Меню Рубрики

Методы химического анализа природных вод

Работаем на рынке
с 2010 года

Предельно понятное
ценообразование

Свыше 5 000 довольных
клиентов
по всей России

Нас рекомендуют! каждый третий клиент приходит по рекомендации

Индивидуальная ценовая политика при больших объемах

В состоянии найти комплексное решение даже для сложных задач

  • атмосферные (снег, дождь);
  • подземные (грунтовые, артезианские, родниковые, колодезные);
  • поверхностные (океаны, моря, озера и т.п.).

Как известно, состав природных вод, распределенных по поверхности, имеет некоторые отличия в зависимости от территории на которой они находятся и от источника питания воды. На самом деле, природная вода — это раствор, который имеет в своем составе растворенные газы, и разнообразные химические соединения.

Выделяют четыре вида (или источника) водного питания природных вод: дождевое, снеговое, ледниковое и подземное. При этом источники питания могут быть антропогено-загрязненными.

Опасными загрязнителями являются соли тяжелых металлов(ртути, свинца, железа, меди), а так же нефть и нефтепродукты. Нефтью поражена пятая часть мирового океана. Если размер нефтяного пятна превышает 10 кв.м, то он приводит к смерти живых организмов, птиц и млекопитающих, мешает фотосинтезу и газообмену между атмосферой и гидросферой. Еще одним видом химического загрязнения является высокое содержание в них фосфатов и нитратов. Это приводит к перенасыщению водоемов удобрениями и возникновению в них интенсивного роста микроорганизмов-водорослей. Размножающиеся водоросли поглощают из воды большие объемы кислорода, растения и животные не могут существовать в такой среде и погибают, образовывая микроорганизмы которые способны разлагать растительные и животные ткани, в результатом происходит загнивание водоема — превращение его в болото. Органическое загрязнение — наличие в сточных водах веществ органического происхождения, губительно влияют на водоемы. Оседая на дно, они могут задерживать или прекращать жизнедеятельность микроорганизмов очищающих воду. При гниении остатков образуются отравляющие вещества, которые загрязняют всю воду в водоеме. Также наличие органических остатков мешает проникновению света в глубь воды, замедляя процесс фотосинтеза.

Под загрязненностью понимают такое состояние водного объекта в официально установленном месте его использования, при котором наблюдается отклонение от нормы в сторону увеличения тех или иных нормируемых компонентов. Санитарное состояние водных объектов и качество их воды у мест водопользования должны соответствовать нормативным показателям, т.е. ПДК.

Санитарные правила устанавливают нормируемые параметры воды водоемов: содержание плавающих примесей и взвешенных веществ, запах, привкус, окраска и температура воды, значение pH, состав и концентрация минеральных примесей и растворенного в воде кислорода, биологическая потребность воды в кислороде, состав и ПДК ядовитых и вредных веществ и болезнетворных бактерий.

Анализ природных вод необходим:

  • изыскательским, проектно-изыскательскими организациям, предприятиям, объединениям, а также иными юридическим и физическим лицами, осуществляющими деятельность в области инженерных изысканий для строительства на территории Российской Федерации.
  • органам государственной власти Российской Федерации, органам государственной власти субъектов Российской Федерации, органам местного самоуправления, юридическим и физическим лицам, хозяйственная и иная деятельность которых оказывает воздействие на окружающую среду.
  • субъектам Российской Федерации, муниципальным образованиям, физическим лицам, юридическим лицам у которых в границах земельного участка, принадлежащего им на праве собственности, имеется водный объект.

Основанием для проведения анализа природных вод является требования таких нормативов как:

  • СП 11-102-97 Инженерно-экологические изыскания для строительства;
  • Федеральный закон «Об охране окружающей среды» от 10.01.2002 г. №7-ФЗ;
  • Положение об оценке воздействия намечаемой хозяйственной деятельности на окружающую среду в РФ, утвержденное Приказом Госкомэкологии России от 16.05.2000 г. №372;
  • Водный кодекс РФ от 16.10.1995 г. №167-ФЗ, статья 78.

ИЛ «АЛЬФАЛАБ» проводит испытания всех типов вод, включая природные воды. ИЛ «АЛЬФАЛАБ» аккредитованная лаборатория, которая работает на рынке услуг по анализу воды с 2015 года. Область аккредитации ИЛ имеет обширный перечень показателей, определяемых в природных водах.

Для расчета стоимости услуги по анализу природной воды нам необходима следующая информация:

  • объемы работ (количество проб);
  • перечень показателей;
  • требуется ли выезд специалиста для отбора проб;
  • территориальное расположение водного объекта;
  • периодичность отбора проб, если это требуется.

После получения всей необходимой информации лаборатория обрабатывает запрос и формирует коммерческое предложение. При возникновении, каких либо вопросов заказчик всегда вправе задать их лаборатории и проконсультироваться по вопросу анализа природных вод. После уточнения всех нюансов лаборатория приступает к работам по анализу проб. В течении трех календарных дней лаборатория готова выехать на объект для отбора проб, любого территориального расположения. Лаборатория работает строго согласно методикам испытаний и имеет полное техническое оснащение для проведения анализа «первого дня» на содержание показателей, концентрация которых имеет свойство меняться во времени.

После доставки проб в лабораторию, их регистрируют и передают в аналитические залы для дальнейшего анализа.

Испытание природных вод на содержание различных веществ проводят различными химическими и физико-химическими методами: титриметрический, фотометрический, гравиметрический, спектрометрический, хроматографический и др. методы

В анализе воды титриметриметрия используется для определения следующих показателей: ион хлорида, гидрокарбонаты, сульфаты, определение жесткости и перманганатной окисляемости.

При выполнении весовых определений определяемый компонент смеси, или составную часть (элемент, ион) вещества количественно связывают в такое химическое соединение, в виде которого она может быть выделена и взвешена (так называемая гравиметрическая форма, ранее она именовалась «весовая форма»). Состав этого соединения должен быть строго определённым, то есть точно выражаться химической формулой, и оно не должно содержать каких-либо посторонних примесей.

В анализе различных типов вод гравиметрия используется для определения сухого остатка и взвешенных веществ.

  • Атомно-эмиссионный спектральный анализ, который проводится по спектрам излучения атомов, возбужденных различными способами (нагреванием, бомбардировкой ускоренными частицами, электромагнитным излучением и т.д.);
  • Атомно-абсорбционной спектральный анализ, осуществляемый по спектрам поглощения при прохождении света сквозь атомные газы или пары;

В анализе вод спектрометрия в первую очередь используется в определение тяжелых металлов: медь, свинец, мышьяк, никель кадмий и тд.

В зависимости от агрегатного состояния подвижной фазы системы, в которой проводят разделение смеси веществ на отдельные компоненты, различают газовую, газожидкостную хроматографию и жидкостную хроматографию. В отличие от газовой и газожидкостной хроматографии, пригодных для разделения только смесей газов и веществ, которые можно перевести в парообразное состояние без разложения, жидкостная хроматография позволяет разделять многочисленные органические и неорганические соединения.

В водной лаборатории хроматография используется для определения различных органических загрязнителей: различных производных бензола и толуола, различных полихлорированных бифенилов, пестицидов и очень опасного соединения обладающего канцерогенными свойствами-бенз(а)пирена.

Результатом работ по анализу природных вод является протоколом испытаний установленной формы, в котором отражена вся необходимая и доступная информация для правильной обработки результатов.

источник

Методы анализа, разработанные для поверхностных пресных и соленых вод, применимы, несомненно, и для анализа других водных объектов, в том числе грунтовых и лизиметрических вод, почвенных растворов и вытяжек.

Аналитическая процедура определения содержаний элементов в водах различного состава включает несколько стадий:

— собственно инструментальный анализ.

В зависимости от концентраций определяемых элементов и возмож­ностей инструментальной техники вышеперечисленные стадии могут быть усложнены введением дополнительных этапов, связанных с консервацией анализируемых образцов, предварительным концентрированием элементов и модернизацией оборудования (например, введением дополнительных приспособлений для ввода пробы, перевода из одного агрегатного состо­яния в другое и т.д.).

Пробоотбор и пробоподготовка как важнейший этап анализа.Отбор пробы воды следует рассматривать как стадию, в значительной степени определяющую правильность последующего анализа, причем ошибки, допущенные в процессе пробоотбора, в дальнейшем не могут быть исправлены даже самым квалифицированным аналитиком. Место и усло­вия отбора пробы воды в каждом случае определяют конкретными задачами исследований, однако основные правила отбора проб носят общий ха­рактер:

— проба воды, взятая для анализа, должна отражать условия и место отбора;

— отбор пробы, ее хранение и транспортировка должны исключать возможность изменения ее первоначального состава (содержаний опре­деляемых компонентов или свойств воды);

-объем пробы должен быть достаточным для проведения анали­тической процедуры в соответствии с методикой.

Отбор проб воды.Отбор проб воды может быть разовым и серийным. Разовый отбор обычно применяют для получения первоначальной информации о качестве ана­лизируемой воды. Принимая во внимание изменяющийся во времени и пространстве состав анализируемых вод, более оправдан серийный отбор, который проводят либо с разных глубин источника, либо в различные моменты времени. При таком отборе можно судить об изменении качества воды во времени или в зависимости от ее расхода.

По своему виду пробы бывают простыми и смешанными. Простая пробаобеспечивается путем однократного отбора всего требуемого для анализа количества воды, при этом полученная информация отвечает составу в данной точке в данный момент времени.Смешанную пробуполучают путем сливания простых проб, отобранных в разные промежутки времени или в различных точках, характеризуя таким образом усреднен­ный состав воды. Если пробу отбирают из открытого водотока, необходимо соблюдать условия, при которых она будет типичной: лучшие места для пробоотбора — бурные участки, где происходит более полное смешение. При отборе пробы сточной воды нужно соблюдать следующие условия:

— скорость отбора не менее 0,5 м/с;

— диаметр отверстия пробоотборника не менее 9-12 мм;

— высокая турбулентность (в случае отсутствия создают искусственно).

При отборе пробы питьевой воды необходимо предварительно спустить воду в течение 15 мин при полностью открытом кране. Перед закрытием сосуда пробкой верхний слой воды сливают так, чтобы под пробкой оставался слой воздуха объемом 5-10 см 3 .

Для отбора и хранения проб используют посуду из стекла, полиэтилена, тефлона. Для определения ультрамикроконцентраций элементов идеальным материалом для отбора и особенно для хранения проб является новый полимер политетрафтор-алкокси-этилен (PFA). Его главные преимущества по сравнению с тефлоном, применяющимся в аналитической химии микро­элементов, — высокая гидрофобность и практически полное отсутствие внутренних пор, а значит и отсутствие эффекта «памяти».

Консервация и хранение.Отобранная проба природной воды представляет собой двухфазную сис­тему, состоящую из раствора и взвешенного вещества. Чтобы избежать потерь микроэлементов за счет биохимических процессов и сорбции на стенках сосуда пробу после фильтрования консервируют, в отдельных случаях даже нефильтрованные образцы, если это согласуется с задачей исследования.

источник

Работаем на рынке
с 2010 года

Предельно понятное
ценообразование

Свыше 5 000 довольных
клиентов
по всей России

Нас рекомендуют! каждый третий клиент приходит по рекомендации

Индивидуальная ценовая политика при больших объемах

В состоянии найти комплексное решение даже для сложных задач

  • атмосферные (снег, дождь);
  • подземные (грунтовые, артезианские, родниковые, колодезные);
  • поверхностные (океаны, моря, озера и т.п.).

Как известно, состав природных вод, распределенных по поверхности, имеет некоторые отличия в зависимости от территории на которой они находятся и от источника питания воды. На самом деле, природная вода — это раствор, который имеет в своем составе растворенные газы, и разнообразные химические соединения.

Выделяют четыре вида (или источника) водного питания природных вод: дождевое, снеговое, ледниковое и подземное. При этом источники питания могут быть антропогено-загрязненными.

Опасными загрязнителями являются соли тяжелых металлов(ртути, свинца, железа, меди), а так же нефть и нефтепродукты. Нефтью поражена пятая часть мирового океана. Если размер нефтяного пятна превышает 10 кв.м, то он приводит к смерти живых организмов, птиц и млекопитающих, мешает фотосинтезу и газообмену между атмосферой и гидросферой. Еще одним видом химического загрязнения является высокое содержание в них фосфатов и нитратов. Это приводит к перенасыщению водоемов удобрениями и возникновению в них интенсивного роста микроорганизмов-водорослей. Размножающиеся водоросли поглощают из воды большие объемы кислорода, растения и животные не могут существовать в такой среде и погибают, образовывая микроорганизмы которые способны разлагать растительные и животные ткани, в результатом происходит загнивание водоема — превращение его в болото. Органическое загрязнение — наличие в сточных водах веществ органического происхождения, губительно влияют на водоемы. Оседая на дно, они могут задерживать или прекращать жизнедеятельность микроорганизмов очищающих воду. При гниении остатков образуются отравляющие вещества, которые загрязняют всю воду в водоеме. Также наличие органических остатков мешает проникновению света в глубь воды, замедляя процесс фотосинтеза.

Под загрязненностью понимают такое состояние водного объекта в официально установленном месте его использования, при котором наблюдается отклонение от нормы в сторону увеличения тех или иных нормируемых компонентов. Санитарное состояние водных объектов и качество их воды у мест водопользования должны соответствовать нормативным показателям, т.е. ПДК.

Санитарные правила устанавливают нормируемые параметры воды водоемов: содержание плавающих примесей и взвешенных веществ, запах, привкус, окраска и температура воды, значение pH, состав и концентрация минеральных примесей и растворенного в воде кислорода, биологическая потребность воды в кислороде, состав и ПДК ядовитых и вредных веществ и болезнетворных бактерий.

Анализ природных вод необходим:

  • изыскательским, проектно-изыскательскими организациям, предприятиям, объединениям, а также иными юридическим и физическим лицами, осуществляющими деятельность в области инженерных изысканий для строительства на территории Российской Федерации.
  • органам государственной власти Российской Федерации, органам государственной власти субъектов Российской Федерации, органам местного самоуправления, юридическим и физическим лицам, хозяйственная и иная деятельность которых оказывает воздействие на окружающую среду.
  • субъектам Российской Федерации, муниципальным образованиям, физическим лицам, юридическим лицам у которых в границах земельного участка, принадлежащего им на праве собственности, имеется водный объект.

Основанием для проведения анализа природных вод является требования таких нормативов как:

  • СП 11-102-97 Инженерно-экологические изыскания для строительства;
  • Федеральный закон «Об охране окружающей среды» от 10.01.2002 г. №7-ФЗ;
  • Положение об оценке воздействия намечаемой хозяйственной деятельности на окружающую среду в РФ, утвержденное Приказом Госкомэкологии России от 16.05.2000 г. №372;
  • Водный кодекс РФ от 16.10.1995 г. №167-ФЗ, статья 78.

