результат анализа Xcp принимают среднее арифметическое значение двух параллельных определений Х1 и Х2:

источник

Контроль качества водных ресурсов и сточных вод играет огромную роль в обеспечении личной (населения страны) безопасности. Какие методы анализа воды сегодня применяются? О чем говорят получаемые в ходе исследования результаты?

Чтобы иметь возможность регулировать и контролировать качество питьевых ресурсов специалисты используют лабораторные методы анализа воды, основывающиеся на выявление физических и химических особенностей тестируемого образца. Насколько важны процессы исследования водных ресурсов и сточных вод? Они имеют чрезвычайную важность, поскольку позволяют предупредить загрязнение окружающей среды и ухудшение экологической остановки. Но их главная задача остановить развитие огромного числа заболеваний у населения, которые ежедневно контактируют и пьют некачественную воду. В нашей независимой лаборатории можно по невысокой цене заказать исследование различных классов жидкостей. Мы гарантируем достоверность результатов и применение самых современных методик.

Процедура контроля и процессы водоочистки в жилых и загородных домах, на производственных и промышленных предприятиях начинается с мероприятий по выявлению и подсчету количества содержащихся в потребляемой (используемой) воде компонентов и соединений. Современная методика анализа воды позволяет с высокой точность идентифицировать вещество в составе образца и его объем на единицу массы. Все тесты проводятся в лабораторных условиях при помощи специального оборудования, химических реагентов и препаратов.

Существуют следующие типы исследований проб сточных и питьевых вод:

  • Химический — применяется весовой и объемный методы анализа.
  • Электрохимический — процедура использует полярографический и потенциометрический методы анализа.
  • Оптический — образец исследуется посредством фотометрических, люминесцентных и спектрометрических методик. Считаются самыми результативными, но за счет необходимости использовать очень редкое и сложное оборудование являются и наименее применяемыми, дорогостоящими. Используются для покомпонентного тестирования как питьевых, сточных, так и хозяйственно-бытовых, промышленных вод.
  • Санитарно-микробиологический, паразитологический и бактериологический — применяются титрационный, АТФ, чашечный подсчет, мембранная фильтрация выращивание и прочие методы анализа: сточная вода, питьевая и хозяйственно-бытовая проверяются комплексами, составленными из перечисленных тестов.
  • Фотохимический — покомпонентный состав пробы определяется фотохимическим методом.
  • Хроматографический — один из самых сложных типов исследования, который использует метод тонкослойной хроматографии, жидкостной колоночной хроматографии и высокоэффективной жидкостной хроматографии. Чтобы оценить пробу также необходимо использовать сложное и редкое оборудование.
  • Органолептический — эталонный метод исследования проб. Применяется исключительно к питьевым видам образцов.
  • Токсикологический и радиационный — приборные способы проверки наличия в предъявленном образце вредных для здоровья токсинов, α и β-частичек.

Перечисленные типы исследований разработаны для проверки качества жидкости применяемой для приготовления пищи, питья и используемой в хозяйственно-бытовых нуждах. Однако многие методы анализа питьевой воды пригодны и для установления степени загрязненности сточных вод прошедших через очистные сооружения. Наша лаборатория проводит все существующие виды тестов жидкостей по доступной стоимости. Чтобы сдать воду на анализ в лабораторию, мы рекомендуем купить специальную тару для ее забора, хранения и транспортировки.

  • Содержание в пробе природных веществ и их концентрации. Обязательный тест для образцов, взятых из естественных водоемов: скважина, колодец, водопроводная вода.
  • Содержание в пробе химических элементов и соединений, попавших в образец в результате очистки воды. Данные методы контроля воды применяются ко всем видам проб: сточные, хозяйственно-бытовые, промышленные, питьевые воды;
  • Наличие в пробе бактерий и патогенных микробов, вирусных микроорганизмов и палочек. Тест, которым исследуется питьевая вода и образцы, взятые с поверхностных источников: озера, водохранилища, реки и так далее. Присутствие бактерий в жидкости, с которой контактирует человек (не пьет), также может вызвать ряд заболеваний.
  • Присутствие запаха. Органолептические и санитарно-микробиологические тесты позволяют выявить «виновников» запаха. Ими являются микроорганизмы и продукты их жизнедеятельности. Важное исследование питьевой и хозяйственно-бытовой воды.
  • Степень жесткости, мутности. Анализу обязательно подвергают хозяйственно-бытовые и питьевые образцы.

