Меню Рубрики

Санитарно микробиологический анализ сточных вод

Исследованию подлежит вода:

1) централизованного водоснабжения;

2) из колодцев различного типа;

3) открытых водоемов (рек, озер, морей);

Примечание. Пробы хлорированной воды берут во флаконы с дехлоратором (гипосульфитом).

Отбор проб воды. Из открытых водоемов воду берут с помощью специальных бутылей или батометров, снабженных грузилами. Пробу воды рекомендуют брать на глубине 10-15 см от поверхности (так как поверхность подвергается воздействию атмосферных факторов) и на расстоянии 1,5 м от берега (вода у самого берега может быть загрязнена микрофлорой почвы).

Для отбора проб водопроводной воды используют стерильные флаконы вместимостью 500 мл, закрытые ватно-марлевыми пробками и покрытые бумажными колпачками.

Кран предварительно обжигают тампоном, смоченным спиртом, после чего воду спускают в течение 10-15 мин и набирают во флаконы. Заполненные флаконы закрывают стерильными пробками.

Примечание. Исследуют 333 мл воды (табл. 54).


Таблица 54. Эмпирическая таблица ГОСТ 16963-73

В распределительной сети водопровода отбор проб воды осуществляют в зависимости от количества населения, проживающего в зоне обслуживания.

Стандартные методы исследования регламентированы для воды центрального водоснабжения (ГОСТ 18963-73) и предусматривают:

1. Определение общего числа микроорганизмов (в 1 мл исследуемой воды должно быть не более 100).

2. Определение коли-индекса и коли-титра (коли-индекс 3, коли-титр 333 и выше; для Москвы и Ленинграда коли-индекс не более 2, а коли-титр более 500).

3. Исследование по эпидемиологическим показаниям на патогенную микрофлору (патогенных микроорганизмов не должно быть обнаружено).

Согласно ГОСТу 18963-73 общее число бактерий — это то количество микроорганизмов, которое содержится в 1 мл исследуемой воды, способных в течение суток при температуре 37° С образовывать колонии, видимые невооруженным глазом (или при увеличении с помощью лупы).

При исследовании водопроводной воды засевают 2 чашки. В одну из них вносят 1 мл неразведенной воды, в другую 1 мл воды, разведенной в 10 раз (т. е. 0,1 мл исходной пробы).

При исследовании более загрязненной воды засевают 1 мл воды, разведенной в 100 раз. Это соответствует 0,01 и 1 мл .воды, разведенной в 1000 раз (0,001 мл) и т. д. Для получения таких объемов готовят последовательно десятикратные разведения, по 1 мл каждого разведения вносят в чашку и заливают тонким слоем (12-15 мл) растопленного и остуженного до 45° С питательного агара. Для равномерного распределения исследуемой воды залитые агаром чашки перемешивают путем вращения их. После застывания агара посевы ставят в термостат и инкубируют при температуре 37° С 24 ч.

Чашки с посевами вынимают из термостата и подсчитывают число выросших колоний. Учитывают только те чашки, где число колоний находится в пределах 30-300. Если колоний немного, их подсчитывают невооруженным глазом или при помощи лупы.

Если колоний много, то подсчет можно вести с помощью специального прибора для счета микробных колоний (рис. 54).


Рис. 54. Прибор для счета колоний микроорганизмов. 1 — столик для чашки Петри; 2 — игла с пружинным устройством; 3 — показатель счетчика; 4 — тумблер для включения импульсного счетчика; 5 — тумблер для включения лампы освещения счетчика

Подсчитанное количество колоний умножают на разведение и узнают число микробов в 1 мл исследуемой воды.

Наличие БГКП (бактерий группы кишечной палочки) является показателем фекального загрязнения, интенсивность которого характеризуют:

Коли-индекс — количество кишечных палочек, обнаруженных в 1 л воды.

Коли-титр — наименьшее количество воды, в котором обнаруживают присутствие кишечной палочки * .

* ( Коли-титр и коли-индекс — это один показатель, различно выраженный.)

Для выявления в воде БГКП можно пользоваться двумя методами: титрационным (бродильным) и методом мембранных фильтров.

Для исследования воды используют среду накопления глюкозопептонную (ГПС) среду Эйкмана с индикатором и бродильными трубками. Среда готовится концентрированной (в 10 раз) и нормальной концентрации — для посева 1 мл воды.

Исследуемую воду засевают по 100 мл в 3 колбы, по 10 мл в 3 пробирки (с концентрированной средой) и по 1 мл в 3 пробирки (со средой нормальной концентрации) — всего 333 мл. Посевы инкубируют в термостате при 37° С 24 ч.

Вынимают посевы из термостата и просматривают их.

При наличии помутнения в колбах или пробирках из них производят посев петлей на сектора среды Эндо в чашках Петри. Посевы инкубируют в термостате при 37° С.

Вынимают чашки из термостата. Из подозрительных колоний делают мазки. При наличии грамотрицательных палочек ставят пробу на оксидазную активность. Положительная проба на оксидазу дает право дать отрицательный ответ.

Проба на оксидазу. 1-й способ: со среды Эндо снимают петлей 2-3 колонии каждого типа и наносят на поверхность фильтровальной бумаги, смоченной диметилпарафенилендиамином. Положительная реакция характеризуется посинением штрихов, сделанных из колоний.

2-й способ: реактив можно нанести на изолированную колонию на среде Эндо (красная колония — синеет) (рис. 55).


Рис. 55. Определение коли-индекса воды титрационным методом

Отрицательная проба на оксидазу свидетельствует о наличии в воде БГКП. В этом случае вычисляют коли-индекс и коли-титр с помощью стандартных (эмпирических) таблиц ГОСТа 16963-73 (см. табл. 54).

Эти таблицы предусматривают любую возможную комбинацию объемов посева, из которых выделена кишечная палочка.

Для фильтрации воды можно использовать воронку Гольдмана вместимостью 700-800 мл.

В воронку смонтированного и простерилизованного фильтровального прибора Зейтца наливают отмеренный объем исследуемой воды. С помощью насоса создают вакуум в приемном сосуде (обычно воду фильтруют через фильтры № 2 и 3). По окончании фильтрации стерильным или обожженным в огне пинцетом снимают фильтр и накладывают его на среду Эндо в чашке Петри так, чтобы поверхность с осевшими на ней микробами была обращена вверх (на одну чашку можно помещать 3-4 мембранных фильтра).

