Меню Рубрики

Методики количественного химического анализа сточных вод

ПНД Ф 14.1:2.100-97
Количественный химический анализ вод. Методика выполнения измерений химического потребления кислорода в пробах природных и очищенных сточных вод титриметрическим методом

Купить ПНД Ф 14.1:2.100-97 — бумажный документ с голограммой и синими печатями. подробнее

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО «ЦНТИ Нормоконтроль».

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них величины химического потребления кислорода (ХПК) при содержании органических веществ, эквивалентном потреблению молекулярного кислорода в диапазоне от 4,0 до 80,0 мг/дм3 титриметрическим методом без концентрации пробы.

Методика допущена для целей государственного экологического контроля

3. Приписанные характеристики погрешности измерений и ее составляющих

4. Средства измерений, вспомогательные устройства, материалы, реактивы

5. Требования безопасности

6. Требования к квалификации операторов

9. Подготовка к выполнению измерений

10. Устранение мешающих влияний

12. Обработка результатов измерений

13. Оформление результатов анализа

14. Контроль качества результатов анализа при реализации методики в лаборатории

×

Дата введения: 01.12.2016
Добавлен в базу: 01.09.2013
Заверение срока действия: 01.12.2016
Актуализация: 01.01.2019

Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку:

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ
ФЕДЕРАЦИИ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ

Государственного комитета РФ

по охране окружающей среды

_____________ А.А. Соловьянов

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
ХИМИЧЕСКОГО ПОТРЕБЛЕНИЯ КИСЛОРОДА
В ПРОБАХ ПРИРОДНЫХ И ОЧИЩЕННЫХ СТОЧНЫХ ВОД
ТИТРИМЕТРИЧЕСКИМ МЕТОДОМ

Методика допущена для целей государственного экологического контроля

МОСКВА 1997 г.
(издание 2004 г.)

Настоящий документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них величины химического потребления кислорода (ХПК) при содержании органических веществ, эквивалентном потреблению молекулярного кислорода в диапазоне от 4,0 до 80,0 мг/дм 3 титриметрическим методом без концентрирования пробы.

При величине ХПК > 50 мг/дм 3 определение следует проводить при соответствующем разбавлении пробы дистиллированной водой.

Определению мешают хлориды, сульфиды, соединения железа(II), нитриты и другие неорганические вещества, способные окисляться бихроматом в кислой среде.

Мешающие влияния устраняют в соответствии с п. 10.

Титриметрический метод определения ХПК основан на окислении органических веществ избытком бихромата калия в растворе серной кислоты при нагревании в присутствии катализатора — сульфата серебра. Остаток бихромата калия находят титрованием раствором соли Мора и по разности определяют количество K2Cr2O7, израсходованное на окисление органических веществ.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1.

Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости

Диапазон измерений величины ХПК, мг/дм 3

Показатель точности (границы относительной погрешности при вероятности Р = 0,95),
±d, %

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости),
sr, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости),
sR, %

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Весы лабораторные общего назначения с наибольшим пределом
взвешивания 200 г и ценой наименьшего деления 0,1 мг любого типа

Весы лабораторные общего назначения с наибольшим пределом
взвешивания 200 г и ценой наименьшего деления 10 мг любого типа

СО с аттестованным содержанием ХПК с погрешностью не более 1 % при Р = 0,95

Цилиндры мерные или мензурки

4.2. Вспомогательные устройства

Плитки электрические с закрытой спиралью и регулируемой
мощностью нагрева

Шкаф сушильный лабораторный с температурой нагрева до 130 °С

Стаканчики для взвешивания (бюксы)

Установки для определения ХПК в составе:

Колба К-1-250-29/32 ТС или колба Гр-250-29/32

Обратный холодильник ХПТ-2-400-29/32 ХС

Прибор вакуумного фильтрования ПВФ-35 или ПВФ-47

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств измерений и вспомогательных устройств с характеристиками не хуже, чем у приведенных в п.п. 4.1 и 4.2.

Бихромат калия (калий двухромовокислый)

N-фенилантраниловая кислота или

Бумага индикаторная универсальная

Фильтры мембранные Владипор типа МФАС-МА или МФАС-ОС-2 (0,45 мкм)

или фильтры бумажные обеззоленные «синяя лента»

Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

5.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

5.2. Электробезопасность при работе с электроустановками обеспечивается по ГОСТ 12.1.019.

5.3. Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004.

5.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой титриметрического метода анализа.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

· температура окружающего воздуха (22 ± 6) °С;

· атмосферное давление (84 — 106) кПа;

· относительная влажность не более 80 % при температуре 25 °С;

· частота переменного тока (50 ± 1) Гц;

· напряжение в сети (220 ± 22) В.

8.1. Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб».

8.2. Посуду, предназначенную для отбора и хранения проб, моют хромовой смесью, затем тщательно (не менее 10 раз) промывают водопроводной и ополаскивают дистиллированной водой.

8.3. Пробы воды отбирают в стеклянную посуду с пробками, не загрязняющими пробу органическими соединениями.

В зависимости от целей анализа определение ХПК можно проводить в нефильтрованной или фильтрованной пробе. В последнем случае пробу предварительно фильтруют через мембранный фильтр 0,45 мкм, очищенный двухкратным кипячением в дистиллированной воде. Допустимо использование бумажных фильтров «синяя лента», промытых дистиллированной водой. При фильтровании через любой фильтр первые порции фильтрата отбрасывают.

Объем отбираемой пробы должен быть не менее 100 см 3 .

8.4. Определение ХПК, особенно в загрязненных водах, следует проводить как можно скорее после отбора пробы. Допускается хранение пробы при температуре не выше 4 °С не более суток при консервации добавлением раствора серной кислоты (1:2) из расчета 2 см 3 на каждые 100 см 3 пробы воды.

8.5. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

9.1. Приготовление растворов и реактивов

9.1.1. Раствор бихромата калия с концентрацией 0,25 моль/дм 3 эквивалента.

6,129 г бихромата калия, предварительно высушенного в течение 2 ч при 105 °С, количественно переносят его в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде, доводят до метки и перемешивают. Раствор устойчив при хранении в плотно закрытой темной склянке в течение 6 мес.

9.1.2. Раствор бихромата калия с концентрацией 0,025 моль/дм 3 эквивалента.

50 см 3 раствора бихромата калия с концентрацией 0,25 моль/дм 3 эквивалента помещают в мерную колбу вместимостью 500 см 3 и доводят объем раствора до метки дистиллированной водой. Хранят в склянке с притертой пробкой в темном месте не более 6 мес.

9.1.3. Раствор соли Мора с концентрацией 0,25 моль/дм 3 эквивалента.

49,0 г соли Мора переносят в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде, осторожно добавляют 10 см 3 концентрированной серной кислоты и после охлаждения доводят объем раствора до метки дистиллированной водой. Хранят в плотно закрытой посуде не более 6 мес.

9.1.4. Раствор соли Мора с концентрацией 0,025 моль/дм 3 эквивалента.

50 см 3 раствора соли Мора с концентрацией 0,25 моль/дм 3 эквивалента помещают в мерную колбу вместимостью 500 см 3 и доводят объем раствора до метки дистиллированной водой. Хранят в плотно закрытой посуде не более 3 мес.

