Меню Рубрики

Показатель цветности в анализе воды

Вода является уникальным сырьем, фундаментом для духовного и человеческого развития. Так как это вещество является ценным природным ресурсом, играет значение в обменных процессах, определение цветности воды является важным параметром анализа ее качества.

Человек является элементом биосферы. Основные ресурсы — воду, пищу, воздух — люди получают именно из биосферы. Накапливая и сбрасывая промышленные и бытовые отходы, на протяжении длительного времени люди нарушают равновесие биосферы.

Подобные процессы приводят к тому, что существенно изменяются органолептические и физические показатели (меняется цветность воды, появляется неприятный запах), повышается количественное содержание хлоридов, сульфатов, токсичных тяжелых металлов, нитратов, сокращается количество кислорода воздуха в воде, появляются болезнетворные бактерии, радиоактивные элементы.

Непосредственный контакт и употребление загрязненной воды способны привести к серьезным проблемам. Разнообразные паразиты проникают в кожу, могут провоцировать серьезные болезни. В настоящее время повышается опасность эпидемических заболеваний: холеры, дизентерии, брюшного тифа.

Для того чтобы остановить стихийность развития подобных событий, необходимо осуществлять специальную обработку воды из водопровода, скважины.

Существует около четырех сотен разнообразных видов веществ, которые способны вызывать загрязнение, влиять на цветность воды, снижать ее органолептические показатели. Возможно превышение допустимой нормы следующих показателей:

В таком случае воду считают загрязненной, непригодной к употреблению. Ее нельзя использовать без предварительной очистки.

Среди химических соединений, способных влиять на цветность воды, необходимо упомянуть нефть и ее многочисленные продукты, ПАВ (поверхностно-активные вещества), тяжелые металлы, пестициды, диоксины.

Существенно загрязняют воду биологические компоненты (вирусы и болезнетворные микроорганизмы), физические (радиоактивные соединения).

Определение цветности и мутности воды проводится для анализа ее пригодности к применению. Среди факторов, которые негативно отражаются на качестве поверхностных вод, отмечают:

  • сброс неочищенных стоков в водоемы;
  • смыв ливневыми осадками ядохимикатов;
  • утечки нефтепродуктов и нефти;
  • газовые и дымовые выбросы.

Помимо поверхностных вод систематически загрязняются и подземные, в частности, вблизи промышленных крупных центров. Проникают вредные соединения разнообразными путями:

  • просачиванием из хранилищ хозяйственно-бытовых и промышленных стоков;
  • по трубам неисправных скважин;
  • из прудов-накопителей.

Среди естественных источников загрязнения отмечают подземные минерализованные либо морские воды, внедряемые в незагрязненные пресные источники во время эксплуатации водозаборных сооружений, а также во время откачки воды из функционирующих скважин.

Показатель цветности воды позволяет выявлять некоторые примеси, негативно отражающиеся на ее качестве. К примеру, подобный эффект дают нерастворимые эмульсии, суспензии, которые взвешены в воде. Их наличие является свидетельством загрязненности водного источника водорослями, песком, глиной.

Также на цветность воды влияют органические соединения: частицы гумуса почвы, продукты разложения и жизнедеятельности животных и растительных организмов.

Анализируя источники ухудшения качества воды, нельзя оставить без внимания и соединения техногенного происхождения: жиры, органические кислоты, фенолы, белки, вирусы, углеводы. ГОСТом «Вода. Методы определения цветности» определены требования к отбору проб воды, выбираемой для исследований. Также там регламентируются основные принципы и порядок работ.

Цветность и мутность питьевой воды связана с микроорганизмами: вирусами, бактериями, планктоном. Увеличение мутности является свидетельством загрязненности, невозможности применения в питьевых и хозяйственных целях.

Органические вещества могут придавать воде определенные запахи: гнилостный, землистый, рыбный, болотный, нефтяной, аптечный, повышать ее цветность, неблагоприятно действовать на организм человека.

Из-за микроорганизмов существенно повышается риск холеры, дизентерии, тифа, полиомиелита, поэтому так важно осуществлять определение цветности воды. Методы анализа, применяемые в настоящее время, позволяют с высокой степенью вероятности выявлять различные болезнетворные организмы, осуществлять своевременную и качественную очистку воды.

Что такое цветность воды? Норма СанПина по данному показателю составляет 20 градусов. Под данным параметром подразумевают ее окраску, вызываемую растворенными в ней веществами. Среди основных компонентов, которые вызывают изменение цвета, выделяют гуминовые кислоты, а также различные соединения железа.

Определение цветности воды является важным компонентом комплексного физико-химического анализа, целью проведения которого является определение пригодности питьевой воды к применению. Определяют данный показатель по платинокобальтовой шкале цветности раствора.

Питьевая и хозяйственная вода должна быть абсолютно безвредной для человека, обладать высокими санитарными, химическими, физическими показателями. Именно поэтому был разработан ГОСТ. Цветность воды, ее запах, мутность – эти параметры являются обязательными элементами, анализируемыми в рамках лабораторных исследований.

Если вода имеет первоначальную мутность, а после продолжительного отстаивания светлеет, следовательно, в ней содержится повышенное количество глины и песка. Какие требования предъявляет к этому показателю ГОСТ? Определение цветности, мутности, запаха осуществляется согласно нормативам, указываемым в СанПине. К примеру, по мутности существует следующее требование – этот показатель не должен быть больше чем 1,5 мг взвешенных частиц на 1 дм 3 воды.

Она определяется по водородному показателю рН. В зависимости от его значения вода может быть щелочной либо кислой. Оптимальным считается показатель рН по СанПину в диапазоне 6-9.

Данный показатель важен для проведения анализа. Он характеризует присутствие в воде солей магния и кальция. Если количественное содержание данных катионов превышает нормальные показатели, воду считают жесткой (по СанПину установлен предел — 7 ммоль/л).

Выделяют временную и постоянную жесткости. Последний показатель иначе называется некарбонатной, а первый вариант – карбонатной. Жесткая вода приводит в негодность электрические приборы, вызывает сухость кожи и волос, способствует мочекаменной болезни. Для удаления ее используют следующие методы: кипячение, добавление питьевой соды (гидрокарбоната натрия).

Методы очистки питьевой и хозяйственной воды подбирают с учетом ее первоначальных показателей, выявляемых в рамках лабораторных исследований.

В наше время индустриального прогресса существенно возросли выбросы сточных вод в водоемы от промышленных комбинатов. Появилась экстренная необходимость осуществления их обработки с целью разрушения либо удаления вредных веществ органической и неорганической природы.

В качестве сырья выступает сточная вода, а готовым продуктом являются ее очищенные потоки. Мероприятия, связанные с очисткой, принято делить на две группы: деструктивные, регенеративные. В первом случае идет речь о разрушении загрязняющих веществ. Те продукты, которые образуются после проведения очистки, удаляются в газообразном виде либо остаются в воде, не принося вреда живых организмам.