Посевы инкубируют в термостате при температуре 37° С 18-24 ч.

Чашки с посевами (фильтрами) вынимают из термостата. Отсутствие подозрительных колоний дает право дать отрицательный ответ.

Учету подлежат все красные и розовые колонии с металлическим блеском или без него. Из выросших колоний делают мазки, окрашивают по Граму (рис. 56).


Рис. 56. Определение коли-индекса воды методом мембранных фильтров

При наличии грамотрицательных палочек ставят пробу на оксидазу. Положительная оксидазная проба дает право дать отрицательный ответ. При отрицательной оксидазной пробе производят посев на полужидкую среду с глюкозой и индикатором или на среду ГПС с бродильными трубками — для выявления ферментации углевода до кислоты и газа. При наличии кислоты и газа вычисляют коли-индекс. Например, на всех фильтрах, находящихся на среде Эндо, выросло 3 колонии, пропущено через фильтр было 300 мл воды.

Примечание. Титрационный метод более точный и может быть использован при наличии в воде примесей. Метод мембранных фильтров экономичнее и дает возможность дать ответ на 2-й день.

Для определения наличия в воде свежих фекальных кишечных палочек производят посев воды (3-х объемов) на лактозопептонную среду с борной кислотой. Инкубируют при 43° С 24 ч. Наличие кислоты и газа свидетельствует о свежем фекальном загрязнении.

По эпидемиологическим показаниям в воде определяют сальмонеллы, шигеллы, энтеровирусы.

Примечание. Общепринятым дополнительным показателем фекального загрязнения питьевой воды являются энтерококки. При проведении бактериологического исследования определяют все группы энтерококков, хотя санитарное значение имеют преимущественно фекальные стрептококки, обнаружение которых является показателем свежего фекального загрязнения.

1. Какова основная задача санитарной микробиологии?

2. Что такое санитарно-показательные микроорганизмы?

3. Что такое коли-индекс и коли-титр?

4. Какие Вы знаете методы определения БГКП?

Определите общее число микробов в исследуемой пробе воды. Среда ГПС (Эйкмана).

ГПС (Эйкмана) концентрированная. В 1 л воды растворяют 100 г пептона, 50 г хлорида натрия. Нагревают смесь до кипения, фильтруют, прибавляют 100 г глюкозы, устанавливают рН 7,4-7,6 и разливают по 10 мл в колбы вместимостью 250 мл, по 1 мл в 3 пробирки (концентрированной среды) и по 1 мл в 3 пробирки со средой нормальной концентрации (во всех емкостях среду до нужной концентрации доводят стерильной водой).

Примечание. При исследовании особенно загрязненных вод делают большие разведения (например, 10 -6 , 10 -7 и т. д.).

источник

Несоответствие воды микробиологическим нормам, так же как и химическим, делает ее непригодной для питья. Если Ваш источник водоснабжения не защищен от прямого воздействия окружающей среды или коммунальные системы устарели или давно не чистились, то сделать микробиологический анализ воды просто необходимо. От этого зависит Ваше здоровье и безопасность! Особенно это важно для тех, кто пользуется колодцем. Колодезная вода – грунтовая, она на прямую контактирует с почвами, а значит, грозит «напоить» Вас и нитратами, и тяжелыми металлами, и аммиаком, и, конечно, вредными органическими веществами, которые попадают в почву в результате деятельности сельскохозяйственных ферм или угодий.

В таблице 1 представлены микробиологические показатели действующего норматива СанПиН 2.1.4.1074-01 для питьевой воды:

Таблица 1. Микробиологические нормативы для питьевой воды

Показатель Норматив СанПиН 2.1.4.1074-01
Общая микробная численность Не более 50 КОЕ в 1 мл
Общие колиформные бактерии Отсутствие в 100 мл
Термотолерантные колиформные бактерии Отсутствие в 100 мл
Колифаги Отсутствие в 100 мл
Споры сульфитредуцирующих бактерий Отсутствие в 20 мл

Стандартный микробиологический анализ питьевой воды в МГУ включает определение трех показателей: общего микробного числа, количества общих колиформных и термотолерантных колиформных бактерий.

Расширенный микробиологический анализ воды включает анализ пяти показателей: общего микробного числа, количества общих колиформных бактерий, количества термотолерантных колиформных бактерий, титр колифагов и содержание спор сульфитредуцирующих бактерий.

Часто на наших участках или поблизости имеются водоемы, где мы и наши дети с удовольствием любим провести время. Конечно, вода в данных водоемах не является питьевой, но ее безопасность для человека также, как и питьевая, регламентируется. В таблице 2 представлены микробиологические показатели действующего норматива по гигиеническим требованиям к охране поверхностных вод (СанПиН 2.1.5.980-00)

Таблица 2. Микробиологические нормативы для рекреационного водопользования, а также в черте населенных мест

Показатель Норматив СанПиН 2.1.5.980-00
Общие колиформные бактерии Не более 500 КОЕ в 100 мл
Термотолерантные колиформные бактерии Не более 100 КОЕ в 100 мл
Колифаги Не более 100 БОЕ в 100 мл
Возбудители кишечных инфекций (анализ бактерий из сем. Enterobacteriaceae рода Salmonella) Вода не должна содержать возбудителей кишечных инфекций (полное отсутствие в 1000 мл)

Микробиологический анализ воды, предназначенной не для питья, включает определение количества двух показателей: общих колиформных и колиформных термотолерантных бактерий.

Помимо двух основных показателей мы предлагаем провести дополнительный анализ на содержание: колифагов, условно-патогенных дрожжей и микромицетов (частых спутников опортунистических заболеваний) и индекса самоочищения водоёма.

При значительном превышении нормативов СанПиН 2.1.5.980-00, а также возможном фекальном загрязнении водоёма, мы предлагаем провести анализ на наличие возбудителей кишечных инфекций (род Salmonella и Enterococcus).

Метод определяет в питьевой воде общее число мезофильных аэробных и факультативно анаэробных микроорганизмов (ОМЧ), способных образовывать колонии на питательном агаре при температуре 37 °С в течение 24 часов, видимые с увеличением в 2 раза. Данный индикатор выявляет потенциальных бактерий, способных причинить вред здоровью человека.