Точную концентрацию раствора устанавливают ежедневно или перед серией определений в соответствии с п. 10.2.

В качестве индикатора используют раствор N-фенилантраниловой кислоты или ферроина (комплекс сульфата железа(II) с 1,10-фенантролином).

Для приготовления раствора N-фенилантраниловой кислоты 0,25 г реактива растворяют в 12 см 3 раствора гидрооксида натрия (для ускорения процесса раствор можно слегка подогреть) и разбавляют дистиллированной водой до 250 см 3 .

Для приготовления раствора ферроина 2,43 г индикатора растворяют в 100 см 3 дистиллированной воды.

При приготовлении раствора ферроина на основе 1,10-фенантролина растворяют 0,980 г соли Мора (NH4)2Fe(SO4)2 · 6H2O в 100 см 3 дистиллированной воды, добавляют 2,085 г 1,10-фенантролина моногидрата или 2,93 г сульфата и перемешивают до растворения последнего.

Раствор индикатора хранят в плотно закрытой склянке из темного стекла не более 3 мес.

9.1.6. Раствор гидроксида натрия, 0,4 %.

0,4 г NaOH растворяют в 100 см 3 дистиллированной воды. Раствор устойчив при хранении в плотно закрытой полиэтиленовой посуде не более 2 мес.

9.1.7. Раствор сульфата серебра.

5,0 г Ag2SO4 растворяют в 1 дм 3 концентрированной серной кислоты. Раствор устойчив в склянке из темного стекла в течение 6 мес.

9.2. Установление точной концентрации раствора соли Мора

Пипеткой вместимостью 10 см 3 отбирают 10 см 3 раствора бихромата калия с концентрацией 0,025 моль/дм 3 эквивалента (п. 9.1.2), переносят в коническую колбу, добавляют 180 см 3 дистиллированной воды и 20 см 3 концентрированной серной кислоты. После охлаждения добавляют в пробу 3 — 4 капли индикатора ферроина или 10 капель раствора N-фенилантраниловой кислоты и титруют раствором соли Мора с концентрацией 0,025 моль/дм 3 эквивалента (п. 9.1.4) до перехода окраски из синевато-зеленой в красно-коричневую при использовании в качестве индикатора ферроина и из красно-фиолетовой в синевато-зеленую при использовании N-фенилантраниловой кислоты.

Титрование повторяют и при отсутствии расхождения в объемах титранта более 0,05 см 3 за результат принимают среднее значение. В противном случае повторяют титрование до получения результатов, отличающихся не более, чем на 0,05 см 3 .

Точную концентрацию раствора соли Мора находят по формуле:

где См — концентрация раствора соли Мора, моль/дм 3 эквивалента;

Сб — концентрация раствора бихромата калия, моль/дм 3 эквивалента;

Vб — объем раствора бихромата калия, взятый для титрования, см 3 ;

Vм — объем раствора соли Мора, пошедший на титрование см 3 .

Мешающее влияние хлоридов при концентрациях менее 300 мг/дм 3 устраняется за счет присутствия в пробе катализатора (сульфата серебра). При больших содержаниях хлоридов к пробе добавляют сульфат ртути (II) из расчета 100 мг на 10 мг хлоридов.

Мешающее влияние сульфидов и соединений железа (II) устраняют предварительной продувкой пробы воды воздухом, если она не содержит летучих органических соединений, или учитывают при расчете ХПК. В последнем случае определяют их концентрации и пересчитывают на величины ХПК, исходя из того, что 1 мг H2S и 1 мг Fe 2+ эквивалентны соответственно 0,47 и 0,14 мг O2. Таким же образом учитывают влияние нитритов (1 мг NО2 эквивалентен 0,35 мг O2).

11.1. Выполнение измерений в водах с низкой концентрацией хлоридов

Если концентрация хлоридов в пробе анализируемой воды составляет менее 300 мг/дм 3 , в колбу со шлифом установки для определения ХПК вносят с помощью пипетки 20 см 3 воды (или аликвоту, доведенную дистиллированной водой до 20 см 3 ), добавляют 10,0 см 3 раствора бихромата калия с концентрацией 0,025 моль/дм 3 эквивалента (п. 9.1.2) и 30 см 3 раствора сульфата серебра в концентрированной серной кислоте. Для равномерного кипения в колбу бросают 2 — 3 капилляра, присоединяют к ней обратный холодильник и кипятят содержимое на песчаной бане в течение 2 ч.

После охлаждения установки промывают холодильник дистиллированной водой (около 50 см 3 ), отсоединяют его, добавляют в колбу, обмывая ее стенки, еще 50 см 3 дистиллированной воды, вновь охлаждают, переносят пробу в коническую колбу, дважды споласкивая колбу, где кипятилась проба, дистиллированной водой (по 20 — 30 см 3 ). Добавляют 3 — 4 капли раствора ферроина (или 10 капель раствора фенилантраниловой кислоты) и титруют избыток непрореагировавшего бихромата калия раствором соли Мора (п. 9.1.4) до перехода окраски индикатора из синевато-зеленой в красно-коричневую при использовании в качестве индикатора ферроина и из красно-фиолетовой в синевато-зеленую при использовании N-фенилантраниловой кислоты.

Аналогичным образом проводят холостой опыт с 20 см 3 дистиллированной воды.

11.2. Выполнение измерений в водах с высокой концентрацией хлоридов

Если концентрация хлоридов в воде превышает 300 мг/дм 3 , к отобранной для анализа пробе (20 см 3 или меньшей аликвоте, доведенной до 20 см 3 дистиллированной водой) добавляют сульфат ртути из расчета 100 мг на каждые 10 мг содержащихся в пробе хлоридов и тщательно перемешивают. Далее выполняют определение, как описано в п. 11.1. Наличие небольшого количества осадка, образовавшегося после добавления сульфата ртути, не мешает определению.

12.1. Величину ХПК (бихроматной окисляемости) анализируемой пробы воды X находят по формуле:

где Vмх — объем раствора соли Мора, израсходованный на титрование в холостом опыте, см 3 ;

Vм — объем раствора соли Мора, израсходованный на титрование в пробы воды, см 3 ;

См — концентрация раствора соли Мора, моль/дм 3 эквивалента;

V — объем пробы воды, взятый для определения, см 3 ;

8,0 — масса миллиграмм-эквивалента кислорода, мг.

Если величина ХПК в анализируемой пробе превышает верхнюю границу диапазона (80 мг/дм 3 ), разбавляют пробу с таким расчетом, чтобы величина ХПК входила в регламентированный диапазон, и выполняют определение в соответствии с п. 11.2.

В этом случае величину ХПК в анализируемой пробе воды X находят по формуле:

где ХV величина ХПК в разбавленной пробе воды, мг/дм 3 ;

VV— объем пробы воды после разбавления, см 3 ;

Читайте также:  Метод анализ нитратов в воде

v — объем аликвоты пробы воды, взятой для разбавления, см 3 .

12.2. Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 2.

Значения предела воспроизводимости при вероятности Р = 0,95

Диапазон измерений величины ХПК, мг/дм 3

Предел воспроизводимости (относительное значение допускаемого расхождения
между двумя результатами измерений, полученными в разных лабораториях), R, %

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6.

Результат анализа X в документах, предусматривающих его использование, может быть представлен в виде:

где D — показатель точности методики.

