Меню Рубрики

Подготовка пробы воды к анализу

Подготовка пробы–важный этап проведения химических анализов.

Подготовка делится на три стадии: 1)высушивание;2) разложение; 3) устранение влияния мешающих компонентов.

1. Вода в пробах. Высушивание образцов. Это может быть химически несвязанная вода, адсорбированная на поверхности щелями, капиллярами (цеолит, крахмал, белок, окклюдированная полостями минералов, руд, горных пород) и химически связанная в молекулах или кристаллах.

Пробу сушат до постоянной массы. Расчет определяемого компонента производят обычно, исходя из навески высушенного образца. Затем учитывают массу, потерянную при сушке.

Если не удается высушить пробу, то применяют другие методы определения воды: с помощью поглотителя (перхлорат магния и др.), газожидкостной хроматографии и ИК-спектроскопии.

2. Разложение образцов. Перевод пробы в раствор. Существуютразныеметодыразложения:высокоактивными реагентами, повышением давления и температуры, катализ, ультразвук, микроволны и др. Всеэти методызависят от природысамогообъекта исследований,химическихсвойствопределяемогокомпонента (органической или неорганической природой).

Способразложениязависитотцелианализаивыбранного аналитического метода.

Растворение. Растворитель должен растворять пробу быстро, и не мешатьприанализе.Самыйуниверсальныйрастворитель–вода.

хорошо растворяются в воде.Длярастворенияорганическихсоединенийиспользуют органическиерастворители(спирты,кетоны,хлорированные углеводороды).

При «мокром» способе часто применяют кислоты (HCl, HF, HNO3(конц.), H2SO4(конц.) и их смеси).

Часто растворение проб проводят в автоклавах (ТИР).

«Сухой способ»разложения(спекание,сплавлениеи терморазложение) менее предпочтителен из-за возрастания потерь.

Спекание.Нагреваютпробупривысокихтемпературахс подходящим реагентом. Это сложный, до конца не изученный процесс. Основанонахимическомсродствекомпонентовпробыквведенным реагентам.

Сплавление.Измельченныйобразецперемешиваютс8÷10 кратным избытком реагента (плавня) или с флюсом (пр. боратом лития) и нагревают(300÷1000С°) до получения прозрачного плава.

После охлаждения застывшую массу растворяют в воде или кислотах. Присплавлениииспользуютщелочные,кислые,окислительные плавни.

Щелочные: карбонаты, гидроксиды, бораты.

Кислотные: пиросульфат калия, гидросульфат калия и B2O3.

сплавлении образуются легко растворимые соли.

Контрольные вопросы

1. Какую пробу называют представительной, и какие требования к ней предъявляют?

2.Чтотакоесредняяпроба,какполучаютсреднююпробу твердого и металлического образцов?

пробы при проведении анализа?

4.Какимиметодамиразрушаюторганическуючастьпробы при проведении неорганического анализа?

5.Вкакихслучаяхпроводятсплавлениепробы?Какиеплавни обычно используют в аналитической лаборатории?

6.Почемуотборпробыдляанализаиногдаболееважен,чем выполнение самого анализа?

Тема 9. Метрологическое обеспечение аналитического контроля.

Основные метрологические характеристики аналитического

Целью всяких аналитических измерений является получение результата, наиболее близкого к истинному содержанию определяемого компонента впробе. Независимо от метода определения, результат всегда является случайной величиной, значение которой зависит от конкретных условий проведения всех операций, предусмотренных методикой аналитического контроля, и может отличаться от истинного значения определяемого содержания на величину погрешности. Чем меньше эта погрешность, тем выше точность результата. Объективное суждение о надежности анализа дает метрология.

Метрология–этонаукаоб измеренияхиметодахдостиженияих единстваитребуемойточности.Любоеизмерениеимеетопределенную ошибку,связанную с точностью измерительной аппаратуры,особенностями метода и случайными причинами. Во время анализа возникают ошибки при выполнении определенных операций (взятие навески, растворения и т.д.).

К основным метрологическим характеристикам аналитического контроля относят такие понятия как точность, воспроизводимость, сходимость.

Точность– это качество измерительных процессов, отражающее близость результатов этих измерений к истинным значениям соответствующих величин. Точность тем выше, чем меньше полная погрешность измерительного процесса.

Воспроизводимость – качество анализа, отражающее близость определения одной и той же величиныв одном и том же объекте по одной и той же методике анализа, но в различных условиях (различные аналитические лаборатории, различные аналитики¸ различное время).

Сходимость– качествоанализа,отражающееблизость результатов определения одной и той же величины в одном и том же объекте в одинаковых условиях.

Дата добавления: 2016-10-06 ; просмотров: 1358 | Нарушение авторских прав

источник

Проведение анализа начинают с отбора и подготовки пробы. Отбор и подготовка пробы зависят от природы анализируемого объекта и от способа измерения аналитического сигнала. Приемы и порядок отбора пробы и ее подготовки строго регламентируются нормативными документами.

Отбор пробы. Для проведения анализа берут так называемую среднюю (представительную) пробу. Это небольшая часть анализируемого объекта, средний состав и свойства которой должны быть идентичны во всех отношениях среднему составу и свойствам исследуемого объекта. Различают генеральную, лабораторную и анализируемую пробы.

Генеральная (первичная, большая, грубая) проба отбирается непосредственно из анализируемого объекта в количестве от 1 до 60 кг. Из генеральной пробы путем ее сокращения отбирают лабораторную пробу (от 1 до 25 кг). Одну ее часть используют для предварительных исследований, другую – для арбитражных анализов, третью – непосредственно для анализа (анализируемая проба). В случае необходимости пробу измельчают и усредняют. Для анализируемой пробы проводят несколько определений компонента: из отдельных навесок 10–1 000 мг (если анализируемый объект – твердое вещество) или аликвот (если анализируемый объект – жидкость или газ). Анализируемая проба должна быть представительной, но не очень большой.

При отборе пробы необходимо учитывать следующее: агрегатное состояние анализируемого объекта (способы отбора различны для газов, жидкостей и твердых веществ); неоднородность анализируемого материала; размер частиц, с которых начинается неоднородность; требуемую точность оценки содержания компонента во всей массе анализируемого объекта в зависимости от задачи анализа и природы исследуемого объекта. Необходимо учитывать возможность изменения состава объекта и содержания определяемого компонента во времени (например, изменение концентрации компонентов в пищевых продуктах).

Отбор пробы газов. Смеси газов гомогенны, поэтому генеральная проба может быть относительно небольшой и ее отбор не представляет трудностей. Пробу газа отбирают, измеряя его объем при помощи вакуумной мерной колбы или бюретки с соответствующей запорной жидкостью; часто конденсируют газ в ловушках разного типа при низких температурах. В замкнутой емкости (например, цех предприятия) пробу газа отбирают в разных точках, объемы газа смешивают или анализируют отдельно каждую пробу.

При отборе пробы из потока газа используют метод продольных струй и метод поперечных сечений. Метод продольных струй применяют, когда состав газа вдоль потока не меняется. Если состав газа вдоль потока меняется, то пробы берут на определенных расстояниях (часто через специальные отверстия в трубах) вдоль потока.

Поскольку состав анализируемых газов часто меняется во времени в зависимости от состояния атмосферы, температуры в помещениях и других условий, то пробы усредняют или анализируют отдельно объемы газов, отобранные в разное время.

Отбор пробы жидкостей. Пробу гомогенной жидкости отбирают при помощи соответствующих пипеток, бюреток и мерных колб из общей емкости после тщательного перемешивания. При анализе большого объема жидкости отбор пробы проводят на разной глубине и в разных местах емкости. Для отбора проб на разной глубине используют специальные пробоотборные устройства – батометры различной конструкции (цилиндрический сосуд вместимостью 1–3 л, закрывающийся сверху и снизу крышками). Отбор гомогенной жидкости из потока проводят через определенные интервалы времени и в разных местах.

Пробы гетерогенных жидкостей отбирают не только по объему, но и по массе. В одних случаях жидкость гомогенизируют, в других – добиваются полного ее расслоения. Гомогенизацию проводят, изменяя температуру, перемешивая жидкость или подвергая ее вибрации. Если гомогенизировать жидкость невозможно, то ее расслаивают и отбирают пробу каждой фазы, используя при этом специальные пробоотборники с большим числом забирающих камер. Размер генеральной пробы жидкости обычно невелик и не превышает нескольких литров или килограммов.

Отбор пробы твердых веществ. При отборе генеральной, лабораторной и анализируемой пробы твердых веществ оптимальная масса проб обусловлена неоднородностью анализируемого объекта, размером частиц, с которых начинается неоднородность, и требованиями к точности анализа, обычно определяемой погрешностью в отборе пробы.