Сущность регенеративных методов состоит в очистке сточных вод, а также в утилизации вредных веществ, образующихся в отходах. В наши дни применяют следующие методики обезвреживания воды:

  • гидрохимические;
  • механические;
  • электрохимические;
  • биологические;
  • физико-химические.

При сочетании сразу несколько методик ведут речь о комбинированной очистке воды. Выбор метода зависит от характера и степени загрязнения, а также от химического состава присутствующих примесей.

Механическая очистка предполагает удаление путем фильтрования механических примесей. Крупные частицы улавливаются ситами, решетками, септиками, песколовками разнообразных конструкций. Поверхностные примеси убирают из проб воды отстойниками, нефтяными ловушками, маслоуловителями.

Благодаря механической очистке можно удалять из сточных вод больше 70 % нерастворимых примесей, причем многие из них потом дополнительно применяются в химическом производстве.

Химический метод состоит в добавлении к сточным водам определенных химических соединений. Они, вступая во взаимодействие с примесями, осаждают их в виде осадка. Благодаря данному методу очистки удается снижать процентное содержание нерастворимых примесей в сточной воде до 80 %, растворимых — до 25 %.

Гидромеханические способы используют в тех случаях, когда необходимо извлекать из сточных вод нерастворимые грубодисперсные примеси неорганического и органического вида. Для этого выполняется процеживание, отстаивание, центрифугирование, фильтрование с помощью конструктивных материалов и приспособлений. К примеру, применяются центрифуги, отстойники, решетки, сита, гидроциклоны.

СанПин использует следующие обозначения:

  • ПДК – предельно допустимые концентрации;
  • ОДУ — ориентировочный допустимый уровень соединений;
  • класс опасности.

По нормативным документам выделяют следующие классы опасности:

  • 1К (самые опасные элементы);
  • 2К (вещества высокой опасности);
  • 3К (опасные вещества);
  • 4К (соединения умеренной опасности).

Также в анализе проб воды учитывается такой показатель, как токсичность. В группе органолептических показателей применяют обозначения:

  • ЗАП — вещество с запахом;
  • ОКР — присутствие элемента, окрашивающего воду;
  • ОП — соединение, которые вызывает опалесценцию.

Вода является важнейшим химическими соединением, без которого невозможно полноценное существование человека, его промышленная деятельность. В зависимости от количественного содержания микроорганизмов в питьевой, сточной, хозяйственной воде, а также катионов тяжелых металлов, можно вести речь о ее пригодности (непригодности) к применению, подбирать эффективные технологии очистки.

источник

Выпускается в 7-ми различных вариантах исполнения — ручное или автоматическое управление, корпус из армированного пластика или нержавейки, есть вариант нержавеющего корпуса с нижним сливом для простоты консервации на зиму. Посмотреть все варианты исполнения фильтров

Анализ воды из скважины, колодца или водопровода сделать в лаборатории Санкт-Петербурге, стоимость экспертизы питьевой воды, где сделать, цена.

Согласно санитарным нормам питьевая вода должна быть безопасна в эпидемиологическом и радиационном отношении, безвредна по химическому составу, и иметь приятные органолептические свойства. Поэтому, целесообразно проверить качество воды из вашего источника — сделать анализ качества воды на соответствие требованиям санитарных норм и правил на питьевую воду. Для выбора системы очистки воды из скважины или колодца важно проверить воду не менее, чем по 15-ти основным показателям.

Требования (нормативы), которым должна соответствовать вода, изложены в санитарных нормах и правилах РФ (СанПиН) и международных нормативах Всемирной организации здравоохранения (ВОЗ), основные положения которых приведены в представленной ниже таблице. И так, рассмотрим основные показатели качества воды.

К органолептическим свойствам воды относят следующие характеристики: запах, привкус, цветность и мутность.

Запах и привкус воды объясняются присутствием в ней естественных или искусственных загрязнений. Природа запахов и привкусов очень различна, и может быть обусловлена как наличием в воде определенных растворенных солей, так и содержанием различных химических и органических соединений.

Кроме того, следует отметить, что запах и привкус может появиться в воде на нескольких этапах: из исходной природной воды, в процессе водоподготовки (в том числе в водонагревателе), при транспортировке по трубопроводам. Правильное определение источника запахов и привкусов — залог успешности их устранения.

Величина (интенсивность) запаха определяется по 6-ти бальной шкале. Например, запах тухлых яиц обусловлен наличием в воде сероводорода (Н2S), а также присутствием сульфатредуцирующих бактерий, вырабатывающих этот газ, а гнилостный запах обусловлен присутствием в воде природных органических соединений. Химические запахи (например, бензиновый, фенольный) указывают на антропогенный характер загрязнений.

Вкус воды обусловлен растворенными в воде природными веществами, каждое из которых придает воде определенный привкус:

  • солоноватый — хлоридом натрия;
  • горьковатый — сульфатом магния;
  • кисловатый — растворенным углекислым газом или растворенными кислотами.

Приятный или неприятный вкус воды обеспечивается как наличием, так и концентрацией находящихся в ней примесей.

Под цветностью понимается естественная окраска природной и питьевой воды. Цветность косвенно характеризует наличие в воде некоторых органических и неорганических растворенных веществ и является одним из важных показателей, позволяющих правильно выбрать систему водоочистки.

Цветность воды определяется сравнением с растворами специально приготовленной шкалы цветности (на основе определенных концентраций хромово-кобальтового раствора) и выражается в градусах цветности этой шкалы. По требованиям к питьевой воде данный показатель не должен превышать 20 градусов.

Главными «виновниками» цветности воды, являются вымываемые из почвы органические вещества (в основном гуминовые и фульвовые кислоты). Повышенная цветность воды также может свидетельствовать о возможной ее техногенной загрязненности. Наличие гуминовых кислот может приводить к определенной биологической активности воды, повышает проницаемость в кишечнике ионов металлов: железа, марганца и др.

Показатель, характеризующий наличие в воде взвешенных веществ неорганического происхождения (например, карбонаты различных металлов, гидроокиси железа), органического происхождения (коллоидное железо и т.п.), минерального происхождения (песка, глины, ила), а также микробиологического происхождения (бактерио-, фито- или зоопланктона). Мутность выражается в мг/дм3.

Мутность также может быть обусловлена наличием на поверхности и внутри взвешенных частиц различных микроорганизмов, которые защищают их как от химического, так и от ультрафиолетового обеззараживания воды. Поэтому снижение мутности в процессе очистки воды способствует также значительному снижению уровня микробиологического загрязнения.

Химические показатели характеризуют химический состав воды. К данным показателям относят водородный показатель воды рН, жесткость и щелочность, минерализацию (сухой остаток), анионный и катионный состав (неорганические вещества), содержание органических веществ.

Показатель, характеризующий интегральную загрязненность воды, т.е. содержание в воде окисляющихся органических и неорганических примесей, которые в определенных условиях способны окисляться сильным химическим окислителем. К упомянутым выше загрязнителям относятся в основном органические вещества — для воды из поверхностных источников, и неорганические ионы (Fe 2+ ,Mn 2+ , и т.п.) — для воды из артезианских скважин.