Значение D рассчитывают по формуле:

Значение d приведено в таблице 1.

Если проводилось разбавление пробы воды из-за превышения величины ХПК верхней границы диапазона, значение d выбирают из таблицы 1 для величины ХПК в разбавленной пробе воды ХV.

Допустимо результат анализа в документах, выдаваемых лабораторией, представлять в виде:

источник

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД
МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ ХИМИЧЕСКОГО ПОТРЕБЛЕНИЯ КИСЛОРОДА В ПРОБАХ ПРИРОДНЫХ И ОЧИЩЕННЫХ СТОЧНЫХ ВОД ТИТРИМЕТРИЧЕСКИМ МЕТОДОМ
ПНД Ф 14.1:2.100-97

Методика допущена для целей государственного экологического контроля.

Методика рассмотрена и одобрена Главным управлением аналитического контроля и метрологического обеспечения природоохранной деятельности (ГУАК) и Главным метрологом Госкомэкологии России.

Настоящий документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них величины химического потребления кислорода (ХПК) при содержании органических веществ, эквивалентном потреблению молекулярного кислорода в диапазоне от 4,0 до 80,0 мг/куб. дм, титриметрическим методом без концентрирования пробы. При величине ХПК > 50 мг/куб. дм определение следует проводить при соответствующем разбавлении пробы дистиллированной водой.

Определению мешают хлориды, сульфиды, соединения железа (II), нитриты и другие неорганические вещества, способные окисляться бихроматом в кислой среде (устранение мешающих влияний см. в п. 10).

Титриметрический метод определения ХПК основан на окислении

органических веществ избытком бихромата калия в растворе серной кислоты при

нагревании в присутствии катализатора — сульфата серебра. Остаток бихромата

калия находят титрованием раствором соли Мора и по разности определяют

количество K Cr O , израсходованное на окисление органических веществ.

Согласно ГОСТ 27384 «Вода. Нормы погрешности измерений показателей состава и свойств» относительная погрешность измерений при определении ХПК в природных и сточных водах не нормируется.

Настоящая методика количественного химического анализа обеспечивает получение результатов анализа с погрешностями, не превышающими значений, рассчитанных по соотношениям, приведенным в таблице 1.

Диапазон
измеряемых
величин ХПК,
мг/куб. дм

Наименование метрологической характеристики

Характеристика
погрешности, ДЕЛЬТА,
мг/куб. дм (Р = 0,95)

Характеристика случайной составляющей
0
|
погрешности, сигма (ДЕЛЬТА),
мг/куб. дм (Р = 0,95)

От 4,0 до 80,0
включительно

Метрологические характеристики приведены в виде зависимости от значения результата измерения химического потребления кислорода в пробе — С.

Весы лабораторные 2 класса точности, ГОСТ 24104.

Шкаф сушильный общелабораторного назначения, ГОСТ 13474.

Колбы мерные, наливные 2-500-2, ГОСТ 1770.

Бюретка 1-2-25-0,1, ГОСТ 20292.

Мензурки или цилиндры 2-25

Колбы конические типа Кн-2-500, ГОСТ 25336.

Капельница 2-50 ХС, ГОСТ 25336.

Установки для определения ХПК (колбы К-1-250-29/32 ТС или колбы Гр-250-29/32, ГОСТ 25336, с обратным холодильником типа ХПТ-2-400-29/32 ХС, ГОСТ 25336).

Воронка В-56-80 ХС, ГОСТ 25336.

Стаканчики для взвешивания (бюксы) СВ-14/8, ГОСТ 25336.

Устройство для фильтрования проб с использованием мембранных или бумажных фильтров.

Допускается использование других типов средств измерений, посуды и вспомогательного оборудования, в том числе импортных, с характеристиками не хуже, чем у приведенных в п. 3.1.

Бихромат калия (калий двухромовокислый), ГОСТ 4220.

Соль Мора (NH ) Fe(SO ) х 6H O, ГОСТ 4208.

Сульфат серебра, ТУ 6-09-3703.

Гидроксид натрия, ГОСТ 4328.

N-фенилантраниловая кислота, ТУ 6-09-3703, или ферроин (C H N ) х

х FeSO по ТУ 6-09-1256 или 1,10-фенантролин, моногидрат C H N х H O или

сульфат C H N х H SO , ТУ 6-09-05-90.

Вода дистиллированная, ГОСТ 6709.

Фильтры бумажные обеззоленные «синяя лента», ТУ 6-09-1678.

Фильтры мембранные «Владипор МФА-МА», 0,45 мкм, по ТУ 6-05-1903, или другого типа, равноценные по характеристикам.

Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

4.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами, ГОСТ 12.4.021.

4.2. Электробезопасность при работе с электроустановками по ГОСТ 12.1.019.

4.3. Организация обучения работающих безопасности труда по ГОСТ 12.0.004.

4.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой титриметрического метода анализа.

Измерения проводятся в нормальных лабораторных условиях.

Температура окружающего воздуха (22 +/- 6) °С.

Относительная влажность (80 +/- 5)%.

Атмосферное давление (84 — 106) кПа.

Частота переменного тока (50 +/- 1) Гц.

Напряжение в сети (220 +/- 10) В.

7.1. Посуду, предназначенную для отбора и хранения проб, моют хромовой смесью, затем тщательно (не менее 10 раз) промывают водопроводной и ополаскивают дистиллированной водой.

7.2. Пробы воды отбирают в стеклянную посуду с пробками, не загрязняющими пробу органическими соединениями.

В зависимости от целей анализа определение ХПК можно проводить в нефильтрованной или фильтрованной пробе. В последнем случае пробу предварительно фильтруют через мембранный фильтр 0,45 мкм, очищенный двукратным кипячением в дистиллированной воде. Допустимо использование бумажных фильтров «синяя лента», промытых дистиллированной водой. При фильтровании через любой фильтр первые порции фильтрата отбрасывают.

Объем отбираемой пробы должен быть не менее 100 куб. см.

7.3. Определение ХПК, особенно в загрязненных водах, следует проводить как можно скорее после отбора пробы. Допускается хранение пробы при температуре не выше 4 °С не более суток при консервации добавлением раствора серной кислоты (1:2) из расчета 2 куб. см на каждые 100 куб. см пробы воды.

7.4. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

8.1.1. Раствор бихромата калия с концентрацией 0,25 моль/куб. дм эквивалента.

6,129 г бихромата калия, предварительно высушенного в течение 2 ч при 105 °С, переносят в мерную колбу вместимостью 500 куб. см, растворяют в дистиллированной воде и доводят объем раствора до метки. Раствор устойчив при хранении в плотно закрытой темной склянке.

8.1.2. Раствор бихромата калия с концентрацией 0,025 моль/куб. дм эквивалента.

50 куб. см раствора бихромата калия с концентрацией 0,25 моль/куб. дм эквивалента помещают в мерную колбу вместимостью 500 куб. см и доводят объем раствора до метки дистиллированной водой. Хранят в склянке с притертой пробкой в темном месте не более 3 мес.

8.1.3. Раствор соли Мора с концентрацией 0,25 моль/куб. дм эквивалента.

49,0 г соли Мора переносят в мерную колбу вместимостью 500 куб. см, растворяют в дистиллированной воде, осторожно добавляют 10 куб. см концентрированной серной кислоты и после охлаждения доводят объем раствора до метки дистиллированной водой. Хранят в плотно закрытой посуде не более 6 мес.

