Меню Рубрики

Пробоподготовка и методы анализа воды

Отбор пробы воды следует рассматривать как стадию, в значительной степени определяющую правильность последующего анализа, причем ошибки, допущенные в процессе пробоотбора, в дальнейшем не могут быть исправлены даже самым квалифицированным аналитиком. Место и условия отбора пробы воды в каждом случае определяют конкретными задача- ми исследований, однако основные правила отбора проб носят общий характер: — проба воды, взятая для анализа, должна отражать условия и место отбора; — отбор пробы, ее хранение и транспортировка должны исключать возможность измене- ния ее первоначального состава (содержаний определяемых компонентов или свойств воды); — объем пробы должен быть достаточным для проведения аналитической процедуры в соответствии с методикой.

Отбор проб воды может быть разовым и серийным. Разовый отбор обычно применяют для получения первоначальной информации о качестве анализируемой воды. Принимая во внимание изменяющийся во времени и пространстве состав анализируемых вод, более оправдан серийный отбор, который проводят либо с разных глубин источника, либо в различные моменты времени. При таком отборе можно судить об изменении качества воды во времени или в зависимости от ее расхода.

По своему виду пробы бывают простыми и смешанными. Простая проба обеспечивается путем однократного отбора всего требуемого для анализа количества воды, при этом полученная информация отвечает составу в данной точке в данный момент времени. Смешанную пробу получают путем сливания простых проб, отобранных в разные промежутки времени или в различных точках, характеризуя таким образом усредненный состав воды. Если пробу отбирают из открытого водотока, необходимо соблюдать условия, при которых она будет типичной: лучшие места для пробоотбора — бурные участки, где происходит более полное смешение. При отборе пробы сточной воды нужно соблюдать следующие условия:

  • — скорость отбора не менее 0,5 м/с;
  • — диаметр отверстия пробоотборника не менее 9 — 12 мм;
  • — высокая турбулентность (в случае отсутствия создают искусственно).

При отборе пробы питьевой воды необходимо предварительно спустить воду в течение 15 мин при полностью открытом кране. Перед закрытием сосуда пробкой верхний слой воды сливают так, чтобы под пробкой оставался слой воздуха объемом 5 — 10 см 3 .

Количество пробы, которое необходимо отобрать для анализа, зависит от числа определяемых компонентов. Для неполного анализа, при котором определяют только несколько компонентов (или отдельные показатели: соответствие гигиеническим нормам, некоторые контрольные определения и т. д.), достаточно отобрать 1 л воды. Для более подробного анализа следует брать 2 л; для полного анализа или для определения компонентов, которых очень мало в воде, требуется еще больший объем пробы (до 10 л).

В качестве пробоотборных сосудов используют химически стойкие к исследуемой воде стеклянные, фарфоровые и пластмассовые сосуды (бутыли различных форм) с притертыми или завинчивающимися пробками (герметичная укупорка). Выбор материала сосуда зависит от природы определяемых примесей. Так, например, питьевую воду можно отбирать как в стеклянные, так и в полиэтиленовые сосуды, если они разрешены для контакта с водой; пробы, предназначенные для анализа на содержание органических веществ, отбирают только в стеклянные сосуды с притертыми пробками. Вместимость сосудов должна обеспечивать определение всех запланированных компонентов.

Основным правилом при взятии проб воды является чистота сосуда и пробки. Стеклянную посуду моют и обезжиривают хромовой смесью, тщательно отмывают от кислоты и пропаривают водяным паром. Полиэтиленовую посуду ополаскивают ацетоном, соляной кислотой (1:1), несколько раз водопроводной, а затем дистиллированной водой. Вымытую посуду высушивают, а перед взятием пробы несколько раз ополаскивают водой, подлежащей отбору. Пробки, в зависимости от природы материала, очищают различными способами: корковые пробки кипятят в дистиллированной воде, резиновые — в 5%-ном растворе соляной кислоты (20- 30 мин), а затем в 20%-ном растворе едкого натра, после чего их тщательно промывают дистиллированной водой и хранят в стеклянных банках с крышками.

Посуда, в которую производят отбор проб, должна быть пронумерована способом, исключающим возможность нарушения маркировки. К каждой пробе составляется сопроводительный документ, в котором должно быть указано: а) номер бутыли (тары); б) наименование вида вод; в) место отбора пробы; г) дата и время отбора пробы; д) способ отбора пробы (тип пробоотборника, приспособления); е) вид пробы (простая, смешанная); ж) периодичность отбора пробы; з) сведения о консервировании пробы и обеспечения ее сохранности; и) должность, фамилия и подпись ответственного лица и специально уполномоченного представителя водопользователя, участвующих в отборе проб и их подготовке.

Для доставки проб в лабораторию сосуды с пробами упаковывают в тару, обеспечивающую сохранность и предохраняющую от резких перепадов температуры.

Вода должна быть подвергнута анализу в день отбора. Принципиально следует избегать какого бы то ни было хранения проб воды. Поскольку для большей части типов вод характерен непостоянный состав, то в период времени между отбором пробы и анализом определяемые вещества могут измениться в различной степени. Очень быстро изменяются температура воды и рН. Газы, содержащиеся в воде, например кислород, диоксид углерода, сероводород или хлор, могут улетучиться из пробы (или появиться в ней: О2, СО2). Эти и подобные им вещества надо определять на месте отбора проб. Изменение величины рН, содержания карбонатов, свободного СО2 и т. п. может вызвать изменение свойств других компонентов, содержащихся в пробе. Некоторые из них могут выделиться в виде осадка или, наоборот, из нерастворимой формы перейти в раствор. Особенно это относится к солям железа, марганца, кальция.

В пробе могут протекать различные биохимические процессы, вызванные деятельностью микроорганизмов или планктона. Эти процессы протекают в отобранной пробе иначе, чем в первоначальной среде, и ведут к окислению или восстановлению некоторых компонентов пробы: нитраты восстанавливаются до нитритов или, наоборот, происходит окисление сульфидов, сульфитов, железа (II), цианидов и т. д. Изменяются органолептические свойства воды (запах, вкус, цвет, мутность). Некоторые растворенные металлы (Fe, Cu, Cd, Al, Mn, Cr, Zn), фосфаты, ряд органических соединений и другие компоненты могут адсорбироваться на стенках бутыли или выщелачиваться из стекла или пластмассы бутыли (В, Si, Na, К, различные ионы, адсорбированные полиэтиленом при предшествующем использовании бутыли).

Полимеризованные вещества могут деполимеризовываться и, наоборот, простые соединения могут полимеризовываться. Продолжительность рассмотренных процессов зависит от химической и биологической природы пробы, температуры, времени нахождения пробы на свету, материала посуды, промежутка времени между отбором проб и их анализом, условий транспортирования и приводит к несоответствию результатов анализа с реальными концентрациями компонентов в свежеотобранной пробе. Поэтому следует принимать все меры для того, чтобы сократить время между отбором пробы и анализом.

Последний должен быть проведен не позднее, чем через 12 ч после отбора пробы. Если же по каким-либо причинам сделать это невозможно, то для продления срока сохранности воды в том состоянии, в котором она находилась в момент взятия пробы, пробу консервируют. Консервация пробы заключается в добавлении консервирующих веществ в отобранную пробу.

Задача консервации и хранения проб очень сложна. Не все компоненты вод могут быть законсервированы: нельзя консервировать остаточные озон и хлор, рН, вкус, запах, цветность, мутность, общую жесткость, сухой остаток, фтор, хлориды, сульфаты, бораты, нитраты, фториды, ксантогенаты, взвешенные вещества, грубодисперсные примеси, жирные кислоты, сахара и т. д. Поскольку универсального консервирующего вещества не существует, то определяемые в пробе вещества не могут быть законсервированы одним и тем же способом: в этом случае пробы отбирают в отдельные бутыли и проводят соответствующую для каждого из определений консервацию.

