Меню Рубрики

Методы анализа и очистки воды

Контроль качества водных ресурсов и сточных вод играет огромную роль в обеспечении личной (населения страны) безопасности. Какие методы анализа воды сегодня применяются? О чем говорят получаемые в ходе исследования результаты?

Чтобы иметь возможность регулировать и контролировать качество питьевых ресурсов специалисты используют лабораторные методы анализа воды, основывающиеся на выявление физических и химических особенностей тестируемого образца. Насколько важны процессы исследования водных ресурсов и сточных вод? Они имеют чрезвычайную важность, поскольку позволяют предупредить загрязнение окружающей среды и ухудшение экологической остановки. Но их главная задача остановить развитие огромного числа заболеваний у населения, которые ежедневно контактируют и пьют некачественную воду. В нашей независимой лаборатории можно по невысокой цене заказать исследование различных классов жидкостей. Мы гарантируем достоверность результатов и применение самых современных методик.

Процедура контроля и процессы водоочистки в жилых и загородных домах, на производственных и промышленных предприятиях начинается с мероприятий по выявлению и подсчету количества содержащихся в потребляемой (используемой) воде компонентов и соединений. Современная методика анализа воды позволяет с высокой точность идентифицировать вещество в составе образца и его объем на единицу массы. Все тесты проводятся в лабораторных условиях при помощи специального оборудования, химических реагентов и препаратов.

Существуют следующие типы исследований проб сточных и питьевых вод:

  • Химический — применяется весовой и объемный методы анализа.
  • Электрохимический — процедура использует полярографический и потенциометрический методы анализа.
  • Оптический — образец исследуется посредством фотометрических, люминесцентных и спектрометрических методик. Считаются самыми результативными, но за счет необходимости использовать очень редкое и сложное оборудование являются и наименее применяемыми, дорогостоящими. Используются для покомпонентного тестирования как питьевых, сточных, так и хозяйственно-бытовых, промышленных вод.
  • Санитарно-микробиологический, паразитологический и бактериологический — применяются титрационный, АТФ, чашечный подсчет, мембранная фильтрация выращивание и прочие методы анализа: сточная вода, питьевая и хозяйственно-бытовая проверяются комплексами, составленными из перечисленных тестов.
  • Фотохимический — покомпонентный состав пробы определяется фотохимическим методом.
  • Хроматографический — один из самых сложных типов исследования, который использует метод тонкослойной хроматографии, жидкостной колоночной хроматографии и высокоэффективной жидкостной хроматографии. Чтобы оценить пробу также необходимо использовать сложное и редкое оборудование.
  • Органолептический — эталонный метод исследования проб. Применяется исключительно к питьевым видам образцов.
  • Токсикологический и радиационный — приборные способы проверки наличия в предъявленном образце вредных для здоровья токсинов, α и β-частичек.

Перечисленные типы исследований разработаны для проверки качества жидкости применяемой для приготовления пищи, питья и используемой в хозяйственно-бытовых нуждах. Однако многие методы анализа питьевой воды пригодны и для установления степени загрязненности сточных вод прошедших через очистные сооружения. Наша лаборатория проводит все существующие виды тестов жидкостей по доступной стоимости. Чтобы сдать воду на анализ в лабораторию, мы рекомендуем купить специальную тару для ее забора, хранения и транспортировки.

  • Содержание в пробе природных веществ и их концентрации. Обязательный тест для образцов, взятых из естественных водоемов: скважина, колодец, водопроводная вода.
  • Содержание в пробе химических элементов и соединений, попавших в образец в результате очистки воды. Данные методы контроля воды применяются ко всем видам проб: сточные, хозяйственно-бытовые, промышленные, питьевые воды;
  • Наличие в пробе бактерий и патогенных микробов, вирусных микроорганизмов и палочек. Тест, которым исследуется питьевая вода и образцы, взятые с поверхностных источников: озера, водохранилища, реки и так далее. Присутствие бактерий в жидкости, с которой контактирует человек (не пьет), также может вызвать ряд заболеваний.
  • Присутствие запаха. Органолептические и санитарно-микробиологические тесты позволяют выявить «виновников» запаха. Ими являются микроорганизмы и продукты их жизнедеятельности. Важное исследование питьевой и хозяйственно-бытовой воды.
  • Степень жесткости, мутности. Анализу обязательно подвергают хозяйственно-бытовые и питьевые образцы.

Полученные результаты сравнивают с нормативами СанПиН, в которых оговорено допустимое и нормальное присутствие в воде макро- и микроэлементов, солей, природных веществ и прочего. Если количественные величины примесей, минералов и солей попали в разрешенный СанПиН диапазон, тестируемый образец можно считать пригодным для питья, бытовых, промышленных целей. Аналогично оцениваются сточные воды. Если их физико-химический и токсический состав соответствует установленным нормам, то очищенную системой загрязненную жижу можно выбрасывать в окружающую среду. Она не станет причиной ее загрязнения и отравления людей. По каждому виду вод разработаны свои критерии оценки и нормы.

Контроль качества воды следует проводить не только предприятиям, но и людям, использующим водопроводную, колодезную и скважинную воду. По результатам теста можно с легкостью определить, какие системы фильтрации и очистки будут наиболее эффективны. В нашей независимой компании можно по доступной цене заказать любые типы анализов различных классов вод.

источник

Вода – основа всей органической жизни, без которой невозможно ни существование человека, ни развития человечества в целом. Кроме непосредственной необходимости поддерживать жизнедеятельность организма, человек потребляет пресную воду в больших количествах для содержания сельского хозяйства и обеспечения различных бытовых нужд. Вода покрывает более 70% поверхности земли и составляет около 1/4400 от общей массы планеты, но при этом на долю пресной приходится менее 3% от общего ее количества. При этом около 70% всей пресной воды находится в форме ледников, что затрудняет ее использование.

Конечно же, даже оставшаяся часть пресной воды, являющаяся более доступной, — это громадные объемы, исчерпать которые не так-то просто. Тем не менее, в настоящее время проблема нехватки пригодной для питья и использования воды – одна из основополагающих, что обуславливается рядом причин. Во-первых, вместе с ростом численности населения земного шара и стремительным развитием водопотребляющих отраслей промышленности и хозяйства, растут и “аппетиты” на пресную воду. Во-вторых, уже имеющиеся запасы непрерывно сокращаются за счет загрязнения из различных источников, связанных с деятельностью человека.

По объективным причинам невозможна ни остановка роста населения, ни тем более прекращение развития человечества. В то же время сокращение загрязнения пресной воды и предварительная ее подготовка – не только наиболее осуществимые, но и наиболее предпочтительные методы решения проблемы увеличивающегося водопотребления. Стоит также упомянуть и о других способах, направленных либо на сокращение потребления, либо, наоборот, на разработку новых источников пресной воды. В первом случае за счет модернизации производств увеличивается эффективность использования воды, либо же проводятся мероприятия, направленные на более рациональное использование воды в быту. Во втором случае осуществляются попытки добычи пресной воды из альтернативных источников: разработка айсбергов, конденсация атмосферной влаги, обессоливание морской воды и т.д. Тем не менее, водоочистка и водоподготовка остаются наиболее приоритетными направлениями.

Основными источниками загрязнения и в то же время основными потребителями подготовленной воды являются промышленность, сельское хозяйство и бытовое хозяйство. В свою очередь к основным формам загрязнения относят физическое химическое, биологическое и тепловое.

При физическом загрязнении в водоемы попадают плохо растворимые примеси, такие как песок, глина или различный мусор. Тепловое загрязнение обычно выделяют в отдельный вид, так как основным загрязняющим компонентом является тепловая энергия, косвенно влияющая на окружающую среду. Дополнительный подогрев водоема способен сильно изменить протекающие в нем биологические процессы, что может привести к массовой гибели рыб и других водных обитателей, или же наоборот стать причиной бурного роста водорослей или простейших, необходимость очистки от которых может значительно усложнить последующий процесс водоподготовки. Однако нужно заметить, что тепловое загрязнение может оказывать и положительное воздействие, поэтому термин “тепловое загрязнение” является относительным, а характер воздействия на окружающую среду должен оцениваться отдельно для каждого случая.

Химическое загрязнение – это попадание в водоемы химических веществ, специфических для различных производств или отраслей промышленности и сельского хозяйства. В особенности стоит выделить загрязнение нефтепродуктами, соединениями тяжелых металлов, поверхностно-активными веществами (ПАВ) и нитратами, главным источником которых является смыв сельскохозяйственных удобрений. В случае биологического загрязнения речь идет о засорении органическими веществами и микроорганизмами (в том числе болезнетворными и паразитическими). Кроме того, ряд химических соединений, богатых азотом и фосфором биогенного происхождения, является питательной средой для определенных организмов, и загрязнение водоема такими соединениями ведет к его эвтофикации – постепенному зарастанию с последующим превращением в болото.