8.1.4. Раствор соли Мора с концентрацией 0,025 моль/куб. дм эквивалента.

50 куб. см раствора соли Мора с концентрацией 0,25 моль/куб. дм эквивалента помещают в мерную колбу вместимостью 500 куб. см и доводят объем раствора до метки дистиллированной водой. Хранят в плотно закрытой посуде. Точную концентрацию раствора устанавливают ежедневно или перед серией определений в соответствии с п. 8.2.

В качестве индикатора используют раствор N-фенилантраниловой кислоты или ферроина (комплекс сульфата железа (II) с 1,10-фенантролином).

Для приготовления раствора N-фенилантраниловой кислоты 0,25 г реактива растворяют в 12 куб. см раствора гидрооксида натрия (для ускорения растворения можно слегка подогреть) и разбавляют дистиллированной водой до 250 куб. см.

Для приготовления раствора ферроина 2,43 г индикатора растворяют в 100

куб. см дистиллированной воды. При приготовлении раствора ферроина на

основе 1,10-фенантролина в 100 куб. см дистиллированной воды растворяют

0,980 г соли Мора (NH ) Fe(SO ) х 6H O, добавляют 2,085 г

1,10-фенантролина моногидрата или 2,93 г сульфата и перемешивают до

Раствор индикатора хранят в плотно закрытой склянке из темного стекла не более 3 мес.

8.1.6. Раствор гидроксида натрия.

0,4 г NaOH растворяют в 100 куб. см дистиллированной воды. Раствор устойчив при хранении в плотно закрытой полиэтиленовой посуде.

8.1.7. Раствор сульфата серебра.

5,0 г Ag SO растворяют в 1 куб. дм концентрированной серной кислоты.

Пипеткой вместимостью 10 куб. см отбирают 10 куб. см раствора бихромата калия с концентрацией 0,025 моль/куб. дм эквивалента (п. 8.1.2), переносят в коническую колбу, добавляют 180 куб. см дистиллированной воды, 20 куб. см концентрированной серной кислоты, после охлаждения 3 — 4 капли индикатора ферроина или 10 капель раствора N-фенилантраниловой кислоты и титруют раствором соли Мора с концентрацией 0,025 моль/куб. дм эквивалента (п. 8.1.4) до перехода окраски из синевато-зеленой в красно-коричневую при использовании в качестве индикатора ферроина и из красно-фиолетовой в синевато-зеленую при использовании N-фенилантраниловой кислоты. Титрование повторяют и при отсутствии расхождения в объемах титранта более 0,05 куб. см за результат принимают среднее значение. В противном случае повторяют титрование до получения результатов, отличающихся не более чем на 0,05 куб. см.

Точную концентрацию раствора соли Мора находят по формуле:

С — концентрация раствора соли Мора, моль/куб. дм эквивалента;

С — концентрация раствора бихромата калия, моль/куб. дм эквивалента;

V — объем раствора бихромата калия, взятый для титрования, куб. см;

V — объем раствора соли Мора, пошедший на титрование, куб. см.

Мешающее влияние хлоридов при концентрациях менее 300 мг/куб. дм устраняется за счет присутствия в пробе катализатора (сульфата серебра). При больших содержаниях хлоридов к пробе добавляют сульфат ртути (II) из расчета 100 мг на 10 мг хлоридов.

Мешающее влияние сульфидов и соединений железа (II) устраняют

предварительной продувкой пробы воды воздухом, если она не содержит летучих

органических соединений, или учитывают при расчете ХПК. В последнем случае

определяют их концентрации и пересчитывают на величины ХПК, исходя из того,

что 1 мг H S и 1 мг Fe эквивалентны соответственно 0,47 и 0,14 мг O .

Таким же образом учитывают влияние нитритов (1 мг NO — эквивалентен 0,35

При содержании в пробе анализируемой воды менее 300 мг/куб. дм хлоридов помещают пипеткой 20 куб. см воды (или аликвоту, доведенную дистиллированной водой до 20 куб. см) в круглодонную колбу со шлифом для кипячения, добавляют пипеткой 10,0 куб. см раствора бихромата калия с концентрацией 0,025 моль/куб. дм эквивалента (п. 8.1.2), 30 куб. см раствора сульфата серебра в концентрированной серной кислоте и для равномерного кипения бросают 2 — 3 капилляра. К колбе присоединяют обратный холодильник и смесь кипятят на песчаной бане в течение 2 ч.

После охлаждения промывают холодильник дистиллированной водой (около 50 куб. см), отсоединяют его, добавляют в колбу, обмывая ее стенки, еще 50 куб. см дистиллированной воды, вновь охлаждают, переносят пробу в коническую колбу, дважды споласкивая круглодонную колбу дистиллированной водой (по 20 — 30 куб. см). Добавляют 3 — 4 капли раствора ферроина (или 10 капель раствора фенилантраниловой кислоты) и титруют избыток непрореагировавшего бихромата калия раствором соли Мора (п. 9.1.4) до перехода окраски индикатора из синевато-зеленой в красно-коричневую при использовании в качестве индикатора ферроина и из красно-фиолетовой в синевато-зеленую при использовании N-фенилантраниловой кислоты.

Аналогичным образом проводят холостой опыт с 20 куб. см дистиллированной воды.

Если содержание хлоридов в воде превышает 300 мг/куб. дм, к отобранной для анализа пробе (20 куб. см или меньшей аликвоте, доведенной до 20 куб. см дистиллированной водой) добавляют сульфат ртути из расчета 100 мг на каждые 10 мг содержащихся в пробе хлоридов и тщательно перемешивают. Далее выполняют определение, как описано в п. 10.1. Наличие небольшого количества осадка, образовавшегося после добавления сульфата ртути, не мешает определению.

Величину ХПК (бихроматной окисляемости) С , мг/куб. дм, O , находят по

V — объем раствора соли Мора, израсходованный на титрование в

V — объем раствора соли Мора, израсходованный на титрование пробы

С — концентрация раствора соли Мора, моль/куб. дм, эквивалента;

V — объем пробы воды, взятый для определения, куб. см;

8,0 — масса миллиграмм-эквивалента кислорода, мг.

Результат измерения в документах, предусматривающих его использование, представляют в виде:

С +/- ДЕЛЬТА, мг/куб. дм (Р = 0,95),

где ДЕЛЬТА — характеристика погрешности измерения для данной величины ХПК (таблица 1).

Численные значения результата измерения должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности.

13.1. Оперативный контроль воспроизводимости

Образцами для контроля являются реальные пробы природных и очищенных сточных вод. Объем отобранной для контроля пробы должен соответствовать удвоенному объему, необходимому для проведения анализа по методике. Отобранный объем делят на две равные части и анализируют в точном соответствии с прописью методики, максимально варьируя условия проявления анализа, т.е. получают два результата анализа в разных лабораториях или в одной, используя при этом разные наборы мерной посуды, разные партии реактивов. Два результата анализа не должны отличаться друг от друга на величину допускаемых расхождений между результатами анализа:

С — результат анализа рабочей пробы;

С — результат анализа этой же пробы, полученный в другой лаборатории

или в этой же, но другим аналитиком с использованием другого набора мерной

Читайте также:  Метод анализа нефтепродуктов в воде

посуды и других партий реактивов;

D — допускаемые расхождения между результатами анализа одной и той же

Значения норматива контроля приведены в виде зависимости от значения результата измерения массовой концентрации определяемого компонента в пробе — С.