ИЛ «АЛЬФАЛАБ» проводит испытания всех типов вод, включая природные воды. ИЛ «АЛЬФАЛАБ» аккредитованная лаборатория, которая работает на рынке услуг по анализу воды с 2015 года. Область аккредитации ИЛ имеет обширный перечень показателей, определяемых в природных водах.

Для расчета стоимости услуги по анализу природной воды нам необходима следующая информация:

  • объемы работ (количество проб);
  • перечень показателей;
  • требуется ли выезд специалиста для отбора проб;
  • территориальное расположение водного объекта;
  • периодичность отбора проб, если это требуется.

После получения всей необходимой информации лаборатория обрабатывает запрос и формирует коммерческое предложение. При возникновении, каких либо вопросов заказчик всегда вправе задать их лаборатории и проконсультироваться по вопросу анализа природных вод. После уточнения всех нюансов лаборатория приступает к работам по анализу проб. В течении трех календарных дней лаборатория готова выехать на объект для отбора проб, любого территориального расположения. Лаборатория работает строго согласно методикам испытаний и имеет полное техническое оснащение для проведения анализа «первого дня» на содержание показателей, концентрация которых имеет свойство меняться во времени.

После доставки проб в лабораторию, их регистрируют и передают в аналитические залы для дальнейшего анализа.

Испытание природных вод на содержание различных веществ проводят различными химическими и физико-химическими методами: титриметрический, фотометрический, гравиметрический, спектрометрический, хроматографический и др. методы

В анализе воды титриметриметрия используется для определения следующих показателей: ион хлорида, гидрокарбонаты, сульфаты, определение жесткости и перманганатной окисляемости.

При выполнении весовых определений определяемый компонент смеси, или составную часть (элемент, ион) вещества количественно связывают в такое химическое соединение, в виде которого она может быть выделена и взвешена (так называемая гравиметрическая форма, ранее она именовалась «весовая форма»). Состав этого соединения должен быть строго определённым, то есть точно выражаться химической формулой, и оно не должно содержать каких-либо посторонних примесей.

В анализе различных типов вод гравиметрия используется для определения сухого остатка и взвешенных веществ.

  • Атомно-эмиссионный спектральный анализ, который проводится по спектрам излучения атомов, возбужденных различными способами (нагреванием, бомбардировкой ускоренными частицами, электромагнитным излучением и т.д.);
  • Атомно-абсорбционной спектральный анализ, осуществляемый по спектрам поглощения при прохождении света сквозь атомные газы или пары;

В анализе вод спектрометрия в первую очередь используется в определение тяжелых металлов: медь, свинец, мышьяк, никель кадмий и тд.

В зависимости от агрегатного состояния подвижной фазы системы, в которой проводят разделение смеси веществ на отдельные компоненты, различают газовую, газожидкостную хроматографию и жидкостную хроматографию. В отличие от газовой и газожидкостной хроматографии, пригодных для разделения только смесей газов и веществ, которые можно перевести в парообразное состояние без разложения, жидкостная хроматография позволяет разделять многочисленные органические и неорганические соединения.

В водной лаборатории хроматография используется для определения различных органических загрязнителей: различных производных бензола и толуола, различных полихлорированных бифенилов, пестицидов и очень опасного соединения обладающего канцерогенными свойствами-бенз(а)пирена.

Результатом работ по анализу природных вод является протоколом испытаний установленной формы, в котором отражена вся необходимая и доступная информация для правильной обработки результатов.

источник

Как определить качество природной воды? Для этого нужно провести анализ природной воды. Разновидности методов определения состава воды, их особенности. Экспресс методы изучения природной воды. Альтернативные методики тестирования. Приборы для быстрого анализа в разных условиях.

Не знаете, как определить качество природной воды? Главными показателями её качества являются жёсткость, прозрачность, щёлочность и окисляемость. Но для этого нужно провести анализ природной воды.

На сегодняшний день в России действует система анализа, которая базируется на изучении микробиологических и химических характеристик жидкости и дальнейшем сравнении полученных данных с нормативными значениями.

Так, для анализа природных вод применяются такие мероприятия:

  • Физический и химический анализ природных вод
  • Вирусологическая методика проверки
  • Исследования на наличие паразитов
  • Токсикологический анализ
  • Радиационный контроль

Первый вид мероприятий позволяет выявить жёсткость воды, присутствие сухого содержимого, а также найти количество других веществ природного происхождения и элементов, попавших в жидкость во время проведения водоподготовительных процедур.

Три следующие методы позволяют найти в воде даже минимальное количество канцерогенного и мутагенного содержимого (ртути, пестицидов, сурьмы, ароматических углеводов, цианидов, различных летучих смесей и т.п.).

Радиационный контроль природных вод позволяет определить суммарную активность элементов, а так же, если требуется, выявить радионуклеидный состав вредных примесей.

Как правило, анализ воды выполняется в несколько этапов:

  1. Сокращённый этап анализа жидкости.
  2. Комплексный химический анализ.
  3. Проведение исследований жидкости по отдельным группам показателей.

Обычно чтобы определить качество природной воды, достаточно сокращённого анализа. Однако иногда приходится выполнять комплексный химический анализ либо проводит тестирование отельных показателей.

Помимо органолептических характеристик воды (запаха, привкуса) с помощью аппаратного обеспечения можно проводить гидромониторинг состава воды. Также можно выполнять экспресс тестирование.

Сегодня для этих целей могут применяться такие методики анализа природной воды:

  • Потенциометрия
  • Титрометрия
  • Турбидиметрия
  • Спектрофотометрия
  • Кондуктометрия
  • Нефелометрия
  • Пламенная фотометрия и обычная
  • Флюорометрия
  • Газовая хроматография

Использование данных методик позволяет определить:

  1. Физические характеристики воды. Её кислотность и жёсткость.
  2. Химический состав, то есть количество элементов железа, нитратов, хлора, наличие частиц тяжёлых металлов. На данном этапе можно определить перманганатную окисляемость воды.
  3. Токсикологический состав жидкости, а именно показатель ПКД.

Конечно, самый быстрый анализ воды может провести каждый из нас самостоятельно. Например, попробовав на вкус воду из наших водопроводов, вы точно ощутите присутствие хлора, выпив дачной воды, можно по вкусу с уверенностью сказать, что в составе есть железо. А если долго отстаивать воду, то на дне тары образуется белый осадок, говорящий о примесях солей. Однако такие методики тестирования очень субъективны, поэтому есть риск ошибиться. Чтобы безошибочно вычислить, можно пить воду или нет, нужно провести анализ питьевых и природных вод.

Анализ природных и сточных вод можно выполнить, используя бактериологические, химико-физические и биологические методы оценки качества. Каждый из этих методов имеет свои плюсы и минусы.

  1. Физико-химический метод позволяет изучать химические и физические характеристики жидкости в нужный временной промежуток, а также отслеживать взаимодействие этих показателей между собой. Преимуществом метода является высокая точность результатов при минимальной погрешности. Недостаток: метод позволяет исследовать только абиотические показатели жидкости, что не даёт полной картины.
  2. Бактериологические методы выявляют качество воды на основании наличия в ней патогенных микроорганизмов. Плюсы методы: высокая точность, возможность широкого применения. Недостатки: методику можно использовать только в стерильной лабораторной среде. Отобранные пробы воды необходимо хранить в определённых условиях. Для проведения анализа нужен специалист врач-бактериолог и лаборант.
  3. Биологические методы дают возможность исследовать показатели, которые на первом этапе выявить невозможно. Данный метод помогает определить санитарное состояние жидкости, уровень и вид загрязнения, степень его распространения в водоёме. Также с помощью этого метода можно охарактеризовать протекание процессов самоочищения. Минусы: требуется провести забор множества проб в разных местах. Всё это займёт много времени. Понадобится привлечь специалиста-гидробиолога. Ограничения в сезоне. Невозможно отследить быструю смену уровня загрязнения водоёма.

Для проведения химического анализа природных и сточных вод можно использовать различные портативные приборы, которые подходят для использования в разных условиях. Обычно такие приборы идут в комплекте с требуемыми реагентами, приспособлениями (компактными фотоколориметрами, спектрофотометрами) и индикаторами. Например, приборы CHEMetrics.

Данный агрегат имеет всё, что нужно для проведения тридцати разновидностей анализов жидкости. Точность прибора довольно высокая. Он имеет самозаполняемые капсулы для проб воды. Продолжительность анализа – пять минут.

Прибор позволяет определить 5 главных показателей качества воды:

  1. Химические характеристики.
  2. Органолептические.
  3. Токсикологические.
  4. Микробиологические.
  5. Общие.

Хотите заказать анализ воды? Звоните, по телефонам указанным на сайте, наши специалисты проведут забор воды и все необходимые анализы.

источник

Вода требуется любому организму, но из источника жизни она способна превратиться в причину болезней и отравлений. Помимо полезных микроэлементов, в воде растворяются многие химические соединения и могут развиваться микробы.

В современных условиях нельзя быть уверенным даже в чистоте воды из родника. Прежде чем применять воду для хозяйственных нужд либо питья, следует убедиться в ее качестве и безопасности. Это позволяет сделать лабораторный анализ воды.

Перед применением воды на производстве либо для хознужд проводится предварительная водоподготовка, предполагающая удаление из состава жидкости вредных компонентов, снижение ее жесткости и очистку от тяжелых металлов. Для определения конкретных веществ, подлежащих удалению, существуют химические методы анализа качества воды. Полученные данные позволяют правильно выбрать и установить требуемые очистные установки.

Эффективность работы фильтров проверяется аналогичным способом: анализ проводится повторно, а полученные данные сравниваются с первоначальными результатами. Если показатели улучшились, значит, установленные фильтры выбраны верно.

Для проведения проверки разработаны специальные методы химического анализа воды, при этом каждый из них направлен на установление содержания в жидкости определенного вещества либо группы веществ:

  1. Фотометрия и люминесценция. В основе методики лежит эффект свечения. Тестируемая жидкость обрабатывается ультрафиолетом, в ответ на обработку разные вещества светятся по-разному. Зафиксировать реакцию позволяют специальные приборы. Подобная методика дает возможность установить присутствие в воде нитратов, растворенного сероводорода, отравляющих цианидов, анионных веществ и других компонентов.
  2. ИК-спектрометрия – используется для выявления присутствия жиров и нефтепродуктов. Через воду пропускается инфракрасное излучение, заставляющее молекулы неравномерно колебаться. Длина волн служит маркером для определения примеси конкретного вещества.
  3. Полярография – позволяет установить концентрацию в воде ионов свинца, цинка и органических веществ. Метод основан на движении ионов при проведении электролитической диссоциации.
  4. Масс-спектрометрия – анализирует структуру вещества с помощью данных о его массе и заряде ионов. Применяется для определения изотопного состава молекул.
  5. Потенциометрия – методика химического анализа воды, позволяющая установить наличие фторидов и водородный показатель (pH). В основе способа лежит измерение электродвижущих сил.
  6. Дозиметрия – устанавливает наличие в жидкости радиоактивных примесей.

Многообразие существующих методик позволяет провести общий и полный анализ. При общем качество жидкости проверяется по уровню главных показателей каждой группы. С его помощью делаются выводы о качественном составе воды, однако не определяется концентрация конкретных веществ. Для ее определения проводится полный анализ, предполагающий углубленное исследование исходных образцов.

С помощью общего анализа устанавливаются следующие характеристики:

  • Жесткость.
  • Органолептика.
  • Состав по основным хим. элементам.
  • Кислотность.

Полный анализ предполагает углубленные исследования показателей каждой группы, что позволяет определить точную концентрацию веществ в растворе. Данный метод химического анализа питьевой воды можно использовать для проверки жидкости на содержание патогенной микрофлоры, токсинов, химических компонентов.

Для получения достоверных данных анализ любого вида должен выполняться при строгом соблюдении условий, установленных нормативами. То же самое относится к методике отбора проб воды для химического анализа, их хранению и транспортировке.

Для проб воды применяется тара из стекла или пластика, а колпачки должны закрываться герметично. Хранение исходного материала для последующих анализов происходит при условии их консервации в специальном водном растворе. Максимальный срок хранения – две недели.

Оптимальный объем воды для проведения исследований составляет не менее 3,5 дм3. При взятии образцов составляется акт, в котором указываются причины анализа и его назначение, определяются показатели для проверки, отмечается место и время забора жидкости.

При появлении сомнений относительно качества водопроводной воды либо воды, поступающей в дом из колодца и скважины, лучше не рисковать собственным здоровьем, а обратиться в нашу компанию. По результатам выполненной проверки вы сможете понять, есть ли необходимость устанавливать системы очистки воды. Опытные специалисты подберут подходящие фильтры, а также выполнят их монтаж и последующее обслуживание на выгодных условиях.

Автор: Андрей Караим, технический специалист
Дата публикации: 14 Марта 2017 года

Понравилась статья? Расскажите друзьям:

источник

Значение химической промышленности

Роль аналитического контроля

Функции и задачи лаборатории

. Характеристика анализируемой продукции

. Требования, предъявляемые к природной воде

. Устройство, универсальный иономер ЭВ-74

. ТБ с кислотами и щелочами

. ТБ при работе в лаборатории

. Пожаро- и электробезопасность

IV. Охрана окружающей среды

. Значение химической промышленности

Химическая промышленность — комплексная отрасль, определяющая, наряду с машиностроением, уровень НТП, обеспечивающая все отрасли народного хозяйства химическими технологиями и материалами, в том числе новыми, прогрессивными и производящая товары массового народного потребления.

Химическая промышленность представляет собой одну из ведущих отраслей тяжелой индустрии, является научно-технической и материальной базой химизации народного хозяйства и играет исключительно важную роль в развитии производительных сил, укреплению обороноспособности государства и в обеспечении жизненных потребностей общества. Она объединяет целый комплекс отраслей производства, в которых преобладают химические методы переработки предметов овеществленного труда (сырья, материалов), позволяет решить технические, технологические и экономические проблемы, создавать новые материалы с заранее заданными свойствами, заменять металл в строительстве, машиностроении, повышать производительность и экономить затраты общественного труда. Химическая промышленность включает производство нескольких тысяч различных видов продукции, по количеству которых уступает только машиностроению.

Значение химической промышленности выражается в прогрессивной химизации всего народнохозяйственного комплекса: расширяется производство ценных промышленных продуктов; происходит замена дорогого и дефицитного сырья более дешевым и распространенным; производится комплексное использование сырья; улавливаются и утилизируются многие производственные отходы, в том числе вредные в экологическом отношении. На базе комплексного использования разнообразного сырья и утилизации производственных отходов химическая индустрия образует сложную систему связей со многими отраслями промышленности и комбинируется с переработкой нефти, газа, угля, с черной и цветной металлургией, лесной промышленностью. Из таких сочетаний складываются целые промышленные комплексы.