Полученные результаты сравнивают с нормативами СанПиН, в которых оговорено допустимое и нормальное присутствие в воде макро- и микроэлементов, солей, природных веществ и прочего. Если количественные величины примесей, минералов и солей попали в разрешенный СанПиН диапазон, тестируемый образец можно считать пригодным для питья, бытовых, промышленных целей. Аналогично оцениваются сточные воды. Если их физико-химический и токсический состав соответствует установленным нормам, то очищенную системой загрязненную жижу можно выбрасывать в окружающую среду. Она не станет причиной ее загрязнения и отравления людей. По каждому виду вод разработаны свои критерии оценки и нормы.

Контроль качества воды следует проводить не только предприятиям, но и людям, использующим водопроводную, колодезную и скважинную воду. По результатам теста можно с легкостью определить, какие системы фильтрации и очистки будут наиболее эффективны. В нашей независимой компании можно по доступной цене заказать любые типы анализов различных классов вод.

источник

Настоящий нормативный документ устанавливает методику измерений массовой концентрации сухого и прокаленного остатка в пробах питьевых, природных и сточных вод гравиметрическим методом. Методика распространяется на следующие объекты анализа: воды питьевые (в том числе расфасованные в емкости), воды природные пресные (поверхностные и подземные, в том числе источники водоснабжения), воды сточные (производственные, хозяйственно-бытовые, ливневые и очищенные.

Примечание — Допускается применение методики для анализа вод бассейнов и аквапарков, талых вод, технических вод и проб снежного покрова.

Диапазон измерений массовых концентраций сухого и прокаленного остатков составляет от 1,0 до 35000 мг/дм 3 .

Сухой остаток характеризует общее содержание в воде растворенных веществ, главным образом минеральных и частично органических веществ, имеющих температуру кипения выше 105 °С, нелетучих с водяным паром и не разлагающихся при данной температуре.

Примечание — Допускается для сточной воды наряду с термином «сухой остаток» применять термин «минерализация (плотный остаток)».

Прокаленный остаток дает представление о содержании в пробе воды минеральных веществ.

Разность между величинами сухого остатка и прокаленного остатка равна величине потерь при прокаливании, по которой можно судить о содержании органических веществ.

Блок-схема проведения анализа приведена в приложении А.

ГОСТ 12.0.004-90. Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения.

ГОСТ 12.1.004-91. Система стандартов безопасности труда. Пожарная безопасность. Общие требования.

ГОСТ 12.1.007-76. Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности.

ГОСТ 12.4.009-83. Система стандартов безопасности труда. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание.

ГОСТ 17.1.5.05-85. Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков.

ГОСТ 1770-74. Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия.

ГОСТ 3118-77. Реактивы. Кислота соляная. Технические условия.

ГОСТ 4147-74. Реактивы. Железо (III) хлорид 6-водный. Технические условия.

ГОСТ 4233-77. Реактивы. Натрий хлористый. Технические условия.

ГОСТ 4234-77. Реактивы. Калий хлористый. Технические условия.

ГОСТ 6709-72. Вода дистиллированная. Технические условия.

ГОСТ 12026-76. Бумага фильтровальная лабораторная. Технические условия.

ГОСТ 19908-90. Тигли, чаши, стаканы, колбы, воронки, пробирки и наконечники из прозрачного кварцевого стекла. Общие технические условия.

ГОСТ 25336-82. Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры.

ГОСТ 31861-2012. Вода. Общие требования к отбору проб.

ГОСТ Р 12.1.019-2009. Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты.