Разнообразие различных загрязнителей порождает не меньшее разнообразие способов очистки воды от них. Тем не менее, их все можно разделить на группы по принципу действия. Таким образом, наиболее общая классификация способов очистки выглядит следующим образом:

  • Физические;
  • Химические;
  • Физико-химические;
  • Биологические.

Каждая из групп способов включается в себя множество конкретных вариантов реализации процесса очистки и его аппаратного оформления. Так же необходимо учитывать, что очистка воды, как правило, — это комплексная задача, требующая для своего решения комбинации различных способов для достижения максимальной эффективности. Комплексность задачи очистки обуславливается характером загрязнения – обычно в качестве нежелательных компонентов выступает целый ряд веществ, требующих разного подхода. Установки очистки, основанные на одном способе, обычно встречаются в тех случаях, когда вода преимущественно загрязнена одним или несколькими веществами, эффективное отделение которых возможно в рамках одного способа. В качестве примера можно привести сточные воды различных производств, где химический и количественный состав загрязнителей заранее известен и не отличатся большой разнородностью.

В основе работы физических способов очистки воды лежат различные физические явления, которые используются для воздействия на воду или содержащиеся в ней загрязнения. При очистке больших объемов воды эти методы используются преимущественно для удаления достаточно крупных твердых включений и выступают в качестве предварительной стадии грубой очистки, призванной снизить нагрузку на последующие стадии тонкой очистки. В то же время существует ряд физических методов, способных проводить глубокую очистку воды, но, как правило, производительность таких методов мала.

К основным физическим методам очистки воды относят:

  • процеживание;
  • отстаивание;
  • фильтрование (в том числе центробежное);
  • ультрафиолетовая обработка.

Процеживание представляет собой пропускание очищаемой воды через различные решетки и сита, на которых происходит задержание крупных загрязнителей. Этот метод относится к грубой очистке и часто выступает в качестве предварительной стадии. Его назначение – удалить из очищаемой воды легко отделяемые загрязнители для снижения нагрузки на очистные сооружения и обеспечить работоспособность последующих установок тонкой очистки, которые могут выйти из строя из-за попадания крупных механических включений.

Дополнительная информация по процеживанию

Отстаивание заключается в отделении части механических загрязнений из воды под действием гравитационных сил, заставляющих частицы опускаться на дно, образуя осадок. Отстаивание может выступать как в качестве предварительной стадии очистки, на которой отделяются наиболее крупные загрязнители, так и в качестве промежуточных стадий. Данный процесс осуществляется в отстойниках – резервуарах, снабженных устройствами для удаления осадка, время пребывания воды в которых рассчитывается из условия полного осаждения всех загрязняющих частиц, которые должны быть отделены.

Дополнительная информация по отстойникам

Фильтрование основывается на прохождении очищаемой воды через пористый слой фильтрующего материала, на котором происходит задержание частиц определенного размера. По своему принципу фильтрация схожа с процеживанием, однако с ее помощью можно проводить как грубую, так и тонкую очистку. Фильтрация позволяет удалять такие загрязнители как ил, песок, окалина, а также различные твердые включения размером в несколько микрон. Кроме того, с помощью фильтрации можно улучшить органолептические качества воды. Механическая фильтрация получила широкое распространение, как в крупных установках водоочистки, так и в бытовых фильтрах малой производительности.

Ультрафиолетовая дезинфекция воды, хоть и не производит непосредственно очистку, но активно применяется в процессе водоподготовки и заключается в обработке уже очищенной воды ультрафиолетовой частью спектра света (в частности используется диапазон волн с длиной 200-400 нм), невидимой для человеческого глаза, с целью обеззараживания воды. Смерть живых организмов под данным излучением наступает преимущественно вследствие повреждений молекул ДНК и РНК, что вызвано фотохимическими реакциями, возникающими в их структуре. Преимуществами такого способа обеззараживания является независимость процесса от состава воды и сохранение этого состава после УФ обработки. Тем не менее необходимо учитывать наличие в воде твердых примесей, способных оказывать экранирующий эффект по отношению к излучению.

Методы очистки данной группы основаны на химическом взаимодействии определенных веществ (реагентов) с загрязнителями, в результате чего вторые либо разлагаются на неопасные компоненты, либо переходят в иное состояние (к примеру, образуют нерастворимые соединения, выпадающие в отделяемый осадок). Несмотря не огромное разнообразие возможных загрязнителей и химический реакций, в которые эти загрязнители могут вступать, выделяют ряд способов очистки, принципиально отличающихся по типу химического взаимодействия:

Нейтрализация заключается в, как следует из названия, осуществлении процесса нейтрализации, при котором происходит выравнивание кислотно-щелочного баланса за счет взаимодействия кислот и щелочей с последующим образованием соответствующих солей и воды. Нейтрализацию проводят как путем смешения очищаемых вод с кислотной и щелочной средой, так и путем добавления реагентов, создающих в воде среду определенной реакции (кислотной или щелочной). Для нейтрализации кислых стоков обычно используют аммиачную воду (NH4OH), гидроксиды натрия и калия (NaOH и KOH), кальцинированную соду (Na2CO3), известковое молоко (Ca(OH)2) и т.д. В случае щелочных стоков применяют различные растворы кислот, а также кислые газы, содержащие такие оксиды как CO2, SO2, NO2 и т.д. В качестве кислых газов обычно используют отходящие газы, которые пропускают через очищаемую воду, при этом попутно осуществляется процесс очищения и самих газов от твердых включений.

Окисление и восстановление также используется для очистки воды от различных загрязняющих веществ, хотя на практике соотношение их использования сильно смещено в сторону окислителей. Несмотря на то, что в реакции нейтрализации также протекают параллельные процессы окисления и восстановления, данный метод отличается использованием значительно более сильных окислителей и восстановителей, так как целевые загрязнители просто не будут вступать в реакцию с веществами, используемыми в методе очистке нейтрализацией. С их помощью проводят обезвреживание различных токсичных веществ, и также веществ, трудно извлекаемых из воды иными способами. Осуществлением реакций окисления добиваются переведения токсичных загрязнителей в менее токсичные или нетоксичные формы. Также за счет использования сильных окислителей достигается гибель микроорганизмов, наступающая вследствие окисления их клеточных структур. В основном применяют хлорсодержащие окислители: газообразный хлор (CL2) а также различные хлор соединения, такие как диоксид хлора (CLO2), гипохлориды калия, натрия и кальция (KCLO; NaCLO; Ca(CLO)2). Помимо этого использую перекись водорода (H2O2), перманганат калия (KMnO4), озон (O3), кислород воздуха (O2), дихромат калия (K2Cr2O7) и т.д.

Хлорирование, то есть обработка воды хлорсодержащими соединениями, как процесс хорошо отработано и широко применяется в водоподготовке. Обработка хлором обладает также пролонгированным антибактерицидным действием, что особенно важно при водоснабжении в условиях изношенных трубопроводов, где может происходить вторичное загрязнение воды. Кроме того, реагенты для хлорирования относительно дешевы и доступны. В то же время у этого метода есть ряд недостатков, которые побуждают искать альтернативы. В некоторых случаях побочные соединения, образующиеся после хлорирования, могут быть не менее токсичными, кроме того сам хлор является ядовитым веществом, поэтому требуется тщательно соблюдать условия дозирования при хлорировании. В настоящий момент все большее распространение получает обработка воды озоном (озонирование), поскольку эффективность этого метода многократно превосходит хлорирование, озон не образует опасных соединений и со временем распадается на неопасный двухатомный кислород (O2), благодаря чему передозировка озона не влечет за собой нежелательных и опасных последствий. Широкому распространению озонирования препятствуют только техническая и экономическая сложности его получения в достаточном количестве, а также взрывоопасность озона, что требует соблюдения строгих правил безопасности на очистных сооружениях.

Как следует из названия, методы очистки воды данной группы совмещают в себе химическое и физическое воздействие на загрязнители воды. Они достаточно разнообразны и применяются для удаления самых разных веществ. В их числе растворенные газы, тонкодисперсные жидкие или твердые частицы, ионы тяжелых металлов, а также различные вещества в растворенном состоянии. Физико-химические методы могут применяться как на стадии предварительной очистки, так и на поздних этапах для глубокой очистки.