Читайте также:  Государственный анализ воды в спб

В основе производственного процесса в химической промышленности чаще всего лежит преобразование молекулярной структуры вещества. Продукцию этой отрасли народного хозяйства можно подразделить на предметы производственного назначения и предметы длительного или кратковременного личного пользования.

Потребители продукции химической промышленности находятся во всех сферах народного хозяйства. Машиностроение нуждается в пластических массах, лаках, красках; сельское хозяйство — в минеральных удобрениях, препаратах для борьбы с вредителями растений, в кормовых добавках (животноводство); транспорт — в моторном топливе, смазочных материалах, синтетическом каучуке. Химическая и нефтехимическая промышленность становится источником сырья для производства товаров широкого потребления, особенно химических волокон и пластмасс.

2. Роль аналитического контроля

Аналитическая химия — наука о методах и средствах определения химического состава веществ и их смесей. Задачи аналитической химии: обнаружение, идентификация и определение составных частей (атомов, ионов, радикалов, молекул, функциональных групп) анализируемого объекта. Соответствующий раздел аналитической химии — качественный анализ;

Определение последовательности соединения и взаимного расположения составных частей в анализируемом объекте. Соответствующий раздел аналитической химии — структурный анализ;

Определение изменения природы и концентрации составных частей объекта во времени. Это важно для установления характера, механизма и скорости превращений, в частности, для контроля технологических процессов в производстве.

Во многих методах аналитической химии используются последние достижения естественных, технических наук. Поэтому вполне закономерно рассматривать аналитическую химию как междисциплинарную науку.

Методы аналитической химии широко реализуется в самых разнообразных производствах. Например, в нефтехимии, металлургии, при получении кислот, щелочей, соды, удобрений, органических продуктов и красителей, пластических масс, искусственных и синтетических волокон, строительных материалов, взрывчатых веществ, поверхностно-активных веществ, лекарственных препаратов, парфюмерии.

В нефтехимии и металлургии требуется аналитический контроль исходного сырья, промежуточных и конечных продуктов производства.

Получение особо чистых веществ, в частности полупроводниковых материалов, невозможно без определения примесей на уровне до 10 -9 %.

Химический анализ необходим при поиске полезных ископаемых. Многие выводы геохимии базируется на результатах химического анализа.

Огромное значение имеет химический анализ для наук биологического цикла. Например, выяснение природы белка — задача, в сущности, аналитическая, поскольку требуется выяснить, какие аминокислоты входят в состав белка и в какой последовательности они связаны. В медицине методы аналитической химии широко применяют при проведении разнообразных биохимических анализов.

Даже гуманитарные науки используют методы аналитической химии. На первом месте среди них стоит археология. Результаты химического анализа предметов древности служат источником важной информации, позволяющим делать выводы о происхождении предметов и их возрасте. Развитие криминалистики также немыслимо без современных методов аналитической химии. Как и в археологии, в ней чрезвычайно важны методы, не разрушающие исследуемый образец: локальный анализ, идентификация веществ.

3. Функции и задачи лаборатории

Основными задачами лаборатории является выполнение опытно-исследовательских работ, обеспечивающих внедрение и освоение новой техники и технологии при использовании современных достижений, направленных на интенсификацию действующих цехов, улучшению их экономических показателей, повышения качества выпускаемой продукции, охраны окружающей среды.

Во исполнении указанных задач лаборатория проводит работы по:

Осуществление с требуемой точностью и достоверностью количественного химического и микробиологического анализов проб питьевой воды, сточных вод и промышленных стоков с целью установления соответствия их качества требованиям нормативных документов;

Выполнение в полном объёме «Рабочей программы производственного контроля качества питьевой воды», контроль эффективности очистки питьевой воды, а также «Графика производственного контроля качества сточных вод и промышленных стоков».

Подготовка исходных данных для разработки нормативно-технической документации для предприятий и принятия решений по улучшению качества воды согласно санитарно-эпидемиологического надзора и сбросов.

Подбор, освоение и внедрение новых методик для анализа состояния качества питьевой, сточной воды.

Усовершенствованию технологических процессов и полному освоению производственных мощностей.

Улучшению методов утилизации промышленных отходов.

. Характеристика анализируемой продукции

Вода (Н 2 О) — жидкость без запаха, вкуса, цвета; самое распространенное природное соединение.

По физико-химическим свойствам В. отличается аномальным характером констант, которые определяют многие физические и биологические процессы на Земле. Плотность воды возрастает в интервале 100-4°, при дальнейшем охлаждении уменьшается, а при замерзании скачкообразно падает. Поэтому в реках и озерах лед как более легкий располагается на поверхности, создавая необходимые условия для сохранения жизни в водных экологических системах. Морская вода превращается в лед, не достигая наибольшей плотности, поэтому в морях происходит более интенсивное вертикальное перемешивание воды.

В качестве первых санитарно — гигиенических характеристик пресной воды использовались органолептические показатели, которые были основаны на интенсивности восприятия органами чувств физических свойств воды. В настоящее время в эту группу в качестве нормативных характеристик входят:

· Запах при 20 о С и подогреве до 60 о С,

· балл Цветность по шкале, градус

· Мутность по стандартной шкале, мг/дм 3

· Окраска окрашенного столбца (отсутствие водных организмов и пленки)

В артезианских водах содержатся взвешенные твердые примеси. Они состоят из частиц глины, песка, ила, суспендированных органических и неорганических веществ, планктона и различных микроорганизмов. Взвешенные частицы влияют на прозрачность воды. Содержание в воде взвешенных примесей, измеряемое в мг/л, дает представление о загрязненности воды частицами в основном условным диаметром более 1·10-4 мм. При содержании в воде взвешенных веществ менее 2-3 мг/л или

больше указанных значений, но условный диаметр частиц меньше 1 · 10-4 мм, определение загрязненности воды производят косвенно по мутности воды.

2. Требования предъявляемые к природной воде

Основными требованиями, предъявляемыми к питьевой воде, являются безопасность в эпидемическом отношении, безвредность по токсикологическим показателям, хорошие органолептические показатели и пригодность для хозяйственных нужд. Оптимальная температура воды для питьевых целей находится в пределах 7-11 °С. Наиболее близки к этим условиям воды подземных источников, которые отличаются постоянством температуры. Их в первую очередь рекомендуется использовать для хозяйственно-питьевого водоснабжения.

Органолептические показатели (мутность, прозрачность, цветность, запахи и привкусы) воды, потребляемой для хозяйственно-питьевых целей, определяются веществами, встречающимися в природных водах, добавляемыми в процессе обработки воды в виде реагентов и появляющимися в результате бытового, промышленного и сельскохозяйственного загрязнения водоисточников. К химическим веществам, влияющим на органолептические показатели воды, кроме нерастворимых примесей и гуминовых веществ относятся встречающиеся в природных водах или добавляемые в них при обработке хлориды, сульфаты, железо, марганец, медь, цинк, алюминий, гекса- мета- и триполифосфат, соли кальция и магния.

Водородный показатель рН большинства природных вод близок к 7. Постоянство рН воды имеет большое значение для нормального протекания в ней биологических и физико-химических процессов, приводящих к самоочищению. Для воды хозяйственно-питьевого назначения он должен находиться в пределах 6,5-8,5.

Количество сухого остатка характеризует степень минерализации природных вод; оно не должно превышать 1000 мг/л и лишь в отдельных случаях допускается 1500 мг/л.

Общая норма жесткости — 7 мг * экв/л.

В подземных водах, не подвергаемых обезжелезиванию, может быть допущено содержание железа 1 мг/л.

Азотсодержащие вещества (аммиак, нитриты и нитраты) образуются в воде в результате протекания химических процессов и гниения растительных остатков, а также за счет разложения белковых соединений, попадающих почти всегда со сточными бытовыми водами, конечным продуктом распада белковых веществ является аммиак. Присутствие в воде аммиака растительного или минерального происхождения не опасно в санитарном отношении. Воды, причиной образования аммиака в которых является разложение белковых веществ, непригодны для питья. Пригодной для питьевых целей считается вода, содержащая лишь следы аммиака и нитритов, а по стандарту допускается содержание не более 10 мг/л нитратов.

Сероводород может содержаться в природных водах в небольших количествах. Он придает воде неприятный запах, вызывает развитие серобактерий и интенсифицирует процесс коррозии металлов.

Токсические вещества (бериллий, молибден, мышьяк, селен, стронций и др.), а также радиоактивные вещества (уран, радий и стронцнй-90) попадают в воду с промышленными стоками и в результате длительного соприкосновения воды с пластами почвы, содержащими соответствующие минеральные соли. При наличии в воде нескольких токсических или радиоактивных веществ сумма концентраций или излучений, выраженная в долях концентраций, допустимых для каждого из них в отдельности, не должна превышать единицу.

Методика. Определение общей жесткости.

Метод основан на образовании прочного комплексного соединения трилона Б с ионами кальция и магния.

Определение проводят титрованием пробы трилоном Б при рН 10 в присутствии индикатора.

2. Объем пробы воды для определения общей жесткости должен быть не менее 250 см3.

3. Если определение жесткости не может быть проведено в день отбора пробы, то отмеренный объем воды, разбавленный дистиллированной водой 1:1, допускается оставлять для определения до следующего дня.

Пробы воды, предназначенные для определения общей жесткости, не консервируют.

АППАРАТУРА, МАТЕРИАЛЫ И РЕАКТИВЫ.

Посуда мерная лабораторная стеклянная по ГОСТ 1770 вместимостью: пипетки 10, 25, 50 и 100 см3 без делений; бюретка 25 см3.

Колбы конические по ГОСТ 25336 вместимостью 250-300 см3.

Трилон Б (комплексон III, двунатриевая соль этилендиамин тетрауксусной кислоты) по ГОСТ 10652.

Аммоний хлористый по ГОСТ 3773.

Гидроксиламин солянокислый по ГОСТ 5456.

Кислота лимонная по ГОСТ 3118.

Натрий сернистый (сульфид натрия) по ГОСТ 2053.

Спирт этиловый ректификованный по ГОСТ 5962.

Цинк металлический гранулированный.

Магний сернокислый — фиксанал.

Хромоген черный специальный ЕТ-00 (индикатор).

Хром темно-синий кислотный (индикатор).

Все реактивы, используемые для анализа, должны быть квалификации чистые для анализа (ч. д. а.)

1. Дистиллированная вода, перегнанная дважды в стеклянном приборе, используется для разбавления проб воды.

2. Приготовление 0,05 н. раствора трилона Б.

31 г трилона Б растворяют в дистиллированной и доводят до 1 дм3. Если раствор мутный, то его фильтруют. Раствор устойчив в течение нескольких месяцев.

3. Приготовление буферного раствора.

г хлористого аммония (NH 4 Cl) растворяют в дистиллированной воде, добавляют 50 см 3 25 %-ного раствора аммиака и доводят до 500 см 3 дистиллированной водой. Во избежание потери аммиака раствор следует хранить в плотно закрытой склянке.

4. Приготовление индикаторов.

5 г индикатора растворяют в 20 см 3 буферного раствора и доводят до 100 см3 этиловым спиртом. Раствор индикатора хрома темно-синего может сохраняться длительное время без изменения. Раствор индикатора хромогена черного устойчив в течение 10 сут. Допускается пользоваться сухим индикатором. Для этого 0,25 г индикатора смешивают с 50 г сухого хлористого натрия, предварительно тщательно растертого в ступке.

5. Приготовление раствора сернистого натрия.

г сернистого натрия Na 2 S × 9H 2 O или 3,7 г Na 2 S × 5H 2 O растворяют в 100 см 3 дистиллированной воды. Раствор хранят в склянке с резиновой пробкой.

6. Приготовление раствора солянокислого гидроксиламина.

г солянокислого гидроксиламина NH 2 OH × HCl растворяют в дистиллированной воде и доводят до 100 см 3 .

7. Приготовление 0,1 н. раствора хлористого цинка.

Точную навеску гранулированного цинка 3,269 г растворяют в 30 см 3 соляной кислоты, разбавленной 1:1. Затем доводят объем в мерной колбе дистиллированной водой до 1 дм 3 . Получают точный 0,1 н. раствор. Разведением этого раствора вдвое получают 0,05 н. раствор. Если навеска неточная (больше или меньше чем 3,269), то рассчитывают количество кубических сантиметров исходного раствора цинка для приготовления точного 0,05 н. раствора, который должен содержать 1,6345 г цинка в 1 дм 3 .

8. Приготовление 0,05 н. раствора сернокислого магния.

Раствор готовят из фиксанала, прилагаемого к набору реактивов для определения жесткости воды и рассчитанного на приготовление 1 дм3 0,01 н раствора. Для получения 0,05 н. раствора содержимое ампулы растворяют в дистиллированной воде и доводят объем раствора в мерной колбе до 200 см 3 .

9. Установка поправочного коэффициента к нормальности раствора трилона Б.

В коническую колбу вносят 10 см 3 0,05 н. раствора хлористого цинка или 10 см3 0,05 н. раствора сернокислого магния и разбавляют дистиллированной водой до 100 см 3 . Прибавляют 5 см 3 буферного раствора, 5-7 капель индикатора и титруют при сильном взбалтывании раствором трилона Б до изменения окраски в эквивалентной точке. Окраска должна быть синей с фиолетовым оттенком при прибавлении индикатора хрома темно-синего и синей с зеленоватым оттенком при прибавлении индикатора хромогена черного.

Титрование следует проводить на фоне контрольной пробы, которой может быть слегка перетитрованная проба.

Поправочный коэффициент (К) к нормальности раствора трилона Б вычисляют по формуле:

1. Определению общей жесткости воды мешают: медь, цинк, марганец и высокое содержание углекислых и двууглекислых солей. Влияние мешающих веществ устраняется в ходе анализа.

Погрешность при титровании 100 см3 пробы составляет 0,05 моль/м3.

В коническую колбу вносят 100 см3 отфильтрованной испытуемой воды или меньший объем, разбавленный до 100 см3 дистиллированной водой. При этом суммарное количество вещества эквивалента ионов кальция и магния во взятом объеме не должно превышать 0,5 моль. Затем прибавляют 5 см3 буферного раствора, 5-7 капель индикатора или приблизительно 0,1 г сухой смеси индикатора хромогена черного с сухим натрием и сразу же титруют при сильном взбалтывании 0,05 н. раствором трилона Б до изменения окраски в эквивалентной точке (окраска должна быть синей с зеленоватым оттенком).