ГОСТ Р 52501-2005. Вода для лабораторного анализа. Технические условия.

ГОСТ Р 53228-2008. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания.

ГОСТ Р 56237-2014. Вода питьевая. Отбор проб на станциях водоподготовки и в трубопроводных распределительных системах.

ГОСТ OIML R 76-1-2011. Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания.

ГОСТ Р ИСО 5725-6-2002. Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике.

Примечание — Если ссылочный стандарт заменен (изменен), то следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведенных в таблице 1.

Диапазон измерений, мг/дм 3

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), σ r , %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), σ R , %

Показатель точности (границы относительной погрешности при доверительной вероятности 0,95), ±δ, %

Гравиметрический метод определения сухого остатка основан на выпаривании аликвотной части профильтрованной анализируемой пробы воды, высушивании полученного остатка при температуре (105 ± 2) °С и его взвешивании.

Гравиметрический метод определения прокаленного остатка основан на выпаривании аликвотной части профильтрованной анализируемой пробы воды, прокаливании полученного остатка при температуре (600 ± 20) °С и его взвешивании.

5.1.1 Весы лабораторные общего назначения специального класса точности, с наибольшим пределом взвешивания 210 г по ГОСТ OIML R 76-1 или по ГОСТ Р 53228.

5.1.2 Баня водяная лабораторная, обеспечивающая поддержание температуры до (100 ± 2) °С, любой модели.

5.1.3 Дистиллятор или установка любого типа для получения воды дистиллированной по ГОСТ 6709 или воды для лабораторного анализа 2 степени чистоты по ГОСТ Р 52501.

5.1.4 Испаритель ротационный любого типа с отгонной колбой вместимостью 1000 или 2000 см 3 .

5.1.5 Насос водоструйный по ГОСТ 25336.

5.1.6 Печь муфельная с рабочей камерой, футерованной керамическим муфелем, обеспечивающая температуру (600 ± 20) °С.

5.1.7 Установка для фильтрования с вакуумным насосом.

5.1.8 Холодильник бытовой любого типа, обеспечивающий хранение проб при температуре (2 — 10) °С.

5.1.9 Шкаф сушильный общелабораторного назначения, обеспечивающий температуру (105 ± 2) °С.

5.1.10 Мензурки вместимостью 50; 100 и 250 см 3 по ГОСТ 1770.

5.1.11 Цилиндры мерные вместимостью 50; 100 и 250 см 3 , исполнения 1 по ГОСТ 1770.

5.1.12 Емкости из стекла или полимерного материала вместимостью 500 и 1000 см 3 для отбора проб.

5.1.13 Воронки стеклянные по ГОСТ 25336.

5.1.14 Стаканы вместимостью 250 и 1000 см 3 , исполнения 1 по ГОСТ 25336.

5.1.15 Флакон из стекла или полимерного материала для хранения раствора соляной кислоты вместимостью 1000 см 3 .

5.1.16 Чаши кварцевые вместимостью 50 см 3 по ГОСТ 19908.

5.1.17 Чашки выпарительные фарфоровые вместимостью 50 см 3 по ГОСТ 9147.

5.2.1 Вода дистиллированная по ГОСТ 6709 или для лабораторного анализа по ГОСТ Р 52501 (2-ой степени чистоты) (далее — вода дистиллированная).

5.2.2 Железо (III) хлорид 6-водный, ч. по ГОСТ 4147 (насыщенный раствор для маркировки чашек).

5.2.3 Калий хлористый, х.ч. по ГОСТ 4234 или стандарт-титр с (KCl) = 0,1 моль/дм 3 (0,1 Н) по ТУ 2642-001-56278322.

5.2.4 Кислота соляная, х.ч. по ГОСТ 3118.

5.2.5 Натрий хлористый, х.ч. по ГОСТ 4233 или стандарт-титр c (NaCl) = 0,1 моль/дм 3 (0,1 Н) по ТУ 2642-001-56278322.