Способы отбора генеральной пробы твердого вещества различны для веществ, находящихся в виде целого (слиток, стержни и др.) или сыпучего продукта. При пробоотборе от целого твердого объекта необходимо учитывать, что он может быть неоднороден, поэтому при отборе пробы его либо дробят, если вещества хрупкие, либо распиливают через равные промежутки, либо высверливают в разных местах образца.

При отборе пробы сыпучих продуктов массу исследуемого объекта перемешивают и пробу отбирают в разных местах емкости и на разной глубине, используя при этом специальные щупы-пробоотборники.

После отбора генеральной (или лабораторной) пробы твердого вещества осуществляют процесс гомогенизации, включающий операции измельчения и просеивания. Пробы, содержащие крупные куски, разбивают в дробильных машинах и мельницах разного типа, меньшие частицы измельчают в шаровых мельницах и специальных ступках. Для тонкого измельчения используют фарфоровые, агатовые, яшмовые и кварцевые ступки с пестиками из такого же материала.

Во избежание потерь в процессе измельчения периодически отделяют крупные частицы от мелких просеиванием и растирают их отдельно. Операции измельчения и просеивания чередуют до тех пор, пока не получат достаточно растертую однородную пробу.

Следующий этап отбора пробы – усреднение, включающее операции перемешивания и сокращения пробы. Перемешивание проводят механически в емкостях, перекатыванием из угла в угол на различных плоскостях. Сокращение пробы проводят способами квартования, шахматного отбора и механического делителя. Степень сокращения может быть определена заранее на основании расчета величины генеральной и анализируемой проб, которые получают в результате последовательного уменьшения объема анализируемого объекта.

Потери и загрязнения при отборе пробы. Хранение пробы. В процессе отбора и хранения пробы возможны потери определяемого компонента, внесение загрязнений, изменение химического состава, что приводит к увеличению общей погрешности анализа.

Потери в виде пыли можно в заметной степени уменьшить просеиванием пробы при измельчении. Другой возможный источник ошибок при отборе и хранении пробы – потеря летучих продуктов вследствие изменения температурного режима при хранении или разогрева при измельчении твердых образцов. Большие потери могут быть также вследствие адсорбции определяемого компонента на поверхностях емкостей для отбора и хранения пробы.

Состав анализируемого объекта может меняться за счет проходящих в нем химических реакций (разложения компонентов, окисления их при взаимодействии с атмосферным кислородом). Например, концентрация пестицидов в растениях, почве и пищевых продуктах со временем значительно понижается вследствие их химических превращений. Погрешности, обусловленные внешними загрязнениями, особенно велики при определении примесей компонентов, их следовых количеств. Поэтому при растирании образцов используют ступки из особо твердых материалов и хранят пробы в посуде из особых сортов стекла или полиэтилена. Например, пробы воды для определения кремния отбирают только в полиэтиленовые бутыли. При определении органических соединений предпочтительнее посуда из стекла.

Важными являются методы хранения и консервации пробы. В отдельных случаях для сохранения определяемого компонента его экстрагируют органическими растворителями или адсорбируют на различных твердых веществах. Пробы можно стабилизировать на несколько часов охлаждением до 0 ºС и на несколько месяцев – резким охлаждением до –20 ºС. Для консервирования определяемых компонентов добавляют разные консерванты (кислоты, образующие комплексные соединения вещества и др.). Хранят пробы в условиях, гарантирующих постоянство их состава в отношении тех компонентов, которые предполагается определять, при этом учитывают комплекс условий (температура, освещенность, материал посуды и т. д.).

Подготовка пробы к анализу. При подготовке пробы к анализу можно выделить три основные стадии:

·разложение (чаще с переведением пробы в раствор);

·устранение влияния мешающих компонентов.

Высушивание пробы. Анализируемый образец содержит, как правило, переменное количество воды. Это может быть химически несвязанная вода, например, адсорбированная на поверхности пробы твердого вещества, сорбированная щелями и капиллярами аморфных веществ (крахмал, белок), окклюдированная полостями минералов, руд, горных пород. Анализируемый объект может также содержать химически связанную воду. Это может быть кристаллизационная (например, в соединениях BaCl2 ·2H2O, CaSO4 ·2H2O, Na2B4O7· 10H2O) или конституционная вода, выделяющаяся в результате разложения вещества при нагревании. Часть химически связанной воды может теряться в процессе отбора и хранения пробы.

Для установления состава объекта и получения воспроизводимых результатов необходимо удалить влагу из образца, высушив его до постоянной массы. Чаще всего анализируемый образец высушивают на воздухе или в сушильных шкафах при температуре +105+120 ºС в течение 1–2 ч или в эксикаторах над влагопоглощающими веществами (прокаленный хлорид кальция, фосфорный ангидрид). Длительность и температуру высушивания образца, зависящие от его природы, устанавливают заранее методом термогравиметрии. Воду определяют гравиметрически косвенным или прямым методом. В косвенном методе о содержании воды судят по потере массы анализируемой пробы при ее высушивании или прокаливании. Прямой гравиметрический метод основан на поглощении выделившейся из образца воды подходящим поглотителем. О содержании воды судят по увеличению массы предварительно взвешенного поглотителя.

Для определения воды также применяют титриметрический метод, газожидкостную хроматографию и инфракрасную спектроскопию.

Разложение образцов. Переведение пробы в раствор. Способы разложения делят на сухие и мокрые. К сухим относят термическое разложение, сплавление и спекание с различными веществами (солями, оксидами, щелочами и их смесями), к мокрым – растворение анализируемой пробы в различных растворителях.

Растворитель должен растворять пробу быстро, в достаточно мягких условиях и не мешать на последующих стадиях анализа. Лучшим растворителем является вода. Для растворения органических соединений применяют органические растворители (спирты, хлорированные углеводороды, кетоны). В отдельных случаях используют смесь воды и смешивающегося с ней органического растворителя (например, смесь воды и этанола).

При мокром способе разложения пробы часто применяют различные кислоты высокой степени очистки и их смеси при нагревании с использованием сосудов из соответствующего (инертного к кислотам) материала. Лучшим растворителем для многих металлов является соляная кислота. Для ускорения разложения кислотами иногда используют катализаторы (например, ферменты). Для обеспечения разло- жения веществ, не взаимодействующих с реагентами при обычной температуре и давлении, растворение проб часто проводят в автоклавах.

Выбор сухого способа разложения (сплавление, спекание и термическое разложение) определяется задачей анализа, природой разлагаемого вещества, выбранным методом определения компонентов, наличием необходимой аппаратуры.

Сплавлениекак метод разложения пробы сухим способом чаще используют при анализе неорганических веществ.

При сплавлении тонко измельченный образец перемешивают с 8–10-кратным избытком реагента (плавня) и нагревают (+300+1 000 °С) до получения прозрачного сплава. Сплавление считается законченным, когда масса в тигле становится совершенно однородной, прозрачной и легкоподвижной. После охлаждения застывшую массу растворяют в воде или кислотах. При сплавлении используют щелочные, кислые и окислительные плавни.

Спекание– это взаимодействие веществ при повышенной температуре в твердой фазе, основанное на высоком химическом сродстве компонентов пробы к введенным реагентам, на диффузии и реакциях обмена. В отдельных случаях спекание позволяет провести разложение пробы быстрее и проще, способствует уменьшению количества загрязнений, поскольку при этом часто используют меньший (двух- или четырехкратный) избыток реагентов и менее высокие температуры. Спекание проводят обычно со смесью карбонатов щелочных металлов и оксидов магния, кальция или цинка. Рекомендуется использовать спекание при разложении проб силикатов, сульфидов, оксидов металлов.

Сухое озоление (термическое разложение, сожжение) наиболее распространено при вскрытии проб органического происхождения в токсикологическом анализе следовых содержаний примесей металлов. Сухое сожжение органических веществ проводят под действием кислорода воздуха или кислорода из баллона. Большинство пищевых продуктов сгорает при температуре +550+600 °С (таблица 1.1).

Преимуществом сухого озоления является простота аппаратуры (термопечи и тигли), минимум внимания оператора, отсутствие загрязнений от реактивов; недостатком – возможность потерь легколетучих элементов (Hg, As, Se, Те), взаимодействие с материалом тигля и длительность процесса. Широкое распространение получило сухое сожжение с озоляющими добавками (окислители, разбавители, плавни, вещества, препятствующие улетучиванию элементов).

Сухой способ используют тогда, когда мокрый способ не дает удовлетворительных результатов, поскольку возрастает вероятность и величина погрешностей, особенно при сплавлении.