Различают несколько видов окисляемости воды: перманганатную (ПМО), бихроматную, иодатную. Как видно из названий — при этом для проведения химического анализа воды используются соответствующие окислители. Показатель окисляемости — мгО2/л. Это количество миллиграмм кислорода, эквивалентное количеству реагента (окислителя), пошедшего на окисление веществ, содержащихся в 1 л воды.

Величина бихроматной окисляемости обычно используется для определения такого важного показателя воды как ХПК — химическая потребность в кислороде. ХПК используется для характеристики загрязненных природных поверхностных вод, а также для сточных вод. Этот показатель свидетельствует о степени биогенной загрязненности воды.

Бихроматная окисляемость позволяет получить значение наиболее полно характеризующее присутствие органических загрязнителей, за исключением таких химически инертных веществ как бензин, керосин, бензол, толуол и т.п. Считается, что при определении этого показателя окисляются до 90% органических примесей.

На практике для характеристики питьевой воды обычно используется показатель перманганатная окисляемость (ПМО) или перманганатный индекс (ПМИ). Чем больше значение ПМО, тем выше концентрация загрязнителей. Отметим, что величина перманганатной окисляемости ниже, чем значение, полученное для бихроматной примерно в 3 раза.

Читайте также:  Микробиологический анализ воды из крана

Водородный показатель или рН представляет собой логарифм концентрации ионов водорода, взятый с обратным знаком, т.е. pH = -logH + 1. Величина рН определяется количественным соотношением в воде ионов Н + и ОН — , образующихся при диссоциации воды. Если ионы ОН — в воде преобладают, что соответствует значению рН>7, то вода будет иметь щелочную реакцию, а при повышенном содержании ионов Н + , что соответствует рН + >+ HCO3

В зависимости от величины pH может изменяться скорость протекания химических реакций, степень коррозионной агрессивности воды, токсичность загрязняющих веществ и многие другие ее характеристики.

Обычно уровень рН для воды, используемой в хозяйственных и питьевых целях, нормируется в пределах интервала 6-9.

Эта величина характеризует количество растворенных неорганических и органических веществ. В первую очередь это сказывается на органолептических свойствах воды. Установлено, что до 1000 мг/л вода может быть использована для водопотребления.

Величина сухого остатка влияет на вкусовые качества питьевой воды. Человек может без риска для своего здоровья употреблять воду с сухим остатком до 1000 мг/л. При большем значении вкус воды чаще всего становится неприятным горько-соленым. Следует также отметить, что у воды с низким уровнем сухого остатка вкус может отсутствовать и употреблять ее тоже не очень приятно.

Этот показатель характеризует свойство воды, связанное с содержанием в ней растворённых солей щёлочноземельных металлов, главным образом, кальция и магния (так называемых «солей жёсткости»).

Вода с большим содержанием таких солей называется жёсткой, с малым содержанием — мягкой.

Численное выражение жёсткости воды — это концентрация в ней катионов кальция и магния. По ГОСТ Р 52029-2003 жесткость выражается в градусах жесткости (°Ж), что соответствует концентрации щелочноземельного элемента, численно равной 1/2 его моля, выраженной в мг/дм³ (г/м³) (1 °Ж = 1 мг-экв/л).

Различают временную (карбонатную) жёсткость, обусловленную гидрокарбонатами кальция и магния (катионов Ca 2+ и Mg 2+ и анионов HCO3).

При кипячении воды гидрокарбонатные анионы вступают в реакцию с этими катионами и образуют с ними малорастворимые карбонатные соли, которые осаждаются на нагревательных элементах в виде накипи белого цвета, называемой в простонародии известью.

Временную жесткость можно устранить кипячением — отсюда и ее название.

Постоянная (некарбонатная) жесткость воды вызвана присутствием солей, не выпадающих в осадок при кипячении. В основном, это сульфаты и хлориды кальция и магния (CaSO4, CaCl2, MgSO4, MgCl2). Следует отметить, что именно присутствие соли CaSO4, растворимость которой с повышением температуры воды понижается, приводит к образованию плотной накипи.

Вода с высокой жесткостью наносит большой вред бытовым электронагревательным приборам, образуя накипь и тем самым вызывая их перегрев и разрушение, образует неприятные матовые налеты на сантехнике; в ней плохо пенятся мыло и шампуни, а поэтому увеличивается их расход.

Жесткая вода сушит кожу и вредит волосам; отрицательно влияет на качество приготовленной пищи, полезные вещества которой могут образовывать с солями жесткости плохо усваиваемые организмом соединения.

Жесткая вода вредна и для организма человека: увеличивается риск развития мочекаменной болезни, нарушается водно-солевой обмен.

Иногда в качестве характеристики встречается показатель «полная жесткость» воды, равный сумме постоянной и переменной (карбонатной) жесткости.

Его токсичное влияние на организм человека незначительно, но все же употребление питьевой воды с повышенным содержанием железа может привести к отложению его соединений в органах и тканях человека.

В общем случае в воде железо может встречаться в свободной форме в виде двух- и трехвалентных ионов:

Fe 2+ , как правило, в артезианских скважинах при отсутствии растворенного кислорода. Вода с повышенным содержанием такого железа может быть первоначально прозрачна (Fe 2+ ), но при отстаивании или нагреве приобретает желтовато-бурую окраску. Это происходит в результате окисления растворенного железа до Fe 3+ с образованием нерастворимых солей трехвалентного железа:

Fe 3+ — содержится в поверхностных источниках водоснабжения в так называемом окисленном состоянии, и, как правило, в нерастворимом виде.

Существует еще одна форма присутствия железа в природной воде — это органическое железо. Оно встречается в воде в разных формах и в составе различных комплексных соединений трехвалентных ионов железа с растворенными неорганическими и органическими соединениями, и, главным образом, с солями гуминовых кислот — гуматами. Повышенное содержание такого железа наблюдается в болотных водах, и вода имеет бурое или коричневатое окрашивание.

Органические соединения железа, как правило, растворимы или имеют коллоидную структуру (коллоидное железо) и очень трудно поддаются удалению. Коллоидные частицы из-за своего малого размера и высокого поверхностного заряда, который не позволяет частицам сближаться и препятствует их укрупнению, предотвращая образование конгломератов, создают в воде суспензии и не осаждаются, находясь во взвешенном состоянии и, тем самым, обуславливают мутность исходной воды.

На вкус такая вода имеет характерный неприятный металлический привкус, образует ржавые подтеки. Присутствие в воде коллоидного железа способствует развитию железистых бактерий, что еще больше ухудшает вкусовые качества воды и вызывает отложение осадка на внутренней поверхности трубопроводов и санитарно-технического оборудования вплоть до их полного засорения.

Марганец входит в состав многих ферментов, гормонов и витаминов, которые влияют на процессы роста, кровообразование, формирование иммунитета. Однако, повышенное его содержание в воде может оказывать токсический и мутагенный эффект на организм человека.