Читайте также:  Обработка результатов химического анализа воды

Разнообразие методов данной группы велико, поэтому ниже будут приведены наиболее распространенные из них:

  • флотация;
  • сорбция;
  • экстракция;
  • ионообмен;
  • электродиализ;
  • обратный осмос;
  • термические методы.

Флотация, применительно к водоочистке, представляет собой процесс отделения гидрофобных частиц при пропускании через воду большого числа пузырьков газа (обычно воздуха). Показатели смачиваемости отделяемого загрязнителя таковы, что частицы закрепляются на поверхности раздела фаз пузырьков и вместе с ними поднимаются на поверхность, где образуют слой пены, который может быть легок удален. Если отделяемая частица оказывается больше по размерам чем пузырьки, то вместе они (частица + пузырьки) образуют так называемый флотокомплекс. Нередко флотацию комбинируют с использованием химических реагентов, к примеру, сорбирующихся на частицах загрязнителя, чем достигается снижение его смачиваемости, или являющихся коагулянтами и проводящих к укрупнению удаляемых частиц. Флотацию преимущественно используют для очистки воды от различных нефтепродуктов и масел, но также могут удаляться твердые примеси, отделение которых другими способами неэффективно.

Существуют различные вариант осуществления процесса флотации, ввиду чего выделяют следующие ее типы:

  • пенная;
  • напорная;
  • механическая:
  • пневматическая;
  • электрическая;
  • химическая и т.д.

Приведем в качестве примера принцип работы некоторых из них. Широко используется метод пневматической флотации, при которой образование восходящего потока пузырьков создается за счет установки на дне резервуара аэраторов, обычно представляющих собой перфорированные трубы или пластины. Подаваемый под давлением воздух проходит сквозь отверстия перфорации, за счет чего дробиться на отдельные пузырьки, осуществляющие сам процесс флотации. При напорной флотации поток очищаемой воды смешивается с потоком воды, перенасыщенной газом и находящейся под давлением, и подается в камеру флотации. При резком падении давления растворенный в воде газ начинает выделяться в виде пузырьков малого размера. В случае электрофлотации процесс образования пузырьков протекает на поверхности расположенных в очищаемой воде электродов при протекании по ним электрического тока.

Сорбционные методы основаны на избирательном поглощении загрязняющих веществ в поверхностном слое сорбента (адсорбция) или в его объеме (абсорбция). В частности для очистки воды используется процесс адсорбции, который может носить физический и химический характер. Отличие заключается в способе удержания адсорбируемого загрязнителя: с помощью сил молекулярного взаимодействия (физическая адсорбция) или благодаря образованию химических связей (химическая адсорбция или хемосорбция). Методы данной группы способны достичь большой эффективности и убирать из воды даже малые концентрации загрязнителей при больших ее расходах, что делает их предпочтительными в качестве методов доочистки на завершающих стадиях процесса водоочистки и водоподготовки. Сорбционными методами могут удаляться различные гербициды и пестициды, фенолы, поверхностно активные вещества и т.д.

В качестве адсорбентов используются такие вещества как активированные угли, силикагели, алюмогели и цеолиты. Их структура делается пористой, что значительно увеличивает удельную площадь адсорбента, приходящуюся на единицу его объема, из-за чего достигается большая эффективность процесса. Сам процесс адсорбционной очистки может быть осуществлен путем смешения очищаемой воды и адсорбента, или же путем фильтрации воды через слой адсорбента. В зависимости от сорбирующего материала и извлекаемого загрязнителя процесс может быть регенеративным (адсорбент после регенерации используется вновь) или деструктивны, когда адсорбент подлежит утилизации ввиду невозможности его регенерации.

Очистка воды методом жидкостной экстракции заключается в использовании экстрагентов. Применительно к очистке воды, эктсрагент – это несмешиваемая или мало смешиваемая с водой жидкость, значительно лучше растворяющая в себе извлекаемые из воды загрязнители. Процесс осуществляется следующим образом: очищаемая вода и эктрагент перемешиваются для развития большой поверхности контакта фаз, после чего в них происходит перераспределение растворенных загрязняющих веществ, большая часть которых переходит в экстрагент, затем две фазы разделяются. Насыщенный извлекаемыми загрязнителями экстрагент называется экстрактом, а очищенная вода – рафинатом. Далее экстрагент может быть утилизирован или регенерирован в зависимости от условий процесса. Данным методом из воды удаляются преимущественно органические соединения, такие как фенолы и органические кислоты. Если экстрагируемое вещество представляет определенную ценность, то после регенерации экстрагента оно вместо утилизации может быть с пользой использовано для других целей. Данный факт способствует применению экстракционного метода очистки к сточным водам предприятий для извлечения и последующего использования или возврата в производство ряда веществ, теряемых со стоками.

Ионный обмен в основном используется в водоподготовке с целью умягчения воды, то есть изъятия солей жесткости. Суть процесса заключается в обмене ионами между водой и специальным материалом, называемым ионитом. Иониты подразделяются на катиониты и аниониты в зависимости от типа обмениваемых ионов. С химической точки зрения ионит представляет собой высокомолекулярное вещество, состоящее из каркаса (матрицы) с большим количеством функциональных групп, способных к ионообмену. Существуют природные иониты, такие как цеолиты и сульфоугли, которые применялись на ранних этапах развития ионообменной очистки, но в настоящее время широкое распространение получили искусственные ионообменные смолы, значительно превосходящие свои природные аналоги по ионообменной способности. Метод очистки ионным обменом получил широкое распространение, как в промышленности, так и в быту. Бытовые ионообменные фильтры, как правило, не используются для работы с сильнозагрязненными водами, поэтому ресурса одного фильтра хватает на очистку большого количества воды, после чего фильтр подлежит утилизации. В то же время при водоподготовке ионообменный материал чаще всего подлежит регенерации с помощью растворов с большим содержанием ионов H + или OH — .

Электродиализ представляет собой комплексный метод, сочетающий мембранный и электрический процессы. С его помощью можно удалять из воды различные ионы и проводить обессоливание. В отличие от обычных мембранных процессов, в электродиализе используются специальные ионоселективные мембраны, пропускающие ионы только определенного знака. Аппарат для проведения электродиализа называется электродиализатором и представляет собой ряд камер, разделенных чередующимися катионообменными и анионообменными мембранами, в которые поступает очищаемая вода. В крайних камерах расположены электроды, к которым подводится постоянный ток. Под действием возникшего электрического поля ионы начинаются двигаться к электродам согласно своему заряду, пока не встречают ионоселективную мембрану с совпадающим зарядом. Это приводит к тому, что в одних камерах происходит постоянный отток ионов (камеры обессоливания), а в других, наоборот, наблюдается их накопление (камера концентрирования). Разводя потоки из разных камер можно получить концентрированный и обессоленный растворы. Неоспоримые преимущества данного метода заключаются не только в очищении воды от ионов, но и в получении концентрированных растворов отделяемого вещества, что позволяет возвращать его назад в производство. Это делает электродиализ особенно востребованным на различных химических предприятиях, где вместе со стоками теряется часть ценных компонентов, и применение данного метода удешевляется за счет получения концентрата.

Дополнительная информация по электродиализу

Обратный осмос относится к мембранным процессам и проводится под давлением больше осмотического. Осмотическое давление – избыточное гидростатическое давление, приложенное к раствору, отделенному полупроницаемой перегородкой (мембраной) от чистого растворителя, при котором прекращается диффузия чистого растворителя через мембрану в раствор. Соответственно, при рабочем давлении выше осмотического будет наблюдаться обратный переход растворителя из раствора, за счет чего концентрация растворенного вещества будет расти. Таким способом можно отделять растворенные газы, соли (включая соли жесткости), коллоидные частицы, а также бактерии и вирусы. Также установки обратного осмоса выделяются тем, что используются для получения пресной воды из морской. Данный тип очистки с успехом используется как в бытовых условиях, так и при обработке сточных вод и водоподготовке.

Термические методы основаны на воздействии на очищаемую воду повышенных или пониженных температур. Одним из наиболее энергоемких процессов является выпаривание, однако оно позволяет получить воду высокой степени чистоты и высококонцентрированный раствор с нелетучими загрязнителями. Также концентрирование примесей может осуществляться с помощью вымораживания, поскольку в первую очередь начинает кристаллизоваться чистая вода, и лишь затем оставшаяся ее часть с растворенными загрязнителями. Выпариванием, как и вымораживанием, можно проводить кристаллизацию – выделение примесей в виде выпадающих в осадок кристаллов из насыщенного раствора. В качестве экстремального метода используется термическое окисление, когда очищаемая вода распыляется и подвергается воздействию высокотемпературных продуктов сгорания топлива. Данный метод используется для нейтрализации высокотоксичных или трудно разлагаемых загрязнителей.