Таблица 1.1 – Температура озоления некоторых материалов (определение общей зольности)

источник

Отбор пробы воды следует рассматривать как стадию, в значительной степени определяющую правильность последующего анализа, причем ошибки, допущенные в процессе пробоотбора, в дальнейшем не могут быть исправлены даже самым квалифицированным аналитиком. Место и условия отбора пробы воды в каждом случае определяют конкретными задача- ми исследований, однако основные правила отбора проб носят общий характер: — проба воды, взятая для анализа, должна отражать условия и место отбора; — отбор пробы, ее хранение и транспортировка должны исключать возможность измене- ния ее первоначального состава (содержаний определяемых компонентов или свойств воды); — объем пробы должен быть достаточным для проведения аналитической процедуры в соответствии с методикой.

Читайте также:  Бак анализ воды что входит

Отбор проб воды может быть разовым и серийным. Разовый отбор обычно применяют для получения первоначальной информации о качестве анализируемой воды. Принимая во внимание изменяющийся во времени и пространстве состав анализируемых вод, более оправдан серийный отбор, который проводят либо с разных глубин источника, либо в различные моменты времени. При таком отборе можно судить об изменении качества воды во времени или в зависимости от ее расхода.

По своему виду пробы бывают простыми и смешанными. Простая проба обеспечивается путем однократного отбора всего требуемого для анализа количества воды, при этом полученная информация отвечает составу в данной точке в данный момент времени. Смешанную пробу получают путем сливания простых проб, отобранных в разные промежутки времени или в различных точках, характеризуя таким образом усредненный состав воды. Если пробу отбирают из открытого водотока, необходимо соблюдать условия, при которых она будет типичной: лучшие места для пробоотбора — бурные участки, где происходит более полное смешение. При отборе пробы сточной воды нужно соблюдать следующие условия:

  • — скорость отбора не менее 0,5 м/с;
  • — диаметр отверстия пробоотборника не менее 9 — 12 мм;
  • — высокая турбулентность (в случае отсутствия создают искусственно).

При отборе пробы питьевой воды необходимо предварительно спустить воду в течение 15 мин при полностью открытом кране. Перед закрытием сосуда пробкой верхний слой воды сливают так, чтобы под пробкой оставался слой воздуха объемом 5 — 10 см 3 .

Количество пробы, которое необходимо отобрать для анализа, зависит от числа определяемых компонентов. Для неполного анализа, при котором определяют только несколько компонентов (или отдельные показатели: соответствие гигиеническим нормам, некоторые контрольные определения и т. д.), достаточно отобрать 1 л воды. Для более подробного анализа следует брать 2 л; для полного анализа или для определения компонентов, которых очень мало в воде, требуется еще больший объем пробы (до 10 л).

В качестве пробоотборных сосудов используют химически стойкие к исследуемой воде стеклянные, фарфоровые и пластмассовые сосуды (бутыли различных форм) с притертыми или завинчивающимися пробками (герметичная укупорка). Выбор материала сосуда зависит от природы определяемых примесей. Так, например, питьевую воду можно отбирать как в стеклянные, так и в полиэтиленовые сосуды, если они разрешены для контакта с водой; пробы, предназначенные для анализа на содержание органических веществ, отбирают только в стеклянные сосуды с притертыми пробками. Вместимость сосудов должна обеспечивать определение всех запланированных компонентов.

Основным правилом при взятии проб воды является чистота сосуда и пробки. Стеклянную посуду моют и обезжиривают хромовой смесью, тщательно отмывают от кислоты и пропаривают водяным паром. Полиэтиленовую посуду ополаскивают ацетоном, соляной кислотой (1:1), несколько раз водопроводной, а затем дистиллированной водой. Вымытую посуду высушивают, а перед взятием пробы несколько раз ополаскивают водой, подлежащей отбору. Пробки, в зависимости от природы материала, очищают различными способами: корковые пробки кипятят в дистиллированной воде, резиновые — в 5%-ном растворе соляной кислоты (20- 30 мин), а затем в 20%-ном растворе едкого натра, после чего их тщательно промывают дистиллированной водой и хранят в стеклянных банках с крышками.

Посуда, в которую производят отбор проб, должна быть пронумерована способом, исключающим возможность нарушения маркировки. К каждой пробе составляется сопроводительный документ, в котором должно быть указано: а) номер бутыли (тары); б) наименование вида вод; в) место отбора пробы; г) дата и время отбора пробы; д) способ отбора пробы (тип пробоотборника, приспособления); е) вид пробы (простая, смешанная); ж) периодичность отбора пробы; з) сведения о консервировании пробы и обеспечения ее сохранности; и) должность, фамилия и подпись ответственного лица и специально уполномоченного представителя водопользователя, участвующих в отборе проб и их подготовке.

Для доставки проб в лабораторию сосуды с пробами упаковывают в тару, обеспечивающую сохранность и предохраняющую от резких перепадов температуры.

Вода должна быть подвергнута анализу в день отбора. Принципиально следует избегать какого бы то ни было хранения проб воды. Поскольку для большей части типов вод характерен непостоянный состав, то в период времени между отбором пробы и анализом определяемые вещества могут измениться в различной степени. Очень быстро изменяются температура воды и рН. Газы, содержащиеся в воде, например кислород, диоксид углерода, сероводород или хлор, могут улетучиться из пробы (или появиться в ней: О2, СО2). Эти и подобные им вещества надо определять на месте отбора проб. Изменение величины рН, содержания карбонатов, свободного СО2 и т. п. может вызвать изменение свойств других компонентов, содержащихся в пробе. Некоторые из них могут выделиться в виде осадка или, наоборот, из нерастворимой формы перейти в раствор. Особенно это относится к солям железа, марганца, кальция.

В пробе могут протекать различные биохимические процессы, вызванные деятельностью микроорганизмов или планктона. Эти процессы протекают в отобранной пробе иначе, чем в первоначальной среде, и ведут к окислению или восстановлению некоторых компонентов пробы: нитраты восстанавливаются до нитритов или, наоборот, происходит окисление сульфидов, сульфитов, железа (II), цианидов и т. д. Изменяются органолептические свойства воды (запах, вкус, цвет, мутность). Некоторые растворенные металлы (Fe, Cu, Cd, Al, Mn, Cr, Zn), фосфаты, ряд органических соединений и другие компоненты могут адсорбироваться на стенках бутыли или выщелачиваться из стекла или пластмассы бутыли (В, Si, Na, К, различные ионы, адсорбированные полиэтиленом при предшествующем использовании бутыли).

Полимеризованные вещества могут деполимеризовываться и, наоборот, простые соединения могут полимеризовываться. Продолжительность рассмотренных процессов зависит от химической и биологической природы пробы, температуры, времени нахождения пробы на свету, материала посуды, промежутка времени между отбором проб и их анализом, условий транспортирования и приводит к несоответствию результатов анализа с реальными концентрациями компонентов в свежеотобранной пробе. Поэтому следует принимать все меры для того, чтобы сократить время между отбором пробы и анализом.

Последний должен быть проведен не позднее, чем через 12 ч после отбора пробы. Если же по каким-либо причинам сделать это невозможно, то для продления срока сохранности воды в том состоянии, в котором она находилась в момент взятия пробы, пробу консервируют. Консервация пробы заключается в добавлении консервирующих веществ в отобранную пробу.

Задача консервации и хранения проб очень сложна. Не все компоненты вод могут быть законсервированы: нельзя консервировать остаточные озон и хлор, рН, вкус, запах, цветность, мутность, общую жесткость, сухой остаток, фтор, хлориды, сульфаты, бораты, нитраты, фториды, ксантогенаты, взвешенные вещества, грубодисперсные примеси, жирные кислоты, сахара и т. д. Поскольку универсального консервирующего вещества не существует, то определяемые в пробе вещества не могут быть законсервированы одним и тем же способом: в этом случае пробы отбирают в отдельные бутыли и проводят соответствующую для каждого из определений консервацию.

Так, например, для определения сульфидов, сульфитов, диоксида углерода пробы отбирают в отдельные бутыли для каждого из этих определений. Консервирующее вещество может оказать мешающее действие, особенно при наличии в пробе нерастворимых веществ, что особенно характерно для сточных вод.

В качестве консервантов применяют широкий круг различных веществ, выбор которых определяется природой определяемых компонентов. Так, например, Al, As, Сu и Sb консервируют добавлением концентрированной соляной кислоты; Fe (общее содержание), Be, Mo, Se, U, Cd, Co, Sr, Mn, Ni, Hg, Pb, Ag, Cr (общий) — добавлением концентрированной азотной кислоты; аммиак и ионы аммония — добавлением серной кислоты; цианиды и фенолы — добавлением NaOH или КОН; сульфаты — добавлением NaOH и глицерина; нефтепродукты, нитриты, фосфаты — добавлением хлороформа. Количество консерванта составляет 3 мл/л пробы.

Хранить пробы лучше всего в сосудах из боросиликатного стекла, полиэтилена высокой плотности или полипропилена при рН = 2. В этих условиях уменьшается хемосорбция ионов следов металлов на поверхностях, предотвращается гидролиз и осаждение катионов.