Вода с повышенным содержанием марганца обладает металлическим привкусом. Его присутствие приводит к значительно более быстрому износу бытовой техники и систем отопления, поскольку он способен накапливаться в виде черного налета на внутренних поверхностях труб с последующим отслаиванием и образованием взвешенного в воде осадка черного цвета. Кроме того, повышенное содержание марганца приводит к образованию черных пятен на посуде, белом белье при стирке, окрашивает ногти и зубы в серовато-черный цвет.

Также существуют «марганцевые» бактерии, которые, как и «железистые» бактерии, могут развиваться в такой воде и становиться причиной зарастания и закупорки трубопроводов.

Показатель, чаще всего характеризующий наличие в воде органических веществ животного или промышленного происхождения. Источниками азота аммонийного являются: животноводческие фермы, хозяйственно бытовые сточные воды, сточные воды с сельскохозяйственных угодий, предприятий пищевой и химической промышленности.

Указанные соединения являются главным образом продуктами распада мочевины и белков. Лимитирующая величина показателя «аммонийный азот» — токсикологическая. По нормам СанПиН содержание в воде аммония не должно превышать 2,0 мг/л.

К микробиологическим показателям безопасности питьевой воды относят общее микробное число, содержание бактерий группы кишечной палочки (общие колиформные бактерии и колифаги), споры сульфитредуцирующих клостридий и цисты лямблий.

В зависимости от характеристик водного источника с целью безопасности воды могут проверяться и такие показатели, как паразитологические и радиологические.

Анализ качества питьевой воды производится исходя из норм показателей по требованиям нормативных документов государств.

В таблице представлены нормативы основных показателей качества по санитарным нормам СанПиН Российской Федерации, указанные в столбце 3 — СанПиН 2.1.4.1074-01 «Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения» и столбце 4 — СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников».

Именно по этим показателям следует проверить качество воды из вашего источника и оценить необходимость установки дополнительного оборудования для очистки воды.

Для сравнения приведены нормативы Всемирной организации здравоохранения (ВОЗ).

источник

О качестве питьевой воды сказано не мало. Вопросы чистоты и безопасности обсуждаются как среди населения, так и на законодательном уровне. На сегодняшний день качество питьевой воды в России регулируют всевозможные правила и нормы, которые указывают на то, что питьевая вода должна быть безопасна для человека как в эпидемиологическом, так и в радиационном плане, иметь безвредный химический состав и обладать хорошим вкусом и запахом. Факторы качества питьевой воды подразделяются на органолептические, химические и микробиологические.

Под органолептикой воды понимают ее вкус, запах, мутность и цветность. Проверять данные показатели рекомендуется ежемесячно для воды из рек и озер и не менее четырех раз в год (один раз в сезон) для воды из родников и скважин.

На вкус воды влияют растворенные остатки растений и животных, соли, химические вещества и другие загрязнения. Посторонние привкусы могут присутствовать не только в природной воде, но и появиться во время водоподготовки.

Разные группы веществ придают воде свой уникальный привкус: хлорид натрия делает воду соленой, углекислый газ – кислой, сульфат магния – источник горечи.

Чистая вода не должна иметь никаких запахов. В том случае, если запах в воде все же есть, нужно прислушаться к нему, таким образом, природу загрязнений можно определить самостоятельно. Например, если присутствует запах тухлых яиц – в воде превышена концентрация сероводорода, запах гнили свидетельствует о наличии органических остатков, запах нефтепродуктов – признак того, что в воду попали промышленные отходы.

Запах воды определяют в два этапа: сначала при температуре 20°C, затем 60 °C. Оценивают его по пятибальной шкале, где 0 – полное отсутствие, 5 – сильный запах. По нормам (СанПиН 2.1.4.559-96 ПИТЬЕВАЯ ВОДА. Гигиенические требования к качеству воды
централизованных систем питьевого водоснабжения. Контроль качества. ) максимальный допустимый балл – 2.

Под цветностью понимают окраску воды, которую вызывают растворенные в ней вещества. Чаще всего причиной цвета являются гуминовые кислоты, а также примеси железа. Способствовать изменению цвета воды могут и промышленные отходы, попадающие в поверхностные источники вместе с промышленными сточными водами. Уровень цветности определяют по платино-кобальтовой шкале цветности раствора и измеряют в градусах. Допустимая цветность воды по СанПин составляет 20 градусов.

Мутность воды характеризуется содержанием в ней взвеси, которой могут быть соли металлов, песок, глина, бактерии и микроорганизмы. Чаще всего образуется в процессе размывания дна водоема, попадания в него талых и сточных вод. Мутность не только создает благоприятные условия для развития бактерий, но и служит преградой при дезинфекции.

Если вода изначально мутная, но после отстаивания светлеет, а на дно выпадает осадок – в ней содержится песок и глина. Если же вода мутнеет не сразу, то, скорее всего она загрязнена солями металлов, которые в процессе соприкосновения с воздухом окисляются.

Согласно СанПин мутность воды не должны превышать 1,5 мг. взвеси на дм3 воды.


Данная группа показателей отвечает за содержание в воде различных химических веществ и подразделяется на следующие виды: интегральные, органические и неорганические.

В интегральные показатели воды входят кислотность, жесткость, окисляемость и сухой остаток. остаток.

Кислотность воды определяется водородным показателем pH . В зависимости от уровня pH вода может быть кислая или щелочная. Оптимальный показатель pH питьевой воды по СанПин варьируется от 6 до 9.

Жесткость воды характеризуется наличием в ней извести и солей магния. Вода с повышенным содержанием солей называется жесткой, вода с минимальным их количеством – мягкой. Допустимый показатель солей – 7 ммоль на 1 л. воды.

Различают постоянную и временную жесткость воды. Постоянная жесткость получила название некарбонатной, временная – карбонатной. Временная жесткость вызвана наличием гидрокарбонатов кальция и магния и легко устраняется кипячением, выпадая в осадок. Причина постоянной жесткости – сульфаты и хлориды кальция и магния.

Жесткая вода портит бытовые приборы, приводит к сухости волос и кожи, способствует образованию камней в почках.

Под окисляемостью понимается присутствие в вод веществ, которые окисляются под влиянием химических элементов. Выделяют три вида окисляемости: перманганатную, бихроматную и иодатную. На практике чаще всего используют окисляемость перманганатную, измеряется она в количестве кислорода, затраченного на окисление веществ, предельно допустимый показатель 5 мг/л воды.

Сухой остаток – данный показатель указывает на количество растворенных в воде элементов. По СанПин количество взвесей в воде может достигать 1000 мг/л, при большем количестве ухудшаются вкус и запах, а также появляется мутность.

подразумевают под собой оптимальное содержание в воде различных металлов.