Общие колиформные бактерии (ОКБ) – грамотрицательные, оксидазоотрицательные, не образующие спор палочки, способные расти на дифференциальных лактозных средах, ферментирующие лактозу до кислоты, альдегида и газа при температуре (37+1) °С в течение (24-48) часов. Многие представители данной группы являются микроорганизмами нормальной микрофлоры желудка, поэтому превышение данной группы микроорганизмов может говорить о возможно антропогенном (в том числе и фекальном) загрязнении воды.

Термотолерантные колиформные бактерии (ТКБ) входят в число общих колиформных бактерий, обладают всеми их признаками и, кроме того, способны ферментировать лактозу до кислоты, альдегида и газа при температуре (44±0,5) °С в течение 24 часов. Также, как и ОКБ являются индикаторной группой, однако более устойчивые в окружающей среде: вот почему обнаружение данной группы микроорганизмов в воде может говорить об однозначном загрязнении ее продуктами жизнедеятельности человека.

Колифаги, определяемые стандартным методом (МУК 4.2.1018-01), являются вирусами кишечной палочки (Escherichia coli) и рассматриваются эпидемиологами как дополнительный, а порой и более чувствительный, метод в определении загрязнения воды микроорганизмами группы кишечной палочки. Вирусные частицы, и в частности колифаги, более устойчивы к окружающей среде, чем их бактерии-хозяева. В связи с этим, наличие колифагов может служить достоверной меткой о более давнем фекальном загрязнении источника воды. Показана прямая корреляция между содержанием колифагов в воде и опасных для человека энтеровирусов, поэтому наличие колифагов в воде может говорить о вирусном заражении источника. Действующий нормативный документ (СанПиН 2.1.4.1074-01) подразумевает отсутствие колифагов в 100 мл воды.

Сульфитредуцирующие клостридии – спорообразующие анаэробные палочковидные микроорганизмы, являющиеся дополнительным микробиологическим показателем фекального загрязнения водоема. В отличие от относительно неустойчивых колиформных и термотолерантных колиформных бактерий, споры клостридий могут сохраняться в водоемах долгое время. Клостридии встречаются в кишечнике человека и домашних животных, однако, при попадании с водой в большом количестве могут вызвать пищевые отравления. К сульфитредуцирующим клостридиям относятся в том числе и опасные для человека клостридии (Clostridiumbotulinum, Clostridium perfringens, Clostridium tetani), вызывающие тяжелейшие заболевания. Согласно действующему нормативу (СанПиН 2.1.4.1074-01) споры клостридий должны отсутствовать в 20 мл воды.

К условно-патогенным дрожжам и микромицетам (плесени) относят большую неоднородную группу грибных организмов, способных сапротрофно расти при 37 °С. В нее входят такие представители, как Candida albicans и Cryptococcus neoformans, которые являются частым фактором оппортунистических заболеваний человека, вызывая кандидозы (грибковые заболевания кожи), молочницы и проч. Другие организмы микромицеты (Cladosporium cladosporioides, Aspergillusniger) могут являться активными сенсебилизаторами аллергических реакций, а иногда и самими аллергенами. В РФ не нормируется вода по плесеням и дрожжевым организмам в воде.

Общее число микроорганизмов не нормируется в воде водоемов в зонах рекреаций, поскольку уровень этой группы микроорганизмов в большей мере зависит от природных особенностей каждого объекта, времени года и т.п.

Однако при выборе нового источника водоснабжения или места рекреации в воде водоёмов дополнительно следует определять общую микробную численность, вырастающую:

  • при температуре 37 °С в течение 24 часов;
  • при температуре 22 °С в течение 72 часов.
  1. ОМЧ при 37 °С представлена большей частью алохтонной микрофлорой (внесенную в водоем в результате антропогенного загрязнения, в том числе фекального);
  2. ОМЧ при 20-22 °С представлена, помимо алохтонной, аборигенной микрофлорой (естественной, свойственной для данного водоёма).

Соотношение численности этих групп микроорганизмов позволяет судить об интенсивности процесса самоочищения. При завершении процесса самоочищения коэффициент ОМЧ 22 °С/ ОМЧ 37 °С. В местах загрязнения хозяйственно-бытовыми сточными водами численные значения обеих групп близки.

Показатель позволяет получить дополнительную информацию о санитарном состоянии водоемов, источниках загрязнения, процессах самоочищения.

источник

Под загрязнением водных ресурсов понимают любые изменения физических, химических и биологических свойств воды в водоемах в связи со сбрасыванием в них жидких, твердых и газообразных веществ, которые причиняют или могут создать неудобства, делая воду данных водоемов опасной для использования, нанося ущерб народному хозяйству, здоровью и безопасности населения
Загрязнение поверхностных и подземных вод можно распределить на такие типы:

  • механическое — повышение содержания механических примесей, свойственное в основном поверхностным видам загрязнений;
  • химическое — наличие в воде органических и неорганических веществ токсического и нетоксического действия;
  • бактериальное и биологическое — наличие в воде разнообразных патогенных микроорганизмов, грибов и мелких водорослей;
  • радиоактивное — присутствие радиоактивных веществ в поверхностных или подземных водах;
  • тепловое — выпуск в водоемы подогретых вод тепловых и атомных ЭС.
Читайте также:  Анализы на определение подтекания околоплодных вод

Сточные воды, содержащие растительные волокна, животные и растительные жиры, фекальную массу, остатки плодов и овощей, отходы кожевенной и целлюлозно-бумажной промышленности, сахарных и пивоваренных заводов, предприятий мясомолочной, консервной и кондитерской промышленности, являются причиной органических загрязнений водоемов. В сточных водах обычно около 60% веществ органического происхождения, к этой же категории органических относятся биологические загрязнения (бактерии, вирусы, грибы, водоросли). Водным путем могут передаваться кишечные инфекции — холера, брюшной тиф и паратифы, сальмонеллез, дизентерия, гепатит А, полиомиелит, а также лептоспирозы, сибирская язва, туляремия, туберкулез, сап, Ку-лихорадка, различные грибковые заболевания.