Однако применение консервирующих средств не предохраняет полностью определяемое вещество от изменения. Целью консервации является лишь сохранение соответствующего компонента без изменений на период между отбором пробы и анализом. Поэтому и консервированные пробы следует анализировать на следующий день, но не позднее чем через 3 сут с момента отбора. Хранение проб в течение длительного времени возможно только для определения ограниченного числа параметров. О длительности хранения воды делается отметка в протоколе анализа.

Вообще установить единые требования к хранению проб невозможно. Сроки хранения, материал сосуда и другие условия зависят не только от определяемых компонентов, но также от природы пробы и аналитических методов, которые будут применяться. Обычно пробы поверхностных и подземных вод более стабильны при хранении, чем сточные воды.

В качестве метода консервирования вод широко используются глубокое охлаждение или замораживание на неопределенный период. Этот метод особенно эффективен, если его применять сразу же после отбора проб. Но долго хранить охлажденные пробы нельзя. В стеклянных сосудах пробы не замораживают.

источник

Титрованием NaOH с индикатором фенол- фталеином

— содержание определяемого компонента в .

Титрованием HCl с индикатором фенол- фталеином

— содержание определяемого компонента в мг/л.

— окисляемость воды в мг/л О .

Титрованием НСl с индикатором метилоранжем

— количество раствора известной концентрации, израсходованное на титрование взятого объема пробы воды (или добавленное в образцовый при колориметри- ровании), в мл.

Титрованием трилона «Б» с индикатором ЕТ-00

— поправочный коэффициент к нормальности этого раствора.

Титрованием трилона «Б» с индикатором мурексидом

— концентрация стандартного раствора.

— объем исследуемой воды, взятой для определения, в мл.

Титрованием MgCl с индикатором ЕТ-00

— количество трилона «Б», добавленное в пробу, в мл.

Титрованием AgNO в присутствии индикатора K Cr O :

I — эмпирическим раствором (1 мл AgNO 1 мг Cl’) и

— общее количество KMnO , добавленное в пробу, в мл.

— количество KMnO , пошедшее на окисление органических веществ в дистиллированной воде, мл.

II — децинор- мальным (1 мл 0,1 AgNO 0,1 мг/эк в Cl’)

— количество KMnO , пошедшее на окисление 10 мл раствора H C O , в мл.

— количество раствора J , добавленное в пробу, мл.

Титрованием KMnO в кислой или щелочной среде

— поправочный коэффициент к нормальности раствора J.

Титрованием Na S O (иодометрия)

— количество раствора Na S O , израсходованное на титрование пробы, в мл.

Метод колори-
метрического титрования

С сульфо- салициловой кислотой

— поправочный коэффициент к нормальности раствора Na S O .

Окисление Mn до MnO в присутствии катализатора AgNO

— количество стандартного раствора, взятого для приготовления образцового раствора, в мл.

С молибдено- вокислым аммонием

— высота столба жидкости в цилиндре с образцовым раствором.

С циркон- ализариновым красителем

— высота столба жидкости в цилиндре с исследуемой водой.

— вес прокаленного остатка определяемого вещества в мг.

С дисульфо- феноловым реактивом

— вес чашки с сухим остатком в мг.

— вес сухого остатка прибавленного раствора соды в мг.

1000 — коэффициент для пересчета содержания определяемого компонента в 1 литре воды.

2 — коэффициент пересчета в СО (условно считают, что с НСl оттитровывается только 1/2 общего содержания СО ).

С отделением Са , Mg , Fe , Al аммиачно- спиртовым раствором

30 — эквивалентный вес иона Са».

61 — эквивалентный вес иона НСО .

20,04 — эквивалентный вес иона Са .

Выпариванием при 130 °С с содой

12,16 — эквивалентный вес иона Mg .

35,5 — эквивалентный вес иона Сl’.

По разности между общей жесткостью и ионом Са

4,4 — коэффициент пересчета в СО своб. (1 мл 0,1 NaOH соответствует 4,4 мг СО своб.).

По разности между содержанием общего и трехвалентного железа

0,17 — коэффициент пересчета в H S (1 мл 0,01 раствора иода, соответствует 0,17 мг H S).

0,08 — титр 0,01 раствора KMnO , выраженный в мг O .

2,4 — коэффициент пересчета в SO (1 мл 0,05 раствора трилона «Б» соответствует 2,4 мг иона SO ).

0,0208 — коэффициент для пересчета мг-л SO в .

0,028 — коэффициент для пересчета мг/л иона Cl’ в .

0,043 — коэффициент для пересчета мг/л (Na+K) в .

0,4114 — коэффициент для пересчета BaSO в SO .

0,3235 — коэффициент для пересчета суммы (Na +К ) на Na .

При отборе проб должна быть исключена любая возможность случайного загрязнения воды.

Бутыли тщательно моют внутри и снаружи. Резиновые пробки кипятят в 1%-ном растворе соды, затем промывают водой и 1%-ным раствором соляной кислоты, после чего несколько раз ополаскивают дистиллированной водой. Если для отбора применяют стаканы и пробоотборники, они также должны быть тщательно вымыты.

Пробки хранят в чистом деревянном плотно закрываемом ящике, что исключает возможность загрязнения.

Отбор проб воды является ответственным моментом, определяющим качество исследований и надежность результатов анализа. Перед отбором пробы тщательно вымытые руки, бутыли, стаканы, пробоотборники, пробки два, три раза ополаскивают отбираемой водой.

В открытый источник бутыль погружают и она заполняется водой. Если источник мелкий, воду отбирают стаканом, сливая в бутыль воду по стенке.

Перед отбором проб из скважин и колодцев откачивают застоявшуюся воду так, чтобы столб воды сменился свежей не менее двух-трех раз. Для отбора проб целесообразно применять пробоотборник конструкции Е.В.Симонова.

Между уровнем воды в бутыли и пробкой нужно оставить воздушное пространство объемом 5-10 см .

Немедленно после заполнения бутыль закупоривают пробкой. Обтирают бутыль сухим полотенцем и переворачивают вверх дном, следя за тем, чтобы вниз не стекали капли воды. Если пробка остается сухой, можно считать, что герметичность укупорки достигнута.

На бутыль наклеивают этикетку, в которой должны быть указаны: назначение анализа, адрес места отбора, наименование водоема, водотока, колодца, номер скважины, глубина и дата отбора, условия погоды, фамилия исполнителя, отобравшего пробу.

В зависимости от назначения анализа отбирают следующие количества воды:

для целей питьевого водоснабжения 1,5 л, и, кроме того, для определения каждого из неустойчивых компонентов по 0,25 л; для оценки агрессивных и коррозионных свойств 1,0 л и для определения по специальному заданию стабильности и содержания ионов марганца и фтора по 0,5 л.

Отобранные пробы воды доставляют в лабораторию с сопроводительными ведомостями, в которых повторено содержание этикеток.

С целью определения неустойчивых компонентов отбирают отдельные пробы по 250 мл воды в каждой.

Окисляемость, содержание сероводорода, нитратов, нитритов, аммония, железа и стабильность рекомендуется определять на месте взятия пробы, немедленно после отбора.

Если этого сделать нельзя, неустойчивые компоненты воды консервируют.

Консервируя окисляемость и соединения азота, к 250 мл отдельно взятой пробы воды добавляют 0,5 мл 25%-ного раствора серной кислоты, проверенной на отсутствие аммония.

Для консервации сероводорода в бутыль емкостью 250 мл предварительно наливают 6-10 мл 10%-ного раствора ацетата кадмия или 1-2 мл 50%-ного раствора едкого натрия.

Для стабилизации железа воду подкисляют соляной кислотой. Дозу раствора кислоты устанавливают, титруя 250 мл исследуемой воды с метилоранжем до появления розового окрашивания. Во вновь отобранную пробу воды добавляют установленную дозу соляной кислоты. Мутные воды после подкисления отстаивают в течение часа и переливают в чистую посуду. Если в дальнейшем при стоянии выпадает осадок гидрата окиси железа, его растворяют подкислением воды.

Для определения стабильности в бутыль на 500 мл отбирают пробу воды, в которую всыпают 30 г мраморного порошка для нахождения щелочности в воде, насыщенной углекислым кальцием.

Лаборант записывает в рабочий журнал сведения с этикетки на бутыли и отмечает в журнале даты доставки пробы воды в лабораторию, начала и окончания анализа. (Формы рабочих журналов приведены в приложениях NN 5, 6 и 7).

Читайте также:  Атомно абсорбционный метод анализа воды

Исследуемую воду перед анализом подвергают предварительной обработке в двух случаях: когда она мутна или окрашена.

В нефильтрованной воде определяют: прозрачность, содержание сероводорода и железа.