При превышении норматива контрольное определение повторяют. При повторном превышении норматива выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

Диапазон измеряемых
концентраций кальция,
мг/куб. дм

Норматив оперативного контроля
воспроизводимости (для двух результатов
измерений, m = 2), D, мг/куб. дм

источник

Настоящий документ устанавливает методику выполнения измерений содержаний нефтепродуктов в природных и сточных водах методом колоночной хроматографии с гравиметрическим окончанием при массовых концентрациях нефтепродуктов от 0,30 до 50,0 мг/дм 3

Мешающие влияния, обусловленные присутствием в пробе органических веществ других классов, устраняются в ходе анализа (п. 9).

ʘ Допускается использование данной методики при аварийных ситуациях для определения массовых концентраций нефтепродуктов свыше 50 мг/дм 3 . ʘ

Метод определения массовой концентрации нефтепродуктов основан на извлечении нефтепродуктов из анализируемых вод органическим растворителем, отделении от полярных соединений других классов колоночной хроматографией на оксиде алюминия и количественном определении гравиметрическим методом.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведенных в таблице 1.

Диапазон измерений, значения показателей точности, повторяемости и воспроизводимости

Показатель точности (границы относительной погрешности при вероятности Р = 0,95), ± d , %

(относительное сред- неквадратическое отклонение повторяемости) s г , %

(относительное среднеквадратическое отклонение воспроизводимости), s R , %

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

При выполнении измерений должны быть применены следующие средства измерений, оборудование и материалы:

3.1. Средства измерений, вспомогательное оборудование

Весы лабораторные, 2 класса точности, ГОСТ 24104

Вентилятор комнатный типа ВН10-УЧ, ГОСТ 7402

Термометр КШ-14/23, ТУ 25-2021.007-88

Стаканчики для взвешивания (бюксы), ГОСТ 25336

Пипетки мерные с делениями 0,1 см 3 4(5)-2-1(2);

Колонка с оксидом алюминия

Бутыли из стекла с притертыми пробками вместимостью 2000 — 3000 см 3 для отбора и хранения проб

Алюминии оксид, ТУ 6-09-3916

Бумага индикаторная универсальная, ТУ 6-09-1181 ʘ

При выполнении измерений массовой концентрации нефтепродуктов в пробах природных и сточных вод соблюдают следующие требования безопасности:

4.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

4.2. Электробезопасность при работе с электроустановками по ГОСТ 12.1.019.

4.3. Организация обучения работающих безопасности труда по ГОСТ 12.0.004.

4.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой гравиметрического метода анализа.

При выполнении измерений соблюдают следующие условия:

температура окружающего воздуха (20 ± 5) ℃ ;

атмосферное давление (84 — 106) кПа (630 — 800 мм.рт.ст);

относительная влажность (80 ± 5) %;

частота переменного тока (50 ± 1) Гц;

напряжение в сети (220 ± 10) В.

Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб» ʘ .

7.1. Пробы воды для параллельных определений отбирают в отдельные стеклянные емкости с притертыми пробками. Пробу для одного определения используют полностью. Если определение нефтепродуктов в день отбора невозможно, то пробы консервируют 2 — 4 см 3 экстрагента (четыреххлористый углерод, хлороформ) на 1 дм 3 воды. Законсервированные пробы могут храниться в течение двух недель.

При определении нефтепродуктов методом колоночной хроматографии с гравиметрическим окончанием объем пробы (при концентрации нефтепродуктов 0,3 — 3,0 мг/дм 3 ) должен составлять не менее 3 — 3,5 дм 3 .

7.2. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

При подготовке к выполнению измерений проводят следующие работы:

ʘ 8.1. Подготовка оксида алюминия II степени активности ʘ

Реактив перед употреблением прокаливают в муфельной печи при 600 °С в течение 4 часов, дают остыть в эксикаторе и добавляют 3 % (по массе) дистиллированной воды. Хранят в склянке с притертой пробкой.

ʘ 8.2. Подготовка натрия сернокислого безводного ʘ

Перед использованием реактив прокаливают в сушильном шкафу при температуре 105 °С в течение 3 часов.

ʘ 8.3. Подготовка колонки с оксидом алюминия ʘ

Колонка с оксидом алюминия представляет собой стеклянную трубку длиной 10 см и диаметром 0,7 — 1,0 см с оттянутым нижним концом до диаметра 0,1 см. В трубку помещают стеклянную вату слоем 0,5 см, затем 6 г оксида алюминия и снова стеклянную вату. В качестве колонки можно использовать обычную пипетку, градуированную на 10 см 3 . Оксид алюминия в колонке меняют после каждой пробы. Использованный оксид алюминия можно регенерировать промыванием его четыреххлористым углеродом или хлороформом, испарением растворителя и последующим его прокаливанием.

Мешающие влияния, обусловленные присутствием в пробе органических веществ других классов, устраняются в ходе анализа: одни остаются нерастворимыми в гексане, другие (фенолы, нафтеновые кислоты) сорбируются оксидом алюминия.

10.1. Определение при концентрации нефтепродуктов 0,3 — 3,0 мг/дм 3

При выполнении измерений массовой концентрации нефтепродуктов в пробах природных и сточных вод выполняют следующие операции:

3 — 3,5 дм 3 исследуемой пробы воды подкисляют соляной кислотой (плотн. 1,19 г/см 3 ) до рН 3 хлороформа или четыреххлористого углерода, погружают мешалку так, чтобы лопасти её были в воде на 50 мм выше границы слоев воды и растворителя и перемешивают в течение 10 мин.


Затем переносят большую часть водного слоя в другой сосуд такой же вместимости, а оставшийся водный слой и слой хлороформа помещают в делительную воронку вместимостью 500 — 700 см 3 .

Через 15 минут сливают нижний слой хлороформа в коническую колбу (Эрленмейера) вместимостью 500 см 3 , стараясь не захватить при этом ни воды, ни промежуточного слоя эмульсии.

Переливают водный раствор из второго сосуда снова в первый, туда же переносят оставшийся в деятельной воронке водный слой с эмульсией, добавляют вторую порцию хлороформа 150 см 3 и снова перемешивают мешалкой в течение 5 — 7 мин. Снова сливают большую часть водного слоя, остаток переносят в ту же делительную воронку.

Через 15 мин отделяют второй экстракт и присоединяют его к первому, не захватывая при этом водного слоя. Затем небольшим количеством хлороформа (около 50 см 3 ) обмывают стенки сосуда, в котором проба находилась до экстракции, переносят в ту же делительную воронку, взбалтывают, дают некоторое время отстояться и присоединяют слой хлороформа к первым двум экстрактам.

В проведении третьей экстракции обычно нет необходимости.

Экстракцию хлороформом можно также проводить следующим способом: в делительную воронку вместимостью 1 — 2 дм 3 помещают 3 раза по 1 дм 3 исследуемой воды и последовательно взбалтывают с двумя порциями по 20 см 3 хлороформа. Таким образом, на экстракцию из 3 дм 3 анализируемой пробы будет израсходовано 120 см 3 хлороформа. Экстракты соединяют, прибавляют к ним 50 см хлороформного раствора, полученного при ополаскивании сосуда, где хранилась проба (*) .