Если на титрование было израсходовано больше 10 см3 0,05 н. раствора трилона Б, то это указывает что в отмеренном объеме воды суммарное количество вещества эквивалента ионов кальция и магния больше 0,5 моль. В таких случаях следует определение повторить, взяв меньший объем воды и разбавив его до 100 см3 дистиллированной водой.

Нечеткое изменение окраски в эквивалентной точке указывает на присутствие меди и цинка. Для устранения влияния мешающих веществ к отмеренной для титрования пробе воды прибавляют 1-2 см3 раствора сульфида натрия, после чего проводят испытание, как указано выше.

Если после прибавления к отмеренному объему воды буферного раствора и индикатора титруемый раствор постепенно обесцвечивается, приобретая серый цвет, что указывает на присутствие марганца, то в этом случае к пробе воды, отобранной для титрования, до внесения реактивов следует прибавить пять капель 1 %-ного раствора солянокислого гидроксиламина и далее определить жесткость, как указано выше.

Если титрование приобретает крайне затяжной характер с неустойчивой и нечеткой окраской в эквивалентной точке, что наблюдается при высокой щелочности воды, ее влияние устраняется прибавлением к пробе воды, отобранной для титрования, до внесения реактивов 0,1 н. раствора соляной кислоты в количестве, необходимом для нейтрализации щелочности воды, с последующим кипячением или продуванием раствора воздухом в течение 5 мин. После этого прибавляют буферный раствор, индикатор и далее определяют жесткость, как указано выше.

1. Общую жесткость воды (Х), моль/м 3 , вычисляют по формуле:

где v — количество раствора трилона Б, израсходованное на титрование, см 3 ;

К — поправочный коэффициент к нормальности раствора трилона Б;- объем воды, взятый для определения, см 3 .

Расхождение между повторными определениями не должно превышать 2 отн. %.

Методика. Определение содержания сухого остатка.

Величина сухого остатка характеризует общее содержание растворенных в воде нелетучих минеральных и частично органических соединений.

1. Пробы отбирают по ГОСТ 2874 и ГОСТ 4979.

2. Объем пробы воды для определения сухого остатка должен быть не менее 300 см3.

АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ.

Шкаф сушильный с терморегулятором.

Посуда мерная лабораторная стеклянная по ГОСТ 1770, вместимостью: колбы мерные 250 и 500 см2; пипетки без деления 25 см3, чашка фарфоровая выпарительная 500-100 см3.

Натрий углекислый безводный по ГОСТ 83.

Натрий углекислый Na 2 CO 3 , х.ч., точный раствор, готовят следующим образом: 10 г безводной соды (высушенной при 200 ° С и отвешенной на аналитических весах) растворяют в дистиллированной воде и доводят объем раствора дистиллированной водой до 1 дм3. 1 см3 раствора содержит 10 мг соды.

500 см3 профильтрованной воды выпаривают в предварительно высушенной до постоянной массы фарфоровой чашке. Выпаривание ведут на водяной бане с дистиллированной водой. Затем чашку с сухим остатком помещают в термостат при 110 ° С и сушат до постоянной массы.

где m — масса чашки с сухим остатком, мг;1 — масса пустой чашки, мг;- объем воды, взятый для определения, см3.

Данный метод определения сухого остатка дает несколько завышенные результаты вследствие гидролиза и гигроскопичности хлоридов магния и кальция и трудной отдачи кристаллизационной воды сульфатами кальция и магния. Эти недостатки устраняются прибавлением к выпариваемой воде химически чистого карбоната натрия. При этом хлориды, сульфаты кальция и магния переходят в безводные карбонаты, а из натриевых солей лишь сульфат натрия обладает кристаллизационной водой, но она полностью удаляется высушиванием сухого остатка при 150-180 ° С.

2. Определение сухого остатка с добавлением соды.

500 см3 профильтрованной воды выпаривают в фарфоровой чашке, высушенной до постоянной массы при 150 ° С. После того как в чашку прилита последняя порция воды, вносят пипеткой 25 см3 точного 1 %-ного раствора углекислого натрия с таким расчетом, чтобы масса прибавленной соды примерно в два раза превышала массу предполагаемого сухого остатка. Для обычных пресных вод достаточно добавить 250 мг безводной соли (25 см3 1 %-ного раствора Na 2 CO 3). Раствор хорошо перемешивают стеклянной палочкой. Палочку обмывают дистиллированной водой, собирая воду в чашку с осадком. Выпаренный с содой сухой остаток высушивают до постоянной массы при 150 ° С. Чашку с сухим остатком помещают в холодный термостат и затем поднимают температуру до 150 ° С. Разность в массе между чашкой с сухим остатком и первоначальной массой чашки и соды (1 см3 раствора соды содержит 10 мг Na 2 CO 3) дает значение сухого остатка во взятом объеме воды.

Сухой остаток (Х), мг/дм3, вычисляют по формуле:

где m — масса чашки с сухим остатком, мг;1 — масса пустой чашки, мг;2 — масса добавленной соды, мг;- объем воды, взятый для определения, см3.

Расхождения между результатами повторных определений не должны превышать 10 мг/дм3, если сухой остаток не превышает 500 мг/дм3, при более высоких концентрациях расхождение не должно превышать 2 отн. оо/о.

Методика. Определение содержания хлоридов.

1. Отбор проб производят по ГОСТ 2874 и ГОСТ 4979.

2. Объем пробы воды для определения содержания хлоридов должен быть не менее 250 см3.

3. Пробы воды, предназначенные для определения хлоридов, не консервируют.

2. ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ХЛОР-ИОНА ТИТРОВАНИЕМ АЗОТНОКИСЛЫМ СЕРЕБРОМ

Метод основан на осаждении хлор-иона в нейтральной или слабощелочной среде азотнокислым серебром в присутствии хромовокислого калия в качестве индикатора. После осаждения хлорида серебра в точке эквивалентности образуется хромовокислое серебро, при этом желтая окраска раствора переходит в оранжево-желтую. Точность метода 1-3 мг/дм3.

2 Аппаратура, материалы и реактивы

Посуда мерная стеклянная лабораторная по ГОСТ 1770, ГОСТ 29227, ГОСТ 29251, вместимостью: пипетки 100, 50 и 10 см3 без делений; пипетка 1 см3 с делением через 0,01 см3; цилиндр мерный 100 см3; бюретка 25 см3 со стеклянным краном.

Колбы конические по ГОСТ 25336, вместимостью 250 см3.

Пробирки колориметрические с отметкой на 5 см3.

Воронки стеклянные по ГОСТ 25336.

Фильтры без зольные «белая лента».

Серебро азотнокислое по ГОСТ 1277.

Натрий хлористый по ГОСТ 4233.

Квасцы алюмокалиевые (алюминий-калий сернокислый) по ГОСТ 4329.

Калий хромовокислый по ГОСТ 4459.

Аммиак водный по ГОСТ 3760, 25 %-ный раствор.

Вода дистиллированная по ГОСТ 6709.

Все реактивы, используемые для анализа, должны быть квалификации чистые для анализа (ч. д. а.).

3.1. Приготовление титрованного раствора азотнокислого серебра.

40 г химически чистого AgNO3 растворяют в дистиллированной воде и доводят объем раствора дистиллированной водой до 1 дм3.

см3 раствора эквивалентен 0,5 мг Сl-.

Раствор хранят в склянке из темного стекла.

3.2. Приготовление 10%-ного раствора (подкисленного азотной кислотой) азотнокислого серебра

г AgNO3 растворяют в 90 см3 дистиллированной воды и добавляют 1-2 капли HNO3.

3.3. Приготовление титрованного раствора хлористого натрия

8245 г химически чистого NaCl, высушенного при 105 °С, растворяют в дистиллированной воде и доводят объем раствора дистиллированной водой до 1 дм3.

см3 раствора содержит 0,5 мг Сl-.

3.4. Приготовление гидроокиси алюминия

г алюмокалиевых квасцов растворяют в 1 дм3 дистиллированной воды, нагревают до 60 °С и постепенно прибавляют 55 см3 концентрированного раствора аммиака при постоянном перемешивании. После отстаивания в течение 1 ч осадок переносят в большой стакан и промывают декантацией дистиллированной водой до исчезновения реакции на хлориды.

3.5. Приготовление 5 %-ного раствора хромовокислого калия

г К2СrО4 растворяют в небольшом объеме дистиллированной воды и доводят объем раствора дистиллированной водой до 1 дм3.

3.6. Установка поправочного коэффициента к раствору азотнокислого серебра.

В коническую колбу вносят пипеткой 10 см3 раствора хлористого натрия и 90 см3 дистиллированной воды, добавляют 1 см3 раствора хромовокислого калия и титруют раствором азотнокислого серебра до перехода лимонно-желтой окраски мутного раствора в оранжево-желтую, не исчезающую в течение 15-20 с. Полученный результат считают ориентировочным. К оттитрованной пробе прибавляют 1-2 капли раствора хлористого натрия до получения желтой окраски. Эта проба является контрольной при повторном, более точном определении. Для этого отбирают новую порцию раствора хлористого натрия и титруют азотнокислым серебром до получения незначительной разницы оттенков слабо-оранжевого в титруемом растворе и желтого в контрольной пробе. Поправочный коэффициент (К) вычисляют по формуле

где v — количество азотнокислого серебра, израсходованное на титрование, см 3 .

4.1. Качественное определение

В колориметрическую пробирку наливают 5 см 3 воды и добавляют три капли 10 %-ного раствора азотнокислого серебра. Примерное содержание хлор-иона определяют по осадку или мути в соответствии с требованиями таблицы.

Характеристика осадка или мутиСодержание Сl — , мг/дм 2 1. Опалесценция или слабая муть1-102. Сильная муть10-503. Образуются хлопья, осаждаются не сразу50-1004. Белый объемный осадокБолее 100

4.2. Количественное определение

В зависимости от результатов качественного определения отбирают 100 см 3 испытуемой воды или меньший ее объем (10-50 см 3 ) и доводят до 100 см 3 дистиллированной водой. Без разбавления определяются хлориды в концентрации до 100 мг/дм 3 . pН титруемой пробы должен быть в пределах 6-10. Если вода мутная, ее фильтруют через без зольный фильтр, промытый горячей водой. Если вода имеет цветность выше 30°, пробу обесцвечивают добавлением гидроокиси алюминия. Для этого к 200 см 3 пробы добавляют 6 см 3 суспензии гидроокиси алюминия, а смесь встряхивают до обесцвечивания жидкости. Затем пробу фильтруют через без зольный фильтр. Первые порции фильтрата отбрасывают. Отмеренный объем воды вносят в две конические колбы и прибавляют по 1 см 3 раствора хромовокислого калия. Одну пробу титруют раствором азотнокислого серебра до появления слабого оранжевого оттенка, вторую пробу используют в качестве контрольной пробы. При значительном содержании хлоридов образуется осадок AgCl, мешающий определению. В этом случае к оттитрованной первой пробе приливают 2-3 капли титрованного раствора NaCl до исчезновения оранжевого оттенка, затем титруют вторую пробу, пользуясь первой, как контрольной пробой.

Определению мешают: ортофосфаты в концентрации, превышающей 25 мг/дм 3 ; железо в концентрации более 10 мг/дм 3 . Бромиды и йодиды определяются в концентрациях, эквивалентных Сl — . При обычном содержании в водопроводной воде они не мешают определению.

g — количество хлор-иона, соответствующее 1 см 3 раствора азотнокислого серебра, мг;- объем пробы, взятый для определения, см 3 .

Расхождения между результатами повторных определений при содержании Сl — от 20 до 200 мг/дм 3 — 2 мг/дм 3 ; при более высоком содержании — 2 отн. %.

4. Устройство анализируемого прибора. Универсальный иономер ЭВ-74

Универсальный иономер ЭВ-74 предназначается для определения в комплекте с ионоселективными электродами активности одно- и двухвалентных анионов и катионов (величины pX) в водных растворах, а также для измерения окислительно-восстановительных потенциалов (величины Еh) в этих же растворах.

При работе с блоком автоматического титрования прибор может быть использован для массового однотипного титрования.

Иономером ЭВ-74 можно производить измерения как методом отбора проб, так и непосредственно в лабораторных установках.

Иономер предназначен для применения в лабораториях научно-исследовательских учреждений и промышленных предприятий.

2. Устройство и принцип работы.

Для измерения активности одно- и двухвалентных ионов в растворах используется электродная система с ионоселективными измерительными электродами и преобразователь. Электродвижущая сила электродной системы зависит от активности соответствующих ионов в растворе и определяется уравнениями (1) или (2).

Значение рХ контролируемого раствора определяется измерением э.д.с. электродной системы с помощью преобразователя, шкала которого проградуирована в единицах рХ. Градировочные значения э.д.с, могут быть вычислены при помощи уравнений (1) и (2).

2. Принцип действия и схема преобразователя иономера

Работа иономера основана на преобразовании э.д.с. электродной системы в постоянный ток, пропорциональный измеряемой величине. Преобразование э.д.с. электродной системы в постоянный ток осуществляется высокоомным преобразователем авто компенсационного типа.

Электродвижущая сила Ех электродной системы (рис. 1) сравнивается с падением напряжения на сопротивлении R, через которое протекает ток Iвых. усилителя. Падение напряжения U вых. на сопротивлении R противоположно по знаку электродвижущей силе Ех на вход усилителя подается напряжение:

При достаточно большом коэффициенте усиления напряжение Uвых. мало отличается от э.д.с. электродной системы Sx благодаря этому ток, протекающий через электроды в процессе измерения, весьма мал, а ток Iвых. протекающий через сопротивление R, пропорционален э.д.с. электродной системы, т.е. рХ контролируемого раствора.

3. Конструкция иономера ЭВ-74

Иономер состоит из преобразователя и подставки, предназначенной для крепления электродов и установки сосудов с контролируемым раствором.

Общий вид преобразователя и элементы его конструкции показаны на рис. 5.

Для удобства монтажа и обслуживания при ремонте наклонная лицевая панель 9 (рис. 5) укреплена таким образом, что при снятии задней стенки и нижней планки она может быть откинута вперед после откручивания 2 винтов.

На лицевой панели располагаются органы оперативного управления и показывающий прибор 1. Органы заводской настройки и регулировки 7 расположены под лицевой панелью.

На шкале показывающего прибора имеются следующие оцифровки: «-1-19» для измерения на широком диапазоне и «0-5» для измерения на узких диапазонах (показания прибора суммируются со значением, соответствующим началу диапазона). Для удобства диапазон «-1-4» имеет дополнительную оцифровку.

Для установки температуры измеряемого раствора имеется оцифровка «0-100».