Железо в больших концентрациях способно вывести из строя сантехнику, придает неприятный желтоватый оттенок белью в процессе стирки, а также влияет на органолептику: вода приобретает посторонний запах и становится мутной. Кроме того, переизбыток металла в организме приводит к аллергии и дерматиту, становится причиной развития онкологических заболеваний. Оценка питьевой воды на уровень содержания железа не просто прихоть, а необходимость. Согласно СанПин 2.1.4.1074-01, предельная норма железа в воде составляет 0,3 мг/л.

Марганец – источник металлического привкуса воды. Вода с превышенным содержанием данного металла образует черный налет на водопроводных трубах, который постепенно отслаивается и выпадает в осадок. Превышенное содержание марганца в организме придает серый цвет ногтям и зубам. Допустимая концентрация элемента ниже, чем у железа и составляет 0,1 мг/л.

Причиной превышения уровня ртути в воде чаще всего являются техногенные аварии. Металл губительно влияет на любую ткань, с которой соприкасается. При регулярном употреблении с высокой концентрацией ртути нарушается психика, теряется чувствительность кожи, ухудшается слух и зрение, возникают проблемы с сердечно-сосудистой системой. Для того, чтобы избежать таких последствий, важно знать предельно допустимую безопасную концентрацию металла, которая по нормам качества питьевой воды составляет 0,0005 мг/л.

Читайте также:  Микробиологический анализ воды что входит

Алюминий в большом количестве, превышающем 0,5 мг/л, способствует параличу центральной нервной системы человека, провоцирует артрит и остеопороз.

Сульфаты содержатся в большей части поверхностных вод. Естественная причина их образования – растворение минералов, содержащих серу и окисление сульфидов серы. Большая часть сульфатов – следствие отмирания растений, а также окисления органических веществ. Другой источник сульфатов – стоки производственных предприятий. Превышение соединений серы в питьевой воде ухудшает органолептические показатели. Взаимодействуя с кальцием и магнием, сульфаты способствуют образованию накипи. Согласно СанПин допускается 500 мг сульфатов на 1 литр воды.

Нитраты в излишнем количестве ведут к кислородному голоданию тканей, что является причиной заболевания «нитратная метгемоглобинемия». Попадают в природные воды данные соединения вместе с химическими и натуральными удобрениями. По СанПин норма нитратов составляет 45 мг/л.

Хлориды в большом количестве, превышающем 350 мг/л, делают воду коррозионно-активной, что ведет к повреждению трубопровода, а также появлению ржавчины на сантехнике.

О загрязненности воды органическими вещества судят по количеству содержащегося углерода. К органическим веществам относят остатки мертвых растений и животных, выделения водных обитателей, гуминовые кислоты и т.д. Органика ведет к изменению органолептических показателей, в частности, к ухудшению вкуса и запаха.

Микробиологическую оценку проводят, анализируя наличие термотолерантных колиформных бактерий, цист лямблий, колифагов, а также оценивая общее микробное число, которое по нормативам не должно превышать 50 на 1 мл. воды.

Проверка качества питьевой воды осуществляется по нормам СанПин. В России существуют два ключевых документа: СанПиН 2.1.4.1074-01, выдвигающий список гигиенических требований к качеству воды централизованных систем питьевого водоснабжения» и СанПиН 2.1.4.1175-02, в котором перечислены показатели качества воды нецентрализованного водоснабжения, а также отрегулирована санитарная охрана источников. Документы находятся в свободном доступе.

В СанПин и в результатах анализа воды встречаются следующие термины:

ПДК – предельно-допустимые концентрации вещества, при которых данное вещество не оказывает вреда организму человека. Превышенное количество – стимул к очищению воды.

ОДУ – ориентировочно допустимый уровень вещества в воде, имеет временный характер, устанавливается по результатам экспериментальных методов прогнозирования токсичности.

Часто в анализах воды указывают класс опасности. Согласно нормативным документам существуют следующие классы опасности:

  • 1К – чрезвычайно опасные элементы;
  • 2К – высоко опасные вещества;
  • 3К – опасные соединения;
  • 4К – вещества умеренно опасные.

Другим показателем, отраженным в анализах, является токсичность вещества. Санитарно-токсикологические признаки обозначаются «с-т». В группе органолептических признаков существуют следующие аббревиатуры: зап – вещество изменяет запах воды, окр – элемент окрашивает воду, привк – изменение вкуса и оп – вещество может вызывать опалесценцию. Также в результатах может присутствовать термин «КОЕ», расшифровывающийся как колониеобразующие единицы.

Перечисленные выше вещества можно выявить с помощью экспресс-анализа питьевой воды. Проверку реально провести как в лаборатории, так и собственными силами. В лаборатории, как правило, оценивают образец по 10-12 показателям. Для того, чтобы результаты были верными, воду необходимо набирать в чистую стеклянную тару, предварительно обработав руки и вентиль крана спиртом. Рекомендуются сначала спустить воду на протяжении 10-15 минут. Доставлять образец в лабораторию лучше в плотном черном пакете.

Экспресс-анализ воды в домашних условиях подразумевает использование специальных тест-приборов. С помощью устройств можно провести как комплексную проверку, так и анализ воды на содержание какого-то конкретного вещества. К базовым показателям качества питьевой воды относят уровень щелочности, концентрацию железа, хлора, а также содержание нитратов и нитритов. Приборы для экспресс-оценки различаются не только специализацией на каком-либо конкретном загрязнителе, но и делятся в зависимости от источника питьевой, воду из которого необходимо проверить – скважины, родника или реки.

Своевременный анализ питьевой воды позволит вовремя провести ее очистку, а, значит, поможет сохранить здоровье.

источник

Мутность – показатель качества воды, обусловленный присутствием в воде нерастворенных и коллоидных веществ неорганического и органического происхождения. Причиной мутности поверхностных вод являются илы, кремниевая кислота, гидроокиси железа и алюминия, органические коллоиды, микроорганизмы и планктон. В грунтовых водах мутность вызвана преимущественно присутствием нерастворенных минеральных веществ, а при проникании в грунт сточных вод – также и присутствием органических веществ. В России мутность определяют фотометрическим путем сравнения проб исследуемой воды со стандартными суспензиями. Результат измерений выражают в мг/дм3 при использовании основной стандартной суспензии каолина или в ЕМ/дм3 (единицы мутности на дм3) при использовании основной стандартной суспензии формазина. Последнюю единицу измерения называют также Единица Мутности по Формазину (ЕМФ) или в западной терминологии FTU (Formazine Turb >
ВОЗ по показаниям влияния на здоровье мутность не нормирует, однако с точки зрения внешнего вида рекомендует, чтобы мутность была не выше 5 NTU (нефелометрическая единица мутности), а для целей обеззараживания – не более 1 NTU.

Мера прозрачности – высота столба воды, при которой можно наблюдать опускаемую в воду белую пластину определенных размеров (диск Секки) или различать на белой бумаге шрифт определенного размера и типа (шрифт Снеллена). Результаты выражаются в сантиметрах.