Так, например, для определения сульфидов, сульфитов, диоксида углерода пробы отбирают в отдельные бутыли для каждого из этих определений. Консервирующее вещество может оказать мешающее действие, особенно при наличии в пробе нерастворимых веществ, что особенно характерно для сточных вод.

В качестве консервантов применяют широкий круг различных веществ, выбор которых определяется природой определяемых компонентов. Так, например, Al, As, Сu и Sb консервируют добавлением концентрированной соляной кислоты; Fe (общее содержание), Be, Mo, Se, U, Cd, Co, Sr, Mn, Ni, Hg, Pb, Ag, Cr (общий) — добавлением концентрированной азотной кислоты; аммиак и ионы аммония — добавлением серной кислоты; цианиды и фенолы — добавлением NaOH или КОН; сульфаты — добавлением NaOH и глицерина; нефтепродукты, нитриты, фосфаты — добавлением хлороформа. Количество консерванта составляет 3 мл/л пробы.

Хранить пробы лучше всего в сосудах из боросиликатного стекла, полиэтилена высокой плотности или полипропилена при рН = 2. В этих условиях уменьшается хемосорбция ионов следов металлов на поверхностях, предотвращается гидролиз и осаждение катионов.

Однако применение консервирующих средств не предохраняет полностью определяемое вещество от изменения. Целью консервации является лишь сохранение соответствующего компонента без изменений на период между отбором пробы и анализом. Поэтому и консервированные пробы следует анализировать на следующий день, но не позднее чем через 3 сут с момента отбора. Хранение проб в течение длительного времени возможно только для определения ограниченного числа параметров. О длительности хранения воды делается отметка в протоколе анализа.

Вообще установить единые требования к хранению проб невозможно. Сроки хранения, материал сосуда и другие условия зависят не только от определяемых компонентов, но также от природы пробы и аналитических методов, которые будут применяться. Обычно пробы поверхностных и подземных вод более стабильны при хранении, чем сточные воды.

В качестве метода консервирования вод широко используются глубокое охлаждение или замораживание на неопределенный период. Этот метод особенно эффективен, если его применять сразу же после отбора проб. Но долго хранить охлажденные пробы нельзя. В стеклянных сосудах пробы не замораживают.

источник

В проведении мониторинга вод различной природы и различного назначения можно выделить следующие этапы:

3. Обнаружение и идентификация ожидаемых компонентов;

4. Измерение концентрации найденных компонентов.

Основные принципы, которые необходимо соблюдать при отборе проб:

1. Проба воды должна отражать условия и место ее отбора;

2. Отбор, хранение, транспортировка и работа с пробой должны проводиться так, чтобы не произошло изменений в содержании определяемых компонентов или в свойствах воды;

3. Объем пробы должен быть достаточным и должен соответствовать применяемой методике анализа.

Место для отбора пробы выбирают в соответствии с целями анализа и с учетом всех обстоятельств, которые могли бы оказать влияние на состав взятой пробы.

Так, при отборе проб поверхностных и подземных вод необходимо внимательно обследовать все источники поступления воды в водоем, выявить возможные источники загрязнения водоема. Место для отбора проб сточных вод выбирают только после подробного ознакомления с технологией производства, расположением цехов, системой канализации, назначением и работой отдельных элементов станции очистки и т.д.

В соответствии с целями анализа проводят разовый или серийный отбор проб. При разовом отборе пробу берут один раз в определенном месте и рассматривают результаты одного анализа. Этот способ применяется в редких случаях, когда результатов единичного анализа достаточно для суждения о качестве исследуемой воды (например, при постоянстве состава воды, как это наблюдается для глубинных грунтовых вод). В большинстве случаев состав воды изменяется в зависимости от места и времени отбора пробы, в этих случаях проводят серийный отбор проб. При анализе серии взятых проб определяется изменение содержания отдельных компонентов с учетом места, времени отбора или обоих этих факторов. Полученные результаты обрабатываются статистически.

Типичным примером серийного отбора проб является зональный отбор. Пробы отбирают с различной глубины по выбранному створу водохранилища, озера, пруда и т.д. Другой распространенный тип серийного отбора проб — отбор через определенные промежутки времени. Позволяющий следить за изменением качества воды во времени или же в зависимости от ее расхода. При этом можно получить сведения о сезонных или дневных изменениях качества воды.

Различают два основных вида проб: простую и смешанную. Простую пробу получают путем однократного отбора всего требуемого количества воды. Анализ простой пробы дает сведения о составе воды в данный момент в данном месте. Смешанную пробу получают, сливая простые пробы, взятые в одном и том же месте через определенные промежутки времени или отобранные одновременно в различных местах обследуемого объекта. Эта проба характеризует средний состав воды исследуемого объекта или средний состав за определенный период времени (за час, смену, день и т.д.), или, наконец, средний состав с учетом как места, так и времени. Смешанную пробу нельзя отбирать за период больше одних суток. При необходимости более длительного хранения пробу консервируют. Смешанную пробу нельзя использовать для определения тех компонентов и характеристик воды, которые легко изменяются со временем (растворенные газы, pH и т.д.). Эти определения проводят в каждой составляющей пробы отдельно.

Количество пробы, которое необходимо отобрать, зависит от числа определяемых компонентов. Чаще всего, это 1-2л воды.

В качестве сосудов для отбора и хранения проб обычно используют бутыли из химически стойкого стекла. Закрывают их резиновыми или стеклянными притертыми пробками. В специальных случаях используют полиэтиленовые бутыли или термосы. Посуда должна быть тщательно вымыта, обезжирена и высушена.

После отбора проб делается запись , в которой указывают вид и происхождение воды, точное место, день и час отбора, способ консервирования.

Если анализ воды проводится не на месте отбора пробы или не в тот же день в лаборатории, то пробу консервируют. Необходимость консервирования обусловлена тем, что некоторые характеристики воды при хранении изменяются (температура, pH, содержание различных газов; некоторые вещества могут выпасть в осадок, другие, наоборот, раствориться и т.д.). В неконсервированной пробе могут также протекать различные биохимические процессы, вызванные деятельностью микроорганизмов или планктона. Универсального консервирующего средства не существует. Для полного анализа воды следует отобрать пробу в несколько бутылей, в которые добавляют различные консервирующие вещества. Пробы для определения всех видов связанного азота, окисляемости, пиридина консервируют, прибавляя к ним серную кислоту, при определении взвешенных частиц и сухого остатка добавляют к пробам хлороформ, для определения фенолов — пробы подщелачивают и т.д. Довольно затруднительным является консервирование сточных вод, особенно при наличии в пробе нерастворимых веществ, т.к. консервирующее вещество может оказать мешающее действие. Консервирование сточных вод химическими реагентами проводят лишь в тех случаях, когда консервирующий реагент не мешает определению компонентов анализируемой воды и если невозможно провести определение сразу после отбора проб.

Подготовка пробы обычно является обязательной стадией в анализе воды. Лишь в исключительных случаях удается избежать этого и использовать прямой ввод пробы (например, при определении в питьевой воде тригалометанов методом капиллярной газовой хроматографии с электронно-захватным детектором или полиядерных ароматических углеводородов методом высокоэффективной жидкостной хроматографии с флуоресцентным детектированием).

Слишком разбавленные или сложные по составу образцы приходится подвергать ряду специфических процедур, чтобы сделать возможным их исследование на имеющейся аналитической аппаратуре и достичь эффективного разделения и детектирования. Подготовка пробы может ограничиваться только концентрированием исходного образца, а может включать также и фракционирование содержащихся в пробе компонентов. Для концентрирования пробы и разделения ее на фракции могут применяются выпаривание, отгонка, дистилляция, вымораживание, осаждение и соосаждение, экстракция, сорбция, хроматография и другие методы.

Читайте также:  Анализ на фосфаты в котловой воде

Выпаривание воды является самым простым и доступным способом концентрирования. Концентрации растворенных веществ можно увеличить при этом в 10-1000 раз. Однако метод не лишен довольно существенных недостатков:

1. При выпаривании концентрируются не только определяемые в воде микрокомпоненты, но и макрокомпоненты, которые при высоких концентрациях обычно мешают определению;

2. При значительном концентрировании выпариванием нередко выпадают осадки, отделение которых фильтрованием может привести к потере определяемых компонентов проб;

3. Если определяемые вещества летучи, то при выпаривании может произойти частичное или даже полное удаление их из пробы;

4. При выпаривании возможно загрязнение пробы веществами, извлекаемыми из материала посуды.