Для объемных и колориметрических определений воду фильтруют в том случае, когда прозрачность ее ниже 30 см по шрифту.

Для весовых определений воду во всех случаях фильтруют, окрашенные же воды не обесцвечивают. Для колориметрических определений окрашенные воды предварительно обесцвечивают.

1. Фильтрование.

Воду фильтруют через беззольный бумажный фильтр, промытый несколько раз дистиллированной, а затем 2-3 раза исследуемой водой.

Порциями профильтрованной воды промывают и склянку, в которую воду фильтруют. Профильтрованная вода должна тотчас же поступить в работу.

2. Обесцвечивание.

Наиболее распространенным реагентом для обесцвечивания воды является гидрат окиси алюминия, который образуется в воде при прибавлении к ней сернокислого алюминия. Процесс обесцвечивания идет наиболее эффективно при рН=5.

Этот способ обесцвечивания дает хорошие результаты при определении: аммонийных солей, нитритов (при цветности воды до 1000°), нитратов (до 300°) и хлоридов.

Реактивы. 1. Раствор сульфата алюминия (13,9 г химически чистого Al (SO ) ·18H O растворяют в 100 мл дистиллированной воды). 2. Раствор едкого калия (7 г химически чистого KOH растворяют в 100 мл дистиллированной воды).

Оба раствора практически эквивалентны и их нормальность примерно равна 1,25.

Реактивы и дистиллированная вода не должны содержать соединений азота и хлоридов.

Рекомендуется проверять эквивалентность соотношений обоих растворов. Для этого на 100 мл дистиллированной воды вносят 1 мл раствора едкого калия, 3 капли раствора индикатора метилрота (0,5%), а затем из градуированной пипетки вносят раствор сернокислого алюминия до ясного перехода желтой окраски в малиново-красную.

Число мл израсходованного раствора сернокислого алюминия выражает величину поправочного коэффициента ( ) данного раствора щелочи.

В зависимости от степени мутности, окрашенности и щелочности воды на 200-400 мл исследуемой пробы, налитой в мерный цилиндр, вносят при перемешивании 0,5-1-2-4 мл раствора сернокислого алюминия. Последний с бикарбонатами дает гидроокись алюминия:

Al (SO ) +3Ca(HCO ) =2Al(OH) +3CaSO +6CO .

Полное обесцвечивание происходит при конечной реакции среды около pH=5, что получается, если количество внесенного раствора сернокислого алюминия численно равно величине щелочности в мг-экв в данном (200-400 мл) объеме воды.

Так, если щелочность исследуемой воды соответствует 2,5 мг-экв в 1 л, то щелочность в 400 мл равна 1 мг-экв, и на этот объем воды необходимо внести 1 мл раствора сернокислого алюминия. Если же величина щелочности в данном объеме воды больше, то соответственно до равных числовых значений добавляют количество раствора сернокислого алюминия или несколько понижают щелочность воды путем добавки титрованного раствора чистой серной кислоты.

В тех случаях, когда требуется внести раствор сернокислого алюминия в количестве, превышающем щелочность в данном объеме воды, необходимо дополнительно внести раствор едкого калия, количество которого рассчитывают по формуле:

где — необходимое количество мл раствора KOH,

— количество мл раствора Al (SO ) , добавлено в пробу,

— щелочность воды в мг-экв в данном объеме воды,

— поправочный коэффициент к нормальности раствора Al (SO ) .

Пример: На 400 мл исследуемой воды со щелочностью 0,8 , внесен 1 мл раствора сернокислого алюминия, здесь требуется добавить раствор едкого калия в количестве, равном

Реакция среды контролируется по величине рН.

Для измерения температуры воды применяют ртутный термометр со стоградусной шкалой и делениями на 0,1 градуса, опуская его непосредственно в водоем или в пробу воды в бутыли. При этом нужно соблюдать меры предосторожности против нагревания воды лучами солнца, рукой или другими источниками тепла. Термометр выдерживают в воде не менее 5 минут и измеряют температуру с точностью до 0,1 градуса.

Извлеченный из воды термометр протирают сухим полотенцем и измеряют температуру воздуха в тени, не на ветру.

Запахи делятся на две группы:

I группа — запахи естественного происхождения (от живущих или отмерших в воде организмов, от влияния берегов, окружающих почв, дна и т.д.);

II группа — искусственного происхождения (от промышленных сточных вод, от обработки воды реагентами на водопроводе).

Характер запаха определяют при температуре воды 15-20°. Воду наливают в широкогорлую колбу емкостью 150-200 мл на ее объема, накрывают часовым стеклом и встряхивают вращательными движениями, после чего колбу открывают и втягивают носом воздух.

Запахи первой группы классифицируют по таблице 3.

Запах мокрой щепы, древесной коры

Прелый, свежевспаханной земли

Запахи естественного происхождения, не похожие на предыдущие

Запахи второй группы характеризуют по соответствующим веществам: фенольный, хлорфенольный, камфорный, нефтяной, хлорный.

Интенсивность запаха выражают в баллах при температуре 15-20 °С и при нагревании до температуры около 60 °С. При этом поступают так же, как при определении характера запаха. Оценка в баллах дается по таблице 4.

Запах совсем не ощущается.

Запах, обычно не замечаемый, обнаруживается опытным исследователем.

Запах, обнаруживаемый потребителем, если на запах обратить его внимание.

Запах, легко замечаемый и могущий вызвать неодобрительные отзывы о воде.

Запах, обращающий на себя внимание и могущий заставить воздержаться от питья.

Запах, настолько сильный, что вода непригодна для питья.

Мутность зависит от наличия в воде взвешенных веществ и коллоидных примесей. В зависимости от степени прозрачности воду условно подразделяют на: 1) прозрачную, 2) слабо опалесцирующую, 3) опалесцирующую, 4) слегка мутную, 5) мутную и 6) сильно мутную.

Для количественного определения прозрачности применяют два метода: «по кресту» и по Снеллену.

Прозрачность «по кресту» определяют при регулярном контроле работы очистных сооружений и качества воды в водопроводной сети.

В лаборатории прозрачность воды устанавливают по Снеллену путем чтения стандартного шрифта через столб воды, налитой в цилиндр диаметром 2,5-2,0 см с плоским дном, градуированный по высоте на 30 см, начиная от дна. Цилиндр неподвижно укрепляют в штатив так, чтобы шрифт находился на расстоянии 4 см от дна цилиндра.

Перед анализом воду хорошо взбалтывают, тотчас же переливают в цилиндр и, быстро сливая воду из боковой трубки, отмечают высоту столба, при которой чтение шрифта становится возможным. Прозрачность выражают в сантиметрах, с точностью до 0,5 см. Работать нужно в хорошо освещенной комнате, но не на прямом солнечном свету.

Образцы стандартного шрифта приложены к ГОСТу 3351-46*.
________________
* На территории Российской Федерации документ не действует. Действует ГОСТ 3351-74, здесь и далее по тексту. — Примечание изготовителя базы данных.

Причиной окраски природных вод обычно являются вещества, извлекаемые водой из торфа, гумуса, болотной почвы, отмерших растений и т.п.

Для качественного определения цветности 100 мл воды в колбе из бесцветного стекла просматривают на белом фоне. По окраске воду характеризуют как: бесцветную, светло-желтую, желтоватую и интенсивно-желтую.

Количественно цветность воды определяют путем сравнения с растворами, имитирующими цветность воды — шкалой цветности.

Для приготовления шкалы цветности используют основные растворы: платиново-кобальтовый (раствор N 1) или раствор двуххромовокислого калия и сернокислого кобальта (раствор N 2).

Приготовление основных растворов и шкалы цветности

Приготовление раствора N 1. Отвешивают на аналитических весах 1,245 г хлороплатината калия (KPtCl ), что соответствует 500 мг платины и 1,01 г кристаллического хлористого кобальта (CoCl ·6H O). Навески помещают в литровую колбу и растворяют, приливая немного дистиллированной воды, затем добавляют 100 мл концентрированной соляной кислоты и колбу до метки доливают дистиллированной водой. Цветность такого раствора равна 500°.

Приготовление раствора N 2. 0,0875 г двуххромовокислого калия растворяют в чистой посуде в небольшом количестве дистиллированной воды. В отдельной посуде растворяют 2,0 г сернокислого кобальта. Оба раствора смешивают в литровой колбе и прибавляют 1 мл химически чистой серной кислоты (удельного веса 1,84). Колбу доливают до метки дистиллированной водой. Цветность этого раствора также равна 500°.

Растворы N 1 и N 2 хранят в темном месте. Они пригодны для приготовления шкалы цветности в течение одного года.

Шкалу цветности готовят из основных растворов N 1 и N 2, в цилиндрах Несслера одинакового диаметра и высоты, емкостью 100 мл, изготовленных из бесцветного стекла. В цилиндры приливают различные количества раствора N 1 и раствора N 2. Объем растворов доводят до 100 мл дистиллированной водой.