К органам оперативного управления относятся: тумблер «СЕТЬ», ручки переменных резисторов «КАЛИБРОВКА», «КРУТИЗНА», «рХи» и «ТЕМПЕРАТУРА РАСТВОРА»; 5 кнопок выбора рода работы: «АНИОНЫ/КАТИОНЫ (+/-)», «Х»/Х»», «mV», «рХ» и «t°»; 5 кнопок выбора диапазона измерения: «-1-19», «-1-4», «4-9», «9-14», «14-19»; корректор показывающего прибора. Кнопка «АНИОНЫ/КАТИОНЫ (+/-)» позволяет производить измерение активности анионов или положительных потенциалов в отжатом к катионов или отрицательных потенциалов в нажатом положениях, кнопка «Х»Х»» — измерение активности одновалентных или двухвалентных ионов соответственно в отжатом или нажатом положениях; кнопки с зависимой фиксацией «mV», «рХ» и «t°» позволяют включить прибор в режим милливольтметра («mV»), иономера («pX») или установки температуры раствора при ручной термокомпенсации («t°»).

Читайте также:  И шуберт на воде анализ

При настройке ручками, выведенными на лицевую панель, следует учитывать, что в приборе применены потенциометры с высокой разрешающей способностью, которые имеют зоны плавной и грубой регулировки.

Резисторы «КАЛИБРОВКА», «КРУТИЗНА» и «pH» служат для оперативной настройки прибора на данную электродную систему.

Органы заводской настройки закрыты опломбированной планкой и предназначены: R52 — для дополнительной подстройки начала шкал при измерении катионов; R54 — то же при измерении анионов; R37 — для балансировки температурного моста; R11 — для основной настройки начала шкал при измерении рХ; R40 — для калибровки ручного термокомпенсатора при измерении двухвалентных ионов; R21 — для настройки начала шкал при измерении э.д.с. (мВ); R23 — для регулировки размаха (крутизны) при измерении э.д.с. (мВ); R1 — для установки тока в цепи регулировки рХи.

Оси указанных потенциометров фиксируются цанговыми зажимами.

К органам заводской настройки относятся также резисторы, расположенные на плате измерительного блока: R48 — для подстройки показывающего прибора на диапазоне «-1-19»; R35 — для калибровки ручного термокомпенсатора при измерении одновалентных ионов.

Элементы внешних соединений расположены на задней планке.

Перемычка, замыкающая клеммы показывающего прибора в рабочем состоянии, должна быть снята.

питьевой вода хлорид жесткость

1. Техника безопасности при работе с кислотами и щелочами

Концентрированные кислоты вызывают обезвоживание кожи и других тканей.

По быстроте действия и по скорости разрушения тканей тела кислоты располагаются в следующем порядке, начиная с наиболее сильных: царская водка (смесь азотной и соляной кислот). Азотная кислота, уксусная кислота (90 — 100%), молочная кислота, щавелевая кислота и т.д. очень опасны ожоги хромой смесью. Сильное раздражающее действие на слизистые оболочки дыхательных путей и глаз оказывают дымящие кислоты (концентрированные соляная и азотная кислоты).

Концентрированные кислоты хранят под тягой. Переливают их также под тягой, пользуясь индивидуальными средствами защиты (очки или защитная маска, резиновые перчатки, халат, резиновый фартук).

При пользовании склянкой с кислотой необходимо следить, чтобы на каждой склянке было четкое название кислоты. Наливать кислоту надо так, чтобы при наклоне склянки этикетка, во избежание ее порчи оказывалась наверху.

При разбавлении или укреплении растворов кислот льют кислоту большей концентрации; при изготовлении смеси кислот необходимо вливать жидкость большей плотности в жидкость с меньшей плотностью.

При разбавлении кислот нужно помнить правило: кислоту следует приливать тонкой струей при перемешивании в холодную воду, а не наоборот, и только в жаростойких и фарфоровых стаканах, так как при этом происходит значительное выделение тепла.

Переливать крепкие HNO3, H2SO4 и HCl можно только при включенной тяге в вытяжном шкафу. Дверцы шкафа должны быть, по возможности, прикрыты.

Наливая раствор, следует снимать пробиркой со склянки последнюю каплю реактива во избежание попадания жидкости на халат (одежду) или обувь.

При работе с крепкими кислотами необходимо одевать защитные очки, а при работе с дымящими серной и соляной кислотой, кроме очков, надевать длинный резиновый фартук и противогаз (или по крайней мере марлевую повязку, респиратор).

Во время приготовления растворов щелочей твердые вещества из содержащих их емкостей берут только специальной ложечкой и ни в коем случае не насыпают, потому что пыль может попасть в глаза и на кожу. После использования ложечку тщательно моют, т. к. щелочь прочно пристает ко многим поверхностям.

При взятии навески используют тонкостенные фарфоровые чашечки. Бумагой, тем более фильтровальной, пользоваться нельзя, т к. щелочь ее разъедает.

Растворы приготавливают в толстостенных фарфоровых сосудах в два этапа. Сначала делают концентрированный раствор, охлаждают его до комнатной температуры, а потом разбавляют до нужной концентрации. Такая последовательность вызвана значительным экзотермическим эффектом растворения.

2. Общие требования безопасности работы в лаборатории

При выполнении химико-аналитических исследований необходимо соблюдать требования безопасности при работе с вредными веществами в соответствии с ГОСТ 12.1.007.

Во избежание возможного негативного воздействия на организм человека реактивы, применяемые при консервировании проб воды, подготовке и проведении анализов, должны храниться в минимально необходимом количестве.

Помещение, в котором проводятся химико-аналитические исследования, должно быть оборудовано общей приточно-вытяжной вентиляцией, соответствующей строительным нормам и правилам отопления, вентиляции и кондиционирования воздуха в соответствии с ГОСТ 12.4.021.

Необходимо организовать упорядоченное хранение отработанных реактивов и соответствующую их утилизацию. Определенные в установленном порядке отходы деятельности лаборатории следует направлять в специализированные организации по переработке отходов в соответствии с требованиями законодательства.

Приборы устанавливаются в сухом помещении, свободном от пыли, паров кислот и щелочей. Рядом с приборами не должны находиться электронагревательные приборы, а также источники электромагнитных колебаний и радиопомех.

Приборы, которые предусмотрены для работ с горючим газом, должны быть установлены на столах под вытяжными устройствами, обеспечивающими удаление продуктов сгорания.

Необходимо соблюдать правила ТБ по обращению и работе с газовыми баллонами, если таковые применяются. Баллоны с газом должны быть удалены от прибора и радиаторов отопления, а также защищены от прямого воздействия солнечных лучей. При работе с газом, находящимся под давлением, следует соблюдать установленные для этих работ «Правила устройства и безопасности эксплуатации сосудов, работающих под давлением». При подаче газа нужно следить за полной герметизацией всех систем подводных и отводных трубок системы.

3. Пожаро- и электробезопасность

. Обесточить комнату, выключить электронагревательные приборы и тягу.

. Немедленно сообщить по телефону 20-01 в пожарную часть о загорании (назвать место возникновения пожара и свою фамилию).

. Доложить начальнику бюро, заведующей лабораторией, начальнику цеха.

. Принять меры по ограничению распространения огня и ликвидации пожара всеми первичными средствами пожаротушения под руководством непосредственного руководителя, горящие хлорорганические продукты, перечисленные в данной инструкции можно тушить любыми средствами.

. Организовать встречу пожарной части.

. При загазованности одеть противогаз.

. Для приведения огнетушителя ОУ-2 в действие необходимо вынуть его из гнезда, повернуть раструб в сторону очага загорания, левой рукой взяться за ручку, а правой — сорвать пломбу, повернуть до отказа маховичок вентиля. Направить струю на очаг загорания. Тушить следует с периферии, стремясь перекрыть струёй газа поверхность горения. Не следует направлять струю газа на поверхность горящей жидкости во избежание её разбрызгивания, что может привести к увеличению площади горения. После ликвидации очага загорания поворотом вентиля перекрыть клапан запорной головки.

. При тушении песком следует засыпать им очаг загорания, двигаясь от периферии к центру.

. При тушении асбестовым полотном необходимо накрыть им очаг загорания, прекратить доступ воздуха к продуктам загорания.

. В случае, если при использовании средств пожаротушения, указанных выше, пожар ликвидировать не удалось, пользоваться пожарным краном, находящимся в коридоре.

. Работа в лаборатории должна проводиться при наличии исправного электрооборудования. При обнаружении дефектов в изоляции проводов, неисправности пускателей рубильников, штепселей, розеток, вилок и другой арматуры, а также заземления и ограждений следует немедленно сообщить об этом непосредственным руководителям. Все обнаруженные неисправности должны устраняться только электромонтером.

. При работе с электрооборудованием, находящимся под напряжением, необходимо применять неисправные индивидуальные средства защиты, диэлектрические перчатки, коврики.

. Нельзя переносить включенные электронагревательные приборы.

. В случае перерыва в подаче электрического тока все электронагревательные приборы и электрооборудования должны быть немедленно выключены.

. В случае загорания электропроводов и электроустановок необходимо их немедленно обесточить и приступить к тушению огня углекислотным или порошковым огнетушителем, а также кошмой или песком.

Природоохранной является любая деятельность, направленная на сохранение качества окружающей среды на уровне, обеспечивающем устойчивость биосферы. К ней относится как крупномасштабная, осуществляемая на общегосударственном уровне деятельность по сохранению эталонных образцов нетронутой природы и сохранению разнообразия видов на Земле, организации научных исследований, подготовке специалистов-экологов и воспитанию населения, так и деятельность отдельных предприятий по очистке от вредных веществ сточных вод и отходящих газов, снижению норм использования природных ресурсов и т. д. Такая деятельность осуществляется в основном инженерными методами.

Существуют два основных направления природоохранной деятельности предприятий. Первое — очистка вредных выбросов. Этот путь «в чистом виде» малоэффективен, так как с его помощью далеко не всегда удается полностью прекратить поступление вредных веществ в биосферу. К тому же сокращение уровня загрязнения одного компонента окружающей среды ведет к усилению загрязнения другого.

И например, установка влажных фильтров при газоочистке позволяет сократить загрязнение воздуха, но ведет к еще большему загрязнению воды. Уловленные из отходящих газов и сливных вод вещества часто отравляют значительные земельные площади.

Использование очистных сооружений, даже самых эффективных, резко сокращает уровень загрязнения окружающей среды, однако не решает этой проблемы полностью, поскольку в процессе функционирования этих установок тоже вырабатываются отходы, хотя и в меньшем объеме, но, как правило, с повышенной концентрацией вредных веществ. Наконец, работа большей части очистных сооружений требует значительных энергетических затрат, что, в свою очередь, тоже небезопасно для окружающей среды.

Кроме того, загрязнители, на обезвреживание которых идут огромные средства, представляют собой вещества, на которые уже затрачен труд и которые за редким исключением можно было бы использовать в народном хозяйстве.

Для достижения высоких эколого-экономических результатов необходимо процесс очистки вредных выбросов совместить с процессом утилизации уловленных веществ, что сделает возможным объединение первого направления со вторым.

Второе направление — устранение самих причин загрязнения, что требует разработки малоотходных, а в перспективе и безотходных технологий производства, которые позволяли бы комплексно использовать исходное сырье и утилизировать максимум вредных для биосферы веществ.

Однако далеко не для всех производств найдены приемлемые технико-экономические решения по резкому сокращению количества образующихся отходов и их утилизации, поэтому в настоящее время приходится работать по обоим указанным направлениям.

Заботясь о совершенствовании инженерной охраны окружающей природной среды, надо помнить, что никакие очистные сооружения и безотходные технологии не смогут восстановить устойчивость биосферы, если будут превышены допустимые (пороговые) значения сокращения естественных, не преобразованных человеком природных систем, в чем проявляется действие закона незаменимости биосферы.

Таким порогом может оказаться использование более 1% энергетики биосферы и глубокое преобразование более 10% природных территорий (правила одного и десяти процентов). Поэтому технические достижения не снимают необходимости решения проблем изменения приоритетов общественного развития, стабилизации народонаселения, создания достаточного числа заповедных территорий и других, рассмотренных ранее.

Список используемой литературы

Аналитическая химия. Васильев В.П. Год издания: 1989

Герасимов И.П. Экологические проблемы в прошлой, настоящей и будущей географии мира. М.: Наука, 1985.

www.ekologichno.ru .eco-waters.ru .wikipedia.org

Физико-химические методы исследования качества воды.

Для проведения физико-химического анализа воды необходимо правильно провести пробоотбор. В зависимости от цели исследования, проба воды для анализа может быть получена несколькими способами:

Путем однократного отбора всего количества воды, нужного для анализа, путем смешанных проб, отобранных одновременно в разных местах иссл

При отборе проб воды используют посуду из бесцветного стекла или полиэтилена – марок, разрешенных для контакта с питьевой водой. На практике удобно пользоваться банкой или бутылью. В местах с затрудненным доступом к воде, банку или бутылью можно прикрепить к месту.

В озерах, водохранилищах, прудах, где течение воды резко замедленно, качество воды может быть неоднородным на различных участках (здесь возможно возникновение вторичных источников загрязнения) поэтому в этих водоемах обычно берут серию проб по глубине. Для получения достоверных результатов следует проводить как можно быстрее. В воде происходят процессы окисления – восстановления, физика – химические, биохимические, вызванные деятельностью микроорганизмов.

Биохимические процессы в воде можно замедлить, охладив ее до 4 град.С. В этих условиях медленнее разрушается и многие органические вещества.

Органические показатели воды.

Содержание взвешенных частиц – это показатель качества воды через бумажный фильтр и последующего высушивания осадка на фильтре в сушильном шкафу до постоянной массы. Для анализа берут 500-1000мл. воды. Фильтр перед работой взвешивают. После фильтрования осадок с фильтра высушивают до постоянной массы при 150 град. С, охлаждают в эксикаторе и взвешивают. Весы должны обладать высокой чувствительностью, лучше использовать аналитические весы. Содержание взвешенных веществ в мг/л в испытуемой воде определяют по формуле:

где М1 – масса бумажного фильтра с осадком взвешенных частей, г;

М2 – масса фильтра до опыта, г;

V — объем воды для анализа, л;

Ценность воды определяют визуально, сравнивая с раствором, имитирующим ценность природных вод.

Цветность природных вод обусловлена главным образом присутствием гуминовых веществ и комплексных соединений трехвалентного железа, цвет (окраска).

При загрязнении водоема стоками промышленных предприятий, вода может иметь окраску не свойственную цветности природных вод. Для источников хозяйственно-питьевого водоснабжения может иметь окраску в столбике высотой 20 см, для водоемов культурно-бытового назначения – 10см.

Прозрачность воды зависит от нескольких факторов: количества взвешенных частиц или, тины, песка, микроорганизмов, от содержания химических веществ.