5.2.6 Силикагель технический по ТУ 6-09-31-107 или силикагель с индикатором влажности (например, производства фирмы Merck) для заполнения эксикаторов.

5.2.7 Бумага фильтровальная по ГОСТ 12026.

5.2.8 Фильтры мембранные с диаметром пор 0,45 мкм (например, производства фирмы Milliроrе или фирмы Владипор).

5.2.9 Фильтры обеззоленные «синяя лента» по ТУ 6-09-1678.

Стандартный образец (далее — СО) массовой концентрации сухого остатка воды с относительной погрешностью аттестованного значения не более ±1 % при доверительной вероятности Р = 0,95.

1 Допускается использование других средств измерений утвержденных типов, обеспечивающих измерения с установленной точностью.

2 Средства измерений должны быть поверены в установленные сроки. Испытательное оборудование должно быть аттестовано в установленные сроки.

3 Допускается использование другого оборудования, материалов и реактивов с метрологическими и техническими характеристиками, не хуже, чем у вышеуказанных.

6.1 При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

6.2 При работе с оборудованием необходимо соблюдать правила электробезопасности по ГОСТ Р 12.1.019.

6.3 Обучение работающих безопасности труда должно быть организовано в соответствии с ГОСТ 12.0.004.

6.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

К выполнению измерений и обработке их результатов допускаются лица, имеющие специальное среднее или высшее образование химического профиля, владеющие техникой гравиметрического анализа и изучившие правила эксплуатации используемого оборудования.

При выполнении измерений в лаборатории соблюдают следующие условия:

относительная влажность воздуха

9.1 Отбор проб осуществляют в соответствии с ГОСТ 31861 и ГОСТ 31862 1 . Отбор проб воды осуществляют в емкости из стекла или полимерного материала. Пробы снега отбирают в соответствии с ГОСТ 17.1.5.05 и переводят в талую воду при комнатной температуре. Объем отбираемой пробы воды составляет от 500 до 1000 см 3 . Например, для анализа сточной воды рекомендуется использовать 500 см 3 воды, для питьевой — не менее 1000 см 3 .

1 — В Российской Федерации с 01.01.2016 г. следует пользоваться ГОСТ Р 56237-2014.

9.2 Пробу анализируют в день отбора, не консервируют. Допускается хранение пробы не более 24 часов при охлаждении до (2 — 10) °С.

9.3 При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— место, дата и время отбора;

— должность, фамилия сотрудника, отбирающего пробу.

В стакане из термостойкого стекла вместимостью 1000 см 3 смешивают 150 см 3 соляной кислоты с 850 см 3 дистиллированной воды. Смесь хранят под тягой во флаконе с притертой пробкой. Срок хранения — 6 месяцев при комнатной температуре.

Тонкой деревянной палочкой или спичкой на фарфоровые чашки наносят идентификационные метки (номера) насыщенным раствором хлорного железа. Затем чашки ставят в муфельную печь, предварительно нагретую до (600 ± 20) °С на (5 — 10) мин. Метки приобретают коричневую окраску и не смываются водой и растворами кислот.

Промаркированные фарфоровые чашки промывают раствором соляной кислоты, приготовленной по 10.1, затем дистиллированной водой, подсушивают на воздухе и прокаливают при (600 ± 20) °С в течение 20 минут, охлаждают в эксикаторе до температуры окружающей среды и взвешивают. Прокаливание повторяют до достижения постоянной массы (т.е. до тех пор, пока расхождение значений между двумя последними взвешиваниями будет не более 0,0005 г). Значения массы чашки записывают в рабочем журнале (М2i).

1 Допускается для выполнения измерений использование кварцевых чашек, подготовленных по приведенной процедуре.

2 Если одни и те же чашки используют ежедневно, при этом их массы изменяются в допустимых пределах (±0,0005 г), разрешается проведение одного прокаливания при температуре (600 ± 20) °С в течение часа с последующим взвешиванием.

3 Если выполняется определение только сухого остатка, то фарфоровые или кварцевые чашки высушивают в сушильном шкафу при температуре (105 ± 2) °С в течение четырех часов до достижения постоянной массы.