(*) Склянку, в которой находилась проба, ополаскивают растворителем, который используется для экстракции.

Колбу с экстрактом присоединяют к холодильнику, помещают её в кипящую водяную баню или ставят на горячую закрытую плитку и отгоняют хлороформ до тех пор, пока в колбе не останется 10 — 20 см 3 раствора. Дают колбе остыть и разбирают прибор.

Остатки хлороформа удаляют при комнатной температуре. Предварительно взвешенный бюкс (с крышкой) помещают в вытяжном шкафу на расстоянии 25 — 35 см от обычного комнатного вентилятора, снимают крышку, заполняют бюкс на три четверти полученным экстрактом, включают вентилятор; по мере испарения экстракт подливают в бюкс, пока не перенесут полностью. Колбу из-под экстракта обмывают небольшой порцией хлороформа и переносят в тот же бюкс.

Когда в бюксе останется менее 0,5 см 3 хлороформного раствора, выключают вентилятор и продолжают испарение на воздухе, взвешивая бюкс каждые 2 мин. Перед взвешиванием его закрывают крышкой и вновь снимают крышку для дальнейшего испарения. Когда масса перестанет изменяться, испарение заканчивают.

Разность между массой бюкса с остатком после удаления хлороформа и массой пустого бюкса показывает общее содержание экстрагируемых хлороформом веществ.

Остаток после отгонки хлороформа растворяют в 1 — 2 см 3 предварительно высушенного сульфатом натрия н-гексана или петролейного эфира. Полученный раствор вместе с частицами нерастворившегося остатка, если такие окажутся, переносят в колонку с оксидом алюминия, под которую подставляют чистую сухую колбу. Бюкс несколько раз обмывают маленькими порциями н-гексана, переносят каждую порцию в колонку с оксидом алюминия. Колонку промывают еще несколькими порциями н-гексана (всего 40 — 45 см 3 ), собирая их в ту же колбу. Не следует при этом допускать, чтобы уровень н-гексана в колонке опускался ниже верхней границы слоя оксида алюминия.

Из полученного раствора нефтепродуктов в н-гексане, свободном от полярных соединений, удаляют н-гексан, испаряя его из бюкса при комнатной температуре вентилятором так же, как удаляли раньше хлороформ. Разность между массой бюкса с остатком после удаления н-гексана и массой пустого бюкса показывает содержание нефтепродуктов во взятом для исследования объеме пробы.

10.2. Определение нефтепродуктов в концентрациях выше 3,0 мг/дм 3

Определение проводят так же, как описано в п. 10.1, но только с меньшим объемом исследуемой воды. Берут для анализа 100 — 1000 см 3 воды, соответственно взятому объему воды уменьшают и количество применяемого для экстракции растворителя.

Содержание массовой концентрации нефтепродуктов X (мг/дм 3 ) рассчитывают по формуле:

где m1, — масса бюкса с остатком после удаления гексана, мг,

m2 — масса пустого бюкса, мг;

V — объем пробы, взятой для анализа, см 3 .

За результат анализа Хср принимают среднее арифметическое значение двух параллельных определений Х1 и Х2

для которых выполняется следующее условие:

где r — предел повторяемости, значения которого приведены в таблице 2.

Значения предела повторяемости при вероятности Р = 0,95

Диапазон измерений, мг/дм 3

Предел повторяемости (относительное значение допускаемого расхождения между двумя параллельными результатами измерений), г, %

При невыполнении условия (1) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6.

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 3.

Значения предела воспроизводимое при вероятности Р = 0,95

Диапазон измерений, мг/дм 3

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

источник

Зачем нужен количественный анализ воды (сточных вод)? Условия проведения анализа. Правила забора и хранения пробы. Требования к персоналу и уровню безопасности. Нормативные документы, регламентирующие проводимые анализы. Виды количественного анализа. Титриметрия. Гравиметрия. Разновидности инструментального количественного анализа. Количественный анализ воды (сточных вод) позволяет очень точно определить концентрацию того или иного элемента или соединения. Такому анализу могут подвергаться различные виды воды. В нашей статье речь пойдёт о сточных водах.

Существует множество различных методик, позволяющих определить концентрацию определённых веществ в жидкости. При этом для обнаружения различного содержимого используются разные методики и способы подсчёта. Например, чтобы вычислить содержание формальдегида в питьевой воде используется одна методика, которая не позволит определить концентрацию этого вещества в краске. А для обнаружения и подсчёта массовой доли нефтепродуктов в сточных водах применяется метод колоночной хроматографии с гравиметрическим окончанием, который может использоваться только для этих целей.

Любые измерения и вычисления дают определённую долю погрешности. Обычно допустимые отклонения регламентируются ГОСТом номер 27384 с названием «Вода. Нормы погрешности измерений показателей состава и свойства».

В зависимости от определяемого содержимого и используемых реагентов количественный химический анализ воды должен выполняться с соблюдением всех правил безопасности:

  1. При использовании химических реактивов необходимо придерживаться правил безопасности, оговоренных в ГОСТе 12.4.019.
  2. В момент использования электрического оборудования для выполнения процедуры анализа нужно придерживаться правила электробезопасности, описанных в ГОСТ 12.1.019.
  3. Весь персонал, проводящий испытания и анализы, должен пройти инструктаж по технике безопасности согласно ГОСТ12.0.004.
  4. Место (кабинет, лаборатория, организация), где проходят испытания, должно отвечать условиям по пожаробезопасности, которые описываются в ГОСТ 12.1.004.
  5. Кабинеты в обязательном порядке укомплектовываются устройствами для гашения пожара по ГОСТ 12.4.009.

Проводить количественный анализ жидкости можно только при соответствующих условиях окружающей среды, а именно:

  • температура воздуха в помещении должна быть в пределах от 15 до 25 градусов;
  • допустимое атмосферное давление составляет 84-106 кПа;
  • в помещении должна быть влажность в пределах 75-85 %;
  • для электрического оборудования частота тока – 49-51 Гц;
  • напряжение 210-230 В.

Забор и хранение проб жидкости выполняется согласно таким условиям:

  • для отбора и хранения образцов используются специальные ёмкости из стекла с плотно прилегающими крышками.
  • Если проведение испытаний откладывается на длительный срок, то производят консервацию проб в смеси экстрагента с водой. В таком состоянии пробы могут сохраняться до 14 дней.
  • Обычно для проведения анализа достаточно использовать пробу жидкости объёмом 3-3,5 дм³.
  • Взятие пробы производится с составлением соответствующего акта, где указываются цели проведения анализов, искомые элементы и частицы (чаще загрязнители), дата, время и место взятия пробы, порядковый номер пробы, фамилия, инициалы, а также должность человека, выполняющего забор пробы.

Все методики количественного анализа можно разделить на:

  • одномерные или однокомпонентные;
  • двумерные или многокомпонентные.

Обычно для обнаружения одного элемента в жидкости достаточно использовать метод титриметрии или гравиметрии. Для обнаружения больше числа составляющих в сточной воде могут использоваться более сложные инструментальные методики. Но у более простых методов есть одно преимущество – простота проведения и точность анализа.