Измеряют прозрачность воды различных водоемов с помощью диска. Секи (можно взять фанерку размером 20*20см. с белой поверхностью, к которой прикреплен груз и веревка с метками на ней для определения глубины). Мерой прозрачности может служить так же высота столба воды (в см.), при которой можно различить на белой бумаге стандартный шрифт с высотой букв 3,5 см и дном из плоского отшлифованного стекла. Цилиндр устанавливают неподвижно над стандартным шрифтом на высоте 4см. Просматривая шрифт сверху через столб воды, и доливая, ее в цилиндр находят высоту столба воды, позволяющей читать шрифт. Запах воды обусловлен наличием в ней пахнущих веществ, которые попадают в нее естественным путем и со сточными водами. Запах воды водоемов не должен превышать 2 баллов обнаруживаемых непосредственно в воде (для водоемов хозяйственно-питьевого назначения) после ее хлорирования.

100мл. исследуемой воды при комнатной температуре наливают в колбу вместимостью 150-200 мл. с широким горлом, накрывают часовым стеклом или притертой пробкой, стряхивают вращательным движением, открывают пробку или сдвигают часовое стекло и быстро определяют характер и интенсивность запаха. Затем колбу нагревают до 60 град. С. на водяной бане итак же оценивают запах.

По характеру запахи делятся на две группы: запахи естественного происхождения (от живущих в воде и отмерших организмов, от влияния почв и т.п.) находят по классификации, приведенной в таблице (приложение). Вторая группа запахи искусственного происхождения (от промышленных выбросов, для питьевой воды – от обработки воды, реагентами на водопроводных сооружениях) называются по соответствующим веществам: хлорофенольный, камфорный, бензиновый, хлорный и т.п. Интенсивность запаха так же оценивается при 20 и 60 град.С. По 5 бальной системе согласно таблице 2 (приложение). Запах воды следует определять в помещении, где воздух не имеет постороннего запаха. Желательно, чтобы характер и интенсивность запаха отмечали несколько исследователей.

Химические показатели воды. Водный показатель (рН). Питьевая вода должна иметь нейтральную реакцию (рН около 7). Величина рН воды водоемов хозяйственного, питьевого, культурно — бытового назначения регламентируется 6,5-8,5. В результате происходящих в воде химических и биологических процессов и потерь углекислоты рН воды может быстро изменяется, поэтому его следует определять сразу же после отбора пробы, желательно на водоеме. Оценивать величину рН можно оценивать разными способами:

Приближенное значение рН. В пробирку наливают 5 мл исследуемой воды, 0,1 мл универсального индикатора, перемешивают и окраске раствора оценивают величину рН:

Розово-оранжевая — рН около 5

рН можно определить с помощью универсальной индикаторной бумаги,

сравнивая окраску со шкалой. Свинец является одним из основных загрязнителей окружающей среды. Большая концентрация свинца тормозит биологическую очистку сточных вод. Основными источниками загрязнения свинцом является выхлопные газы автотранспорта и сточные воды различных производств. Допустимая концентрация свинца в воде- 0,03 мг/.л. качественное определение родизонатом натрия. На лист фильтровальной бумаги нанесите несколько капель исследуемого

раствора, и добавить 1 каплю свежеприготовленного 0,2%- наго раствора родизоната натрия. В присутствии ионов свинца образуется синее пятно или кольцо. При добавлении 1 капли буферного раствора синий цвет превращается в красный. Реакция очень чувствительная: обнаруживаемый минимум 0,1 мкг. Таким образом, важнейшее значение в современных условиях придается изучению экологического состояния водных ресурсов, связанного с антропогенным загрязнением.

Одним из эффективных методов исследования качества воды является биоиндикации – определение по наличию организмов – биоиндикаторов.

Методы биоиндикации применимы только к водоемам, имеющим биоту, каковым является озеро Ик.

Выявленные теоретические основы легли в основу исследований экологического состояния озера Ик.

Рассмотрев несколько источников, раскрывающих понятие мониторинг, было выяснено что, все понятия о мониторинге взаимосвязаны.

Выявлен оригинальный подход авторами в том, что реализация экологического воспитания должна происходить через систему школьного мониторинга т.к. мониторинг – это наблюдение, оценка, прогноз изменения состояния окружающей среды под влиянием антропогенного воздействия. То мы можем с уверенностью сказать, что для современной школы наибольшее значение имеет школьный мониторинг, который осуществляется такими методами как: физические, химические, биологические, авиационные и космические.

Здравствуйте! Скажите, пожалуйста, какие бывают методы экспресс-анализа качества качества питьевой воды. Если можно, расскажите поподробнее. И, если вас не затруднит, изображение установок, приборов и т.п., с помощью которых эти методы можно осуществить. Заранее спасибо! Карина

В целом человечество синтезировало свыше 7 млн. химических веществ, 70 тыс. из которых применяются в повседневной жизни. По данным ВОЗ, вода сейчас содержит 13 тысяч потенциально токсичных веществ и каждый год добавляется от 500 до 1000 новых. Выявлено и нормировано же только около тысячи вредных веществ для водных объектов хозяйственно-бытового и культурно-бытового использования и около 700 веществ для рыбно-хозяйственных водоемов. При этом существующие методы анализа могут выявить ПДК лишь 10% общего количества нормированных веществ. К тому же, процессы эти сложны и длительны. Чтобы определить все показатели воды, нужно иметь соответствующее техническое оснащение, научный и технический потенциал, средства на приобретение реактивов. А это далеко не каждой лаборатории под силу. Стоимость анализа на определение содержания высокотоксичных соединений с низкими значениями ПДК может составлять сотни и тысячи долларов, причем такой анализ необходимо проводить в нескольких пунктах и с определенной периодичностью. Таким образом, проводить хороший анализ воды с каждым годом все сложнее.

Правда, на практике можно, конечное, проводить и экспресс-анализ воды на основе обобщенных показателей, таких как биохимическое или химическое потребление кислорода, содержание общего или растворимого органического углерода (для определения суммарного количества органических веществ, потребляющих кислород), содержание адсорбируемых или экстрагируемых органических галогенов (для выявления суммарного содержания галогеносодержащих органических соединений, представляющих серьезную опасность для окружающей среды), измерение уровня рН, мутности, цвета воды, органолептики и др. Внедрение обобщенных показателей в практику экспресс анализа существенно снижает число определяемых методами аналитической химии структурных компонентов, и в ряде случаев ограничивается лишь определением следов тяжелых металлов такими аппаратными методами, как атомно-абсорбционная или атомно-эмиссионная спектроскопия, о которых уже говорилось на нашем сайте.

Но даже если полный перечень вредных веществ и загрязнений определен, и количество каждого из них ниже ПДК, гарантировать высокое качество воды методом экспресс-анализа достаточно сложно. Связано это с групповым воздействием на организм содержащихся в воде веществ и химических элементов. Их взаимовлияние может настолько трансформировать воздействие на организм человека, что ПДК на отдельное вещество или химический элемент не будет отражать их истинную токсичность.

Все эти проблемы свидетельствуют о необходимости определять качество питьевой воды не только по структурному составу, но и по интегральной функциональной характеристике. Такой функциональный подход можно использовать как метод оперативного экспресс-анализа, что весьма существенно для системы экомониторинга. Существующая система обеспечения единства измерений физических параметров жидких сред на современной промышленной метрологически аттестованной аппаратуре разработана достаточно хорошо только для традиционных химических показателей. По бактериологическим показателям измерения проводятся стандартизированными “лабораторными” методами, характеризуемыми исключительной надежностью. Но эти методы анализа длительны и трудоемки (результаты можно получить только через 24-48 ч), их нельзя реализовать в системе автоматизированного контроля и трудно использовать в полевых условиях.

Из методов исследования интегральных характеристик среды наиболее доступно биотестирование. Биотестирование воды на токсичность проводят на совокупности водных организмов, позволяющей оценивать действие того или иного химического компонента на сложный биоценоз. В качестве оценочного критерия функционального качества воды могут быть выбраны выживаемость, скорость размножения, жизненная активность микроорганизмов. При проведения экспресс-анализа этим методом должны быть стандартизированы условия проведения опыта (температура среды, освещенность, кислотность, состав питательного раствора, количество живых организмов и т.д.).

При этом наиболее сложная задача мониторинга экспрессными методами – измерение бактериального и вирусного состава водной среды. Из современных инструментальных средств можно отметить лазерные системы проведения микробиологических исследований (лазерной, инфракрасной спектроскопии).

Многие вопросы аппаратного обеспечения гидромониторинга могут быть решены с помощью сенсоров – чувствительных элементов устройств экспресс-анализа, которые можно устанавливать непосредственно в местах загрязнения, а показания считывать дистанционно в автоматическом режиме работы аппаратуры. Для определения загрязнений природных и сточных вод наиболее распространены электромеханические преобразователи (амперометрические, потенциометрические, ионоселективные, на основе полевых транзисторов). Так, амперометрические сенсоры применяют для определения содержания в сточных водах СО2, аммиака, этанола, глутаминовой кислоты.

Биосенсоры просты в исполнении, доступны, обладают широкими возможностями распознавания индивидуальных компонентов, в том числе и различных бактериальных форм, при массовом производстве дешевы. Ферментативные реакции биохимической природы по своей скорости на 9-12 порядков превосходят аналогичные химические реакции. Их проведение не требует жестких агрессивных условий (высокой температуры, сильной щелочности или кислотности). Фермент в ходе реакции не расходуется, действуя лишь как высокоспецифичный катализатор, и может быть использован многократно и в малых количествах. Отличительная особенность ферментных сенсоров и иммуносенсоров – исключительная селективность при определении отдельных органических веществ, в том числе пестицидов.

На основе биосенсоров могут быть созданы многокомпонентные анализаторы, способные распознавать одновременно несколько биологических компонентов. С созданием многокомпонентных датчиков-анализаторов появляется возможность построения автоматизированной информационно-измерительной системы на базе низкоскоростной компьютерной сети.

Широкое применение сенсоры также могут найти в экспрессных тест-системах. Принцип их действия заключается в введении исследуемой пробы воды в систему, содержащую выявляемый фермент и его субстрат, с последующей регистрацией изменения оптических свойств тест-системы. Этот процесс в первую очередь – тест на наличие в пробах воды ингибирующих ферменты загрязняющих веществ антропогенного происхождения (органические вещества и тяжелые металлы, поступающие с выносом рек), а также на возникающую в таких условиях неблагоприятную ситуацию, способствующую развитию патогенной микрофлоры. Предназначены тест-системы для контроля функционального состояния и качества различных многокомпонентных природных сред (природных вод, донных отложений, взвесей и др.).

На сегодняшний день существуют следующие методы анализа воды, которые могут быть использованы для экспресс-анализа:

титрометрия
потенциометрия
спектрофотометрия
турбидиметрия
нефелометрия
кондуктометрия
атомно-абсорбционная спектрофотометрия
фотометрия и пламенная фотометрия
газовая хроматография
флюорометрия

При этом измеряются физические (значение рН, жёсткость воды), химические (содержание в воде железа, хлора, нитратов, фосыатов, тяжёлых металлов, перманганатная окисляемость) и токсикологические характеристики воды (ПДК).

Конечное, существует много других быстрых способов проверить воду на качество: попробовать ее и наверняка ощутить в муниципальной водопроводной воде добавление хлора, протестировать воду с помощью органов чувств, например на даче из поселкового водопровода, и почувствовать запах железа, отстаивать воду в течение нескольких часов и тогда может появиться белый осадок (с большой вероятностью это свидетельство повышенного содержания солей). Но все вышеперечисленные методы анализа воды имеют существенный недостаток — субъективность и большую вероятность ошибки. Единственно точный и надежный способ проверки воды на качество, пригодность для питья — это анализ воды.

Обычно делается несколько видов анализа воды:

Сокращенный анализ воды
Полный химический анализ воды
Определение отдельных групп показателей качества воды

Для того, чтобы судить о качестве воды обычно достаточно сделать сокращенный анализ воды, но в некоторых случаях необходимо протестировать воду на дополнительные показатели или провести полный анализ воды.
В настоящее время существует множество портативных тест-систем, позволяющих проводить экспресс-анализ воды в полевых условиях. Часто эти системы укомплектованы всеми необходимыми реагентами, индикаторами и специальным оборудованием, типа портативных спектрофотометров и фотокалориметров. Яркий пример таких тест-систем — системы CHEMetrics — уникальный набор экспресс-анализа качества воды в условиях производства и при полевых исследованиях.

Портативные тест-наборы «CHEMetrics» уже укомплектованы всем необходимым для проведения 30 анализов. Основной измерительный модуль выполнен в виде самозаполняемых ампул и объединяет в себе необходимые для экспресс-анализа точность и надежность. При этом анализ воды занимает около 5 минут.

Самонаполняемые ампулы содержат единичную дозу реагента, pH-буферированного и упакованного под вакуумом для сохранения аналитических свойств. Уникальность системы в том, что ампулы «CHEMetrics» подходят для колориметрического, фотометрического и титриметрического анализа.

Питьевая вода должна удовлетворять следующим качествам: питьевая вода должна быть безопасна в эпидемическом отношении, безвредна по химическому составу и обладать благоприятными органолептическими свойствами. На их основе в различных странах создаются нормативные документы в области качества питьевой воды.

Пересмотр нормативов качества питьевой воды в нашей стране осуществлялся примерно каждые 10 лет. Пересмотру подвергалась не только нормативная база, но и соответствующее методическое обеспечение выполняемых определений. Следует отметить, что при этом затрагивались в основном методики микробиологических и физико-химических анализов, вопросы органолептических показателей не рассматривались на протяжении нескольких десятилетий. Между тем, выполнение анализов на мутность, цветность и контроль запаха вызывают определенные трудности в практике производственного контроля технологии водоподготовки.

На данный момент испытательным лабораториям предлагается контролировать конкретный нормируемый показатель «мутность» двумя методами, определяющими разные физические характеристики водного объекта: фотометрией и нефелометрией. Таким образом, под одним термином «мутность» предлагается измерять различные характеристики анализируемой среды. При этом установленный норматив оставлен по ГОСТ 2874-82, для которого установлен фотометрический метод определения показателя.

Серьезной переработки требует и существующая методика определения цветности. С переходом от определения цветности визуальным методом к фотометрическому выявились две проблемы. С одной стороны, при снятии полного спектра поглощения стандартного раствора цветности определено, что максимум поглощения приходится на интервал длин волн 350-354 нм, и, таким образом, регламентация длины 413 нм приводит к нарушению одного из основных условий спектрофотометрических измерений. С другой стороны, измерения на длине волны 413 нм принципиально завышают результаты по сравнению с визуальной шкалой.

Читайте также:  Группы сточных вод их анализ

Представляется целесообразным, учитывая, что зона максимального светопоглощения анализируемой воды может изменяться с течением времени в зависимости, например, от состава природной воды по содержанию органических загрязнений, предусмотреть возможность в методике экспериментального определения зоны максимального светопоглощения и все дальнейшие измерения проводить именно на этой длине волны.