Шкалу цветности из основного платино-кобальтового раствора N 1 готовят в соответствии с таблицей 5.

Количество основного раствора в мл

Кол-во дистиллированной воды в мл

Для приготовления шкалы цветности из основного раствора N 2 готовят вспомогательный раствор. 1 мл химически чистой серной кислоты (удельного веса 1,84) доводят дистиллированной водой до 1 литра. Затем смешением основного раствора и вспомогательного в соотношениях, указанных в таблице 6, получают шкалу цветности.

Количество основного раствора в мл

Кол-во вспомогательного раствора в мл

Цилиндры шкалы закрывают пробками и хранят в темном месте. Через 2-3 месяца шкалу из основных растворов приготовляют заново.

Количественное определение цветности.

Мутные воды прозрачностью ниже 30 см по Снеллену перед определением цветности фильтруют.

В цилиндр, однотипный с теми, в которых приготовлена шкала цветности, наливают 100 мл исследуемой воды и сравнивают со шкалой цветности. Цилиндры просматривают сверху на белом фоне до тех пор, пока окраска исследуемой воды не будет близка или тождественна окраске раствора в одном из цилиндров шкалы цветности.

Цветность от 1° до 50° выражают с точностью до 1°,

Если исследуемая вода имеет цветность выше 80°, то для анализа берут меньший объем воды и разбавляют дистиллированной водой до объема 100 мл. Цветность в этом случае находят умножением результата на кратность разбавления.

Взятую из открытого водоема воду прозрачностью 20 см и менее по Снеллену хорошо взбалтывают и наливают в мерный цилиндр до высоты 30 см. Воде дают постоять в течение часа в защищенном от солнечных лучей и нагревания месте.

Воды прозрачностью по Снеллену 20 см и менее, пробы которых отобраны из подземных источников, отстаивают в течение 24 часов.

Осветление описывают качественно:

незначительное, слабое, сильное, вода прозрачна, а выпавший осадок характеризуют по количеству: нет, незначительный, большой. Указывают толщину слоя большого осадка в мм или в отношении общего объема пробы воды. По качеству осадки подразделяют на кристаллические, аморфные, хлопьевидные, илистые, песчаные. Отмечают цвет осадка — бесцветный, сероватый, бурый, черный.

Содержание в воде взвешенных веществ определяют весовым методом. Для отделения взвешенных веществ воду фильтруют через бумажные фильтры, тигли Гуча или центрифугируют. Объем воды, необходимый для анализа, зависит от предполагаемого содержания в ней взвешенных веществ и может быть принят по таблице 7.

Предполагаемое содержание взвешенных веществ в мг/л

1. Определение взвешенных веществ фильтрованием.

Плотные бумажные обеззоленные фильтры помещают по одному в бюксы и просушивают в сушильном шкафу при температуре 105° до постоянного веса. Бюксы с фильтрами взвешивают на аналитических весах. Пробу воды тщательно взбалтывают и быстро, не давая осесть взвеси, отбирают в мерную колбу необходимое для анализа количество воды и пропускают через подготовленные бумажные фильтры. Если фильтрат мутный, его следует пропустить вторично через тот же фильтр. Переносят фильтры вместе с находящимися в них взвешенными веществами в бюксы, в которых взвешивались фильтры, и высушивают в сушильном шкафу до постоянного веса при температуре 105 °С.

Содержание взвешенных веществ в анализируемой воде в мг/л рассчитывают по формуле:

где — содержание взвешенных веществ в мг/л;

— вес бюкса после просушивания с бумажным фильтром и взвешенными веществами в г;

— вес бюкса с бумажным фильтром без осадка в г;

— коэффициент приведения к объему в 1 л;

— объем воды в мл, взятый для анализа;

1000 — множитель для пересчета г в мг.

2. Метод центрифугирования.

В высушенную при 105 °С до постоянного веса пробирку наливают воду и центрифугируют в центрифуге марки СМ-3 в течение 15 минут. Затем жидкость над осадком осторожно отбирают резиновой грушей, наливают новую порцию исследуемой воды в ту же пробирку и вновь центрифугируют.

Эти операции повторяют до тех пор, пока весь взятый для определения объем воды не будет процентрифугирован.

Затем стенки пробирки омывают дистиллированной водой, взмучивая осадок, и вновь центрифугируют. После сливания воды над осадком промывание повторяют вторично, после чего пробирку с осадком высушивают до постоянного веса в сушильном шкафу при температуре 105°.

Содержание взвешенных веществ рассчитывают по той же формуле (пункт 1).

3. Определение потери при прокаливании взвешенных веществ.

Фильтр со взвешенными веществами помещают в предварительно прокаленный и взвешенный тигель. Тигель с осадком прокаливают в электрическом муфеле при 800° в течение 30 минут до достоянного веса, охлаждают и взвешивают. Разница в весе между взвешенными веществами и прокаленными, приведенная к 1 литру, равна потере при прокаливании.

Воды, содержащие сероводород, корродируют водопроводные трубы, котельный металл и железобетонные сооружения.

Питьевая вода не должка содержать даже следов сероводорода, так как уже малейшие его концентрации сообщают ей неприятный вкус и запах.

Реактивы. 1. Раствор уксуснокислого кадмия 10%; 2. соляная кислота концентрации 1:1; 3. раствор иода 0,01 ; 4. раствор гипосульфита натрия 0,01 ; 5. раствор свежеприготовленного крахмала 0,5%; 6. свинцовая бумага.

Качественная проба. Присутствие сероводорода устанавливают по свойственному этому газу запаху тухлых яиц или при помощи бумаги, пропитанной раствором уксуснокислого свинца. Смоченная дистиллированной водой такая бумага чернеет, если ее держать над водой, содержащей сероводород, вследствие образования сернистого свинца.

Количественное определение. В склянку на 250 мл с притертой пробкой наливают 6-10 мл уксуснокислого кадмия и осторожно наполняют исследуемой водой почти доверху. Закрыв склянку пробкой, осторожно перемешивают ее содержимое.

Через 5 часов (или после доставки пробы в стационарную лабораторию) осадок сульфида кадмия отфильтровывают и тщательно промывают горячей водой. Фильтрат с осадком помещают в ту склянку, где производилось осаждение, приливают в нее 20 мл раствора иода, подкисляют 5 мл соляной кислоты, фильтр измельчают стеклянной палочкой и избыток иода оттитровывают раствором гипосульфита натрия до слабо-желтого окрашивания. Затем добавляет 1 мл свежеприготовленного раствора крахмала и продолжают титрование до обесцвечивания раствора.

Определение содержания нитратов основано на том, что они под действием дисульфофеноловой кислоты переходят в нитропроизводные фенола, которые дают со щелочами соединения, окрашивающие раствор в желтый цвет.

Реактивы. 1. Дисульфофеноловый реактив; 2. раствор аммиака 10%; 3. основной стандартный раствор азотнокислого калия, 1 мл которого содержат 0,1 мг нитратов; 4. раствор сернокислого серебра, 1 мл которого соответствует 1 мг хлора.

Качественная проба с приближенной количественной оценкой. В пробирку, диаметром 14 мм, из бесцветного стекла наливают по стенке 1 мл исследуемой воды и 1 мл дисульфофеноловой кислоты. Содержимое пробирки перемешивают и через 20 минут по интенсивности окраски устанавливают приближенное содержание нитратов по таблице 8.

Окраска при наблюдении сбоку

Содержание азота нитратов в мг/л

Уловима только при сравнении с контролем

Количественное определение. Цветные и мутные воды перед анализом обесцвечивают и фильтруют. Для определения берут такой объем исследуемой воды, содержание азота в котором находится в пределах 0,02-0,1 мг. Воду отбирают пипеткой, помещают в фарфоровую чашечку, добавляют раствор сернокислого серебра, в количестве, эквивалентном содержанию хлоридов в данном объеме воды, и упаривают досуха. Если вода предварительно подвергалась коагулированию и имеет рН около 5,0, пробу перед выпариванием подщелачивают, добавив к ней 0,1 раствора щелочи из расчета 2 мл на 100 мл исследуемой воды.

К охлажденному сухому остатку добавляют 1 мл дисульфофенолового реактива и тотчас же тщательно растирают стеклянной палочкой до полного смешения с высушенным остатком. Через 10 минут в чашку добавляют 10 мл дистиллированной воды, перемешивают и вносят 10 мл аммиака (раствор должен после этого иметь отчетливый запах аммиака). В присутствии нитратов появляется желтое окрашивание. Раствор переносят в мерную колбу и доводят дистиллированной водой до метки 100 мл.