Значительно эффективнее можно использовать выпаривание после экстракции (выпаривание экстрагента). Увеличение концентрации определяемого вещества в этом случае будет равно произведению результатов обоих процессов — экстракции и выпаривания. Кроме того, при этом отделяются все неэкстрагируемые примеси.

Методом отгонки микрокомпонентов (при атмосферном давлении или в вакууме) концентрируют летучие вещества (аммиак, летучие фенолы, летучие кислоты и др.), а также неопределяемые компоненты, которые можно превратить в летучие вещества (например, фтор в виде SiF4, цианиды в виде HCN). При отгонке следует всегда учитывать возможность разложения отделяемого соединения и неполноту его отгонки.

Концентрирование примесей вымораживанием основано на том, что при замерзании части водного раствора растворенные компоненты остаются в жидкой фазе. Этот метод применяют для концентрирования веществ, обладающих достаточной растворимостью в воде при низких температурах, и в особенности гидрофильных веществ, трудно извлекаемых из воды другими методами. К преимуществам метода относятся:

1. Незначительные потери летучих соединений;

2. Отсутствие загрязнения применяемыми реактивами;

3. Значительно меньшая опасность изменения компонентного состава исследуемой воды вследствие протекания каких-либо превращений определяемых веществ.

Основными факторами, определяющими эффективность процесса вымораживания, являются скорость нарастания льда, возможность отвода веществ из зоны раствора, прилегающей к намерзающему льду, и структура получаемого льда.

Возможны различные варианты проведения процесса, из которых чаще всего используют следующие:

1. В простейшем случае анализируемую воду помещают в конусообразный сосуд, расширяющийся кверху. Вымораживают основную массу воды в морозильной камере при температуре -12 0 С или в бане с охлаждающей смесью. Способ очень прост, однако здесь практически нет возможности влиять на параметры, определяющие эффективность процесса;

2. По Бейкеру, исследуемую воду помещают в круглодонную колбу, емкость которой должна в 4-5 раз превышать объем пробы. Колбу с пробой погружают под углом 60 0 в охлаждающую смесь с температурой -12 0 С и вращают с частотой 80 оборотов/мин. При необходимости можно варьировать температуру вымораживания и частоту вращения, влияя таким образом на скорость намерзания льда и быстроту отделения от поверхности льда слоя воды, более концентрированного чем остальной раствор. Вымораживание по Бейкеру проводят до замерзания приблизительно 9/10 раствора. Хладоагентами могут быть солевой раствор, фенолы, жидкий аммиак и др.;

3. Оригинальным вариантом вымораживания является так называемый метод направленной кристаллизации. Он осуществляется на специальной установке, обеспечивающей постепенное погружение пробирок с исследуемой водой в охлаждающую смесь при постоянном и достаточно интенсивном перемешивании жидкой фазы около границы лед-вода. Нарастание кристалла льда здесь происходит снизу вверх. Метод позволяет максимально варьировать условия эксперимента и влиять таким образом на эффективность процесса.

Существенным ограничением метода вымораживания является резкое падение эффективности при анализе систем с высоким солевым фоном. При этом получают только 10-12-кратное обогащение. Уменьшение эффективности концентрирования наблюдается при этом в явной мере для всех компонентов раствора. Оно связано с нарушением структуры льда и захватом уже сконцентрированной фазы намерзающими кристаллами.

Соосаждение является одним из самых эффективных методов концентрирования при определении неорганических веществ. Таким способом часто выделяют очень малые (следовые) количества определяемого металла из большого объема сточной воды. Для этого вводят в достаточном количестве соль другого металла (макрокомпонент, носитель, коллектор) и осаждают этот металл подходящим реагентом. Образующийся осадок увлекает с собой и микрокомпоненты — определяемый металл. Выпавший осадок растворяют в возможно меньшем объеме необходимого растворителя и анализируют полученный концентрат. Методом соосаждения можно достигнуть повышения концентрации в десятки тысяч раз.

Одним из важнейших методов, применяемых для концентрирования неорганических и органических веществ, является экстракция . Наиболее часто используемая при анализе воды жидкостно-жидкостная экстракция может проводиться встряхиванием анализируемого образца с органическим раствором в делительной воронке или автоматически, при использовании экстрактора непрерывного действия. В зависимости от условий проведения процесса экстракты могут содержать малолетучие загрязнители средней и малой полярности (универсальная экстракция малолетучих веществ), кислоты или основания (селективная экстракция при соответствующих значениях рН).

К недостаткам метода жидкостно-жидкостной экстракции следует отнести следующие:

1. Процесс экстрагирования может отнимать много времени;

2. Зачастую используются токсичные растворители;

3. Разделение органической и водной фаз часто затруднено образованием устойчивой эмульсии (особенно в ручной экстракции).

Обычно объем получаемого экстракта довольно велик, поэтому в некоторых случаях (например, при использовании для анализа воды хроматографических методов) необходима дополнительная операция — выпаривание и концентрирование.

К применяемым в методе экстракции экстрагентам предъявляют следующие требования:

1. Экстрагент должен обладать хорошей способностью извлекать одно определяемое вещество или группу веществ;

2. Он должен отличаться малой растворимостью в воде;

3. Желательно, чтобы экстрагент имел достаточно высокую температуру кипения (не ниже 50 ° С);

4. Плотность экстрагента должна как можно больше отличаться от плотности анализируемого раствора;

5. Экстрагент не должен взаимодействовать с компонентами анализируемого раствора;

6. Он должен быть чистым и легко регенерироваться в лабораторных условиях.

При выборе наиболее подходящего экстрагента используют справочные данные по коэффициентам распределения, по растворимости соединений в воде и в различных органических растворителях. Можно также ориентироваться на химическое сродство экстрагируемого вещества и экстрагента.

В последнее время широко используется также твердофазная экстракция, основанная на разделении и концентрировании в результате сорбционных или ионообменных процессов. Этот способ пригоден для извлечения из воды соединений как малой и средней, так и высокой полярности (в зависимости от характеристик используемого сорбента). Пробы большого объема могут быть обработаны с использованием достаточно малых количеств твердой фазы, что в свою очередь требует малого объема растворителя для последующей десорбции сконцентрированных соединений. Это снимает необходимость дополнительного выпаривания и существенно уменьшает риск загрязнения образца. Метод является значительно более экспрессным по сравнению с классическими методами выделения и концентрирования.

В зависимости от объема пробы воды и характера анализируемого вещества процесс может быть проведен либо на картридже (патроне, заполненном сорбентом), либо на мембранных дисках. Применение высокоэффективных картриджей часто позволяет проводить полное выделение большого числа загрязнителей. Процесс легко автоматизировать.

Особенно удачным является применение метода твердофазной экстракции для выделения и концентрирования полярных веществ. Загрязнители улавливают и предварительно концентрируют на крупносетчатых пористых синтетических сорбентах, называемых смолами (например, амберлит-ХАД), которые затем высушивают, промывают дихлорметаном и полученный элюат используют для анализа (при необходимости концентрируют его). Элюирование растворителем иногда заменяют термической десорбцией, при этом обеспечивается наиболее высокая степень обогащения пробы. Ограничение метода связано с недостаточно высокой термической стабильностью полимерных сорбентов, что существенно сужает область его применения.