В реках и других водоемах происходит естественный процесс самоочищения воды. Однако он протекает медленно. Пока промышленно-бытовые сбросы были невелики, реки сами справлялись с ними. В наш индустриальный век в связи с резким увеличением отходов водоемы уже не справляются со столь значительным загрязнением. Возникла необходимость обезвреживать, очищать сточные воды и утилизировать их.

Очистка сточных вод — обработка сточных вод с целью разрушения или удаления из них вредных веществ.
Освобождение сточных вод от загрязнения — сложное производство. В нем, как и в любом другом производстве имеется сырье (сточные воды) и готовая продукция (очищенная вода)

Методы очистки сточных вод можно разделить на механические, химические, физико-химические и биологические, когда же они применяются вместе, то метод очистки и обезвреживания сточных вод называется комбинированным. Применение того или иного метода в каждом конкретном случае определяется характером загрязнения и степенью вредности примесей.

Среди методов очистки сточных вод большую роль должен сыграть биологический метод, основанный на использовании закономерностей биохимического и физиологического самоочищения рек и других водоемов. Есть несколько типов биологических устройств по очистке сточных вод: биофильтры, биологические пруды и аэротенки.

В биофильтрах сточные воды пропускаются через слой крупнозернистого материала, покрытого тонкой бактериальной пленкой. Благодаря этой пленке интенсивно протекают процессы биологического окисления. Именно она служит действующим началом в биофильтрах.

В биологических прудах в очистке сточных вод принимают участие все организмы, населяющие водоем.
Аэротенки — огромные резервуары из железобетона. Здесь очищающее начало — активный ил из бактерий и микроскопических животных. Все эти живые существа бурно развиваются в аэротенках, чему способствуют органические вещества сточных вод и избыток кислорода, поступающего в сооружение потоком подаваемого воздуха. Бактерии склеиваются в хлопья и выделяют ферменты, минерализующие органические загрязнения. Ил с хлопьями быстро оседает, отделяясь от очищенной воды. Инфузории, жгутиковые, амебы, коловратки и другие мельчайшие животные, пожирая бактерии, неслипающиеся в хлопья, омолаживают бактериальную массу ила.

Сточные воды перед биологической очисткой подвергают механической, а после нее для удаления болезнетворных бактерий и химической очистке, хлорированию жидким хлором или хлорной известью. Для дезинфекции используют также другие физико-химические приемы (ультразвук, электролиз, озонирование и др.)
Биологический метод дает большие результаты при очистке коммунально-бытовых стоков. Он применяется также и при очистке отходов предприятий нефтеперерабатывающей, целлюлозно-бумажной промышленности, производстве искусственного волокна.

Санитарно-микробиологические анализ воды включает определение бактерий группы кишечных палочек (БГКП) и общее микробное число (ОМЧ).

Понятие «бактерии группы кишечных палочек» включает различных представителей семейства Еntегоbасtеriасеае: родов Еsсhеriсhiа, Сitоbасtег, Еntегоbасtег, Кlеbsiellа и др. По нормативной документации к БГКП относятся грамотрицательные, не образующие спор палочки, не обладающие оксидазной активностью, ферментирующие лактозу с образованием кислоты и газа при температуре 37°С в течение 5—24. По международной классификации такие микроорганизмы относят к общим колиформным бактериям (ОКБ). Они попадают в окружающую среду, в том числе и в воду, с испражнениями человека и животных, поэтому загрязнении и эпидемической опасности в отношении кишечных инфекций.

К общему числу микроорганизмов (ОМЧ) относят мезофильные аэробы и факультативные анаэробы (МАФАМ), способные образовывать на питательном агаре колонии, видимые при увеличении в 2 раза при температуре 37 ºС в течение 24 часов (ОМЧ 37 ºС) и при температуре 22 ºС в течение 72 часов (ОМЧ 22 ºС).

ОМЧ при температуре инкубации 37 ºС — индикаторная группа микроорганизмов, в числе которых определяют в большей мере аллохтонную микрофлору, внесенную в водоем в результате антропогенного загрязнения, в т.ч. фекального. ОМЧ при температуре инкубации 20-22 ºС – индикаторная группа микроорганизмов, в числе которых, помимо аллохтонной, определяют водную микрофлору данного водоема (автохтонную). При температуре 22 ºС, как правило, вырастает больше сапрофитных микроорганизмов, чем при температуре 37 ºС. Соотношение численности этих групп микроорганизмов позволяет судить об интенсивности процесса самоочищения, активными участниками которого они являются. Эта разница более выражена при завершении процесса самоочищения (коэффициент соотношения ОМЧ 22 ºС : ОМЧ 37 ºС равен четырем и выше). В местах загрязнения хозяйственно-бытовыми сточными водами численные значения обеих групп близки.

источник

М инистерство жилищно-коммунального хозяйства РСФСР

О рдена Т рудового К расного знамени
А кадемия коммунального хозяйства им . К.Д. П амфилова

Минздравом РСФСР
Письмо № 07/5-653
от 29 декабря 1986 г.

Начальник Главводоканала
Мижилкомхоза РСФСР
Ю.И. Нефедов

РУКОВОДСТВО
ПО СОВЕРШЕНСТВОВАНИЮ МЕТОДА
САНИТАРНО-БАКТЕРИОЛОГИЧЕСКОГО КОНТРОЛЯ
КАЧЕСТВА СТОЧНЫХ ВОД

О тдел научно-технической информации АКХ
Москва 1988

В последние годы два новых отечественных материала — фильтрующие мембраны Владипор типа МФА-МА и Системы индикаторные бумажные успешно использованы для совершенствования санитарно-бактериологического контроля качества питьевой воды.

С учетом этого опыта НИИ коммунального водоснабжения и очистки воды АКХ им. К.Д. Памфилова, трестом Росводоканалналадка, кафедрой коммунальной гигиены I Московского медицинского института им. И.М. Сеченова, Горьковским НИИ эпидемиологии и микробиологии, трестом Мосочиствод проведены (1984 — 1986 гг.) исследования на сточных водах, которые показали, что вышеназванные материалы целесообразно использовать и при санитарно-бактериологической оценке качества сточных вод. На основании этих и ранее проводившихся методических работ, выполненных совместно с НИИ общей и коммунальной гигиены им. А.Н. Сысина и I Московским медицинским институтом, составлено настоящее руководство.