Как следует из названия, методы очистки данной группы основаны на использовании живых организмов. Несмотря на очевидность метода, биологическая очистка является наиболее передовым и перспективным направлением в очистке сточных вод. Для осуществления процесса обычно используются бактерии различных видов, но также это могут быть низшие грибы и водоросли, простейшие и даже некоторые многоклеточные, такие как красные черви и мотыль. Одной из особенностей биологического метода очистки является возможность подбора определенных живых организмов для оптимальной очистки сточных вод заданного химического состава. Так нитрофицирующие бактерии, такие как Nitrobacter и Nitrosomonas, способны окислять азотосодержащие соединения в процессе питания, а фосфат аккумулирующие организмы применяются для очистки воды от фосфора.

Скопление микроорганизмов, используемое при биологической очистке, называется активным илом. Он представляет собой темно-коричневую или черную жидкую массу с землистым запахом, которая при отстаивании образует оседающие хлопья. Благодаря этому активный ил может быть сравнительно легко отделен от воды после завершения процесса очистки. Сами микроорганизмы, как правило, находятся в активном иле не поодиночке, а в составе колоний, называемых зооглеи. В зависимости от состава очищаемой воды и условий проведения процесса очистки зооглеи могут иметь различную форму: шарообразную, древовидную и т.д.

В общем случае все используемые в биоочистке микроорганизмы можно разделить на две большие группы, определяющие характер проведения процесса: аэробные и анаэробные. Аэробные организмы потребляют кислород в процессе питания, необходимый им для окисления веществ. В свою очередь анаэробные организмы не нуждаются в кислороде. Для процесса очистки использование микроорганизмов того или иного типа определяет характер проведения процесса и необходимое для его осуществления оборудование.

Биологическая очистка может проводиться в следующих условиях:

  • биологические пруды;
  • поля фильтрации;
  • биофильтры;
  • аэротенки (окситенки);
  • метантенки.

В первых двух случаях используются крайне простые сооружения. Биологический пруд – это естественный или искусственный водоем с, как правило, естественной аэрацией, в котором обитают микроорганизмы активного ила. Поле фильтрации представляет собой участок почвы (песок, глина, суглинок или торф), через который осуществляют фильтрацию воды и ее очистку за счет содержащихся в почве микроорганизмов. Сооружения такого типа неспособны работать с сильнозагрязненными водами при большом расходе. В тоже время они почти не требуют эксплуатационных затрат и постоянного контроля со стороны человека.

Биофильтр – это сооружение, в котором очистка воды осуществляется путем фильтрации через слой загрузочного материала, покрытого слоем аэробных микроорганизмов, который также называется биопленкой. Для обеспечения достаточного количества кислорода, необходимого организмам для биоразложения загрязнителей, предусматривается воздухораспределительная система. Однако аэрация может осуществляться и естественным путем.

Аэротенк является более сложным очистным сооружением, в котором аэрация осуществляется искусственным образом. Как следует из описания, в нем проводится очистка аэробными микроорганизмами. Перед подачей в аэротенк вода предварительно смешивается с активным илом. Аэрация в аэротенке не только насыщает среду кислородом, стимулируя процессы биоразложения загрязнений, но и обеспечивает дополнительное перемешивание. Обычно для аэрации используется атмосферный воздух, но в случае окситенков вместо него используется технический кислород, что значительно увеличивает эффективность процесса.

Биологическая очистка сточных вод анаэробными организмами преимущественно проводится в метантенках. Отличительной особенностью такой очистки является отсутствие потребности в кислороде и получение биогаза в качестве продукта жизнедеятельности анаэробных бактерий. Также в метантенк обычно подается не сама вода, а выпадающий в отстойниках концентрированный осадок, который необходимо подвергнуть брожению. Для интенсификации процесса брожения в метантенке может быть предусмотрен дополнительный подогрев. При этом выделяют мезофильное сбраживание, проводимое при 30-35 °C, и термофильное сбраживание, проводимое при 50-55 °C. Сам процесс анаэробного разложения достаточно сложен и протекает в несколько стадий, а на завершающей стадии происходит образование метана, являющегося экологически чистым топливом.

Перед непосредственной подачей на очистку сточная вода попадает в усреднитель, где по необходимости разбавляется чистой водой. Это делается с целью выравнивания концентраций загрязняющих веществ в воде, чтобы предотвратить заторы на стадии механической очистки и не допустить чрезмерного разрастания активного ила в случае биологической очистки. Наличие пиковых нагрузок на очистное оборудование обуславливается неравномерностью поступления сточных вод на очистку. Далее следует стадия механической очистки, которая может включать в себя такие аппараты как песколовки, жироловки, отстойники и решетки для улавливания крупного мусора.

После того, как вода прошла предварительную очистку, она подается на основную очистку. В большинстве случаев для этих целей используется биологическая очистка в аэротенках с использованием активного ила. Основной метод может быть дополнен глубокой очисткой, где используются фильтры, установки обратного осмоса и т.д. На протяжении всех стадий из воды выделяются различные вещества, выдающие в виде осадка, которые необходимо утилизировать. Для этого они подвергаются ряду операций (отжим, сушка и т.д.), а дальнейшая их судьба зависит от ценности полученного обработанного осадка. Также обработке подвергается избыток активного ила, выводимого из цикла работы аэротенка, который затем используется как кормовая добавка. Очищенную до необходимого состояния воду затем обеззараживают хлорированием, озонированием или обработкой УФ излучением.

источник

Методы анализа. Выбор конкретного метода зависит от характера сточных вод анализируемых компонентов.

Гравиметрический – основан на определении массы вещества. В ходе анализа вещество отгоняется в виде какого-либо летучего соединения или осаждается из раствора в виде малорастворимого соединения.. Осадок взвешивается в виде соединения строго определенного состава, весовая форма по составу совпадает с осаждаемой. По весу высушенного или прокаленного осадка вычисляется содержание определенного компонента в данном образце. Достоинства: высокая точность, отсутствие необходимости калибровки, простота.. Недостатки: значительный расход времени на выполнение анализа.

Титриметрический .Основан на точном измерении количества реактива израсходованного на реакцию с определенными веществами. Титрированный раствор – раствор, концентрация которого известна с высокой точностью. Титрование – прибавление титрованного раствора к анализируемому для точного определения эквивалентного количества. Момент титрирования – точка эквивалентности. Титрирующий раствор – титрант. Используются реакции кислотно-основного взаимодействия, удовлетворяющие требованиям, которые предъявляются к титрометрическим реакциям. Взаимодействие должно происходить полностью и с высокой скоростью. – Методы кислотно-основного взаимодействия связанны с процессом передачи протона – Методы осаждения основаны на реакциях образования малорастворимых соединений – Методы комлексообразования используют реакции образования координационных соединений — методы окисления-восстановления объединяют многочисленную группу окислительно-восстановительных реакций. Достоинства: быстрота выполнения, простота оборудования, удобство выполнения серийных анализов, большой набор химических реакций. Недостатки: необходимость предварительной стандартофикации растворов титранта и калибровки мерной посуды.

Фотометрический. Измеряет поглощение света раствором. Приборы: Источник света – светофильтр – кювета с раствором – детектор. Конструкция прибора зависит от области спектра применения. Излучение выбирают такое, что бы соединение имело мах светопоглощение, а примеси – min. Достоинства – широкая область применения, высокая чувствительность. Недостатки: калибровка аппаратуры, посуды.

Жесткость воды отражает содержание в ней ионов кальция и магния. Жесткость, обусловленная наличием в воде гидрокарбонатов кальция и магния, называется временной, или карбонатной (Жвр). Жесткость, обусловленная хлоридами и сульфатами этих металлов, называется постоянной (Жп). Суммарная жесткость воды носит название общей жесткости. Жесткость воды (степень жесткости принято выражать в миллимолях ионов Са2+ или Mg2+ (или обоих ионов) в 1 дм3 или 1 кг воды – ммоль/дм3 или ммоль/кг. В технической литературе встречается единица измерения степени жесткости воды – мг экв/дм3 или мг-экв/кг. Зная, что молярные массы эквивалентов ионов Са2+ и Mg2+ соответственно равны 20,04 и 12,16 мг/дм3, можно рассчитать обжую жесткость воды (в ммоль/дм3): . Часто в расчетах жесткости используют формулу:

Читайте также:  Образец письма на анализ воды

Содержание в питьевой воде большого количества растворимых солей магния и кальция не только ухудшает ее вкус, но и обуславливает жесткость воды. Жесткая вода неприменима в ряде отраслей промышленности, теплотехники и неблагоприятна при бытовом использовании. В ней труднее развиваются многие продукты, их питательная ценность уменьшается. Резко ухудшается моющая способность и возрастает расход мыла. Способствует развитию ряда заболеваний. Питьевая вода – жесткость не должна быть выше 7 ммоль/л.Один из методов устранения жесткости воды – введение соды (Na2CO3).