Еще одним методом выделения и одновременного концентрирования является продувка с последующим улавливанием. Этот метод используют главным образом для анализа неполярных летучих органических соединений перед их хроматографическим определением. Продуваемый через пробу воды инертный газ захватывает летучие органические соединения, которые затем улавливаются на таких адсорбентах, как тенакс или активный уголь и (или) конденсируют в криогенной ловушке. Ловушка с адсорбентом обычно встроена в десорбционную камеру, снабженную мощным нагревательным устройством, которое обеспечивает десорбцию сконцентрированных веществ. Эта методика имеет существенные достоинства, поскольку позволяет выделить «чистую» пробу из грязной воды. Устройство для стриппинга может быть легко смонтировано на газовом хроматографе с подключенными последовательно детекторами электронно-захватным, пламенно-ионизационным, фотоионизационным с десорбцией через замкнутую петлю или с масс-спектрометрическим детектированием. С помощью такой методики могут быть проанализированы загрязнители в питьевой воде при очень низких концентрациях — на уровне мкг/л или даже нг/л.

При определении летучих веществ можно использовать для целей концентрирования также парофазный анализ . Его применяют в двух вариантах: статическом и динамическом . В статическом варианте пробу воды помещают в специальный сосуд, плотно закрывают и термостатируют для того, чтобы перевести летучие компоненты в газовую фазу. Анализ полученной газовой фазы проводят с помощью метода хроматографии с использованием насадочных или капиллярных колонок. Проба отбирается после установления равновесия между газовой и жидкой фазой.

Для увеличения чувствительности применяют динамический вариант парофазного анализа. В этом случае фазовое равновесие постоянно нарушается вследствие продувки сосуда с образцом инертным газом. Выдуваемые компоненты собирают на адсорбенте (например, на тенаксе) или улавливают в криогенной ловушке и после десорбции вводят в газовый хроматограф. Статический вариант парофазного анализа позволяет определять летучие примеси на уровне мкг/мл, динамический — на уровне мкг/л. Предварительная обработка пробы (высаливание примесей сульфатом натрия или изменение рН пробы) часто увеличивает чувствительность и воспроизводимость результатов анализа.

Загрязнители обычно присутствуют в воде на уровне следов в диапазоне от 1 мкг/л до 1 нг/л. Пределы обнаружения большинства методов близки к значениям предельно допустимых концентраций, поэтому для определения примесей требуется самая высокая чувствительность аналитических приборов. Задача выбора оптимальной аналитической методики и прибора в мониторинге решается с учетом типа определяемых веществ и требуемых пределов обнаружения.

Методы анализа, используемые в современных лабораториях, занимающихся контролем окружающей среды, включают:

1. Различные варианты оптических методов анализа (например, спектрофотометрия в видимой УФ- и ИК-областях, атомно-абсорбционная и эмиссионная спектрометрия);

2. Хроматографические методы (газовая, жидкостная, сверхкритическая);

3. Электроаналитические методы (вольтамперометрия, ионометрия и другие).

Ни один из перечисленных методов не является универсальным, некоторые из них пригодны для определения только органических веществ, другие — неорганических.

Оптические методы, в частности, классические фотометрические и спектрофотометрические методы, основанные на образовании определяемыми компонентами окрашенных соединений с разнообразными реагентами, издавна и широко применяются для целей мониторинга окружающей среды. В последние десятилетия все большее значение приобретают также атомно-абсорбционная и эмиссионная (флуоресцентная) спектрометрия, методы, позволяющие определить большое число химических элементов в неорганических матрицах с крайне низкими пределами обнаружения (при абсолютных содержаниях приблизительно 10 -14 нг). Повышению чувствительности определений этими методами способствуют простейшая предварительная пробоподготовка или концентрирование (экстракция, упаривание проб воды и т.п.).

Хроматографические методы часто оказываются незаменимыми для идентификации и количественного определения органических веществ со сходной структурой. При этом наиболее широко используемыми для рутинных анализов загрязнителей окружающей среды являются газовая и высокоэффективная жидкостная хроматография. Газохроматографический анализ органических загрязнителей в питьевой и сточных водах сначала основывался на использовании насадочных колонок, позднее распространение получили и кварцевые капиллярные колонки. Внутренний диаметр капиллярных колонок составляет обычно 0,20-0,75 мм, длина — 30-105 м. Оптимальные результаты при анализе загрязнителей в воде достигаются чаще всего при использовании капиллярных колонок с различной толщиной пленки из метилфенилсиликонов с содержанием фенильных групп 5 и 50%. Уязвимым местом хроматографических методик с использованием капиллярных колонок часто становится система ввода пробы. Системы ввода пробы можно подразделить на две группы: универсальные и селективные. К универсальным относятся системы ввода с делением и без деления потока, “холодный” ввод в колонку и испарение при программировании температуры. При селективном вводе используют продувку с промежуточным улавливанием в ловушке, парофазный анализ и т.д. При использовании универсальных систем ввода в колонку поступает вся проба полностью, при селективной инжекции вводится только определенная фракция. Результаты, получаемые при селективном вводе, являются существенно более точными, поскольку попавшая в колонку фракция содержит только летучие вещества, и техника при этом может быть полностью автоматизирована.

Газохроматографические детекторы, используемые в мониторинге загрязнителей, часто подразделяют на универсальные, откликающиеся на каждый компонент в подвижной фазе, и селективные, реагирующие на присутствие в подвижной фазе определенной группы веществ со сходными химическими характеристиками. К универсальным относятся пламенно-ионизационный, атомно-эмиссионный, масс-спектрометрический детекторы и инфракрасная спектрометрия. Селективными детекторами, используемыми в анализе воды, являются электронно-захватный (селективен к веществам, содержащим атомы галогенов), термоионный (селективен к азот- и фосфорсодержащим соединениям), фотоионизационный (селективен к ароматическим углеводородам), детектор по электролитической проводимости (селективен к соединениям, содержащим атомы галогенов, серы и азота). Минимально детектируемые количества веществ — от нанограммов до пикограммов в секунду.

Высокоэффективная жидкостная хроматография (ВЭЖХ) является идеальным методом для определения большого числа термически неустойчивых соединений, которые не могут быть проанализированы с помощью газовой хроматографии. Объектами анализа методом жидкостной хроматографии в настоящее время часто становятся современные агрохимикаты, в число которых входят метилкарбонаты и фосфорорганические инсектициды, другие нелетучие вещества. Высокоэффективная жидкостная хроматография получает все большее распространение среди других методов, применяемых в мониторинге окружающей среды, еще и потому, что имеет блестящие перспективы в плане автоматизации пробоподготовки.

Колонки для ВЭЖХ, которые чаще всего используют в анализах загрязнителей окружающей среды, имеют длину 25 см и внутренний диаметр 4,6 мм, заполняются они сферическими частицами силикагеля размером 5-10 мкм с привитыми октадецильными группами. В последние годы появились колонки с меньшим внутренним диаметром, заполненными частицами меньшего размера. Использование таких колонок приводит к уменьшению расхода растворителей и продолжительности анализа, увеличению чувствительности и эффективности разделения, а также облегчает проблему подключения колонок к спектральным детекторам. Колонки с внутренним диаметром 3,1 мм снабжают предохранительным картриджем (форколонкой) для увеличения срока службы и улучшения воспроизводимости анализов.

В качестве детекторов в современных приборах для ВЭЖХ используются обычно УФ-детектор на диодной матрице, флуоресцентный и электрохимический.

Электроаналитические методы, которые обычно применяют в анализе воды для определения неорганических компонентов, часто уступают по чувствительности методам газовой и жидкостной хроматографии, атомно-адсорбционной спектрометрии. Однако здесь используется более дешевая аппаратура, иногда даже в полевых условиях. Основными электроаналитическими методами, применяемыми в анализе воды, являются вольтамперометрия, потенциометрия и кондуктометрия . Наиболее эффективными вольтамперометрическими методами являются дифференциальная импульсная полярография (ДИП) и инверсионный электрохимический анализ (ИЭА). Сочетание этих двух методов позволяет проводить определение с очень высокой чувствительностью — приблизительно 10 -9 моль/л, аппаратурное оформление при этом несложно, что дает возможность делать анализы в полевых условиях. На принципе использования метода ИЭА или сочетания ИЭА с ДИП работают полностью автоматизированные станции мониторинга. Методы ДИП и ИЭА в прямом варианте, а также в сочетании друг с другом используют для анализа загрязненности воды ионами тяжелых металлов, различными органическими веществами. При этом часто способы пробоподготовки являются гораздо более простыми, чем в спектрометрии или газовой хроматографии. Преимуществом метода ИЭА является (в отличие от других методов, например, атомно-адсорбционной спектрометрии) также способность “отличать” свободные ионы от их связанных химических форм, что важно и для оценки физико-химических свойств анализируемых веществ, и с точки зрения биологического контроля (например, при оценке токсичности вод). Время проведения анализа иногда сокращается до нескольких секунд за счет повышения скорости развертки поляризующего напряжения.