Руководство предназначено для лабораторий производственных управлений водопроводно-канализационного хозяйства, выполняющих технологический контроль за работой сооружений по обработке сточных вод и контролирующих по обязательным санитарно-бактериологическим показателям эпидемиологическую безопасность прошедшей обработку сточной воды и воды водоема, в который сточная вода сбрасывается. В этой части руководство может быть использовано и лабораториями санитарно-эпидемиологических станций. Основные положения руководства включены в Проект ГОСТ «Охрана природы. Гидросфера. Методы санитарно-микробиологического анализа питьевых, природных и сточных вод».

1. При санитарно-бактериологической оценке качества городских сточных вод обязательным является определение коли-индекса. Этот контроль проводят по содержанию в сточных водах лактозоположительных кишечных палочек (ЛКП). Этот же показатель определяют при оценке качества воды водоема, в который сбрасывают сточные воды. В тех случаях, когда сточные воды подлежат дальнейшей утилизации в открытых системах технического водоснабжения, качество их контролируют по содержанию в них бактерий группы кишечных палочек (БГКП).

Группа ЛКП или колиформных бактерий (по международной терминологии) включает всех представителей семейства Enterobacteriaceae (грамотрицательные, не образующие спор палочки с отрицательным оксидазным тестом), ферментирующие лактозу до кислоты и газа при температуре 37 °С в течение 1 — 24 ч. Индекс ЛКП определяют методом мембранных фильтров, бродильным (титрационным) методом или прямым посевом при предполагаемом содержании ЛКП свыше 30 кл/см 3 .

Группа БГКП включает всех представителей семейства Enterobacteriaceae (грамотрицательные, не образующие спор палочки с отрицательным оксидазным тестом), объединяемых по признаку ферментации глюкозы при температуре 37 °С с образованием кислоты и газа в течение 1 — 24 ч. Индекс БГКП определяют методом мембранных фильтров или бродильным (титрационным).

Индексы ЛКП и БГКП характеризуют степень фекального загрязнения воды водных объектов и косвенно — эпидемической опасности в отношении возбудителей кишечных инфекций.

2. Развитие в стране промышленного производства фильтрующих мембран Владипор марок МФА-МА № 5, 6, 7, 8 (выпускает Казанское производственное объединение «Тасма» им. В.В. Куйбышева Минхимпрома СССР), а также фильтровального аппарата для микробиологических анализов воды (индекс АФ, выпускают заводы Минжилкомхоза РСФСР) позволяет более широко использовать при санитарно-бактериологическом контроле качества сточных вод метод мембранных фильтров. Преимущества, которые предоставляет использование этого метода, наиболее выражены в сравнении с бродильным методом: повышение точности анализа, сокращение его продолжительности, трудоемкости, экономия питательных сред, лабораторной посуды, электроэнергии. Отдельные из перечисленных положений верны и в сравнении с простым, удобным, точным методом прямого посева: возможность экономии лабораторной посуды, питательных сред. Однако основным преимуществом перед ним мембранного метода является возможность концентрирования исследуемых бактерий на мембраны, т.е. одномоментное исследование большего объема сточной воды, что наиболее существенно при анализе обработанных сточных вод, в их числе и подлежащих утилизации.

3. Применение индикаторных бумажных систем (выпускает экспериментальный завод Горьковского НИИ эпидемиологии и микробиологии Минздрава РСФСР) по сравнению с традиционной идентификацией бактерий семейства Enterobacteriaceae дает снижение трудозатрат (в основном в подготовительном периоде), возможность в ряде случаев сокращения продолжительности анализа, оно экономически целесообразно.

4. Методы выделения и идентификации бактерий, которые возможно использовать при анализе различных сточных вод и воды водоема, в который сбрасываются сточные воды, представлены в таблице.

5. Метод мембранных фильтров (с применением фильтрующих мембран Владипор марок МФА-МА № 5, 8, 7, 8, фильтров мембранных нитроцеллюлозных № 2, 3 (мытищинских) или других аналогичных мембран) может использоваться для выделения бактерий из необработанной, осветленной, очищенной, очищенной и хлорированной сточной воды, из воды водоемов.

Прямой посев следует применять при исследовании вод с индексом ЛКП не ниже 10 4 мт/л: необработанной, осветленной и очищенной сточной воды, а также воды водоемов.

Применение методов бактериологического анализа для контроля качества сточных вод и воды водоемов

Метод выделения кишечных палочек

Метод идентификации кишечных палочек

направляемая на обеззараживание

сбрасываемая в водоем или утилизируемая в закрытых системах технического водоснабжения

утилизируемая в открытых системах технического водоснабжения

Примечание . «+» — целесообразный метод для данного определения; «-» — метод, применение которого для данного определения возможно, но менее целесообразно; « ± » — исследование проводится только в сомнительных случаях или при неблагоприятной санитарно-эпидемиологической обстановке.

Бродильный метод целесообразно использовать при анализе сточной воды, подвергавшейся хлорированию.

При идентификации бактерий, выделенных из сточной воды, подлежащей сбросу в водоем или утилизации в закрытых системах технического водоснабжения, а также воды водоема, выполняют оксидазный тест. В сомнительных случаях или при неблагоприятной санитарно-эпидемиологической обстановке исследуют бактерии с помощью СИБ-лактозы или посевом в полужидкую среду с лактозой, производят окраску по Граму.

В тех случаях, когда идентифицируют бактерии, выделенные из сточной воды, подлежащей последующей утилизации в открытых системах технического водоснабжения, производят оксадазный тест с СИД-оксидазой или с реактивом, окраску по Граму, посев на СИБ-глюкозу или в полужидкую среду с глюкозой.

Ниже приводятся рекомендации по определению коли-индекса исследуемых вод с использованием новых материалов — фильтрующих мембран Владипор типа МФА-МА и СИБ.

Другие (традиционные) методы выделения и идентификации бактерий в настоящих рекомендациях не приводятся, поскольку они изложены ранее в «Методике технологического контроля работы очистных сооружений городской канализации» (М.: Стройиздат, 1977).