Другой немаловажной проблемой производственного контроля являются вопросы определения и классификации запахов природной и питьевой воды. Согласно рекомендациям ВОЗ привкус и запах питьевой воды не должны вызывать неприятных ощущений у потребителя. При этом для привкуса и запаха питьевой воды не предлагается никакой конкретной величины по показаниям их влияния на здоровье. По отечественным нормативным документам запах и привкус питьевой воды строго нормируются и единственный метод определения данных показателей — органолептический. Характер запаха воды предлагается определять «ощущением воспринимаемого запаха». Без строгой стандартизации метода определения и перечня характеров запахов, в такой ситуации существенно возрастает роль субъективного фактора при оценке качества питьевой воды. Получаемые результаты трудно воспроизводятся в рамках одной лаборатории между отдельными испытателями и практически не воспроизводятся между различными лабораториями даже в рамках единого предприятия. Поэтому, на сегодняшний день с учетом ужесточения требований к качеству питьевой воды вопросы методологии контроля органолептических показателей требуют серьезного пересмотра.

Кроме того, нет чётких нормативов на состав питьевой воды (солевой, микроэлементный, микробиологический), характеризующий ее биологическую активность.

В настоящее время существуют пять основных условных показателей качества питьевой воды:

1.Химические. По ним определяется состав и количество химических веществ и элементов, которые образовались после обработки воды перед подачей её в водопроводы. В частности определяется содержание в воде остаточного свободного хлора, серебра и хлороформа.

2.Органолептические. Этот вид показателей отвечает за вкусовые показатели: запах, цвет, мутность.

3.Токсикологические. С их помощью контролируется отсутствие или наличие в воде в пределах допустимых норм таких опасных веществ как фенолов, свинца, алюминия, мышьяка, пестицидов.

4.Микробиологические. По ним производят определение отсутствия в воде опасной микрофлоры.

5.Общие, в первую очередь влияющие на органолептику воды. С их помощью определяются такие параметры как общая жёсткость, отсутствие нефтепродуктов, допустимые пределы по: железу, нитратам, марганцу, кальцию, магнию, сульфидам, уровню pH.

1.Определение pH универсальным индикатором
2.Определение общей жесткости воды
3.Определение окисляемости воды
4.Определение концентрации катионов железа
5.Определение сульфатов
6.Определение ионов свинца
7.Определение ионов меди
8.Определение концентрации активного хлора в свободной и связанной формах
9.Определение органических веществ в воде
10.Определение концентрации нитрат-аниона

1. Водородный показатель рН

В пробирку наливают 5 мл исследуемой воды, 0. 1 мл универсального индикатора, перемешивают и по окраске раствора оценивают величину рН.

Розово — оранжевая
рН около 5

рН можно определить с помощью индикаторной бумаги, сравнивая её окраску со шкалой. По индикаторной бумаге более точное определение, чем визуально.

Жесткость воды обуславливается присутствием в ней ионов кальция, магния и железа и анионов: гидрокарбонат, хлорид, сульфат и нитрат. Общая жесткость складывается из карбонатной (временной) и некарбонатной (постоянной). Временная жесткость обусловлена содержанием гидрокарбонатов кальция, магния, железа. Она устраняется кипячением воды; постоянная жесткость объясняется содержанием сульфатов, хлоридов, нитратов кальция, магния, железа и не устраняется кипячением, а только химическим путем или методом ионно-обменной адсорбции. Общая и временная жесткость воды определяется путем титрования пробы воды растворами точно известной концентрации, а постоянная рассчитывается по разнице между общей и временной жесткостью.

Общая жесткость воды определяется по ГОСТ 4151-72 . Метод определения общей жесткости. Метод основан на образовании прочного комплексного соединения трилона Б с ионами кальция и магния.

Колбы конические вместимостью 250см3-3шт, капельница, трилон Б (комплексон III, двунатриевая соль этилендиамин тетрауксусной кислоты), аммоний хлористый, аммиак водный 25 %-ный раствор, натрий хлористый, спирт этиловый, хромоген черный специальный ЕТ-00(индикатор)

Приготовление 0, 05 н. раствора трилона Б.

9, 31 г трилона Б растворяют в дистиллированной воде и доводят до 1 дм 3 . Если раствор мутный, то его фильтруют. Раствор устойчив в течение нескольких месяцев. Можно приготовить раствор трилона Б фиксанала.
Приготовление буферного раствора.

10 г хлористого аммония (NH 4 Cl) растворяют в дистиллированной воде, добавляют 50см3 25 %-ного раствора аммиака и доводят до 500 см 3 дистиллированной водой.

Приготовление индикатора эриохрома черного

Раствор индикатора хромогена черного устойчив в течение 10 сут. Допускается пользоваться сухим индикатором. Для этого 0, 25 г индикатора смешивают с 50 г сухого хлористого натрия, предварительно тщательно растертого в ступке.

В коническую колбу на 250 мл вносят 100 мл исследуемой воды, прибавляют 5 мл буферного раствора и на кончике шпателя индикатора (эриохрома черного). Раствор перемешивают и медленно титруют 0, 05 н раствором трилона Б до изменения окраски индикатора от вишневой до синей.

Уравнение взаимодействия трилона Б (комплексона III) с ионами металлов (Ca 2+ , Mg 2+ , Fe 2+), содержащимися в воде:

Расчет общей жесткость производят по формуле:

Xмг. экв/л = (Vмл*Nг. экв/л*1000мг. экв/г. экв) / V 1 мл. ,
где: V — объем раствора трилона «Б», пошедшего на титрование, мл.
N — нормальность раствора трилона «Б» г. экв\л.
V 1 объем исследуемого раствора, взятого для титрования, мл.

3. Определение окисляемости воды (качественное с приближенной количественной оценкой)

Оборудование и реактивы: пробирки, H 2 SO 4 (1:3), 0, 01н КМпО 4 .
Определение.
5мл исследуемой воды прилить в пробирку, добавить 0, 3мл раствора H 2 SO 4 (1:3) и 0, 5мл 0, 01н раствора перманганата калия. Смесь перемешать, оставить на 20 минут. По цвету раствора оценить величину окисляемости по таблице 1.

Таблица 1
Окраска пробы воды
Окисляемость, мг/л

1. Ярко-лиловорозовая
2. лиловорозовая
3. слаболиловорозовая
4. бледнолиловорозовая
5. бледнорозовая
6. розовожелтая
7. желтая
1
2
4
6
8
12
16

4. Определение ионов железа

Оборудование и реактивы: 50% раствор KNCS, HCl-24%

Таблица 2
Приближенное определение ионов Fe +3

Окрашивание, видимое при рассмотрение пробирки сверху вниз на белом фоне

Отсутствие
Едва заметное желтовато-розовое
Слабое желтовато-розовое
Желтовато-розовое
Желтовато-красное
Ярко-красное
менее 0, 05
от 0, 05до 0, 1
от 0, 1 до 0, 5
от 0, 5 до 1, 0
от 1, 0 до 2, 5
более 2, 5

Определение.
К 10мл исследуемой воды прибавляют 1-2 капли HCl и 0, 2 мл (4 капли) 50%-го раствора KNCS. Перемешивают и наблюдают за развитием окраски. Примерное содержание железа находят по таблице2. Метод чувствителен, можно определить до 0, 02 мг/л.
Fe 3+ + 3NCS= Fe(NCS) 3

5. Определение сульфатов (качественное определение с приближённой количественной оценкой.)

Оборудование и реактивы
Штатив лабораторный с пробирками, пипетки 5 и 10 см3 с делениями на 0, 1 см3, колбы мерные вместимостью 100, 500 и 1000 см3, пробирки колориметрические с притертой пробкой и отметкой на 10 см3, палочки стеклянные, воронки стеклянные, HCl(1:5), BaCl2. (5%), калий сернокислый, серебро азотнокислое, вода дистиллированная.

Приготовление основного стандартного раствора серно кислого калия

0, 9071 г K 2 SO 4 растворяют в мерной колбе вместимостью 1 дм 3 в дистиллированной воде и доводят объем раствора дистиллированной водой до метки. 1 см 3 раствора содержит 0, 5 мг сульфат-иона.

Приготовление рабочего стандартного раствора сернокислого калия

Основной раствор разбавляют 1: 10 дистиллированной водой. 1 см 3 раствора содержит 0, 05 мг сульфат-иона.

Приготовление 5 %-ного раствора хлористого бария

5 г ВаСl 2 растворяют в дистиллированной воде и доводят объем до 100 см 3 .

Приготовление 1, 7 %-ного раствора азотнокислого серебра

8, 5 г AgNO 3 растворяют в 500 см 3 дистиллированной воды и подкисляют 0, 5 см 3 концентрированной азотной кислоты.

В колориметрическую пробирку диаметром 14-15 мм наливают 10 см3 исследуемой воды, добавляют 0, 5 см3 соляной кислоты (1:5). Одновременно готовят стандартную шкалу. Для этого в такие же пробирки наливают 2, 4, 8 см 3 рабочего раствора сернокислого калия и 1, 6; 3, 2; 6, 4 см 3 основного раствора K 2 SO 4 и доводят дистиллированной водой до 10 см 3 , получая таким образом стандартную шкалу с содержанием: 10, 20, 40, 80, 160, 320 мг/дм 3 сульфат-иона. Прибавляют в каждую пробирку по 0, 5 см 3 соляной кислоты (1:5), затем в исследуемую воду и образцовые растворы по 2 см3 5 %-ного раствора хлористого бария, закрывают пробками, перемешивают и сравнивают со стандартной шкалой.

6. Определение иона свинца (качественное)

Иод калий дает в растворе с ионами свинца характерный осадок PbI 2: Исследования производятся следующим образом. К испытуемому раствору прибавить немного KI, после чего, добавив CH 3 COOH, нагреть содержимое пробирки до полного растворения первоначально выпавшего мало характерного желтого осадка PbI 2 . Охладить полученный раствор под краном, при этом PbI 2 выпадет снова, но уже в виде красивых золотистых кристаллов Pb 2+ +2I. = PbI 2

7. Определение ионов меди (качественное)

В фарфоровую чашку поместить 3-5мл исследуемой воды, выпарить досуха, затем прибавить 1каплю конц. раствора аммиака. Появление интенсивно синего цвета свидетельствует о появлении меди

2Сu 2+ +4NH 4 . ОН = 2 2+ +4H 2 O

8. Определение хлорида натрия в воде(приближенная оценка)

Оборудование и реактивы: Пипетка объемом 10мл, бюретка, три конические колбы, белая кафельная плитка, проба воды, дистиллированная вода, калий хроматный индикатор, 50мл раствора AgNO 3 (2, 73г на 10мл)
Определение. Наливают 10мл исследуемой воды в коническую колбу и добавляют 2капли калий-хроматного индикатора. Из бюретки оттитровывают хлорид-ион раствором AgNO 3 , постоянно встряхивая коническую колбу.

В конечной точке титрования осадок AgCl окрашивается в красный цвет. Дважды повторить титрование с 10мл исследуемой воды.

9. Определение органических веществ в воде

Оборудование и реактивы: пробирки, пипетка на 2мл, HCl (1:3), KMnO 4

Определение: Наливают в пробирки 2 мл фильтрата пробы, добавляют несколько капель соляной кислоты. Затем готовят розовый раствор KMnO 4 и приливают его к каждой пробе по каплям. В присутствии органических веществ KMnO 4 будет обесцвечиваться. Можно считать что органические вещества полностью окислены, если красная окраска сохраняется в течение одной минуты. Посчитав количество капель, которое потребуется для окисления всех органических веществ, узнаем загрязненность пробы

10. Определение нитратов (риванольная реакция)

Оборудование и реактивы: пробирки, пипетка на 5мл, 2мл, физиологический раствор (0, 9%р-р NaCl), риванол солянокислый (0, 25г риванола растворяют в 200мл 8%HCl), порошок цинка

К 1мл исследуемой воды прибавляют 2, 2мл физиологического раствора. Затем отбирают 2мл приготовленного раствора, добавляют 1мл солянокислого раствора риванола и немного порошка цинка (на кончике ножа). Если в течении 3-5минут желтая окраска риванола исчезнет и раствор окрасится в бледно-розовой цвет, то содержание нитратов в воде превышает ПДК.

Все эти вышеперечисленные методы анализа качества воды может самостоятельно провести студент 3-го курса химического ВУЗа в условиях химической (аналитической) лаборатории. Для более полного анализа качества воды существуют специальнве лаборатории Санэпидемнадзора, оснащенные современным оборудованием с применением высококачественных реактивов, что обеспечивает высокую точность и достоверность анализа воды.

Вода из скважины или колодца не всегда пригодна для питья. Чтобы выяснить, можно ли готовить на такой воде, требуется провести химический анализ воды. Полный химический анализ воды может потребоваться также для изучения качество водопроводной или родниковой воды, а также в научных целях и в рамках экологического мониторинга.

Во время анализа представленные образцы исследуют на наличие различных загрязнений: растворенных веществ, нерастворимых соединений, бактерий и простейших. Кроме того, можно исследовать радиоактивность воды. По результатам, лаборанты выносят вердикт – можно ли употреблять воду в пищу, насколько она пригодна для бытовых целей, какие загрязнители содержит.

Отправляя пробы на физико-химический анализ воды, необходимо помнить, что существуют правила забора образцов:

  • Нужно подготовить чистую тару – подойдет бутыль, в которой до этого была негазированная чистая питьевая вода.
  • Перед наполнением тару рекомендуется промыть – можно той же жидкостью, которая предназначена для сбора.

Правила разработаны для каждого источника. Так, для сбора из водопроводного крана алгоритм такой:

  • Открыть кран не менее чем на 10 минут на среднем напоре.
  • Наполнить бутылку, стараясь не допускать появления пузырьков воздуха.

Для скважины правила похожие:

  • Открыть кран не менее чем на 10 минут, поддерживать средний напор.
  • В случае если скважина была заброшена или использовалась редко, то необходимо откачать верхний слой насосом – не менее 2 часов.

Правила для точного анализа:

  • Пробу из колодца набирают с глубины в 4 метра. Ведро должно быть чистым.
  • Иногда для полного анализа скважины может потребоваться придонная вода – ее собирают так, чтобы исключить попадание ила и песка.
  • При заборе пробы в бутылку, ее нужно наполнять медленно.
  • Сразу после забора, тару необходимо плотно закрыть.
  • Лучше всего отдавать образцы сразу. Если такой возможности нет – правильный образец можно хранить в холодильнике до 2 суток.