Цветность – показатель качества воды, обусловленный главным образом присутствием в воде гуминовых и фульфовых кислот, а также соединений железа (Fe3+). Количество этих веществ зависит от геологических условий в водоносных горизонтах и от количества и размеров торфяников в бассейне исследуемой реки. Так, наибольшую цветность имеют поверхностные воды рек и озер, расположенных в зонах торфяных болот и заболоченных лесов, наименьшую – в степях и степных зонах. Зимой содержание органических веществ в природных водах минимальное, в то время как весной в период половодья и паводков, а также летом в период массового развития водорослей – цветения воды — оно повышается. Подземные воды, как правило, имеют меньшую цветность, чем поверхностные. Таким образом, высокая цветность является тревожным признаком, свидетельствующим о неблагополучии воды. При этом очень важно выяснить причину цветности, так как методы удаления, например, железа и органических соединений отличаются. Наличие же органики не только ухудшает органолептические свойства воды, приводит к возникновению посторонних запахов, но и вызывает резкое снижение концентрации растворенного в воде кислорода, что может быть критично для ряда процессов водоочистки. Некоторые в принципе безвредные органические соединения, вступая в химические реакции (например, с хлором), способны образовывать очень вредные и опасные для здоровья человека соединения.

Цветность измеряется в градусах платино-кобальтовой шкалы и колеблется от единиц до тысяч градусов – Таблица 2.

Вкус воды определяется растворенными в ней веществами органического и неорганического происхождения и различается по характеру и интенсивности. Различают четыре основных вида вкуса: соленый, кислый, сладкий, горький. Все другие виды вкусовых ощущений называются привкусами (щелочной, металлический, вяжущий и т.п.). Интенсивность вкуса и привкуса определяют при 20 °С и оценивают по пятибалльной системе, согласно ГОСТ 3351-74*.

Качественную характеристику оттенков вкусовых ощущений – привкуса – выражают описательно: хлорный, рыбный, горьковатый и так далее. Наиболее распространенный соленый вкус воды чаще всего обусловлен растворенным в воде хлоридом натрия, горький – сульфатом магния, кислый – избытком свободного диоксида углерода и т.д. Порог вкусового восприятия соленых растворов характеризуется такими концентрациями (в дистиллированной воде), мг/л: NaCl – 165; CaCl2 – 470; MgCl2 – 135; MnCl2 – 1,8; FeCl2 – 0,35; MgSO4 – 250; CaSO4 – 70; MnSO4 – 15,7; FeSO4 – 1,6; NaHCO3 – 450.

По силе воздействия на органы вкуса ионы некоторых металлов выстраиваются в следующие ряды:

O катионы: NH4+ > Na+ > K+; Fe2+ > Mn2+ > Mg2+ > Ca2+;

O анионы: ОН- > NO3- > Cl- > HCO3- > SO42- .

Запах – показатель качества воды, определяемый органолептическим методом с помощью обоняния на основании шкалы силы запаха. На запах воды оказывают влияние состав растворенных веществ, температура, значения рН и целый ряд прочих факторов. Интенсивность запаха воды определяют экспертным путем при 20 °С и 60 °С и измеряют в баллах, согласно требованиям.

Следует также указывать группу запаха по следующей классификации:

По характеру запахи делят на две группы:

  • естественного происхождения (живущие и отмершие в воде организмы, загнивающие растительные остатки и др.)
  • искусственного происхождения (примеси промышленных и сельскохозяйственных сточных вод).

Запахи второй группы (искусственного происхождения) называют по определяющим запах веществам: хлорный, бензиновый и т.д.

Интенсивность запаха по ГОСТ 3351-74* оценивают в шестибальной шкале – см. следующую страницу.

Водородный показатель (рН) — характеризует концентрацию свободных ионов водорода в воде и выражает степень кислотности или щелочности воды (соотношение в воде ионов Н+ и ОН- образующихся при диссоциации воды) и количественно определяется концентрацией ионов водорода pH = — Ig [H+]

Если в воде пониженное содержание свободных ионов водорода (рН>7) по сравнению с ионами ОН-, то вода будет иметь щелочную реакцию, а при повышенном содержании ионов Н+ (рН 9,5

Контроль над уровнем рН особенно важен на всех стадиях водоочистки, так как его «уход» в ту или иную сторону может не только существенно сказаться на запахе, привкусе и внешнем виде воды, но и повлиять на эффективность водоочистных мероприятий. Оптимальная требуемая величина рН варьируется для различных систем водоочистки в соответствии с составом воды, характером материалов, применяемых в системе распределения, а также в зависимости от применяемых методов водообработки.

Обычно уровень рН находится в пределах, при которых он непосредственно не влияет на потребительские качества воды. Так, в речных водах pH обычно находится в пределах 6.5-8.5, в атмосферных осадках 4.6-6.1, в болотах 5.5-6.0, в морских водах 7.9-8.3. Поэтому ВОЗ не предлагает какой-либо рекомендуемой по медицинским показателям величины для рН. Вместе с тем известно, что при низком рН вода обладает высокой коррозионной активностью, а при высоких уровнях (рН>11) вода приобретает характерную мылкость, неприятный запах, способна вызывать раздражение глаз и кожи. Именно поэтому для питьевой и хозяйственно-бытовой воды оптимальным считается уровень рН в диапазоне от 6 до 9.

Кислотностью называют содержание в воде веществ, способных вступать в реакцию с гидроксид-ионами (ОН-). Кислотность воды определяется эквивалентным количеством гидроксида, необходимого для реакции.

В обычных природных водах кислотность в большинстве случаев зависит только от содержания свободного диоксида углерода. Естественную часть кислотности создают также гуминовые и другие слабые органические кислоты и катионы слабых оснований (ионы аммония, железа, алюминия, органических оснований). В этих случаях pH воды не бывает ниже 4.5.

В загрязненных водоемах может содержаться большое количество сильных кислот или их солей за счет сброса промышленных сточных вод. В этих случаях pH может быть ниже 4.5. Часть общей кислотности, снижающей pH до величин 7 выступает в виде иона HS-;

O при pH = 5 : 7 может быть в виде, как H2S, так и HS-.

воде. Они поступают в воду вследствие вымывания осадочных горных пород, выщелачивания почвы и иногда вследствие окисления сульфидов и серы – продуктов расклада белка из сточных вод. Большое содержание сульфатов в воде может быть причиной болезней пищеварительного тракта, а также такая вода может вызывать коррозию бетона и железобетонных конструкций.

Двуокись углерода (CO2) – в зависимости от реакции pH воды может быть в следующих видах:

Сероводород придает воде неприятный запах, приводит к развитию серобактерий и вызывает коррозию. Сероводород, преимущественно присутствующий в подземных водах, может быть минерального, органического или биологического происхождения, причем в виде растворенного газа или сульфидов. То, под каким видом проявляется сероводород, зависит от реакции pH:

  • при pH 7 выступает в виде иона HS-;
  • при pH = 5 : 7 может быть в виде, как H2S, так и HS-.