III. ПРИМЕНЕНИЕ ФИЛЬТРУЮЩИХ МЕМБРАН ВЛАДИПОР МАРОК МФА-МА № 5, 6, 7, 8 ДЛЯ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ЛКП ИЛИ БГКП

I . Мембраны с фильтровальным аппаратом

7. Отбор проб. Сточные воды отбирают в стерильные емкости с соблюдением правил эпидемической безопасности для лиц, осуществляющих отбор проб. При отборе хлорированной сточной воды в емкость до ее стерилизации вносят серноватистокислый натрий из расчета 18 — 20 мг на 500 см 3 пробы сточной воды. Пробы воды водоемов отбирают с соблюдением правил стерильности в стерильные емкости с глубины 10 — 15 см от поверхности воды или от нижней кромки льда. При необходимости отбора проб на разных глубинах придонные пробы отбирают в 30 — 50 см от дна. Отбор проб производят в местах, где глубина водоема не менее 0,5 м. Используют различные плавсредства, мосты, помосты и т.п. Недопустимо производить отбор проб с берега. Проруби делают, избегая внесения в воду загрязнений со льда и инструментов. При отборе нескольких проб одним батометром его каждый раз обеззараживают фламбированием. Отобранную пробу маркируют. Места отбора проб и кратность устанавливают в соответствии с документами водно-санитарного законодательства, действующими для каждого объема.

8. Хранение проб. Анализ должен быть проведен в пределах 2 ч после отбора пробы. Допускается хранение пробы при температуре 4 — 10 °С в течение 6 ч.

9. Транспортирование проб. При транспортировке пробы следует предохранять от замерзания, действия прямых солнечных лучей, резких толчков и т.д.

10. Аппаратура, оборудование, материалы, реактивы, коммерческие питательные среды, окраска бактерий по Граму, постановка оксидазного теста с реактивом — см. ГОСТ 18963-73 «Вода питьевая. Методы санитарно-бактериологического анализа».

11. Приготовление среды Эндо (модификация). Среду готовят из сухого препарата по прописи на этикетке. В готовую и охлажденную до 60 — 70 ° С среду перед разливкой в чашки допускается для подавления роста посторонних бактерий, препятствующих получению на фильтрах изолированных колоний, прибавлять на 100 см 3 среды: 0,2 мл 10 %-ного спиртового раствора основного фуксина, 0,4 — 0,5 см 3 5 %-ного водного раствора фенола и 1,8 см 3 этилового спирта. Затем среду разливают а чашки Петри по 15 — 20 см 3 . Если на поверхности среды заметны следы влаги, чашки перед посевом необходимо подсушить, поместив их с приоткрытыми крышками в термостат. Срок хранения чашек со средой не более 2 — 3 сут в темноте при температуре 4 °С; добавок — не более 6 мес.

12. Подготовка мембран к работе. На дно сосуда, в котором производят кипячение (химический стакан, эмалированная кастрюля и т.п.), помещают «сторож для молока» или нержавеющую сетку для ограничения бурного кипения. Дистиллированную воду заливают в этот сосуд в небольшом объеме, ограничивающем свободное вращение в ней фильтрующих мембран, но достаточном для того, чтобы предназначенные для стерилизации фильтрующие мембраны оказались при погружении покрытыми водой. Дистиллированную воду доводят в сосуде до 80 — 90 °С и убавляют нагрев. После этого на поверхность воды по одной помещают фильтрующие мембраны, визуально проверенные на отсутствие трещин, отверстий, пузырей и т.д. Воду с помещенными в нее мембранами медленно доводят до кипения и кипятят на слабом огне в течение 10 — 15 мин. Затем эту воду сливают и заменяют небольшим количеством (чтобы покрыть фильтрующие мембраны) стерильной дистиллированной воды. После этого фильтрующие мембраны готовы к употреблению. Повторное кипячение фильтрующих мембран не требуется.

14. Подготовка проб исследуемой воды к посеву. При выборе объемов посева для необходимого разведения анализируемых вод ориентируются на результаты предыдущих исследований и ориентировочную схему посева, приведенную ниже. Необходимо, чтобы при анализе не менее чем на двух мембранах выросли изолированные колонии, среди которых не более 30 колоний ЛКП (или БГКП, если определяют этот показатель). При анализе воды неизвестного качества следует фильтровать не менее 3 — 4 десятикратных объемов или разведений. Разведения следует готовить в объеме 10 мл. При необходимости допускается для подавления роста посторонних бактерий в подготовленные к анализу объемы или разведения проб непосредственно перед их посевом на мембраны вносить добавки их расчета на 10 мл пробы 0,2 мл 1 %-ного спиртового раствора основного фуксина; 0,4 мл 0,5 %-ного водного раствора фенола; 0,18 мл этилового спирта. Раствор фуксина и фенола готовят, разводя в 10 раз их растворы, приготовленные для внесения в среду Эндо. Контакт проб с добавками не должен превышать 10 мин.

Читайте также:  Анализы на содержание железа в воде

Объем засеваемой воды для определения коли-индекса

до очистки и обеззараживания

0,01 — 0,000001 или 0,001 — 0,000001

Сточные воды после очистки и обеззараживания:

в зоне выпуска сточных вод

загрязняемые сточными водами

* Объем исследуемых проб может быть изменен в зависимости от интенсивности роста посторонних бактерий на фильтрах и величины коли-индекса, допускаемого соответствующим нормативом на утилизируемые сточные воды.

При посеве нескольких объемов одной пробы следует фильтровать через один фильтровальный аппарат (без дополнительного фламбирования) сначала меньшие, затем большие объемы воды, меняя каждый раз фильтры. Разведения одной пробы фильтруют через один фильтровальный аппарат (без дополнительного фламбирования), начиная с больших разведений; при фильтровании каждого последующего разведения меняют фильтры.

При фильтровании 1 см 3 исследуемой воды или ее разбавления в воронку следует предварительно налить 5 — 10 см 3 стерильного раствора для разбавлений, а затем внести анализируемую воду.

После окончания фильтрования воронку снимают, фильтрующую мембрану осторожно приподнимают за край фламбированным пинцетом при сохранении вакуума для тщательного удаления остатков воды на нижней стороне фильтра (подсушивания), а затем переносят его, не переворачивая, на питательную среду, разлитую в чашки Петри, избегая передвижения мембраны по поверхности среды, пузырьков воздуха между средой и фильтром. Поверхность фильтра с осевшими на ней бактериями должна быть обращена вверх. Под каждым фильтром на дне чашки делают надпись с указанием объема профильтрованной воды, даты посева, номера пробы. На одну чашку можно поместить 4 — 5 мембран с условием, чтобы они не соприкасались.