Читайте также:  Атомно абсорбционный анализ питьевой воды

3атем готовят 2-3 образцовых раствора, исходя из ожидаемого содержания нитратов. При этом рабочий стандартный раствор (0,2-1,0 мл) выпаривают в фарфоровых чашечках, не допуская прокаливания, обрабатывают, как указано выше, и доводят объем раствора дистиллированной водой до 100 мл.

Колориметрируют в цилиндрах Генера. Сливая воду через кран из того или другого цилиндра, находят ту высоту столба жидкостей, при котором окраска в обоих цилиндрах при рассмотрении сверху на белом фоне становится одинаковой.

В присутствии хлоридов получают уменьшенное количество нитратов. Хлориды связывают добавкой сернокислого серебра. Выпавший осадок солянокислого серебра отфильтровывают.

Определение содержания нитритов основано на образовании азокрасок при взаимодействии в кислой среде нитрит-ионов и ароматических аминов (реактив Грисса).

Реактив Грисса с нитритами дает окраску от розовой до ярко-красной.

Реактивы. 1. Реактив Грисса; 2. стандартный раствор азотистокислого натрия (1 мл раствора содержит 1 мг NO ); 3. рабочий раствор азотистокислого натрия (1 мл раствора содержит 0,002 мг нитрит-иона).

Качественная проба. В пробирку диаметром 13-14 мм наливают 10 мл исследуемой воды, прибавляют 0,1-0,2 г реактива Грисса и нагревают в течение 5 минут при 70-80 °С. Содержание нитритов приближенно находят по таблице 9.

Окрашивание при рассмотрении сбоку

Окрашивание при рассмотрении сверху вниз

Содержание азота нитритов в мг/л

Количественное определение. Мутные и цветные воды предварительно обесцвечивают и фильтруют.

Берут такой объем исследуемой воды, концентрация азота в котором находится в пределах 0,01-0,004 мг. Взятый объем воды помещают в цилиндр Генера и объем доводят до 100 мл дистиллированной водой. Затем готовят 2-3 образцовых раствора в зависимости от предполагаемого содержания нитритов, доводя взятый объем стандартного раствора до 100 мл дистиллированной водой. Перемешивают и оставляют стоять 30 минут. Нагревание раствора на водяной бане до 50-60 °С ускоряет развитие окраски.

Сравнивают окраски растворов в цилиндрах Генера, рассматривая на белом фоне сверху. Сливая воду из цилиндров, находят такую высоту столба жидкости, при которой окраски в обоих цилиндрах одинаковы.

Северные и глубоководные артезианские воды содержат минеральный аммоний, который не обладает вредными для здоровья человека свойствами.

Присутствие аммония в поверхностных и верховодных источниках может указывать на возможное загрязнение воды, что имеет большое значение для оценки питьевых качеств воды с санитарной точки зрения.

Содержание аммонийных солей определяют колориметрически с реактивом Несслера, который с NH дает желтое окрашивание.

Подготовка пробы воды к анализу.

На точность получаемых результатов оказывает влияние: мутность, цветность, жесткость, содержание железа, сульфатов и свободной углекислоты. Если вода обладает цветностью более 30°, ее обесцвечивают; мутную воду отфильтровывают или обрабатывают коагулянтом. Если образовавшаяся при добавлении реактива Несслера муть не исчезает при подкислении раствора серной кислотой в концентрации 1:3, то в воде имеются сульфиды, которые необходимо удалить. Для этого на каждые 100 мл исследуемой воды добавляют 10 капель 30% раствора уксуснокислого цинка, перемешивают, отстаивают в цилиндре в течение 2-х часов и из отстоявшейся жидкости отбирают пробу для определения.

При жесткости более 4 воду умягчают, прибавляя на 100 мл 2 мл раствора едкого натрия и кальцинированной соды. Раствор перемешивают и отстаивают в течение 2-х часов.

Реактивы. 1. Реактив Несслера; 2. сегнетова соль; 3. стандартный раствор хлористого аммония, 1 мл которого содержит 0,05 мг аммонийного азота; 4. безаммиачная дистиллированная вода; 5. раствор уксуснокислого цинка 30%; 6. раствор едкого натрия и кальцинированной соды (см. приложение N 1 — приготовление специальных реактивов, буферных растворов и индикаторов).

Качественная проба. В пробирку диаметром 13-14 мм отбирают 10 мл исследуемой воды, прибавляют 0,2-0,3 г сегнетовой соли, а затем 0,2 мл реактива Несслера. По развившейся желтой окраске через 10 минут судят о приближенном содержании аммония по таблице 10.

Окрашивание при рассматривании сверху вниз

Окрашивание при рассматривании сбоку

Интенсивно-бурое, раствор мутный

Количественное определение. Берут такой объем воды, концентрация аммония в котором находится в пределах 0,03-0,07 мг, и доводят до 100 мл дистиллированной безаммиачной водой. Затем готовят 2-3 образцовых раствора согласно ожидаемой концентрации аммония, разбавляя взятый объем рабочего стандартного раствора до 100 мл безаммиачной водой.

Исследуемую воду и образцовые растворы переносят в цилиндры Генера, добавляют по 0,2 г сегнетовой соли и по 2 мл реактива Несслера. После добавления каждого реактива растворы перемешивают. Окраски сравнивают через 10 минут (см. § 2 настоящей главы).

При содержании аммония более 5 мг/л анализируемую воду предварительно разбавляют.

В сильно загрязненных водах или в водах с солесодержанием свыше 3000 мг/л содержание аммония определяют с отгонкой. Для этого 300 мл анализируемой воды вливают в колбу с притертой стеклянной пробкой, через которую пропущена трубка дефлегматора, соединенного с холодильником. В колбу вводят 10 мл фосфатной буферной смеси (14,3 г одноосновного фосфата калия KH PO и 90,15 двуосновного фосфата калия — K HPO ·3H O) помещают в мерную литровую колбу, растворяют в безаммиачной воде и доводят объем раствора до метки 1 литр. Содержимое колбы кипятят до тех пор, пока от взятого объема не останется 100 мл.

В отгоне определяют содержание аммония и пересчитывают на 1 литр, учитывая взятый для отгона объем воды.

Почти все воды содержат железо. Значительные количества его портят вкус питьевой воды. Соли железа образуют нерастворимые осадки на стенках водопроводных труб и котлов, кольматируют дренажи и водозаборные фильтры. Все это вызывает необходимость точного учета содержания железа для обезжелезивания воды в необходимых случаях.

1. Сульфосалициловый метод.

Наиболее точным считают колориметрический метод с сульфосалициловой кислотой. Он основан на способности сульфосалициловой кислоты или ее натриевой соли давать с ионами железа окрашенные комплексные соединения.

В слабокислой среде сульфосалициловая кислота реагирует только с ионами трехвалентного железа с образованием комплексов, окрашивающих раствор в красный цвет.

В слабощелочной среде она реагирует с солями как трехвалентного, так и двухвалентного железа с образованием комплексов, окрашивающих раствор в желтый цвет.

Реактивы. 1. Водный раствор сульфосалициловой кислоты 10%; 2. раствор соляной кислоты (см. приложение N 1. Приготовление специальных растворов); 3. раствор аммиака 10%; 4. стандартный раствор железоаммонийных квасцов [FeNH (SO ) ·12H O], 1 мл которого содержит 0,01 мг железа.

Определение содержания общего железа.

Если концентрация железа не превышает 1,0 мг/л, для анализа берут 10 мл исследуемой воды, содержание железа в которых не превышает 0,01 мг.

Воду с большим содержанием железа разбавляют так, чтобы в 10 мл полученного раствора содержание железа было не выше 0,01 мг. Затем прибавляют по 5 мл растворов сульфосалициловой кислоты и аммиака и перемешивают. В таких же цилиндрах готовят шкалу стандартных растворов, наливая из микробюретки 0,1; 0,2 и т.д. до 1,0 мл стандартного раствора соли железа, доводят объем жидкости в цилиндрах до 10 мл дистиллированной водой и добавляют те же реактивы, какие были прибавлены в исследуемую воду.

Через 10 минут после приготовления растворов окраски сравнивают, просматривая цилиндры на белом фоне сверху.

Определение содержания трехвалентного железа.

Методики определения содержания трехвалентного и общего железа аналогичны за исключением того, что в исследуемую воду и во все цилиндры шкалы стандартов вместо раствора аммиака приливают по 0,1 мл раствора соляной кислоты. Раствор окрашивается в красный цвет. После 10-минутного стояния пробу колориметрируют.

Содержание Fe рассчитывают по той же формуле, что и для общего железа (см. таблицу 2).

Определение содержания двухвалентного железа.

Концентрацию двухвалентного железа вычисляют по разности: .

2. Родановый метод.

При отсутствии сульфосалициловой кислоты или сульфосалицилового натрия содержание железа определяют колориметрически с роданистым аммонием. Родановый метод основан на взаимодействии в сильнокислой среде окисного железа и родана с образованием комплекса, окрашивающего раствор в красный цвет.