Для определения берут от 25 до 1000 см 3 анализируемой пробы воды в зависимости от предполагаемой массовой концентрации сухого или прокаленного остатка. Объем выбирают таким образом, чтобы масса привеса чашки после выпаривания и высушивания составила более 0,0010 г.

Аликвотную часть пробы воды, предварительно профильтрованную через фильтр «синяя лента» и отобранную мензуркой или цилиндром, помещают в фарфоровую чашку, подготовленную по 10.2.2, и выпаривают на водяной бане досуха. Выпаривание на водяной бане проб воды проводят в вытяжном шкафу.

При выпаривании чашку наполняют водой не более чем на 3/4 объёма, постепенно прибавляя оставшуюся воду по мере упаривания пробы.

Примечание — Если аликвотная часть пробы воды составляет (500 — 1000) см 3 , то допускается проводить выпаривание с применением ротационного испарителя. Воду упаривают приблизительно до 50 см 3 , затем количественно переносят в выпарную чашку и выпаривают на водяной бане досуха.

При анализе питьевых и природных вод допускается фильтрование пробы воды через мембранный фильтр с помощью установки для фильтрования.

После выпаривания внешнюю поверхность чашки с сухим остатком тщательно вытирают фильтровальной бумагой и помещают в сушильный шкаф, нагретый до (105 ± 2) °С, высушивают в течение трех часов, охлаждают в эксикаторе, взвешивают.

Высушивание, охлаждение в эксикаторе до температуры окружающей среды и взвешивание повторяют до достижения постоянной массы, т.е. до тех пор, пока разница между результатами двух последовательных взвешиваний будет не более 0,0005 г. Результаты взвешивания записывают в рабочем журнале (M1i).

Чашку с сухим остатком помещают в муфельную печь, предварительно нагретую до (600 ± 20) °С, и прокаливают в течение 20 минут. Охлаждают чашку в эксикаторе до температуры окружающей среды. После полного охлаждения чашку с остатком взвешивают. Прокаливание, охлаждение и взвешивание повторяют до достижения постоянной массы, т.е. до тех пор, пока разница между результатами двух последовательных взвешиваний будет не более 0,0005 г.

Если после первого прокаливания остаток в чашке имеет черный цвет, то его смачивают дистиллированной водой (приблизительно 10 см 3 ), и далее повторяют прокаливание, охлаждение до температуры окружающей среды и взвешивание до достижения постоянной массы. Результаты взвешивания записывают в рабочем журнале (М3i).

Примечание — Допускается при определении сухого остатка проводить высушивание образца в течение 4 часов, а при определении прокаленного остатка прокаливание в течение 1 часа с последующим охлаждением в эксикаторе до температуры окружающей среды и однократным взвешиванием.

Массовую концентрацию сухого остатка Хс (мг/дм 3 ) вычисляют по формуле

М1 — масса чашки с высушенным остатком, г;

V — аликвотная часть пробы воды, см 3 ;

10 6 — коэффициент пересчета единиц измерения г/см 3 в мг/дм 3 .

Массовую концентрацию прокаленного остатка Хп (мг/дм 3 ) вычисляют по формуле:

М3 — масса чашки с прокаленным остатком, г;

V — аликвотная часть пробы воды, см 3 ;

10 6 — коэффициент пересчета единиц измерения г/см 3 в мг/дм 3 .

Результаты измерений, как правило, в протоколах анализов представляют в виде:

где ∆ — характеристика абсолютной погрешности, которую рассчитывают по формуле

где δ — значение показателя точности, % (таблица 1).

Результаты измерений округляют с точностью до:

при массовой концентрации:

14.1 При получении двух результатов измерений (Х1, Х2) в условиях повторяемости (сходимости) осуществляют проверку приемлемости результатов в соответствии с требованиями ГОСТ Р ИСО 5725-6 (раздел 5).