Если исследуемая вода содержит большое количество взвешенных веществ, то ее фильтруют сначала через предварительный мембранный фильтр для удаления крупной взвеси, который помещают в фильтровальный прибор, накладывая на фильтр для бактериологического анализа. После окончания фильтрования оба фильтра переносят на плотную питательную среду (раздельно) и при вычислении результатов анализа учитывают колонии, выросшие на обоих фильтрах.

16. Проведение анализа. Выбранные и подготовленные к анализу объемы воды фильтруют через мембраны Владипор марок МФА-МА № 5, 6, 7 или 8. Хорошо подсушенные мембраны помещают на среду Эндо, ставят в термостат дном вверх, инкубируют при температуре 37 ± 0,5 ° С в течение 18 — 28 ч, после чего приступают к учету результатов.

Если рост ЛКП обнаружен, подсчет их количества производят на тех фильтрах, где выросли изолированные колонии и число колоний, характерных для ЛКП, не более 30. Допустимо вести учет на фильтрах с числом колоний более 30 или по одному фильтру, но с обязательной оговоркой об этом в приложении к протоколу анализа.

В соответствующих случаях (см. п. 6) анализ завершается на этом этапе, производится вычисление индекса ЛКП.

При необходимости идентификации бактерий (см. п. 6) посла подсчета количества колоний, характерных для ЛКП, выполняют оксидазный тест с СИБ-оксидазой (п. 21) или с реактивом по ГОСТ 18963-73 «Вода питьевая. Методы санитарно-бактериологического анализа» или путем накапывания в соответствии с «Методическими указаниями по санитарно-микробиологическому анализу воды поверхностных водоемов» (утверждены приказом Минздрава СССР № 2285-81 от 19.01.81). Все колонии, которые полностью или частично (ободок) приобрели сине-фиолетовую окраску, исключают из учета. Подсчитывают количество характерных для ЛКП колоний, окраска которых не меняется. Если дальнейшая идентификация не требуется, вычисляют индекс ЛКП.

Если необходимо продолжение исследования (см. п. 6), по 2 — 3 изолированных колонии каждого типа из числа оксидазо отрицательных характерных для ЛКП колоний подвергают дальнейшей идентификации: готовят мазки для исследования по Граму * и одновременно делают посев в пептонную воду с СИБ-лактозой (гл. 4) или в полужидкую среду с лактозой. Посев необходимо делать как можно быстрее, не позднее 5 мин после проявления оксидазной реакции, так как реактив для оксидазного теста обладает бактерицидностью. Учитывают колонии, которые ферментируют лактозу до кислоты и газа. Подсчитывают сумму колоний таких типов. Если при выборочной проверке колоний одного типа получены неодинаковые результаты, то для вычисления количества лактозоположительных колоний этого типа в данном объеме используют формулу а × с/В, где а — общее число колоний данного типа; В — число проверенных из них; с — число проверенных колоний с положительным результатом. Вычисляют индекс ЛКП.

* Нечеткие результаты окраски по Граму могут быть уточнены: исследуемую культуру суспендируют в капле 3 %-ного раствора КОН на предметном стекле. Если бактерии грамотрицательны, жидкость в капле становится вязкой, за бактериологической петлей тянутся нити на 0,5 — 2 см. Учет более удобен на темном фоне.

Для вычисления индекса ЛКП (количество ЛКП в 1 дм 3 воды) суммируют количество колоний ЛКП и делят на объем воды, профильтрованной через эти фильтры, выраженный в кубических дециметрах.

При отсутствии на фильтрах колоний кишечных палочек индекс ЛКП будет меньше той величины, которая была бы определена в случае обнаружения в анализируемом объеме одной колонки кишечной палочки, например, при посеве 1 мл не выросло ни одной колонии. Индекс ЛКП будет менее 1000, он вычисляется следующим образом:

1 кол. : 0,001 дм 3 = 1000 или (1 кол. ´ 1000 см 3 ) : 1 см 3 = 1000.

Если колонии выросли на одном из нескольких фильтров, то в расчет принимают объем воды, профильтрованный через все фильтры. Например, если при посеве 1, 10, 40 см 3 воды на 3 фильтра на одном из них выросло 3 колонии ЛКП, на двух других роста нет, то индекс ЛКП равен 3 кол. : 0,051 дм 3 = 58 или (3 кол. ´ 1000 см 3 ) : 51 см 3 = 58. Если при посеве 1 и 10 см 3 воды на одном фильтре выросла 1 колония ЛКП, на другой — 5 колоний, то индекс ЛКП равен (1 + 5 кол.) : 0,011 дм 3 = 545 или (6 кол. ´ 1000 см 3 ) : 11 см 3 = 545.

В случаях, когда на одном или нескольких фильтрах получен сплошной рост бактерий и подсчет колоний невозможен, в расчет принимают объем воды, профильтрованный через фильтры, на которых удалось провести учет. Например, если при посеве 10 см 3 сплошной рост, а при посеве 1 см 3 — 12 ЛКП, то индекс ЛКП равен 12 кол.:0,001 дм 3 = 12000 = 1,2 × 10 4 или (12 ´ 1000 см 3 ) : 1 см 3 = 12000 = 1,2 × 10 4 .

18. Учет результатов при определении БГКП. К учету приступают при отсутствии роста колоний через 24 — 28 ч, при наличии колоний, характерных для БГКП, через 18 — 24 ч.

При отсутствии каких-либо колоний на фильтрах или при росте нехарактерных для кишечных палочек колоний (пленчатых, губчатых, с неровными краями или поверхностью, плесневых и т.д.) дают отрицательный ответ на присутствие БГКП в анализируемом объеме.

При наличии на фильтрах колоний, характерных для БГКП (темно-красных с металлическим блеском и без него, красных, розовых с красным центром, розовых, бесцветных и др.) выполняют оксидазный тест с помощью СИБ-оксидазы (п. 21) или с реактивом. Положительная реакция (синий цвет колонии или ее краев) всех колоний позволяет дать отрицательный ответ.