Читайте также:  Анализ на гепатит в воду выпила

Потенциометрия с применением различных ионоселективных электродов используется в анализе воды для определения большого числа неорганических катионов и анионов. Концентрации, которые удается определить таким способом, 10 0 -10 -7 моль/л. Контроль с помощью ионоселективных электродов отличается простотой, экспрессностью и возможностью проведения непрерывных измерений. В настоящее время созданы ионоселективные электроды, чувствительные к некоторым органическим веществам (например, алкалоидам), поверхностно-активным веществами и моющим веществам (детергентам). В анализе воды используются компактные анализаторы типа зондов с применением современных ионоселективных электродов. При этом в ручке зонда смонтирована схема, обрабатывающая отклик, и дисплей.

Кондуктометрия используется в работе анализаторов детергентов в сточных водах, при определении концентраций синтетических удобрений в оросительных системах, при оценке качества питьевой воды. В дополнение к прямой кондуктометрии для определения некоторых видов загрязнителей могут быть использованы косвенные методы, в которых определяемые вещества взаимодействуют перед измерением со специально подобранными реагентами и регистрируемое изменение электропроводности вызывается только присутствием соответствующих продуктов реакции. Кроме классических вариантов кондуктометрии применяют и ее высокочастотный вариант (осциллометрию), в котором индикаторная электродная система реализуется в кондуктометрических анализаторах непрерывного действия.

Таким образом, я считаю, что в нашем случае необходимо проводить разовый отбор проб, когда проба берется из подземных вод реки, и серийный отбор проб. Пробы берутся как простые, так и смешанные, хотя я считаю, что простая проба дает более точные сведения о загрязнении. Но она дает информацию о составе вод в данный момент времени в данном месте, а нам также важна информация о среднем составе воды в реке. Смешанную пробу, я считаю, лучше брать, многократно в одном месте через определенные промежутки времени, так как это приведет к меньшей ошибке измерения, чем при одновременном отборе проб с разных участков реки. Простая проба отбирается с различной глубины по выбранному створу реки (горизонты створа). Количество пробы 1 — 2 л. Если не возможен быстрый анализ, то пробу консервируют, добавляя консервант. Универсального консерванта для всех загрязнителей не существует. Для каждого загрязнителя используется свой консервант. Пробоподготовка в нашем случае заключается в концентрировании. Методы концентрирования, которые, я считаю, наиболее подходящими, это выпаривание, отгонка и соосаждение, хотя могут использоваться и другие методы в зависимости от целей анализа и определяемых компонентов. Методы анализа: оптические, хроматографические методы и кондуктометрия.

источник

Методы анализа, разработанные для поверхностных пресных и соленых вод, применимы, несомненно, и для анализа других водных объектов, в том числе грунтовых и лизиметрических вод, почвенных растворов и вытяжек.

Аналитическая процедура определения содержаний элементов в водах различного состава включает несколько стадий:

— собственно инструментальный анализ.

В зависимости от концентраций определяемых элементов и возмож­ностей инструментальной техники вышеперечисленные стадии могут быть усложнены введением дополнительных этапов, связанных с консервацией анализируемых образцов, предварительным концентрированием элементов и модернизацией оборудования (например, введением дополнительных приспособлений для ввода пробы, перевода из одного агрегатного состо­яния в другое и т.д.).

Пробоотбор и пробоподготовка как важнейший этап анализа.Отбор пробы воды следует рассматривать как стадию, в значительной степени определяющую правильность последующего анализа, причем ошибки, допущенные в процессе пробоотбора, в дальнейшем не могут быть исправлены даже самым квалифицированным аналитиком. Место и усло­вия отбора пробы воды в каждом случае определяют конкретными задачами исследований, однако основные правила отбора проб носят общий ха­рактер:

— проба воды, взятая для анализа, должна отражать условия и место отбора;

— отбор пробы, ее хранение и транспортировка должны исключать возможность изменения ее первоначального состава (содержаний опре­деляемых компонентов или свойств воды);

-объем пробы должен быть достаточным для проведения анали­тической процедуры в соответствии с методикой.

Отбор проб воды.Отбор проб воды может быть разовым и серийным. Разовый отбор обычно применяют для получения первоначальной информации о качестве ана­лизируемой воды. Принимая во внимание изменяющийся во времени и пространстве состав анализируемых вод, более оправдан серийный отбор, который проводят либо с разных глубин источника, либо в различные моменты времени. При таком отборе можно судить об изменении качества воды во времени или в зависимости от ее расхода.

По своему виду пробы бывают простыми и смешанными. Простая пробаобеспечивается путем однократного отбора всего требуемого для анализа количества воды, при этом полученная информация отвечает составу в данной точке в данный момент времени.Смешанную пробуполучают путем сливания простых проб, отобранных в разные промежутки времени или в различных точках, характеризуя таким образом усреднен­ный состав воды. Если пробу отбирают из открытого водотока, необходимо соблюдать условия, при которых она будет типичной: лучшие места для пробоотбора — бурные участки, где происходит более полное смешение. При отборе пробы сточной воды нужно соблюдать следующие условия:

— скорость отбора не менее 0,5 м/с;

— диаметр отверстия пробоотборника не менее 9-12 мм;

— высокая турбулентность (в случае отсутствия создают искусственно).

При отборе пробы питьевой воды необходимо предварительно спустить воду в течение 15 мин при полностью открытом кране. Перед закрытием сосуда пробкой верхний слой воды сливают так, чтобы под пробкой оставался слой воздуха объемом 5-10 см 3 .

Для отбора и хранения проб используют посуду из стекла, полиэтилена, тефлона. Для определения ультрамикроконцентраций элементов идеальным материалом для отбора и особенно для хранения проб является новый полимер политетрафтор-алкокси-этилен (PFA). Его главные преимущества по сравнению с тефлоном, применяющимся в аналитической химии микро­элементов, — высокая гидрофобность и практически полное отсутствие внутренних пор, а значит и отсутствие эффекта «памяти».

Консервация и хранение.Отобранная проба природной воды представляет собой двухфазную сис­тему, состоящую из раствора и взвешенного вещества. Чтобы избежать потерь микроэлементов за счет биохимических процессов и сорбции на стенках сосуда пробу после фильтрования консервируют, в отдельных случаях даже нефильтрованные образцы, если это согласуется с задачей исследования.

источник

Химический анализ чаще всего начинают с отбора и подготовки пробы к анализу. Следует отметить, что все стадии анализа связаны между собой. Так, тщательно измеренный аналитический сигнал не дает правильной информации о содержании определяемого компонента, если не правильно проведен отбор или подготовка пробы к анализу. В большинстве случаев именно отбор и подготовка пробы к химическому анализу лимитирует надежность и, в целом, качество получаемых результатов, а также трудоемкость и длительность аналитического цикла.

Погрешность при пробоподготовке и отборе пробы часто определяет общую ошибку определения компонента и делает бессмысленным использование высокоточных методов. В свою очередь отбор и подготовка пробы зависят не только от природы анализируемого объекта, но и от способа измерения аналитического сигнала. Приемы и порядок отбора пробы и ее подготовки настолько важны при проведении химического анализа, что обычно предписываются Государственным стандартом (ГОСТ) отбор пробы.