37. Виды сточных вод. Классификация производственных сточных вод. Сточные воды машиностроительных предприятий. Виды сточных вод. Сточные воды, отводимые с территории промышленных предприятий, по своему составу могут быть разделены на 3 вида:

производственные – использованные в технологическом процессе производства или получающиеся при добычи полезных ископаемых.

бытовые – от санитарных узлов производственных и не производственных корпусов и зданий, а также от душевых установок, имеющихся на территории, промышленных предприятий.

атмосферные – дождевые и оттаивание снега.

Производственные сточные воды делятся на 2 две основные категории:

незагрязненные (условно чистые)

Загрязненные производственные сточные воды содержат различные примеси и подразделяются на 3 группы:

загрязнённые преимущественно минеральными примесями (предприятия металлургической, машиностроительной, угледобывающей промышленности)

загрязнённые преимущественно органическими примесями (предприятия рыбной, мясной, молочной, пищевой, целлюлозно-бумажной промышленности)

загрязнённые минеральными неорганическими примесями (предприятия нефтедобывающей, нефтеперерабатывающей, текстильной, лёгкой промышленности)

Машиностроительные заводы характеризуются наличием ряда водоёмких производственных процессов, а следовательно, и образованием значительного количества, производственных сточных вод, которые в основном загрязняются отходами травильных и гальванических цехов и нефтепродуктами.

В гальванических цехах детали из металлов и сплавов подвергаются различным видам химической или электрохимической обработки. В начале поверхность изделий подвергается предварительной обработки: обезжириванию и травлению с применением различных растворов кислот, щелочей, солей металлов. Отработанные растворы травильных ванн образуют кислые и щелочные сточные воды. В каждом травильном отделение существует 2 вида сточных вод: концентрированные и разбавленные. Разбавленные являются промывными водами.

38.Методы очистки сточных вод. Механические методы применяются как первая стадия в общей схеме очистки сточных вод. Выбор механического метода очистки осуществляется с учётом размера взвешенных частиц. Механическая очистка состоит из:

процеживания через решётки

Химические методы обработки сточных вод основаны на применение химических реакций. В результате которых загрязнения превращаются в соединения безопаснее для потребителя или легко выделяются в виде осадков. В особую группу химических методов следует выделить хлорирование и озонирование сточных вод, содержащих органические примеси, а также цианиды и другие пахнущие не органические вещества. Хлорирование и озонирование наиболее часто применяют для доочистки и обезвреживания питьевой воды на городских водопроводных станция.

Физико-химические методы. В большинстве случаев использование физико-химических методов выделения загрязняющих веществ из сточных вод позволяет в дальнейшем рекуперацию.

Биологическая очистка. Биологическое окисление осуществляется сообществом микроорганизмов, включающим множество различных бактерий, простейших и ряд более высокоорганизованных организмов, связанных между собой единый комплекс сложными взаимоотношениями. Главенствующая роль в том сообществе принадлежит бактериям.

При термической очистке сжигают жидки отходы нефтепродуктов и других горючих веществ в печах и горелках.

источник

Вода из скважин и природных источников имеет ряд растворенных компонентов и взвесей. Чтобы получить жидкость, которую можно использовать в промышленности, для бытовых целей и для питья, ее следует качественно очистить. Современные способы очистки воды очень разнообразны. Они делятся на несколько групп по характеру происходящих процессов. С использованием методов создаются приборы, которые обеспечивают оптимальную очистку. Этот процесс требует комплексного подхода, поэтому применяется сразу несколько подходящих методов.

Физические способы основаны на соответствующих физических процессах, воздействующих на воду и присутствующие загрязнения. Обычно такие методы используют для устранения нерастворимых, крупных включений. Иногда они воздействуют и на растворенные вещества и биологические объекты. Основными физическими способами очистки являются кипячение, отстаивание, фильтрование и обработка ультрафиолетом.

В процессе кипячения на воду воздействует высокая температура. В результате такого воздействия устраняются микроорганизмы, некоторые растворенные соли выпадают в осадок, образуя накипь. При длительном кипячении могут распадаться более устойчивые вещества, например, соединения хлора. Метод простой и оптимальный для использования в быту, но очищающий только относительно небольшие объемы воды.

В этом случае используется воздействие естественной силы тяжести на относительно большие механические включения. Под воздействием собственной тяжести они опускаются на дно емкости, образуя слой осадка. Выполняют отстаивание воды в специальных отстойниках. Эти емкости снабжаются устройствами для сбора и удаления получающегося осадка.

При прохождении воды материал с порами или другими отверстиями, часть загрязнений задерживается. Остаются на поверхности частицы, которые крупнее пор или ячеек. По степени очищения выделяют фильтрацию грубую и тонкую. При грубой очистке задерживаются только крупные частицы. В процессе тонкой удерживаются включения, размер которых составляет всего несколько микрон.

Рис. 2 Уровни фильтрования

Использование ультрафиолетового излучения позволяет устранить биологические загрязнения. Свет этого спектра воздействует на основные молекулы, что приводит к гибели микроорганизмов. Стоит учитывать, что обрабатывают ультрафиолетом воду, которая очищена от взвеси, т.е. произведена предварительная очистка воды. Твердые включения создают тень, которая защищает бактерии от ультрафиолетового света.

Химические способы очистки воды основаны на реакциях окисления-восстановления и нейтрализации. В результате взаимодействия специальных реагентов с загрязняющими веществами происходит реакция, итогом которой становится нерастворимый осадок, разложение на газообразные составляющие или появление безвредных компонентов.

Применение этого метода обеспечивает устранение кислой или щелочной среды и приближение ее показателей к нейтральным. В воду с определенным показателем кислотности добавляют реагенты, обеспечивающие создание кислой или щелочной среды. Чтобы нейтрализовать кислую среду, применяют щелочные составы: кальцинированную соду, гидроксид натрия и некоторые другие. Для устранения щелочной среды выбирают растворы некоторых кислот или оксиды углерода, серы и азота. Последние при растворении в воде образуют слабые кислоты. Реакции нейтрализации обычно представляют собой химические методы очистки сточных вод. При подготовке питьевой воды из природных источников изменение реакции не требуется, она изначально близка к нейтральной.

При очистке воды чаще всего используется окисление. В процессе реакции с окислителями загрязняющие соединения превращаются в безвредные компоненты. Они могут быть твердыми, газообразными или растворимыми. В качестве сильных окислителей выступают соединения хлора, озон и некоторые другие вещества.

Рис. 3 Установка для окисления озоном

Методы очистки воды, относящиеся к этой группе, включают одновременно физические и химические способы воздействия. Они весьма разнообразны и помогают удалить значительную часть загрязнений.

В процессе очистки воды методом флотации через жидкость пропускают газ, например, воздух. Создаются пузырьки, на поверхность которых прилипают гидрофобные частицы загрязнений. Пузырьки поднимаются на поверхность и образуют пену. Этот слой пены с загрязнениями легко удаляется. Дополнительно могут использоваться реагенты повышающие гидрофобность или сцепляющие и укрупняющие частицы загрязнений.

Рис. 4 Принцип флотации

Очищение воды методом сорбции основывается на избирательном удерживании веществ. Чаще всего используют адсорбцию, когда удержание происходит на поверхности сорбента. Сорбция бывает физической и химической. В первом случае используются силы межмолекулярного взаимодействия, а во втором – химических связей. В качестве сорбентов обычно выступают активированный уголь, силикагель, цеолит и прочие. Некоторые виды адсорбентов могут восстанавливаться, а другие утилизируются после загрязнения.

Процесс экстрации выполняется с использованием растворителя, который плохо смешивается с водой, но лучше растворяет загрязняющие вещества. При контакте с очищаемой жидкостью загрязнители переходят в растворитель и концентрируются в нем. Таким способом из воды устраняют органические кислоты, и фенолы.

Метод ионного обмена применяется в основном для удаления из воды солей жесткости. В некоторых случаях его используют для устранения растворенного железа. Процесс заключается в обмене ионами меду водой и специальным материалом. В качестве такого материала выступают специальные синтетические ионообменные смолы. Этот способ очистки воды получил распространение не только в промышленности, но и в быту. Сейчас не затруднит приобрести фильтр, имеющий ионообменный картридж.