Результат измерений считают приемлемым при выполнении условия:

Значения предела повторяемости (r) приведены в таблице 3.

При выполнении этого условия приемлемы оба результата измерений, и в качестве окончательного может быть использовано их среднее арифметическое значение. При превышении предела повторяемости могут быть использованы методы проверки приемлемости результатов измерений согласно раздела 5 ГОСТ Р ИСО 5725-6.

14.2 При получении результатов измерений в двух лабораториях (Xлаб1, Хлаб2) проводят проверку приемлемости результатов измерений в соответствии с требованиями ГОСТ Р ИСО 5725-6 (раздел 5).

Результат измерений считают приемлемым при выполнении условия:

Значения предела воспроизводимости (R) приведены в таблице 3.

При выполнении этого условия приемлемы оба результата измерений, и в качестве окончательного может быть использовано их среднее арифметическое значение. При превышении предела воспроизводимости могут быть использованы методы проверки приемлемости результатов измерений согласно раздела 5 ГОСТ Р ИСО 5725-6.

Диапазон измерений, мг/дм 3

Предел повторяемости (относительное значение допускаемого расхождения для двух результатов измерений, полученных в условиях повторяемости), r , %

Предел воспроизводимости (относительное значение допускаемого расхождения для двух результатов измерений, полученных в условиях воспроизводимости), R , %

15.1 В случае регулярного выполнения измерений по методике рекомендуется проводить контроль стабильности результатов измерений путем контроля среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности и погрешности с помощью контрольных карт в соответствии с рекомендациями ГОСТ Р ИСО 5725-6 (раздел 6).

Периодичность контроля стабильности результатов измерений регламентируют во внутренних документах лаборатории.

15.2 Оперативный контроль точности результатов измерений рекомендуется проводить с каждой серией проб, если измерения по методике выполняют эпизодически, а также при возникновении необходимости подтверждения результатов измерений отдельных проб (при получении нестандартного результата измерений; результата, превышающего ПДК и т.п.).

Оперативный контроль проводят с помощью образца для контроля (ОК). Образец для контроля (ОК) готовят с использованием СО (например, СО общей минерализации воды), веществ гарантированной чистоты (например, натрий хлористый или калий хлористый или из стандарт-титров калия хлористого или натрия хлористого) и дистиллированной воды. При использовании веществ гарантированной чистоты или стандарт-титров раствор ОК готовят таким образом, чтобы массовая концентрация сухого остатка в ОК приближалась к значению массовой концентрации в реальных пробах в конкретной лаборатории.

Оперативный контроль процедуры измерений проводят путем сравнения результата отдельно взятой контрольной процедуры (KK) с нормативом контроля (K).

Результат контрольной процедуры KK рассчитывают по формуле

X — результат контрольного измерения массовой концентрации сухого или прокаленного остатка в образце для контроля, мг/дм 3 ;

С — аттестованное значение массовой концентрации сухого или прокаленного остатка в образце для контроля, мг/дм 3 .

Норматив контроля K рассчитывают по формуле

где ∆л — характеристика абсолютной погрешности аттестованного значения массовой концентрации сухого или прокаленного остатка в образце для контроля, установленная в лаборатории при реализации методики, мг/дм 3 .

Примечание — Допускается ∆л рассчитывать по формуле ∆л = 0,84 × ∆, где ∆ — приписанная характеристика абсолютной погрешности методики.

Качество контрольной процедуры признают удовлетворительным при выполнении условия:

При невыполнении условия контрольную процедуру повторяют. При повторном невыполнении условия выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

источник

Обозначение: ПНД Ф 14.1:2:3:4.121-97
Название рус.: Методические рекомендации по применению методики выполнения измерений рН в водах потенциометрическим методом
Статус: действует
Дата актуализации текста: 05.05.2017
Дата добавления в базу: 01.09.2013
Утвержден: 29.03.2016 ФГБУ Федеральный центр анализа и оценки техногенного воздействия
Ссылки для скачивания:
Читайте также:  Анализ потерь воды в сетях