Читайте также:  Метод анализа цинка в водах

Если количественный химический анализ сточных вод выполняется с целью обнаружения одного искомого компонента, то метод титриметрии самый подходящий. Эта методика анализов базируется на точных измерениях количества двух компонентов, участвующих в химической реакции.

Этот метод относится к группе одномерных испытаний, поэтому он позволяет вычислить объём только одного элемента. При этом не обязательно искать только одно какое-то вещество, анализ позволяет определить целую группу веществ. Например, подобный анализ позволяет очень точно определить содержание в стоках частиц кальция и магния, характеризующих жёсткость воды. Точность данных испытаний очень высока, хотя чувствительность этой методики несколько ниже, чем при инструментальных исследованиях. Именно поэтому метод не может использоваться для вычисления концентрации остаточных веществ.

Простота и точность данной методики анализа очень высока, но его трудоёмкость и длительность проведения также значительны. Данный метод подразумевает выделение искомого элемента с его взвешиванием впоследствии.

При этом искомый элемент может отделяться как в чистом виде, так и в виде какого-либо соединения. Процесс отделения вещества может выполняться методом возгонки или осаждения. В итоге искомый элемент преобразуется в плохо растворяющийся осадок. Затем этот осадок фильтруется, высушивается, подвергается прокаливанию и только потом взвешивается для определения его массы и объёма.

Инструментальный количественный анализ сточных вод может выполняться при помощи следующих методик:

  1. Газовая хроматография с месс-спектрометрическим детектированием (разделение веществ в газовой фазе).
  2. Жидкостная хроматография высокой эффективности (разделение веществ в жидком состоянии).
  3. Электрофорез капиллярный (разделение сложных составляющих в кварцевом капилляре).
  4. Инфракрасная спектрофотометрия.
  5. Атомно-эмиссионная спектроскопия.

У нас вы можете заказать количественный анализ жидкости, который мы проведём довольно быстро и по приемлемой цене. Для этого вам необходимо связаться с нашими специалистами по телефонам, указанным на сайте.

источник

ПНД Ф 14.1;2.98-97 Количественный химический анализ вод. Методика выполнения измерений жесткости в пробах природных и очищенных сточных вод

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ
ФЕДЕРАЦИИ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ

Государственного комитета РФ

по охране окружающей среды

____________ А.А. Соловьянов

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
ЖЕСТКОСТИ
ПРОБАХ ПРИРОДНЫХ И ОЧИЩЕННЫХ СТОЧНЫХ ВОД
ТИТРИМЕТРИЧЕСКИМ МЕТОДОМ

Методика допущена для целей государственного экологического контроля

МОСКВА 1997 г.
(издание 2004 г.)

Настоящий документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения величины их общей жесткости в диапазоне от 0,1 до 8,0 ммоль/дм 3 эквивалента (мг-экв/дм 3 ) титриметрическим методом без разбавления и концентрирования пробы.

Если величина общей жесткости анализируемой пробы превышает верхнюю границу, допускается разбавление пробы дистиллированной водой таким образом, чтобы величина общей жесткости соответствовала регламентированному диапазону.

Определению мешают мутность, цветность, а также ионы металлов: алюминия (> 10 мг/дм 3 ), железа (> 10 мг/дм 3 ), меди (> 0,05 мг/дм 3 ), кобальта и никеля (> 0,1 мг/дм 3 ), вызывая нечеткое изменение окраски в точке эквивалентности. Другие катионы (свинец, кадмий, марганец (II), цинк, стронций, барий) могут частично титроваться вместе с кальцием и повышать расход трилона Б.

Устранение мешающих влияний осуществляется в соответствии с п. 10.

Метод определения общей жесткости основан на титровании пробы воды раствором динатриевой соли этилендиаминтетрауксусной кислоты (трилон Б) в присутствии индикатора эриохрома черного Т (хромогена черного), в результате чего при рН около 10 образуются комплексные соединения трилона Б с ионами кальция и магния. Поскольку комплекс кальция более прочен, чем магния, при титровании пробы трилон Б взаимодействует с ионами кальция, а затем с ионами магния, вытесняя индикатор, комплекс которого с ионами магния окрашен в вишнево-красный цвет, а в свободной форме имеет голубую окраску.

3. ПРИПИСАННЫЕ ХАРАКТЕРИСТИКИ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ И ЕЕ СОСТАВЛЯЮЩИХ

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1. Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости, правильности

Диапазон измерений величины общей жесткости, ммоль/дм 3 эквивалента

Показатель точности (границы относительной погрешности при вероятности Р = 0,95),
±d, %

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости),
?r, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости),
?R, %

Показатель правильности (границы относительной систематической погрешности при вероятности Р = 0,95),
±dc, %

4. СРЕДСТВА ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА, РЕАКТИВЫ И МАТЕРИАЛЫ

Весы лабораторные общего назначения с наибольшим пределом
взвешивания 200 г и ценой наименьшего деления 0,1 мг любого типа

Весы лабораторные общего назначения с наибольшим пределом
взвешивания 200 г и ценой наименьшего деления 10 мг любого типа

СО с аттестованной величиной жесткости с погрешностью
не более 1 % при Р = 0,95

Цилиндры мерные или мензурки

4.2. Вспомогательные устройства

Плитка электрическая с закрытой спиралью и регулируемой мощностью нагрева

Шкаф сушильный лабораторный с температурой нагрева до 130 °С

Стаканчики для взвешивания (бюксы)

Ступка фарфоровая с пестиком № 2(3)

Колонка хроматографическая диаметром 1,5 — 2,0 см и длиной 25 — 30 см

Стекло часовое диаметром 5 — 7 см

Прибор вакуумного фильтрования ПВФ-35 или ПВФ-47

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств измерений и вспомогательных устройств с характеристиками не хуже, чем у приведенных в п.п. 4.1 и 4.2.

Динатриевая соль этилендиамин-N, N, N’, N’-тетрауксусной кислоты,
дигидрат (трилон Б, комплексон III)

Аммиак водный, концентрированный

или диэтилдитиокарбамат натрия

Эриохром черный Т (хромоген черный)

Бумага индикаторная универсальная

Фильтры мембранные Владипор типа МФАС-МА или МФАС-ОС-2 (0,45 мкм)

или фильтры бумажные обеззоленные «синяя лента»

Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

5.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

5.2. Электробезопасность при работе с электроустановками обеспечивается по ГОСТ 12.1.019.

5.3. Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004.

5.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

6. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРОВ

Выполнение измерений может производить химик-аналитик, владеющий техникой титриметрического метода анализа.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

· температура окружающего воздуха (22 ± 6) °С;

· атмосферное давление (84 — 106) кПа;

· относительная влажность не более 80 % при температуре 25 °С;

· частота переменного тока (50 ± 1) Гц;

· напряжение в сети (220 ± 22) В.

8.1. Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб».

8.2. Посуду, предназначенную для отбора и хранения проб, промывают раствором соляной кислоты 1:1, а затем дистиллированной водой.

8.3. Пробы воды отбирают в стеклянные бутыли. При фильтровании через любой фильтр первые порции фильтрата отбрасывают.

Объем отбираемой пробы должен быть не менее 300 см 3 .

8.4. Пробы не консервируют, хранят при комнатной температуре не более 6 месяцев.