Для проведения анализа, как правило, берут так называемую среднюю (представительную) пробу. Это небольшая часть анализируемого объекта, средний состав и свойства которой должны быть идентичны во всех отношениях среднему составу и свойствам исследуемого объекта. Различают генеральную, лабораторную и анализируемую пробы. Генеральная (называемая иногда первичной, большой или грубой) проба отбирается непосредственно из анализируемого объекта. Она достаточно большая — обычно 1—50 кг, для некоторых объектов составляет иногда 0,5—5 т.

Из генеральной пробы путем ее сокращения отбирают лабораторную пробу (обычно от 25 г до 1 кг). Одну часть лабораторной пробы используют для предварительных исследований, другую — сохраняют для возможных в будущем арбитражных анализов, третью — используют непосредственно для анализа (анализируемая проба). В случае необходимости пробу измельчают и усредняют. Для анализируемой пробы проводят несколько определений компонента: из отдельных навесок 10—1000 мг (если анализируемый объект — твердое вещество) или аликвот (если анализируемый объект — жидкость или газ). Содержание определяемого компонента в анализируемой пробе должно отражать среднее содержание этого компонента во всем исследуемом объекте, т.е. анализируемая проба должна быть представительной. Насколько это важно, можно показать на следующих примерах. Так, при массе анализируемой пробы 1—10 г оценивается среднее содержание определяемого компонента в генеральной пробе массой в несколько тонн и в конечном счете — запас компонента в месторождении. Определение содержания физиологически активного компонента в анализируемой пробе из одной или нескольких таблеток дает основание для оценки эффективности всей партии лекарственного препарата. Эти примеры показывают необходимость правильного отбора пробы. Напомним, что именно погрешность в отборе пробы часто определяет общую погрешность химического анализа и, не оценив погрешности на этой стадии, нельзя говорить о правильности определения компонента в анализируемом объекте.

Чем больше материала отобрано для пробы, тем она представительнее. Однако с очень большой пробой трудно работать, это увеличивает время анализа и расходы на него. Таким образом, отбирать пробу нужно так, чтобы она была представительной и не очень большой.

Способы отбора пробы и ее величина, прежде всего, определяются физическими и химическими свойствами анализируемого объекта. При отборе пробы нужно учитывать: 1) агрегатное состояние анализируемого объекта (способы отбора пробы различны для газов, жидкостей и твердых веществ); 2) неоднородность анализируемого материала и размер частиц, с которых начинается неоднородность (чем однороднее вещество, тем проще отобрать пробу); 3) требуемую точность оценки содержания компонента во всей массе анализируемого объекта в зависимости от задачи анализа и природы исследуемого объекта (так, требуется большая точность при определении содержания физиологически активного компонента в лекарстве, чем при определении содержания компонента в руде для оценки рентабельности месторождения).

Один из факторов, который нужно учитывать при выборе способа отбора пробы, — возможность изменения состава объекта и содержания определяемого компонента во времени. Например, переменный состав воды в реке, колебания состава дымовых газов промышленного предприятия, изменение концентрации компонентов в пищевых продуктах и т.д.

источник

УЧЕБНОЙ ПРАКТИКИ ПО ХИМИИ

Для студентов специальности 1-33 01 06 Экология сельского хозяйства

День практики Содержание занятия Форма контроля знаний Кол-во часов
Инструктаж по технике безопасности. Пробоподготовка в анализе объектов окружающей среды формированию студенческих подгрупп по 4–5 человек и выбор объектов исследования. Сухое озоление растительных и почвенных образцов. 1
Отбор проб воды. . Проверка оформления лабораторных работ 1
Провести анализ водопроводной воды. Качественный анализ воды на катионы и анионы. Определение общей и временной жесткости воды. Проверка оформления лабораторных работ 1
Определение содержания нитратов в пробах растительной продукции ионометрическим методом. Проверка оформления лабораторных работ 1
Ознакомление с работой Химико-экологической лаборатории УО БГСХА Отчет 1
Сравнение результатов анализа по подгруппам, построение сводных графиков, оформление отчета, приём зачёта. Зачет 1

Руководитель практики О.В. Поддубная

При ведении, оформлении и хранении документации по учебной практике следует соблюдать следующие требования:

1. Оформление дневника и отчета выполняется на бумажном носителе формата А4 .

2. Заполнение дневника и отчета практики выполняется вручную (аккуратно, разборчивым подчерком) или с использованием принтерной печати документов, подготовленных в приложении MS Word-2003 (или старше), и осуществляется в соответствии с требованиями государственного стандарта СТБ 6-38-2004 к реквизитам, тексту, оформлению документа и данных в таблицах.

3. Исправления, дополнения после визирования записей руководителем практики не допускаются.

Учреждение образования

«белорусская государственная

Сельскохозяйственная академия»

Агроэкологический факультет

Кафедра химии

О прохождении учебной практики

По дисциплине «ХИМИЯ»

Студента 2 курса специальности 1-33 01 06 экология сельского хозяйства

_______________________________________________________________

Сроки практики 9 июня 2018 года

Руководитель практики

Поддубная О. В.

Доцент, канд. с/х наук

Требования по составлению письменного отчета

отчет содержит следующие разделы:

1. Введение (содержит цели и задачи практики, график ее проведения).

2. Изложение освоенных методик и полученных научных результатов студентом в процессе прохождения практики.

3. Дневник практики с полностью заполненными соответствующими разделами

Во время прохождения практики студент ежедневно ведет дневник, куда, согласно календарному графику и программе практики, заносит материалы изучаемых вопросов, этапы выполнения индивидуальных заданий, сведения, полученные на лабораторных занятиях, во время экскурсий, проводимых в период практики.

По окончании практики студент обязан представить дневник практики с полностью заполненными соответствующими разделами и письменный отчет о прохождении практики. Отчет является одним из основных документов, характеризующих качество работы студента на практике.

ДНЕВНИК УЧЕБНОЙ ПРАКТИКИ

Студента ___________________________

Дата Краткое содержание выполняемых работ

ПРОБОПОДГОТОВКА В АНАЛИЗЕ ОБЪЕКТОВ ОКРУЖАЮЩЕЙ СРЕДЫ

Задачами подготовки проб к анализу в лаборатории (пробоподготовки), как правило, являются: гомогенизация (достижение однородности пробы), обогащение пробы (ее концентрирование), удаление мешающих примесей (повышение селективности будущего анализа) и др.

Гомогенизация пробы особенно важна для твердых (сыпучих) образцов проб и реже жидких. Она обеспечивает представительность анализа (воспроизводимость повторяемых результатов) и во многом технически облегчает количественный анализ.

Гомогенизацию твердых образцов, как правило, осуществляют путем размола, дробления, диспергирования, измельчения, смешения и т.п. Аналогичные операции применяют для подготовки проб к растворению или химической обработке (модификации), поскольку уменьшение размеров частиц сопровождается увеличением их поверхности и, соответственно, повышением скорости взаимодействия с реагентами. В частности, перед растворением для определения тяжелых металлов образцы почвы тщательно перемешивают, растирают в ступке и методом «квартования» отбирают среднюю пробу.

Подготовка к анализу биологических образцов и пищевых продуктов также включает в себя гомогенизацию. Обычно ее проводят в миксерах с вращающимися ножами. Однако они являются главными источниками загрязнения биопроб, поскольку сильно истираются в процессе нагрева при работе. Поэтому рекомендуется применять высокоскоростные миксеры с охлаждением. Описан интересный метод подготовки проб биологических тканей путем их охлаждения жидким азотом до хрупкого состояния с резким встряхиванием или размалыванием в порошок.

Метод пробоподготовки сухое и мокрое озоление.

Традиционными методами пробоподготовки являются сухая и мокрая минерализация. Сухая минерализация представляет собой нагревание пробы на воздухе до температуры 450-550С в муфельной печи. Единственным реагентом при сухом озолении является кислород воздуха, при помощи которого происходит окисление органической матрицы. Влажный материал перед озолением высушивают в сушильном шкафу или на плитке, летучие растворители удаляют выпариванием на водяной бане. Чашку с пробой помещают в муфельную печь и постепенно нагревают до нужной температуры. Если остаются черные частицы, то озоление повторяют или вводят окислительные добавки. Золу, получаемую после прокаливания, переводят в раствор с помощью кислот. При сухом озолении возможно улетучивание некоторых элементов. Иногда добавляют вещества, способствующие более эффективному и быстрому окислению и предотвращающие улетучивание некоторых компонентов пробы.