Реактивы. 1. Стандартный раствор железоаммонийных квасцов, 1 мл которого содержит 0,01 мг железа; 2. раствор роданистого аммония или калия (NH SCN) 50%; 3. персульфат аммония в кристаллах [(NH ) S O ]; 4. соляная кислота удельного веса 1,19, свободная от железа.

Определение содержания общего железа.

В мерную колбу на 100 мл берут такой объем исследуемой воды, содержание железа в котором находится в пределах 0,05-0,2 мг. Объем раствора доводят до 100 мл дистиллированной водой. Затем добавляют 2 мл соляной кислоты и несколько кристаллов персульфата аммония. Содержимое колбы перемешивают и одновременно готовят 2-3 образцовых раствора. В мерные колбы вносят требуемое количество мл стандартного раствора и объемы доводят дистиллированной водой до метки «100», добавляют 2 мл кислоты HCl, несколько кристаллов персульфата и перемешивают.

Одновременно в колбы (с исследуемой водой и стандартными растворами) вносят по 2 мл роданистого аммония и, перемешав, сравнивают окраски в цилиндрах Генера. Сливая раствор из цилиндра с более интенсивной окраской, находят такую высоту столба жидкости, при которой интенсивность окрасок в обоих цилиндрах одинакова.

Определение содержания трехвалентного железа.

Анализ выполняют так же как и для общего железа, за исключением того, что в исследуемую воду и стандартные образцы не добавляют персульфат аммония. Сравнивать полученные окраски необходимо немедленно, так как интенсивность их быстро падает. Концентрацию окисного железа рассчитывают по формуле расчета общего железа (см. таблицу 2).

Определение содержания двухвалентного железа.

Содержание закисного железа определяют по разности:

1. Условия определения.

Окисляемость марганцевокислым калием является условным показателем, характеризующим содержание в воде восстановителей (окисляющихся веществ). Ее выражают в мг/л кислорода, пошедшего на окисление.

Определению окисляемости в кислой среде мешают хлориды при концентрации более 300 мг/л, т.к. образующийся хлористый марганец обесцвечивает титруемую пробу. При высоком содержании хлоридов анализ выполняют в щелочной среде.

Реактивы. 1. Раствор марганцевокислого калия 0,01 ; 2. раствор щавелевой кислоты 0,01 ; 3. раствор серной кислоты в концентрации 1:3; 4. раствор гидрата окиси калия или натрия 50%.

2. Определение в кислой среде.

В коническую плоскодонную колбу объемом 250 мл отбирают пипеткой 100 мл исследуемой воды. Добавляют в нее 5 мл разбавленной серной кислоты, 3-4 капилляра (для равномерного кипения), точно 10 мл раствора марганцевокислого калия. Кипятят 10 минут от начала кипения, а затем добавляют точно 10 мл раствора щавелевой кислоты и обесцветившийся раствор титруют из бюретки по каплям раствором марганцевокислого калия до устойчивого слабо-розового оттенка. Если после кипячения вода обесцвечивается или буреет, то определение повторяют, добавив в повторную пробу 10-30 мл раствора марганцевокислого калия или разбавив исследуемую воду в 2-3 раза.

Для установления титра марганцевокислого калия в оттитрованную до слабо-розового цвета и еще горячую жидкость прибавляют 10 мл 0,01 раствора щавелевой кислоты и оттитровывают тотчас же раствором марганцевокислого калия до слабо-розовой окраски. Находят поправку » «.

где — поправочный коэффициент нормальности,

— количество KMnO , пошедшее на титрование, в мл.

3. Определение окисляемости в щелочной среде.

К 100 мл исследуемой воды прибавляют 0,5 мл раствора щелочи, 10 мл раствора марганцевокислого калия и кипятят ровно 10 минут от начала кипения. Охладив колбу до 50-60 °С, приливают 5 мл серной кислоты и 10 мл раствора щавелевой кислоты. После обесцвечивания титруют марганцевокислым калием до появления устойчивого розового окрашивания, не исчезающего в течение 1 минуты.

Стабильность характеризует свойство воды не выделять и не растворять осадок карбоната кальция. Оно зависит от содержания в воде свободной углекислоты.

На месте отбора пробы определяют общую щелочность исследуемой воды (§ 10 настоящей главы).

Пробу с мраморной крошкой, отобранную для определения щелочности воды, насыщенной углекислым кальцием (гл.II, § 2), встряхивают в течение часа на шуттель-машине. После часового отстаивания воду фильтруют и в 100 г фильтрата определяют щелочность воды, насыщенной углекислым кальцием, в ( ).

Стабильность рассчитывают по формуле

Вода считается стабильной, если величина стабильности равна единице.

К 100 мл исследуемой воды добавляют 0,2-0,3 г сегнетовой соли (она препятствует осаждению гидроокисей металлов), 3 капли 1% раствора фенолфталеина и титруют 0,1 раствором едкого натрия до слабо-розового окрашивания, сохраняющегося в течение 3-х минут. Окрашенные воды разбавляют для снижения интенсивности окраски.

Воды по своим свойствам могут быть щелочные, кислые и нейтральные. Количественно эти свойства характеризуются концентрацией водородных ионов в воде и обозначаются символом рН.

При рН
При рН=5,5-6,5 — слабокислая.

При рН=6,5-7,5 — нейтральная.

При рН=7,5-8,5 — слабощелочная.

При рН>8,5 — сильнощелочная.

Концентрация водородных ионов — важнейшая характеристика воды. Коррозионные свойства и питьевые качества воды во многом определяются величиной рН, зависящей от содержания в воде свободных кислот и общей концентрации солей.

Экспериментально рН устанавливают колориметрическим и электрометрическим (потенциометрическим) методами.

1. Колориметрический метод с универсальным индикатором.

Колориметрический метод основан на свойстве кислотно-основных индикаторов менять свою окраску в зависимости от концентрации водородных ионов в растворе.

Наиболее быстрым и простым является предложенный Н.И.Алямовским метод определения рН с универсальным индикатором.

В пробирку наливают воду до метки 5 мл, прибавляют 0,1 мл универсального индикатора. Перемешивают раствор легким встряхиванием и определяют рН, сразу сравнивая на белом фоне при рассмотрении сверху окраску воды в пробирке со стандартной цветной шкалой на стекле, составленной для рН в интервалах от 4,0 до 8,2.

Отмечают то значение рН шкалы, с окраской которого совпала окраска раствора в пробирке. Если раствор в пробирке окажется более ярким, чем крайний зеленый эталон шкалы, записывают значение рН>8,2, если более ярким, чем крайний красный эталон, записывают значение рH

2. Потенциометрический метод.

Метод наиболее точен и применяется для мутных и окрашенных вод, буферных растворов, служащих для колориметрических определений pH, а также природных и сточных вод со значительными колебаниями значений pH.

В некоторых приборах измерения основаны на компенсации электродвижущей силы, возникающей на электродах, груженных в исследуемую воду.

Для массовых анализов более удобны приборы, у которых на шкалу гальванометра нанесены значения рН, определяемые по отклонению стрелки гальванометра. Наиболее распространены в последнее время потенциометры марок ППМ-03, ЛПУ-0,1 и «Агрохимик».

1. Виды щелочности.

Общая щелочность природных вод обусловлена содержанием бикарбонатов, карбонатов и гидратов кальция, магния и щелочных металлов.

Количественно щелочность равна суммарному содержанию в воде ионов СО , НСО и ОН’.

Если в воде нет карбонатных и гидратных ионов, то общая щелочность равна содержанию в воде иона НСО .

Реактивы. 1. Растворы: HCl 0,1 ; 2. фенолфталеина 1%-ный; 3. метилоранжа 0,1%-ный.

2. Определение содержания карбонатов (СО ).

К 100 мл исследуемой воды добавляют 3-5 капель 1% раствора фенолфталеина. Если вода остается бесцветной, в ней отсутствует карбонатный ион, а если она окрашивается в розовый цвет, ее при постоянном помешивании титруют раствором соляной кислоты до обесцвечивания.

3. Определение содержания бикарбонатов (HCO ).

Если в исследуемой воде есть карбонат-ион, то содержание иона HCO устанавливают в пробе после определения содержания CO . В остальных случаях к 100 мл исследуемой воды добавляют 3 капли раствора метилового оранжевого и титруют раствором соляной кислоты до перехода желтой окраски в оранжевую.

4. Определение содержание карбонатов, бикарбонатов и гидратов при совместном их присутствии.

При совместном присутствии ионов CO , НСО и ОН’ на основании результатов титрования рассчитывают содержание этих ионов в по таблице 11.

Результаты титрования в мл 0,1 раствором HCl

Содержание в анализируемой воде, ионов

источник