Рис. 5 Ионный обмен

Еще один способ, с помощью которого выполняется очистка питьевой воды, это обратный осмос. Для очистки требуется специальная мембрана с очень мелкими порами. Через поры проходят только небольшие молекулы. Загрязняющие вещества отличаются большим размером, чем молекулы воды, поэтому не проходят сквозь мембрану. Такая фильтрация выполняется под давлением. Получающийся раствор из загрязняющих веществ утилизируется.

Рис. 6 Обратный осмос

Все эти методы используются для очищения жидкостей, в том числе и сточных вод. Но в большинстве случаев людей интересует, как очистить воду дома для употребления в пищу и бытовых целей. Очистка воды в домашних условиях не предполагает использования всех названных способов. Только часть из них реализуется в современных приборах. Есть возможность очистить воду из-под крана и без фильтра. Этот метод – кипячение. Однако гораздо чаще воду чистят специализированными фильтрующими устройствами.

В фильтрах задействованы такие методы очистки питьевой воды как механическая фильтрация, ионный обмен, сорбция, обратный осмос. Иногда применяются и некоторые другие, но гораздо реже.

Все эти современные методы очистки воды реализуются в картриджных проточных фильтрах. В таких приборах очищают водопроводную воду в несколько этапов. На первом этапе осуществляется механическая фильтрация, затем устраняются растворенные вещества методами сорбции и ионного обмена, а в завершении вода может пропускаться через обратноосмотическую мембрану.

источник

Качество потребляемой человеком воды определяется с учетом ее свойств и состава. Данные показатели также определяют пригодность применения воды в тех или иных сферах жизнедеятельности. Нормативы (или стандарты) качества составляются с учетом требований заказчика и основных характеристик. Во многом содержание воды определяется с учетом источника ее происхождения (он может быть антропогенным либо естественным).

Чистая питьевая вода – залог здоровья человека и его отличного самочувствия. Чтобы понять, является она такой или нет, обращайтесь в специализированные инстанции, которые проводят анализ качества жидкости и ее соответствия нормативным стандартам, принятым на сегодняшний день. При выполнении анализа учитываются бактериологические, химические и физические показатели.

Проводить химический анализ по закону обязаны различные организации и предприятия при выполнении определенных работ – например, возведении моста через реку. Обязаны соблюдать требования к химсоставу предприятия, которые осуществляют выпуск бутилированной воды. Частные лица заказывают проведение анализа для:

  • оценки качества питьевой воды из водопровода, скважин, родников;
  • подтверждения качества бутилированной воды;
  • подбора фильтра для воды, оценки его эффективности;
  • контроля качества воды в бассейнах;
  • оценки качества жидкости, используемой для полива растений;
  • контроля среды в аквариуме;
  • пр.
  • щелочность;
  • жесткость;
  • содержание ионов;
  • водородный фактор;
  • минерализация.

Бактериологические параметры жидкости:

  • степень загрязненности источника кишечной палочкой;
  • наличие радиоактивных, токсичных элементов;
  • бактериальная зараженность.

Рассмотрим данные характеристики подробнее.

Цветность – показатель, который всегда должен учитываться при анализе воды. Он обуславливает присутствие железа и включений других металлов в виде коррозионных продуктов. Цветность является косвенной характеристикой присутствия в жидкости растворенной органики, зависит от загрязненности источника стоками промышленной категории, определяется путем сравнения образцов с эталонными. Максимально допустимый показатель составляет 20°.

Мутность зависит от наличия мелкодисперсных взвесей нерастворенных частиц. Выражается она в:

  • наличии осадка;
  • взвешенных, грубодисперсных примесях, определяемых в ходе фильтрации;
  • степени прозрачности.

Можно определять мутность фотометрическим путем – то есть по качеству проходящего через толщу жидкости светового луча.

Запах зависит от присутствия в воде пахнущих веществ, которые попадают в нее из стоков. Практически все органические жидкие вещества передают воде специфический аромат растворенных в ней газов, органики, минеральных солей. Запахи делятся на природные (гнилостные, болотные, серные) и искусственные (фенольные, нефтяные, пр.).

Вкус воды может быть соленым, кислым, сладким или горьким, все остальные «нотки» относятся уже к привкусам – например, хлорные, аммиачные, металлические, сладковатые, пр. Оценка привкуса и запаха производится по пятибалльной шкале.

Химические показатели, степень загрязненности зависят от глубины забора водных масс, просачивания в стоки различных веществ (отбросы предприятий, свалки, выгребные ямы и т.д.). Анализ проводить нужно обязательно, поскольку загрязнению подвергаются даже артезианские скважины с низким давлением, а что уже говорить о колодцах.

Жесткость характеризуется наличием в жидкости элементов кальция и магния, которые со временем превращаются в нерастворимые соли. Итог – образование накипи, отложений на внутренних поверхностях емкостей, котлов, рабочих узлах бытовой техники.

Сухой осадок указывает на степень концентрации органических элементов, а также растворенных неорганических солей. Его высокое содержание приводит к нарушению солевого баланса организма человека.

Водородный фактор рН характеризуется щелочным и кислотным фоном жидкости. Изменение фактора указывает на нарушения в технологиях водоподготовки. Норма – 6-9 единиц.

Некоторые компоненты ухудшают пищевые качества воды, а также являются потенциально опасными для здоровья человека. Рассмотрим основные:

  1. Железо в составе сульфатов, гидрокарбонатов, органических соединений, хлоридов. Может оно присутствовать и в виде высокодисперсных взвесей, придающих жидкости коричневый с красным оттенком цвет, снижающий вкусовые качества. Из-за высокой концентрации железа в воде начинают развиваться железобактерии, образуются засоры труб. Максимально допустимая концентрация железа по нормам составляет 0,3 мг/л.
  2. Марганец – главная причина генетических мутаций. Элемент оказывает негативное влияние на вкусовые характеристики жидкости, после стирки на белье появляются характерные пятна и разводы, на сантехнике образуется осадок. Максимальная концентрация согласно нормативам – 0,1 мг/л.
  3. Катионы марганца и кальция повышают жесткость воды. Для измерения их содержания обычно используется такой показатель как мг-экв/л. Пороговые значения находятся на отметке 3-3.5 мг-экв/л, при более высоком содержании катионов накапливается осадок на сантехническом оборудовании, нагревательных элементах бытовых приборов. Для здоровья человека жесткая вода очень вредна.
  4. Перманганатная окисляемость указывает на количественное содержание кислорода к концентрации иона перманганата, который принимает участие в процессах окисления воды. Предельно допустимое значение составляет 5 мг О2/л. При высоких показателях перманганатной окисляемости страдают почки и печень, репродуктивная функция, иммунная, нервная системы человека. Не рекомендуют употреблять воду без обработки при значении перманганатной окисляемости выше 2 мг О2/л.
  5. Сульфиды – благодаря им жидкость приобретает посторонние неприятные ароматы, а трубы начинают ржаветь. Именно сульфиды являются токсичными компонентами, вызывающими кожные аллергические реакции.
  6. Фториды – их концентрация не должна составлять более 1,5 мг/л. Обратите внимание, что полностью лишенная фтора вода также не полезна.

Перечисленные компоненты к сильно токсичным не относятся и отравлений не вызывают, но их постоянное употребление в пищу (даже в малых дозах) наносит непоправимый вред здоровью и приводит к хронической интоксикации.

Определение токсичных соединений, содержащихся в сравнительно небольших количествах, становится с каждым годом все более сложным и затратным. Определенные вещества в воде присутствовать могут, но строго в установленных количествах. Важно контролировать как структурный состав жидкости, так и ее функциональные интегральные характеристики.

Метрологические приборы позволяют определять только основные химические показатели, для проверки бактериального состава образцы отправляются в лаборатории. В зависимости от глубины проверки данных, анализы делятся на полные химические, сокращенные, направленные на определение некоторых составляющих. В большинстве случаев сокращенного анализа достаточно, но в целях определения полного набора компонентов требуется выполнение более глубокой проверки.

При анализе результатов нужно учитывать все показатели и сравнивать данные анализа с полученными характеристиками. Для каждого элемента есть предельно допустимая концентрация – она не должна быть превышена.

Рассмотрим основные способы, используемые для проверки качества воды.

Метод позволяет оценивать те качества, которые доступные органам чувств. Органолептическое исследование предполагает оценку цветности, прозрачности, аромата и вкуса воды.