Читайте также:  Анализ на фосфаты в воде

Способ мокрой минерализации основан на полном окислении органических веществ сильными окислителями при температуре 150-200 0 С. Мокрые» способы не требуют высоких температур, поэтому не сопряжены с большими потерями летучих веществ; это их преимущество. Недостатки связаны с большими временными затратами и необходимостью введения большого количества реагента-окислителя, что может быть источником загрязнений пробы. Наиболее часто применяются смеси: HNO3 -H2SO4-HClO4; HNO3— HClO4; HClO4— H2SO4; HNO3-H2O2.

Можно проводить окисление пероксидом водорода или перманганатом калия. Для разрушения органических веществ, остающихся после обработки смесью серной и азотной кислот, а так же одной из кислот окислителей (серной, азотной, хлорной кислотой и т.п.), добавляют пероксид водорода или перманганат калия. Иногда применяют смесь серной и хромовой кислот, перманганата калия в кислой и щелочной средах и др. . При выборе реагентов необходимо принимать во внимание их чистоту, возможное образование мешающих веществ и пригодность способа минерализации для данного метода определения.

Для процессов интенсификации пробоподготовки используют автоклавное и микроволновое разложение, разложение при помощи ультразвука.

При автоклавной пробоподготовке объекты анализа подвергаются воздействию следующих факторов: высокого давления, высокого и постоянного во времени положительного окислительно-восстановительного потенциала системы, высоких температур, превышающих температуры кипения системы.

Автоклавная минерализация исключает потери микроэлементов в виде нерастворимых металлоорганических соединений не только за счет сильно выраженных окислительных свойств среды, но и реакций комплексообразования в системе.

Новые возможности анализа объектов биологической природы открывает способ микроволнового (МВ) разложения органических матриц в закрытых сосудах, позволяющих минерализовать пробу под давлением 10-100 атм в течение 10-20 мин минимальным количеством азотной кислоты (иногда в смеси с водой, плавиковой кислотой и пероксидом водорода). Установлено, что прямое поглощение энергии микроволнового излучения жидкостями, содержащими молекулы с отличным от нуля дипольным моментом, приводит к ускорению проходящих в растворах процессов массопереноса, диффузии, а также химических взаимодействий с участием растворителя: гидролиза, комплексообразования в растворе и на твердой поверхности, окислительно-восстановительных реакций. В случае МВ — пробоподготовки образец растворяется за счет трех факторов: температуры, давления, МВ-облучения. Разработана методика МВ-разложения пищевых продуктов (пшеница, капуста, картофель, молочные смеси, сухое молоко) с последующим определением 24 элементов в макро — и микроконцентрациях методами атомно-абсорбционного и атомно-эмиссионного спектрального анализа. МВ-разложение применяли для определения в растительных объектах Cd, Ni, Co, Cr и Pb атомно-абсорбционным методом с электротермической атомизацией.

Разработана методика кислотного разложения почв и биологических объектов при воздействии ультразвуком (УЗ) для определения ртути, свинца и других тяжелых металлов из одного раствора, применимая для серийных анализов. Показано, что ртуть, свинец, медь и цинк из проб почв, растений, лигнина и лечебных грязей полностью извлекаются в результате их обработки смесью концентрированной азотной и соляной (3:1) кислот при воздействии ультразвуком частотой 18 кГц в течение 2 минут. Разложение при помощи ультразвука позволяет повысить скорость мокрой минерализации мясопродуктов, хлебопродуктов, и молокопродуктов в 20-40 раз, комбикормов, кукурузы, мясокостной муки, отрубей пшеничных в 4-8 раз. Применение УЗ увеличило степень и экспрессность извлечения микроэлементов из образца в раствор при анализе почв и растений по сравнению с сухим и мокрым озолением в 15-40 раз. УЗ интенсификация кислотной минерализации жиров и масел, хлебопродуктов в 20-40 раз сокращает время минерализации, степень извлечения свинца, меди, кадмия повышается с 90 до 98-99%. Облучение УЗ использовали для сокращения времени дегазации вин, подвергнутых процессам шампанизации .

Действующими государственными стандартами допускается интенсификация сухой минерализации ИК-излучением, что сокращает время минерализации на 10-20% .

Валовой анализ растений

Валовой анализ проводится либо на листьях определенного положения на растении, либо во всей надземной части, либо в иных индикаторных органах. Диагностика по валовому анализу листьев — зрелых, закончивших рост, но активно функционирующих, получила название «листовая диагностика». Она была предложена французскими учеными Лагатю и Момом и поддержана Люндегордом. В настоящее время этот вид химической диагностики широко используется как за рубежом, так и у нас в стране, особенно для растений, в корнях которых почти полностью восстанавливаются нитраты и потому по этой форме в надземных частях невозможно контролировать азотное питание (яблоня и другие семячковые и косточковые, хвойные, богатые дубильными веществами, луковичные и др.).

При валовых анализах листьев или иных частей растений используются обычные методы озоления органического вещества для определения в нем N, Р, К, Ca, Mg, S и других элементов. Чаще определение ведут в двух навесках: в одной определяют азот по Кьельдалю, в другой — остальные элемены после мокрого, полусухого или сухого озоления. При мокром озолении используют либо крепкую H24 с катализаторами, либо в смеси с HNO3, либо с HClO4, либо с H2O2. При сухом озолении необходим тщательный контроль за температурой, так как при сжигании при температуре свыше 500° С могут быть потери Р, S и других элементов.

Озоление образцов листьев рекомендуется проводить следующим образом: для определения общего азота по Кьельдалю озолять с H2SO4 (уд. вес 1,84), с катализаторами K2SO4 + CuSO4 и селеном. Для определения других элементов используют сухое озоление пробы в платиновой посуде при постепенном (за 2 часа) нагреве муфеля до 450° С; по охлаждении в муфеле за 2 часа золу растворяют в 2-3 мл воды + 1 мл HCl (уд. вес 1,19). Выпаривают на плитке до появления первых паров. Добавляют воду, фильтруют в мерную колбу емкостью 100 см3. Осадок с фильтром озоляют при 550° С (максимум), добавляют 5 мл плавиковой кислоты. Высушивают на плитке при температуре не выше 250° С. После охлаждения приливают 1 мл той же HCl и снова фильтруют в ту же колбу, смывая теплой водой. Фильтрат, доведенный до 100 мл водой, используют для анализа на содержание макро- и микроэлементов. Имеется довольно большое варьирование в методах озоления растительных проб, которые различаются главным образом по видам растений – богатые жирами или кремнием и т. д., и по задачам определения тех или иных элементов.

Достаточно подробное описание техники использования этих методов сухого озоления дано польским ученым Новосильским. Им же даны описания различных способов мокрого озоления с помощью тех или иных окислителей: H2SO4, HClO4, HNO3 или H2O2 в том или ином сочетании в зависимости от определяемых элементов. Для ускорения анализа, но не в ущерб точности, изыскиваются пути такого способа озоления растительной пробы, который позволил бы определить в одной навеске несколько элементов. В. В. Пиневич использовал для определения в одной навеске N и Р озоление H2SO4 и в последующем добавлял 30%-ную H2O2 (проверяя ее на отсутствие Р). Этот принцип озоления с некоторыми уточнениями нашел широкое применение во многих лабораториях России.