Сульфаты (SO42-) – наряду с хлоридами являются наиболее распространенными видами загрязнения в воде. Они поступают в воду вследствие вымывания осадочных горных пород, выщелачивания почвы и иногда вследствие окисления сульфидов и серы – продуктов расклада белка из сточных вод. Большое содержание сульфатов в воде может быть причиной болезней пищеварительного тракта, а также такая вода может вызывать коррозию бетона и железобетонных конструкций.

Двуокись углерода (CO2) – в зависимости от реакции pH воды может быть в следующих видах:

  • pH 10,5 – в основном в виде иона карбоната CO32-.

Агрессивная двуокись углерода – это часть свободной двуокиси углерода (CO2), которая необходима для удержания растворенных в воде углеводородов от разложения. Она очень активна и вызывает коррозию металлов. Кроме того, приводит к растворению карбоната кальция СаСО3 в строительных растворах или бетоне и поэтому ее необходимо удалять из воды, предназначенной для строительных целей. При оценке агрессивности воды, наряду с агрессивной концентрацией двуокиси углерода, следует также учитывать содержание солей в воде (солесодержание). Вода с одинаковым содержанием агрессивного CO2, тем более агрессивна, чем выше ее солесодержание.

Поступление кислорода в водоем происходит путем растворения его при контакте с воздухом (абсорбции), а также в результате фотосинтеза водными растениями. Содержание растворенного кислорода зависит от температуры, атмосферного давления, степени турбулизации воды, минерализации воды и др. В поверхностных водах содержание растворенного кислорода может колебаться от 0 до 14 мг/л. В артезианской воде кислород практически отсутствует.

Читайте также:  Микробиологические среды для анализа воды

Относительное содержание кислорода в воде, выраженное в процентах его нормального содержания и называется степенью насыщения кислородом. Этот параметр зависит от температуры воды, атмосферного давления и уровня минерализации. Вычисляется по формуле: M = (ax0,1308×100)/NxP, где

М – степень насыщения воды кислородом, %;

а – концентрация кислорода, мг/дм3;

Р – атмосферное давление в данной местности, МПа.

N – нормальная концентрация кислорода при данной температуре и общем давлении 0,101308 МПа, приведенная в следующей таблице:

Окисляемость – это показатель, характеризующий содержание в воде органических и минеральных веществ, окисляемых сильным окислителем. Окисляемость выражается в мгO2 необходимого на окисление этих веществ, содержащихся в 1 дм3 исследованной воды.

Различают несколько видов окисляемости воды: перманганатную (1 мг KMnO4 соответствует 0,25 мг O2), бихроматную, иодатную, цериевую. Наиболее высокая степень окисления достигается бихроматным и иодатным методами. В практике водоочистки для природных малозагрязненных вод определяют перманганатную окисляемость, а в более загрязненных водах – как правило, бихроматную окисляемость (называемую также ХПК – химическое потребление кислорода). Окисляемость является очень удобным комплексным параметром, позволяющим оценить общее загрязнение воды органическими веществами. Органические вещества, находящиеся в воде весьма разнообразны по своей природе и химическим свойствам. Их состав формируется как под влиянием биохимических процессов протекающих в водоеме, так и за счет поступления поверхностных и подземных вод, атмосферных осадков, промышленных и хозяйственно-бытовых сточных вод. Величина окисляемости природных вод может варьироваться в широких пределах от долей миллиграммов до десятков миллиграммов О2 на литр воды.

Поверхностные воды имеют более высокую окисляемость, а значит в них содержится высокие концентрации органических веществ по сравнению с подземными. Так, горные реки и озера характеризуются окисляемостью 2-3 мг О2/дм3, реки равнинные – 5-12 мг О2/дм3, реки с болотным питанием – десятки миллиграммов на 1 дм3.

Подземные же воды имеют в среднем окисляемость на уровне от сотых до десятых долей миллиграмма О2/дм3 (исключения составляют воды в районах нефтегазовых месторождений, торфяников, в сильно заболоченных местностях, подземных вод северной части РФ).

Электропроводность – это численное выражение способности водного раствора проводить электрический ток. Электрическая проводимость природной воды зависит в основном от степени минерализации (концентрации растворенных минеральных солей) и температуры. Благодаря этой зависимости, по величине электропроводности можно с определенной степенью погрешности судить о минерализации воды. Такой принцип измерения используется, в частности, в довольно распространенных приборах оперативного измерения общего солесодержания (так называемых TDS-метрах).

Дело в том, что природные воды представляют собой растворы смесей сильных и слабых электролитов. Минеральную часть воды составляют преимущественно ионы натрия (Na+), калия (K+), кальция (Ca2+), хлора (Cl–), сульфата (SO42–), гидрокарбоната (HCO3–).

Этими ионами и обуславливается в основном электропроводность природных вод. Присутствие же других ионов, например трехвалентного и двухвалентного железа (Fe3+ и Fe2+), марганца (Mn2+), алюминия (Al3+), нитрата (NO3–), HPO4–, H2PO4– и т.п. не столь сильно влияет на электропроводность (конечно при условии, что эти ионы не содержатся в воде в значительных количествах, как например, это может быть в производственных или хозяйственно-бытовых сточных водах). Погрешности же измерения возникают из-за неодинаковой удельной электропроводимости растворов различных солей, а также из-за повышения электропроводимости с увеличением температуры. Однако, современный уровень техники позволяет минимизировать эти погрешности, благодаря заранее рассчитанным и занесенным в память зависимостям.

Электропроводность не нормируется, но величина 2000 мкС/см примерно соответствует общей минерализации в 1000 мг/л.

Окислительно-восстановительный потенциал (мера химической активности) Eh вместе с рН, температурой и содержанием солей в воде характеризует состояние стабильности воды. В частности этот потенциал необходимо учитывать при определении стабильности железа в воде. Eh в природных водах колеблется в основном от -0,5 до +0,7 В, но в некоторых глубоких зонах Земной коры может достигать значений минус 0,6 В (сероводородные горячие воды) и +1,2 В (перегретые воды современного вулканизма).

Подземные воды классифицируются:

  • Eh > +(0,1–1,15) В – окислительная среда; в воде присутствует растворенный кислород, Fe3+, Cu2+, Pb2+, Mo2+ и др.
  • Eh – 0,0 до +0,1 В – переходная окислительно-восстановительная среда, характеризуется неустойчивым геохимическим режимом и переменным содержанием кислорода и cероводорода, а также слабым окислением и слабым восстановлением разных металлов;
  • Eh

источник

Методы определения цветности

Water. Methods for determination of colour

____________________________________________________________________
Текст Сравнения ГОСТ 31868-2012 с ГОСТ Р 52769-2007 см. по ссылке.
— Примечание изготовителя базы данных.
____________________________________________________________________

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

1 ПОДГОТОВЛЕН Обществом с ограниченной ответственностью «Протектор» совместно с Закрытым акционерным обществом «Центр исследования и контроля воды»

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Техническим комитетом по стандартизации ТК 343 «Качество воды»)

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 15 ноября 2012 г. N 42)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Госстандарт Республики Казахстан

4 Приказом Федерального агентства по техническому регулированию и метрологии от 29 ноября 2012 г. N 1516-ст межгосударственный стандарт ГОСТ 31868-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2014 г.