Если в период хранения в пробе выпал осадок карбоната кальция, непосредственно перед анализом его растворяют прибавлением 0,5 — 1 см 3 концентрированной соляной кислоты, предварительно перелив с помощью сифона прозрачный слой над осадком в чистую сухую склянку. Затем перелитый раствор и жидкость с растворенным осадком соединяют вместе и нейтрализуют 20 % раствором гидроксида натрия, добавляя его по каплям и контролируя рН по индикаторной бумаге.

8.5. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

9. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

9.1. Приготовление растворов и реактивов

9.1.1. Раствор трилона Б с концентрацией 0,02 моль/дм 3 эквивалента.

3,72 г трилона Б растворяют в 1 дм 3 дистиллированной воды. Точную концентрацию раствора устанавливают по стандартному раствору хлорида цинка, как описано в п. 9.2.

Раствор хранят в полиэтиленовой посуде, проверяют его концентрацию не реже 1 раза в месяц.

9.1.2. Раствор хлорида цинка с концентрацией 0,02 моль/дм 3 эквивалента.

0,35 г металлического цинка смачивают небольшим количеством концентрированной соляной кислоты и сейчас же промывают дистиллированной водой. Цинк сушат в сушильном шкафу при 105 °С в течение 1 ч, затем охлаждают и взвешивают на лабораторных весах с точностью до 0,1 мг.

Навеску цинка помещают в мерную колбу вместимостью 500 см 3 , в которую предварительно вносят 10 — 15 см 3 дистиллированной воды и 1,5 см 3 концентрированной соляной кислоты. Цинк растворяют, после чего объем раствора доводят до метки на колбе дистиллированной водой.

Рассчитывают молярную концентрацию эквивалента раствора хлорида цинка CZn (1/2 ZnCl2), моль /дм 3 , по формуле:

где а — навеска металлического цинка, г;

32,69 — молярная масса эквивалента Zn 2+ , г/моль;

V — объём мерной колбы, см 3 .

Раствор хлорида цинка хранят в плотно закрытой стеклянной или полиэтиленовой посуде не более 3 мес.

7,0 г хлорида аммония растворяют в мерной колбе вместимостью 500 см 3 в 100 см 3 дистиллированной воды и добавляют 75 см 3 концентрированного раствора аммиака. Объем раствора доводят до метки на колбе дистиллированной водой и тщательно перемешивают.

Буферный раствор хранят в плотно закрытой стеклянной или полиэтиленовой посуде не более 2 мес.

9.1.4. Индикатор эриохром черный Т.

При выполнении анализа индикатор может применяться как в виде раствора, так и сухого препарата.

Раствор индикатора. 0,5 г эриохрома черного Т растворяют в 10 см 3 буферного раствора, затем добавляют 90 см 3 этилового спирта и тщательно перемешивают. Раствор устойчив при хранении в холодильнике в плотно закрытой склянке в течение 2 мес.

Порошок индикатора. 0,5 г эриохрома черного Т тщательно растирают в ступке с 50 г хлорида натрия. Использование при определении точной концентрации раствора трилона Б. Устойчив при хранении в посуде из темного стекла в течение 1 года.

9.1.5. Раствор гидроксида натрия, 20 %.

20 г NaOH растворяют в 80 см 3 дистиллированной воды.

9.1.6. Раствор гидроксида натрия, 8 %.

40 г NaOH растворяют в 460 см дистиллированной воды.

9.1.7. Раствор гидроксида натрия, 0,4 %.

2 г NaOH растворяют в 500 см 3 дистиллированной воды. Растворы гидроксида натрия устойчивы при хранении в плотно закрытой полиэтиленовой посуде в течение 2 мес.

9.1.8. Раствор сульфида натрия.

2 г сульфида натрия растворяют в 50 см 3 дистиллированной воды. Хранят в плотно закрытой полиэтиленовой посуде не более недели.

9.1.9. Раствор диэтилдитокарбамата натрия.

5 г диэтилдитиокарбамата натрия растворяют в 50 см 3 дистиллированной воды. Хранят не более 2 недель.

9.1.10. Раствор гидрохлорида гидроксиламина.

5 г гидрохлорида гидроксиламина растворяют в 100 см 3 дистиллированной воды. Хранят не более 2 мес.

9.1.11. Раствор соляной кислоты, 1:3.

200 см 3 концентрированной соляной кислоты смешивают с 600 см 3 дистиллированной воды. Хранят в плотно закрытой посуде не более 1 года.

9.1.12. Активированный уголь.

Подготовку активированного угля осуществляют в соответствии с Приложением А.

9.2. Установление точной концентрации раствора трилона Б

В коническую колбу вместимостью 250 см 3 вносят 10 см 3 раствора хлорида цинка (п. 9.1.2), добавляют дистиллированной воды приблизительно до 100 см 3 , 5 см 3 буферного раствора и 10 — 15 мг индикатора эриохрома черного Т. Содержимое конической колбы тщательно перемешивают и титруют из бюретки раствором трилона Б до перехода окраски из красной в голубую.

Титрование повторяют 2 — 3 раза и при отсутствии расхождения в объемах раствора трилона Б более 0,05 см 3 за результат принимают среднюю величину.

Концентрацию раствора трилона Б рассчитывают по формуле:

где Стр — концентрация раствора трилона Б, моль/дм эквивалента;

CZn — концентрация раствора хлорида цинка, моль/дм 3 эквивалента;

Vтp — объем раствора трилона Б, пошедшего на титрование, см 3 ;

VZn — объем раствора хлорида цинка, cm j .

10. УСТРАНЕНИЕ МЕШАЮЩИХ ВЛИЯНИЙ

Для устранения мешающего влияния катионов металлов к пробе перед титрованием прибавляют маскирующие реагенты: 0,5 см 3 раствора сульфида или диэтилдитиокарбамата натрия и 0,5 см 3 раствора гидрохлорида гидроксиламина.

Мешающее влияние взвешенных и коллоидных веществ устраняют фильтрованием пробы.

Если проба воды заметно окрашена за счёт присутствия веществ природного или антропогенного происхождения, затрудняется фиксация конечной точки титрования. В этом случае пробу перед выполнением анализа следует пропустить со скоростью 4 — 6 см 3 /мин через хроматографическую колонку, заполненную активированным углем (высота слоя 12 — 15 см). Первые 25 — 30 см 3 пробы, прошедшей через колонку, отбрасывают.

Как правило, окрашенные соединения антропогенного происхождения сорбируются активированным углем практически полностью, в то время как природного (гумусовые вещества) — лишь частично. При высокой и не устраняемой цветности пробы, обусловленной гумусовыми веществами, определение конечной точки титрования значительно облегчается использованием для сравнения перетитрованной пробы этой же воды (пробы-свидетеля).

11.1. Выбор объема пробы для анализа

Перед выполнением анализа пробы воды с неизвестной величиной жёсткости проводят оценочное титрование.

Для оценочного титрования берут 10 см 3 воды, добавляют 0,5 см 3 буферного раствора, индикатор и титруют раствором трилона Б до перехода окраски в голубую. По величине израсходованного на титрование объема раствора трилона Б выбирают из таблицы 3 соответствующий объем пробы воды.

Объем пробы воды, рекомендуемый для определения величины жесткости по результатам оценочного титрования

Объем израсходованного раствора трилона Б, см 3

источник