Другой широко применяемый метод кислотного озоления навески для определения в ней одновременно нескольких элементов был предложен К.Е. Гинзбург, Г.М. Щегловой и Е.А. Вульфиус и основан на использовании смеси H2SO4 (уд. вес 1,84) и HClО4 (60%) в отношении 10 : 1, причем смесь кислот предварительно готовится на всю партию анализируемого материала. При необходимости определять серу в растениях описанные методы озоления не годятся, так как включают серную кислоту. P.X. Айдинян с сотрудниками предложил сжигание растительной пробы для определения в ней серы, смешивая ее с бертолетовой солью и чистым песком. Метод В. И. Кузнецова с сотрудниками представляет собой несколько переработанный метод Шёнигера. Принцип метода заключается в быстром озолении пробы в колбе, заполненной кислородом, с последующим титрованием образовавшихся при этом сульфатов раствором хлористого бария с нитхромазо-металлиндикатором на барий. Чтобы обеспечить большую точность и воспроизводимость результатов анализа, нами рекомендуется пропускание полученного раствора через колонку с ионообменной смолой в H + форме с целью освобождения раствора от катионов. Полученный таким образом раствор сульфатов следует упаривать на плитке до объема в 7-10 мл и по охлаждении титровать.

Определение содержания каждого элемента в озоленной тем или иным способом пробе проводится разнообразными методами: колориметрическими, комплексонометрическими, спектрофотометрическими, нейтроно-активационным, с помощью автоанализаторов и др.

Отбор пробы воды

Особое внимание следует обращать на отбор пробы воды, являющийся важной частью анализа и необходимым условием правильности полученных результатов исследования. Ошибки, возникшие вследствие неправильного отбора пробы, в дальнейшем исправить нельзя. Условия, которые нужно соблюдать при отборе пробы, настолько разнообразны, что нельзя дать подробных рекомендаций для всех случаев и в соответствии со всеми требованиями. Поэтому приводим лишь общие принципы:

1. Проба воды для анализа должна быть типичной для условий места ее взятия.

2. Отбирать пробы, хранить их, производить транспортировку и обращаться с ними следует так, чтобы содержание определяемых компонентов воды и ее свойства не изменились.

3. Объем пробы должен быть достаточным и соответствовать применяемой методике анализа.

Место для отбора пробы выбирается в зависимости от цели анализа и на основании исследования местности, причем учитываются все обстоятельства, которые могли бы оказать влияние на состав взятой пробы воды.

При изучении качества воды применяют разовое или серийное взятие проб. Единичная проба пригодна в том случае, если водоем заведомо однороден. Ввиду того, что качество воды чаще всего изменяется как в разных местах объекта, так и с глубиной, однократного взятия пробы воды обычно недостаточно. Тогда пробы берутся на ряде пунктов и с разных глубин. Как правило, эти пункты (станции) распределяются по линии, проведенной от берега к открытой части водоема. Серию станций, расположенных по прямой линии от одного берега к другому, называют разрезом. При глубине водоема 1,5–2,0 м надо брать пробы с поверхности и из придонного слоя, а при большей глубине – из промежуточных глубин. В этом случае одну пробу следует брать выше слоя температурного скачка, одну – в слое скачка и одну пробу – ниже его. При более детальном обследовании пробы отбираются в зависимости от глубины водоема через определенные промежутки, чаще через каждый метр, а при больших глубинах – через каждые 2–5 м.

Отбор проб – операция, от правильного выполнения которой во многом зависит точность получаемых результатов. Отбор проб при полевых анализах необходимо планировать, намечая точки и глубины отбора, перечень определяемых показателей, количество воды, отбираемой для анализа, совмес­тимость способов консервации проб для их последующего ана­лиза. Чаще всего на водоеме отбираются так называемые разовые пробы.Однако при обследовании водоема может возникнуть необходимость отбора и серий периодических и регу­лярных проб – из поверхностного, глубинного, придонного слоев вод и т.д. Пробы могут быть отобраны также из подзем­ных источников, водопровода и т.п. Усредненные данные о со­ставе вод даютсмешанные пробы.

В нормативных документах (ГОСТ 24481, ГОСТ 17.1.5.05, ИСО 5667-2 и др.) определены основные правила и рекомендации, которые следует использовать для получения 10 репрезентативных проб. Различные виды водоемов (водоисточников) обусловливают некоторые особенности отбора проб в каждом случае.

Пробы из рек и водных потоковотбирают для определения качества воды в бассейне реки, пригодности воды для пищевого использования, орошения, для водопоя скота, рыборазведения, купания и водного спорта, установления источников загрязнения. Для определения влияния места сброса сточных вод и вод притоков пробы отбирают выше по течению и точке, где произошло полное смешение вод. Следует иметь в виду, что загрязнения могут быть неравномерно распространены по потоку реки, поэтому обычно пробы отбирают в местах максимально бурного течения, где потоки хорошо перемешиваются. Пробоотборники помещают вниз по течению потока, распола­гая на нужной глубине.

Пробы из природных и искусственных озер (прудов)отбирают с теми же целями, что и пробы воды из рек. Однако, учитывая длительность существования озер, на первый план выступает мониторинг качества воды в течение длительного периода времени (несколько лет), в том числе в местах, предполагаемых к использованию человеком, а также установление последствий антропогенных загрязнений воды (мониторинг ее состава и свойств). Отбор проб из озер должен быть тщательно спланирован для получения информации, к которой можно было бы применять статистическую оценку. Слабопроточные водоемы имеют значительную неоднородность воды в горизонтальном направлении. Качество воды в озерах часто сильно различается по глубине из-за термальной стратификации, причиной которой является фотосинтез в поверхностной зоне, подогрев воды, воздействие донных отложений и др. В больших глубоких водоемах может появляться также внутренняя циркуляция.

Пробы воды для анализа могут отбираться как непосредственно перед анализом, так и заблаговременно. Для отбора проб специалисты используют стандартные батометры либо бутыли вместимостью не менее 1 л, открывающиеся и наполняющиеся на требуемой глубине. В связи с тем, что для анализа полевыми методами по какому-либо одному показателю (за исключением растворенного кислорода и БПК) обычно достаточно 30–50 мл воды, отбор проб непосредственно перед анализом может быть выполнен в колбу вместимостью 250–500 мл (например, из состава комплекта-лаборатории, измерительного комплекта и т.п.).

Посуда для отбора проб должна быть чистой. Чистота посуды обеспечивается предварительным мытьем ее горячей мыльной водой (стиральные порошки и хромовую смесь не использовать!), многократным ополаскиванием чистой теплой водой. В дальнейшем для отбора проб желательно использовать одну и ту же посуду. Сосуды, предназначенные для отбора проб, предварительно тщательно моют, ополаскивают не менее трех раз отбираемой водой и закупоривают стеклянными или пластмассовыми пробками, прокипяченными в дистиллированной воде. Между пробкой и отобранной пробой в сосуде оставляют воздух объемом 5–10 мл. В общую посуду отбирают пробу на анализ только тех компонентов, которые имеют одинаковые условия консервации и хранения.

Отбор проб, не предназначенных для анализа сразу же (т.е. отбираемых заблаговременно), производится в герметично закрывающуюся стеклянную или пластмассовую (желательно фторопластовую) посуду вместимостью не менее 1 л.

Для получения достоверных результатов анализ воды следует выполнять, по возможности, скорее. В воде протекают процессы окисления-восстановления, сорбции, седиментации, биохимические процессы, вызванные жизнедеятельностью микроорганизмов, и др. В результате некоторые компоненты могут окисляться или восстанавливаться: нитраты – до нитритов или ионов аммония, сульфаты – до сульфитов; кислород может расходоваться на окисление органических веществ и т.п. Соответственно могут изменяться и органолептические свойства воды – запах, привкус, цвет, мутность. Биохимические процессы можно замедлить, охладив воду до температуры 4–5°С (в холодильнике).

По нормативам качества, определяющим наличие и допустимые концентрации примесей, различают питьевые, природные (водоемов хозяйственно-питьевого, культурно-бытового и рыбохозяйственного назначения) и сточные воды (нормативно-очищенные, стоки неизвестного происхождения, ливневые).

Состав природных вод характеризуют некоторыми технологическими показателями, в том числе физическими и химическими (жесткостью, реакцией среды, щелочностью, солесодержанием, окисляемостью).

Дата добавления: 2018-06-01 ; просмотров: 274 ; ЗАКАЗАТЬ РАБОТУ

источник