Читайте также:  Обработка химических анализов подземных вод

Анализ воды на физико-химические показатели учитывает:

  • жесткость;
  • минерализацию;
  • щелочность;
  • окисляемость.

Методика позволяет определять наличие в воде паразитов и бактерий, среди которых могут присутствовать болезнетворные микроорганизмы. Обычно подсчитывается количество организмов на 1 мл жидкости

При анализе химического состава определяется наличие и количество органических, неорганических включений – к ним относят сложные органические вещества, металлы, нефтепродукты, ПАВы и так далее. Под сложными органическими веществами подразумеваются акриламиды, стиролы, фенолы, винилхлориды, тетрахлорид углероды, диоксины.

Анализ на альфа- и бета-частицы, радий проводится в целях определения радиационной безопасности жидкости. Определение содержания радионуклидов – основа для снижения дозовых нагрузок на организм. Вместе с результатами по комплексному анализу заказчик обычно получает также рекомендации, которые помогут ему улучшить качество воды.

Экспресс-анализы используются в целях ускорения процедуры проверки и снижения ее стоимости. Они позволяют анализировать такие показатели как:

  • биохимическое потребление кислорода;
  • число адсорбируемых либо экстрагируемых галогенов органического происхождения;
  • кислотно-щелочной баланс;
  • органолептические свойства воды.

Экспресс-анализ позволяет сокращать потребность в сложном оборудовании и реактивам. Важно! Высокое качество исследования поверхностная проверка гарантировать не может.

Все чаще в последние годы для проверки состава воды используются сенсоры – чувствительные элементы, которые являются основой большинства многокомпонентных анализаторов и экспрессных тест-систем. Они эффективно определяют содержание ферментов антропогенного происхождения, а также патогенную микрофлору.

Биотестирование – передовая методика определения токсичности химического вещества на биоценоз или водные организмы. Оценочные критерии – выживаемость и активность микроорганизмов, скорость их размножения, пр. Для получения корректных результатов биотестирования нужны соответствующие показатели температуры, освещенности, состава, кислотности и так далее.

Существует множество других быстрых способов определения качества питьевой воды – например, на вкус или используя другие органы чувств. Но вы должны понимать, что подобная оценка является очень субъективной, поэтому ставку следует делать на лабораторные исследования.

источник

Дата публикации: 01.09.2013 2013-09-01

Статья просмотрена: 13731 раз

Кутковский К. А. Виды сточных вод и основные методы анализа загрязнителей // Молодой ученый. — 2013. — №9. — С. 119-122. — URL https://moluch.ru/archive/56/7745/ (дата обращения: 01.06.2019).

Воды и атмосферные осадки, которые поступают в естественные водоемы с территорий населенных пунктов и предприятий, принято называть сточными водами. Отвод данных вод осуществляется посредством канализации или естественным путем.

Сточные воды это в большей или меньшей степени загрязненные в результате использования бытовые, промысловые и производственные воды, содержащие отбросы или отработанное тепло, а также отличающиеся изменившимися в отрицательную сторону физическими и биологическими свойствами [1, с. 1287]. Из этого можно сделать вывод о, безусловно, антропогенном происхождении и неоднородности стоков, а также о сложности очистки или утилизации данного продукта антропогенной деятельности.

Из-за ухудшившихся биологических и физических свойств, сточные воды пагубно влияют на развитие всей биосферы. Сточные воды провоцируют и ускоряют эвтрофикацию водоемов из обильного содержания в них фосфора и азота, а также приводят к изменению естественных биоценозов и, как следствие, гибели биологических видов, загрязнению объектов водопользования, используемые человеком в качестве источника питьевой воды. Так же происходит обильное воздействие на артезианские бассейны: их биологическая чистота несопоставима с их состоянием до научно-технической революции, обусловившей эру активного антропогенного воздействия на природу.

Вследствие научно-технической мысли, ее развитии и повсеместном внедрение, источниками сточных вод являются практически любые антропогенные объекты: жилые дома, образовательные учреждения, медицинские объекты, торговые склады и точки реализаций товаров, различные сервисные организации, АЗС, металлургическая промышленность, пищевая промышленность, фармацевтической промышленность, сельхозяйственные угодья и т. д.

Для контроля качества и объема поступления сточных вод разрабатываются законы и подзаконные акты, происходит внедрение и разработка как новых, так и уже зарекомендованных себя методов очистки. Формируется всесторонний анализ сточных вод, позволяющий разработать оптимальный алгоритм очистки (с учетом характера загрязнителей) для каждого промышленного объекта и оценить качество воды, покидающей очистные сооружения. Любые нарушения влекут за собой штрафы и санкции, прописанные как в Водном кодексе РФ, так и в Уголовном кодексе РФ.

Определим, какими характеристиками обладают сточные воды, и как загрязнители влияют на процесс очистки. Для начала определим классификацию сточных вод и особенности отдельных их типов.

Виды сточных вод

1) Хозяйственно-бытовые. Этот тип стоков в основном поступает из жилых домов, а так же объектов социального пользования(больницы, образовательные учреждения, торговые центры и т. д.). Отведение происходит посредством хозяйственно-бытовой и общесплавной канализации. Состав загрязнителей: 58 % — органика, 42 % — минеральные вещества. Особенность — высокое содержание азотсодержащих соединений и фосфатов, значительная степень фекального загрязнения.

2) Промышленные сточные воды. Основной загрязнитель — объекты промышленности и предприятия различного рода деятельности. Отведение происходит посредством промышленной канализации. Спектр загрязнителей характеризуется видом промышленной деятельности. Содержат органические и неорганические элементы. Наибольшую опасность для гидросферы и человека представляют нефтепродукты, органические красители, фенолы, поверхностно-активные вещества, сульфаты, хлориды и тяжелые металлы.

3) Поверхностные сточные воды. Основное поступление из дождевых и талых вод, формирующихся из атмосферных осадков, проникающих в почву и стекающих в водоемы посредством ливневой канализации с территории промышленных предприятий и населенных пунктов. Спектр возможных загрязнителей широк и определяется особенностями территории и видом антропогенной деятельности, преобладающей в районе стока.

Анализ сточных вод

Рассмотрим основные источники поступления сточных вод в экосистемы: промышленные и бытовые объекты, на них приходится основная доля поступающих на очистные сооружения стоков. [2, с. 59] Анализ именно этих источников позволяет понять специфику оценки качества сточных вод и спектр загрязнителей. На выходе из очистных сооружений не должно быть примесей, содержишихся в характерной для той или иной природы стоков, либо их количество должно быть минимальным (определяется нормативами).

Для анализа качества вод используются следующие параметры: температура, цветность, запах и прозрачность. Физические показатели качества воды малоинформативные и понятны на интуитивном уровне. Для всех типов сточных вод характерна повышенная температура, специфический запах и сниженная прозрачность (определяется по шрифту). Изменение цветности (измеряется в градусах платинокобальтовой шкалы) присущи промышленным сточным водам и зависят от вида производственной деятельности.

Так же важным методом анализа качества вод является химический анализ. Реакция (рН) коммунальных сточных вод, как правило, нейтральна (6,5–8), а реакция промышленных стоков подвержена изменениям от сильнокислой (рН менее 3) до сильнощелочной (рН более 11) в зависимости от источника поступления. В процессе очистки реакция сточных вод должна стать нейтральной.

Для определения доли примесей как сухих, так и растворенных, используется такой параметр как «сухой остаток», отражающий степень загрязненности воды примесями. Данный параметр берется из нефильтрованной пробы. Он указывает на количество в воде примесей, как взвешенных (руда, окалина, известняк, кокс и т. д.), так и растворенных. В зависимости от содержания примесей сточные воды принято делить на четыре категории: первая — сухой остаток менее 500 мг/л (коммунальные сточные воды), четвертая — выше 30 000 мг/л. Отметка 5000 мг/л разделяет вторую и третью категорию. [4, с. 76]

Процесс очистки сточных вод от взвешенных примесей происходит путем механических методов очистки, самым распространенным из которых является метод отстаивания. Для прогнозирования эффективности этого метода используется показатель «оседающие вещества». Проба воды помещается в цилиндр, после чего оценивается, какое количество взвешенных веществ осядет за 2 часа. Измеряется в мг/л и процентах от сухого остатка. Оседающие вещества в городских сточных водах, как правило, составляют 65–75 %.

Необходимость вычисления сухого остатка обусловлена дальнейшей обработкой промышленных и коммунальных стоков при помощи биологических методов (бактерии), и на этой стадии количество взвешенных веществ не должно превышать 10 г/л.