Пробу отдают вместе с сопроводительным листком. На нем указывают:

  • Юридический и фактический адрес источника.
  • Тип источника.
  • Точную дату и время забора пробы.
  • Нуждается ли вода в срочной диагностике.

Чем лучше собрана проба – тем точнее будут результаты исследования.

Как узнать, нужны ли исследования? Если спросить специалиста, то гигиенист скажет, что проводить такой анализ лучше всего регулярно – даже если кажется, что не происходит никаких изменений.

Но есть ситуации, в которых проверка качества воды не просто рекомендована, но очень желательна:

  1. Если заметно изменились цвет, запах или вкус. В таком случае отправить пробу на экспертизу стоит как можно раньше. А до тех пор воздержаться от питья. Это особенно актуально для городских жителей – вода из подземных источников часто меняет цвет в зависимости от количества атмосферных осадков.
  2. Если рядом со скважиной или колодцем велось строительство. Особенно опасны строительные работы на промышленных объектах. Микрочастицы самых разных токсичных веществ попадают воду. Если водоем не проточный – они задержатся надолго.
  3. При покупке участка рядом с оживленной трассой стоит проверить качество питьевой воды из колодца.
  4. После аварийных ситуаций на производствах в районе скважины. Анализ требуется, чтобы убедиться, что в почву, а значит, и в воду не попади токсичные отходы производства.
  5. При выборе фильтра для домашнего использования – чтобы знать, что именно требуется отфильтровать. Многие компании, предлагающие услуги по установке фильтров под ключ, сразу же предлагают провести анализ. Стоит исследовать воду и после установки фильтра – через несколько месяцев – чтобы убедиться, что оборудование работает должным образом.

Существуют ситуации, в которых проверка предусмотрена федеральным законодательством:

  • Регулярно – в медицинских, детских и оздоровительных учреждениях.
  • На производстве бутилированной питьевой воды.
  • При открытии новых веток трубопровода.
  • На промышленных предприятиях – обязательная экспертиза сточных вод.

Подобные требования содержатся в Водном Кодексе РФ, а также в проекте ФЗ «О водоснабжении» и действующем ФЗ «О санитарно-эпидемиологическом благополучии населения».

Основные типы нормативных документов, устанавливающих требования к качеству на территории России:

  1. СанПиН – санитарно-токсикологические и органолептические показатели.
  2. Гигиенические критерии.
  3. Эпидемиологические нормативы.
  4. Медицинские критерии оценки качества.
  5. Госстандарты для производства.
  6. Технические условия.
  7. Справочники ПДК.

Такое большое количество стандартов легко объяснимо – ведь вред от использования в пищевых целях воды ненадлежащего качества может быть очень серьезным.

При оценке качества с помощью химико-физических методов оценивают следующие показатели:

  • pH (норма находится в пределах от 6 до 9).
  • минерализация (норма составляет не более 1000 мг на литр).
  • Содержание отдельных химических элементов – для каждого установлен максимальный порог.
  • Фенольный индекс.

Помимо этого проводится микробиологическая оценка безопасности, оценивают органолептические свойства, содержание некоторых классов органических соединений.

Бутилированные воды делят на две основные категории – высшая и первая.Продукт обеих категорий обязан соответствовать стандартам качества и безопасности, прописанным в СанПиНе. Отличие в том, что продукт высшей категории может добываться только из сертифицированных природных источников, защищенных от загрязнений любого характера.

Количественный химический анализ оценивает содержание:

  • Общий химический состав.
  • Микробиологические параметры.
  • Радиационные показатели.
  • Наличие токсичных металлов.

Проведение экспертизы строго регламентировано – существуют методические рекомендации для сотрудников лабораторий оценки качества.

Естественные источники – это:

  • Колодцы и скважины.
  • Реки и ручьи.
  • Озера и водохранилища.
  • Родники.

Исследование открытых источников затруднено, так как их химический состав постоянно меняется – вместе с изменением погоды, времени года и уровнем атмосферных осадков. Существуют индивидуальные нормативы для каждого открытого источника. Наиболее строгие нормативы действуют в отношении родников, скважин и колодцев – вода из них часто используется для питья без дополнительной обработки.

Методы химического анализа воды:

  • Качественный.
  • Количественный химический анализ воды.

Качественный позволяет установить присутствие в растворе каких-либо веществ. А количественный – их содержание.

Для определения качества стоит обратиться в местную экспертную организацию или в филиал СЭС. Как правило, специалисты не просто проводят анализ, но также выдают рекомендации по улучшению качества.

Для поддержания нормальной жизнедеятельности человеку необходимо потреблять в сутки как минимум два литра питьевой воды. Однако о качестве задумываются лишь единицы. Некачественная питьевая вода может привести к развитию тяжелейших патологий. Анализ питьевой воды стал доступной услугой, проводимой в специальных лабораториях с применением новейших приборов. Также допускается проведение оценки качества в домашних условиях.

Анализ качества питьевой воды проводится для изучения состава воды и выявления в ней вредных элементов. Такие меры обязательно должны предприниматься в момент начала строительства жилых и производственных помещений с целью обеспечения людей качественной водой. Процедура также позволяет определиться с выбором водопроводного оборудования.

Долгосрочность службы водопровода и здоровье людей напрямую зависит от состава питьевой воды. Именно поэтому первоначально перед началом застройки берется проба воды для последующей оценки ее химических свойств.

Исследование должно проводиться регулярно, так как на состав может оказывать влияние окружающая среда. Во время проверки жидкость оценивается по трем основным аспектам: физические, бактериологические и химические показатели.

Расшифровку результатов проводят специалисты, но при знании нормативов любой человек в состоянии самостоятельно оценить качество исследуемой жидкости. При положительном результате никаких мер не потребуется, но в противном случае рекомендуется сделать упор на дополнительной фильтрации питьевой воды. Также существует допустимая концентрация примесей, о которой указывается в документах совместно с результатами анализа.

В настоящее время лабораторные исследования позволяют достоверно определить наличие только 10% вредных элементов из всех известных. Для более глубокого анализа с выявлением даже незначительного количества токсичных веществ требуется дорогостоящее оборудование, квалифицированные специалисты и колоссальное количество времени.

Если вещество находится в допустимой концентрации, это не говорит о его безопасности. Некоторые элементы при контакте с другими веществами способны вызывать развитие в организме человека разнообразные патологии.

Лабораторные исследования отличаются высокой точностью, но применение подобного опыта в полевых условиях на данный момент невозможно. Чтобы исследовать питьевую воду и получить максимально достоверный результат, потребуется доставить пробу в лабораторию. Главное – при транспортировке не допустить попадания в тару инородных примесей.

Используются следующие методологии для исследования питьевой воды:

  • сокращенный
  • оценка конкретных показателей
  • полный химический

В большинстве случаев применяется сокращенный анализ. Однако в неопределенных ситуациях все же могут потребоваться дополнительные исследования для уточнения химико-бактериологических свойств.

Исследование питьевой воды подразделяется на два основных вида:

  • химический
  • микробиологический
  • бактериологический

Химический состав исследуется не только для выявления основных элементов, но и для оценки свойств жидкости. Химический анализ имеет два подвида: общий и специальный. Первый подвид необходим для определения основных характеристик и выявления наличия в питьевой воде некоторых разновидностей ионов и солей. Специальный химический анализ потребуется, если необходимо определить жесткость, кислотность воды, ее коррозийные и агрессивные свойства, а также наличие в ней конкретных вредных компонентов.

Общий применяется для следующих целей:

  • Оценка щелочности путем измерения концентрации карбонатов, гидроксидов, бикарбонатов, анионов слабых кислот.
  • Выявление повышенного уровня сульфатов, способных вызвать патологии пищеварительной системы.
  • Определение уровня рН с измерением количества ионов водорода.
  • Контроль содержания в воде йода и фтора, которые способны вызывать рахит, патологии ротовой полости, кровеносной системы и щитовидной железы.
  • Во избежание сильнейших отравлений хлором и возникновения онкологических и генетических заболеваний тестируется его количество. Хлор применяется для обеззараживания воды в допустимой концентрации.
  • Устранение вероятности загрязнения водопровода бытовыми отходами за счет исследования жидкости на предмет наличия хлоридов в совокупности с азотосодержащими веществами.
  • Выявление содержания в составе железа, способного пребывать в коллоидном, растворенном и нерастворенном виде. Если же совместно с железом был обнаружен марганец, то вода непригодна не только для питья, но и для прочих бытовых целей. В таких случаях водопроводные трубы покрываются желтым налетом, а вода имеет неприятный привкус.
  • Проверка количества натрия и калия, которые проникают в воду посредством растворения коренных пород.
  • Обнаружение в воде следов наличия органики животного происхождения за счет выявления в составе нитратов, аммиака и нитритов.
  • Исследование жидкости на присутствие в ней сероводорода, крайне опасного для здоровья человека.

Специальный химический анализ воды применяется для более детальной оценки и подразделяется на несколько разновидностей:

  1. Технический – необходим для проверки качества воды, используемой в нефтедобывающей промышленности, но иногда подобные пробы требуются и для питьевой воды. Оценивается агрессивность и коррозионная устойчивость.
  2. Санитарный – проводится для установления пригодности воды для бытовых целей и питья. Производится замер уровня кислотности, жесткости, щелочности и содержания ионов NO3, NO2, NH4.
  3. Поисковый – исследование, позволяющее выявить наличие агрессивных веществ;
  4. Бальнеологический – наиболее полный анализ качества воды, в большинстве своем применяемый для оценки целебных источников. Проводится полноценная проверка всех качественных характеристик, в том числе и наличие радиоактивности, газовых компонентов, железа, лития, сульфатов, мышьяка и пр.

Санитарно-микробиологический анализ питьевой воды достаточно часто используется в современных лабораториях. Мембранная фильтрация способна установить большинство качественных характеристик с максимальной точностью. Исследованию подвергается как вода из водопровода, так и из скважины. Методика заключается в пропускании жидкости через специальную мембрану, на которой впоследствии оседают микроорганизмы.

Санитарно-микробиологический анализ питьевой воды применяется в следующих источниках:

  • Бутилированная вода – проверка требуется для оценки и поддержания качественных характеристик выпускаемой продукции;
    — водопровод – исследование проводится регулярно, а также возможен экстренный анализ в случаях, когда есть сведения о загрязненности воды.
  • Сточные воды – оценка необходима для устранения пагубного влияния человечества на окружающую среду.
  • Колодцы и скважины – анализ должен производиться с регулярной частотой для своевременного проведения очистки и обеззараживания.

Различные патологии могут вызывать болезнетворные микроорганизмы, которые содержит вода питьевая, методы санитарно-микробиологического анализа в этом случае позволят устранить проблему своевременно.

Рассмотрим питьевую воду и методы санитарно-бактериологического анализа. Этот вид определяет наличие в пробе микроорганизмов. Таких как:

  • вирусы
  • микробы
  • болезнетворные бактерии

Целью анализа является определение источника заражения, для того чтобы принять меры по его устранению.

Методы анализа питьевой воды отличаются большими затратами времени и необходимостью проведения процедуры в лаборатории. Однако существует экспресс методика проведения анализа питьевой воды, которую можно осуществить даже в полевых условиях с использованием специальных приборов или наборов.

Экспресс анализ способен выявить лишь обобщенные показатели качества:

  • щелочность
  • биохимическое потребление кислорода
  • органолептические аспекты жидкости
  • уровень экстрагируемых и адсорбируемых галогенов, имеющих органическое происхождение

Такая разновидность оценки качества питьевой воды не способна предоставить высокоточные результаты. Некоторые приборы предназначены только для выявления содержания определенного компонента в жидкости без уточнения концентрации. Также есть возможность определить вирусный или бактериальный состав исследуемого материала.

Использование в экспресс-системах биосенсоров позволяет с достаточно высокой точностью выявлять наличие конкретных веществ. Причем анализаторы подобного типа способны различить несколько составляющих одновременно.

Питьевую воду, прошедшую все этапы проверки с положительным результатом, разрешается употреблять в пищевых целях. Однако далеко не все люди знают об основных показателях, по которым оценивается жидкость.

Согласно лабораторным исследованиям, можно сделать вывод, что большинство людей предпочитают гидрокарбонатную воду, так называемую жесткую. В то время как хлоридно-сульфатная (мягкая) вода показалась испытуемым неприятной и непривычной на вкус.

Помимо ухудшения цветовых и вкусовых характеристик, вредные вещества превращают питьевую воду в опасную для здоровья жидкость. Даже небольшая концентрация того или иного элемента способна вызвать дискомфорт, отравление и развитие серьезных патологических процессов в организме.

Стоит рассмотреть основные элементы, которые могут быть найдены в питьевой воде, и их влияние на жизнедеятельность человека:

  1. Марганец – является сильнейшим провокатором возникновения генных мутаций. ДПК для этого вещества составляет 0,1 мг/л. Однако даже содержание марганца в таком количестве способно испортить водопроводные трубы и оставить на них характерный осадок. Если к марганцу прибавляется еще и калий, то увеличивается жесткость, что крайне негативно воздействует на организм. Если употреблять излишне жесткую воду в течение долгого времени, то возможно развитие болезней суставов и возникновение камней в почках.
  2. Сульфиды – виновники образования сероводорода. Повышается токсичность, от чего возникают кожные заболевания, проявляющиеся в виде раздражений и зуда. Водопроводные трубы при этом покрываются налетом.
  3. Железо – первые признаки его наличия проявляются в изменении вкусовых качеств воды. Железо не появляется в чистом виде, а лишь в составе других компонентов вроде сульфатов, хлоридов, высокодисперсной взвеси, гидрокарбонатов и пр. Жидкость обычно приобретает красноватый оттенок, повышается вероятность засорения труб. Больше всего от употребления такой воды страдают печень и почки.
  4. Перманганатная окисляемость — выражается в виде соотношения уровня пермангантных ионов и кислорода. Превышение нормы в 2-5 мг О2/л может повлечь за собой сбои в иммунной, нервной, репродуктивной системе, а также проблемы с почками и печенью. Именно поэтому рекомендуется подвергать водопроводную воду термической обработке перед употреблением.
  5. Тяжелые металлы – даже небольшое содержание любого компонента, входящего в данную группу, способно вызвать тяжелейшие патологии. Например, ртуть и свинец негативно влияют на нервную и кровеносную систему, цинк – на двигательный аппарат, хром – на почки, медь – на пищеварительную систему и пр.

В малых количествах ни одно из перечисленных веществ неопасно. Однако регулярное потребление непригодной для питья воды имеет накопительный эффект, и болезни проявятся спустя несколько лет. Чтобы удостовериться в качестве питьевой воды, стоит обратиться в лабораторию и произвести анализ. Ведь вода является неотъемлемой частью жизни человека, и мы должны быть уверены в отсутствии в ней потенциально опасных веществ.

источник