5 Настоящий стандарт разработан с учетом основных нормативных положений международного стандарта ISO 7887:2011* «Качество воды. Изучение и определение цвета» («Water quality — Examination and determination of colour», NEQ).

________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

Стандарт подготовлен на основе применения ГОСТ Р 52769-2007

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ. Февраль 2019 г

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Цветность является важным физико-химическим показателем качества питьевой воды, от которой зависят ее органолептические свойства.

Цветность питьевой воды обычно обусловлена присутствием окрашенного органического вещества (главным образом гуминовых и фульвовых кислот, связанных с гумусом почвы). На цветность воды сильно влияет присутствие железа и других металлов в виде естественных примесей или в качестве продуктов коррозии. Она бывает также обусловлена загрязнением водоисточника промышленными стоками и может служить первым признаком возникновения опасной ситуации. Для показателя цветности питьевой воды ВОЗ не устанавливает никакого конкретного значения, которое влияет на здоровье человека.

Цветностью называется условно принятая количественная характеристика для описания цвета природной и питьевой воды, имеющей незначительную естественную окраску. Цветность является косвенным показателем количества содержащихся в воде растворенных органических веществ. Измерение цветности природных вод необходимо для правильного выбора технологии водоподготовки.

Цветность воды определяется сравнением с растворами специально приготовленной шкалы цветности и выражается в градусах цветности этой шкалы.

Настоящий стандарт распространяется на питьевую, в том числе расфасованную в емкости, и природную (поверхностную и подземную) воду, в том числе воду источников питьевого водоснабжения, и устанавливает следующие методы определения цветности воды:

— метод визуального определения цветности (метод А). Метод применяют только при необходимости ориентировочной оценки цветности;

— метод фотометрического определения цветности (метод Б) с применением хром-кобальтовой или платино-кобальтовой шкал.

Методы определения цветности по настоящему стандарту не применяют для анализа воды, содержащей примеси красителей или иных окрашенных химических веществ.

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков

ГОСТ 1770-74 (ИСО 1042-83, ИСО 4788-80) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 4204-77 Реактивы. Кислота серная. Технические условия

ГОСТ 4220-75 Реактивы. Калий двухромовокислый. Технические условия

ГОСТ 4462-78 Реактивы. Кобальт (II) сернокислый 7-водный. Технические условия

ГОСТ ИСО 5725-6-2003* Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике
________________
* В Российской Федерации действует ГОСТ Р ИСО 5725-6-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике».

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ ИСО/МЭК 17025-2009 Общие требования к компетентности испытательных и калибровочных лабораторий

ГОСТ 18300-87** Спирт этиловый ректификованный технический. Технические условия
_______________
** В Российской Федерации действует ГОСТ Р 55878-2013 «Спирт этиловый технический гидролизный ректификованный. Технические условия».

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 28498-90 Термометры жидкостные стеклянные. Общие технические требования. Методы испытаний

ГОСТ 29131-91 (ИСО 2211-73) Продукты жидкие химические. Метод измерения цвета в единицах Хазена (платино-кобальтовая шкала)

ГОСТ 29169-91 (ИСО 648-77) Посуда лабораторная стеклянная. Пипетки с одной отметкой

ГОСТ 29227-91 (ИСО 835-1-81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть I. Общие требования

ГОСТ 31861-2012 Вода. Общие требования к отбору проб

ГОСТ 31862-2012* Вода питьевая. Отбор проб
________________
* В Российской Федерации действует ГОСТ Р 56237-2014. 2

ГОСТ 32220-2013 Вода питьевая, расфасованная в емкости. Общие технические условия

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

Общие требования к отбору проб воды — по ГОСТ 31861, ГОСТ 31862 и ГОСТ 17.1.5.05.

Пробу воды отбирают объемом не менее 200 см в емкость, изготовленную из полимерных материалов или стекла.

Пробу не консервируют и анализируют как можно быстрее после отбора. Если анализ пробы воды проводят позднее, чем через 6 ч после ее отбора, то пробу хранят в темном месте при температуре от 2°С до 8°С, при этом срок хранения пробы — не более 24 ч.

Примечание — Пробы, хранившиеся в холодильнике, перед испытанием необходимо выдержать при комнатной температуре не менее 2 ч.

Для воды, расфасованной в емкости, сроки и температурные условия хранения должны соответствовать требованиям, указанным в ГОСТ 32220.

Метод основан на визуальном определении цветности анализируемой воды путем сравнения пробы со шкалой цветности.

4.1 Средства измерений, вспомогательное оборудование, реактивы, материалы

Термометр жидкостный стеклянный по ГОСТ 28498 диапазоном измеряемых температур от 0°С до 100°С.

Колбы мерные по ГОСТ 1770 2-го класса точности, вместимостью 100 и 1000 см .

Пипетки с одной отметкой по ГОСТ 29169 2-го класса точности.

Пипетки градуированные по ГОСТ 29227 2-го класса точности.

Воронки лабораторные по ГОСТ 25336.

Устройство для фильтрования проб с использованием мембранных фильтров.

Фильтры мембранные с порами диаметром 0,45 мкм.

Измерительные трубки внутренним диаметром от 16 до 30 мм и длиной не менее 200 мм из бесцветного стекла с незатененным плоским дном и меткой, нанесенной на стенку трубок на расстоянии от 10 до 20 мм ниже верхнего края, или специально изготовленные трубки, например трубки Несслера, или цилиндры мерные 2-го класса точности с пришлифованной пробкой.

Государственный (межгосударственный) стандартный образец (ГСО) цветности водных растворов с номинальным значением 500 градусов цветности по хром-кобальтовой шкале и относительной погрешностью аттестованного значения не более ±2% при доверительной вероятности 0,95.

Кислота серная по ГОСТ 4204, х.ч.

Вода дистиллированная по ГОСТ 6709.

Примечание — Допускается применять другие средства измерений, аппаратуру, вспомогательные устройства, реактивы с метрологическими и техническими характеристиками не хуже указанных в 4.1, в том числе импортные.

4.2 Подготовка к определению

4.2.1 Приготовление раствора серной кислоты

Раствор серной кислоты готовят в следующей последовательности: в мерную колбу вместимостью 1000 см , наполовину заполненную дистиллированной водой, осторожно добавляют 1 см концентрированной серной кислоты и доводят до метки дистиллированной водой. Срок хранения раствора — не более года.

4.2.2 Приготовление растворов хром-кобальтовой шкалы цветности

4.2.2.1 Растворы хром-кобальтовой шкалы цветности готовят в следующей последовательности: в мерные колбы вместимостью 100 см вносят ГСО цветности водных растворов в количестве, приведенном в таблице 1, и доводят до метки раствором серной кислоты (см. 4.2.1).

Номинальное значение цветности водных растворов, градусы цветности

источник