Следующим важным параметром сточных вод является зольность твердых примесей. Прокаливание сухого остатка проводят при температуре «красного» каления (500–600°С), в результате чего часть химических соединений сгорает и улетучиваются в виде оксидов, углерода, водорода, азота, серы и других примесей, вес пробы уменьшается. Массу остатка, называемого золой, делят на первоначальную массу образца и получают зольность, выраженную в процентах. Для городских сточных вод характерна зольность 25–35 %.

Еще одним показателем является окисляемость. Данный показатель является санитарным, сфера его актуальности распространяется также не только на сточные воды. Окисляемость указывает на степень загрязнения воды органическими и неорганическими веществами, но также он используется для оценки степени органического загрязнения. Окисляемость определяется при помощи аэробных гетеротрофных бактерий (биохимическая окисляемость) и посредством химических реакций (химическая окисляемость — бихроматная, иодатная и т. д.).

Единицами измерения окисляемости является потребление кислорода: БПК и ХПК — биохимическое и химическое потребление кислорода, выраженное в миллиграммах О2 на литр. Большое значение имеет соотношение БПК к ХПК, которое позволяет прогнозировать, какое количество загрязнителей может быть удалено при помощи биологических методов очистки. [3, с. 141]

Химическая окисляемость определяет общее содержание в воде восстановителей — органических и неорганических, реагирующих с окислителями. В сточных водах преобладают органические восстановители, поэтому, как правило, всю величину окисляемости относят к органическим примесям воды.

Важнейшими показателям для сохранности гидросферы и эффективности биологической очистки является содержание фосфора и азотистых соединений. В сточных водах определяется содержание общего, нитратного, нитритного и аммонийного азота. От количества соединений азота зависит степень эффективности биологической очистки. При малом содержание азота в производственных сточных водах на стадии биологической очистки добавляют в воду хлористый аммоний. В хозяйственных стоках концентрация соединений азота всегда высока, из-за обилия поступающих веществ, связанных с процессом человеческой жизнедеятельности.

Концентрация фосфора в сточных водах всегда превышает ПДК. Основой поступления фосфатов в сточные воды служат фосфатные компоненты синтетических моющих средств и фекальные стоки, поступающие как из хозяйственной, так и из промышленной сферы. Избыток фосфорсодержащих соединений является одной из главных причин эвтрофикации водоемов.

Следующими показателями состояния сточных вод являются сульфаты и хлориды. Концентрация сульфатов в городских сточных водах обычно находится на уровне 100- 150 мг/л, хлоридов — 150–300 мг/л. В промышленных стоках (в частности, на металлургических заводах) уровень хлоридов и сульфатов значительно выше, к тому же к ним добавляются цианиды, аммиак и роданистые соединения.

Представленные выше показатели важны для оценки загрязненности стоков, так же их следует учитывать и в процессе трактовки данных, полученных в ходе иных анализов. Концентрацию хлоридов важно знать при определении ХПК, так как хлориды окисляются бихроматом калия до молекулярного хлора. Поэтому при концентрации хлоридов более 200 мг/л требуется их предварительное осаждение или введение поправки к результату анализа ХПК. Синтетические поверхностно-активные вещества, или СПАВ, так же являются серьезными загрязнителями естественных водоемов. Воздействие СПАВ напрямую влияет на эвтрофикацию рек и озер, угнетение процессов самоочищения гидросферы, торможение биохимических процессов в водоемах, вызывая другие губительные для биоценоза процессы.

Большинство СПАВ — органические вещества, состоящие из двух частей: гидрофобной и гидрофильной. Гидрофобная часть СПАВ соединена обычно с одной гидрофильной группой. В зависимости от физико-химических свойств гидрофильной части СПАВ делятся на три основных типа: анионактивные, катионоактивные, неионогенные. Каждый тип в свою очередь делится на классы в зависимости от химического состава гидрофобной части.

Примерно 75–80 % всех СПАВ, применяемых в быту и промышленности, составляют анионактивные. Важнейшим из них являются: алкилсульфаты с общей формулой R—O—SO3Na (где R — углеводородный радикал с числом углеродных атомов от 10 до 20); алкилсульфонаты R—SO3Na (с числом углеродных атомов 12–15) и алкиларилсульфонаты R—C6Н4—SO3Na (с числом углеродных атомов в радикале 5–18).

Так же присутствие СПАВ резко отрицательно сказывается на работе очистных сооружений, во время очистки сточных вод поверхностно-активные вещества замедляют процессы осаждения твердых взвешенных частиц, провоцируют появление пены в очистных сооружениях и препятствуют биологической очистке. Для предотвращения данных процессов содержание СПАВ в стоках, поступающих на стадию биологической очистки, не должно превышать 20 мг/л. Некоторые фракции (в частности, жесткие СПАВ) предварительно должны быть полностью удалены химическими и физико-химическими методами.

Поверхностно-активные вещества присутствуют во всех сточных водах, в том числе и хозяйственно-бытовых. Источниками СПАВ в сточных водах является результат широкого применения их в быту и промышленности в качестве моющих средств, а также смачивающих, эмульгирующих, выравнивающих, дезинфицирующих препаратов.

Наиболее высокая концентрация токсических веществ определяется в промышленных сточных водах и классифицируются на две категории — неорганические и органические. К органическим токсическим веществам относятся нефтепродукты, смолы, карбоциклические соединения, пестициды, красители, кетоны, фенолы, спирты и СПАВ. Неорганические компоненты представлены солями, щелочами, кислотами и различными химическими элементами (хром, алюминий, свинец, никель, фтор, бор, железо, ванадий и т. д.).

В хозяйственно-бытовых и сельскохозяйственных сточных водах основными биологическим загрязнителями являются бактерии, вирусы, патогенные простейшие и яйца гельминтов, источником которых являются люди и животные.

Для оценки фекальной загрязненности сточных вод используются микробиологические анализы — определение общего микробного числа и количества общих колиформ (коли-тест). Основная задача данных анализов оценить степень фекального загрязнения воды, а не выявление самого факта наличия патогенных микроорганизмов. Вывод делается на основе степени загрязнения сточных вод фекалиями: чем выше уровень загрязнения, тем выше вероятность присутствия патогенных организмов в воде.

Бактериологический анализ сточных вод необходим для оценки эффективности работы очистных сооружений и дает представление о необходимых корректировках процесса очистки сточных вод. Дезинфекция проводится хлором, который оказывает негативное воздействие на качество воды.

Последним показателем является растворенный кислород. Содержание растворенного кислорода (РК) в воде характеризует кислородный режим водоема и имеет важнейшее значение для оценки его экологического и санитарного состояния. Он также необходим для самоочищения водоемов, т. к. участвует в процессах окисления органических и других примесей, разложения отмерших организмов. Снижение концентрации РК свидетельствует об изменении биологических процессов в водоеме, о загрязнении водоема биохимически интенсивно окисляющимися веществами (в первую очередь органическими). Потребление кислорода обусловлено также химическими процессами окисления содержащихся в воде примесей, а также дыханием водных организмов. Поэтому важным фактором является соблюдение качества очищенной воды, поступающей в естественные водоемы. [5, с. 49]

Оценка качественного и количественного состава загрязнителей сточных вод необходима не только для составления плана очистных мероприятий, но и для повышения их эффективности, а так же для мониторинга и последующего прогнозирования негативного антропогенного воздействия на гидросферу и экосистему в целом. Проблемы загрязненности сточных вод, методов очистки и возвращения в естественные источники или их повторное использование, давно перестали быть чем то далеким и несбыточным. За последние 150 лет качество наземных и подземных источников воды резко ухудшилось и требует не только использования современных норм и стандартов, но так же и поиск, разработку и внедрение новых идей и подходов, как к контролю поступающих загрязняющих веществ, так и к методам очистки сточных вод.

1. Советский энциклопедический словарь/Научно-редакционный совет: А. М. Прохоров (пред.).- М.: «Советская энциклопедия», 1981.- 1287 с.

2. Водоотведение и очистка сточных вод: Учебник для вузов/С. В. Яковлев, Я. А. Карелин, Ю. М. Ласков, В. И. Калицун.- М.:Стройиздат, 1996.- 59 с.

3. Комплексное использование и охрана водных ресурсов. Под редакцией О. А. Юшманова М.: Агропромиздат 1985.- 141 с.

4. Евилович А. З. Утилизация осадков сточных вод М.: Стройиздат 1989.- 76 с.

5. Методы охраны внутренних вод от загрязнения и истощения Под редакцией И. К. Гавич М.: Агропромиздат 1985.- 49 с.

источник