При наличии на мембранных фильтрах колоний, характерных для БГКП с отрицательным оксидазным тестом, подсчитывают раздельно число колоний каждого типа. Темно-красные с металлическим блеском и без него (лактозоположительные) колонии с четким отпечатком на обратной стороне фильтра, оксидазоотрицательные исследуют по Граму * . Убедившись в том, что эти колонии образованы грамотрицательными палочками, их относят к БГКП без подтверждающего этапа. Эти колонии проверяют на способность ферментировать глюкозу только в арбитражных и сомнительных случаях.

* Возможен уточняющий тест с КОН (см. п. 17).

Если на фильтре выросли только такие лактозоположительные колонии, то их количество подсчитывают и дают положительный ответ на наличие БГКП в исследуемом объеме воды.

При наличии на фильтрах колоний других типов (красных, розовых, бесцветных) для подтверждения их принадлежности к БГКП берут по 2 — 3 изолированных колонии каждого типа, готовят мазки с последующей окраской по Граму и одновременно делают посев в пептонную воду с СИБ-глюкозой (гл. 5) или на полужидкую среду с глюкозой. Посев необходимо делать как можно быстрее, не позднее 5 мин после проявления оксидазной реакции, так как реактив для оксидазного теста обладает бактерицидностью.

В тех случаях, когда при выборочной проверка колоний одного какого-либо типа получены неодинаковые результаты, количество БГКП среди колоний этого типа в исследованном объеме воды вычисляют по формуле а × с/В, где а — общее число колоний данного типа; В — число проверенных из них; с — число колоний, ферментирующих глюкозу до кислоты и газа.

Количество БГКП на фильтре определяют по сумме лактозоположительных колоний и колоний других типов, образованных грамотрицательными оксидазоположительными палочками, ферментирующими глюкозу до кислоты и газа при температуре 37 ± 0,5 ° С в течение 24 ч.

Результат анализа выражают индексом БГКП (количество БГКП в 1 дм 3 воды). Для подсчета индекса число колоний БГКП, подсчитанных на фильтрах, делят на объем профильтрованной через эти фильтры воды, выраженный в кубических дециметрах (подобно тому, как вычисляют индекс ЛКП).

2. Мембраны без фильтровального аппарата

Подготовка, проведение и учет анализа коли-индекса сточной воды методом мембранных фильтров без фильтровального аппарата в основном соответствует описанному в гл. I. Исключение составляют п. 13 (не требуется подготовка фильтровального аппарата) и п. 15 (фильтрование воды проводится иначе). Дополнительные сведения приводятся ниже.

19. Подготовка фильтрующих подложек. Несколько слоев (8 — 10) фильтровальной бумаги (марка «розовая лента», «белая лента» или другая, быстро впитывающая воду фильтровальная бумага) с площадью большей, чем площадь фильтрующей мембраны, заворачивают в оберточную бумагу или укладывают в чашки Петри. Затем их стерилизуют автоклавированием при температуре 120 ± 2 °С (10 6 Па) 1 ч или сухим жаром при температуре 160 °С в течение 1 — 2 ч. При необходимости можно стерилизовать, только 1 — 2 верхних слоя фильтровальной бумаги.

20. Фильтрование воды. Простерилизованные кипячением мембранные фильтры укладывают вверх рабочей поверхностью (более блестящей) на 8 — 10 слоев фильтровальной бумаги (1 — 2 верхних слоя обязательно предварительно простерилизованы). Пипеткой накапывают равномерно на поверхность мембраны отдельные порции предназначенного для исследования объема воды (не более 5 мл), не допуская ее растекания за пределы фильтрующей мембраны. Нужно быть особенно внимательными и не спешить при фильтрации первых капель пробы. Когда мембрана хорошо «приляжет» к подложке из фильтровальной бумаги, процесс фильтрации ускорится и накапывать пробу на мембрану можно чаще.

Для посева каждой пробы используют стерильные подложки из фильтровальной бумаги.

При посеве нескольких объемов одной пробы следует на одной подложке фильтровать сначала меньшие, а затем большие объемы воды, меняя каждый раз мембраны. При исследовании разведений одной пробы их фильтруют на одной подложке, начиная с больших разведений, каждый раз меняя фильтры.

Закончив фильтрование, дождавшись удаления влаги с мембраны, ее перекладывают, не переворачивая, на питательную среду, разлитую в чашки Петри, избегая передвижения мембраны по поверхности среды, пузырьков воздуха между средой и фильтром. Поверхность фильтра с осевшими на ней бактериями должна быть обращена вверх. Под каждым фильтром на дне чашки делают надпись с указанием объема профильтрованной воды, даты посева, номера пробы. На одну чашку можно поместить 4 — 5 мембран с условием, чтобы они не соприкасались.

3. Определение оксидазной активности бактерий

21. Постановка оксидазного теста при выделении бактерий методом мембранных фильтров. Мембранный фильтр с выросшими на нем изолированными колониями переносят пинцетом, не переворачивая, на помещенный в чистую чашку Петри диск СИБ-оксидазы, предварительно смоченный небольшим количеством (0,5 — 0,8 см 3 ) дистиллированной воды. Все посиневшие колонии, а также колонии с синим ободком не относятся к семейству Enterobacteriaceae, их не учитывают. Мембранный фильтр сразу же после четкого проявления реакции возвращает на среду Эндо, быстро подсчитывают оксидазоотрицательные колонии (не изменившие цвета), имеющие морфологию, характерную для бактерий семейства Enterobacteriaceae . При необходимости дальнейшего исследования немедленно (не позднее 5 мин) пересевают оксидазоотрицательные колонии по 2 — 3 колонии каждого типа для определения ферментации лактозы или глюкозы.

22. Постановка оксидазного теста при выделении бактерий бродильным (титрационным) методом или прямым посевом. По 2 — 3 изолированные колонии каждого типа, выросшие на секторах чашки со средой Эндо, частично снимают петлей и наносят штрихом на помещенный в чистую чашку Петри диск СИБ-оксидазы, предварительно смоченный небольшим количеством (0,5 — 0,8 см 3 ) дистиллированной воды. Оставшуюся часть колонии используют для изучения ферментации лактозы или глюкозы. При положительной оксидазной реакции в месте нанесения культуры бумажка синеет в течение 1 — 2 мин; при отрицательной реакции ее цвет не меняется. Подсчитывают на секторах чашки со средой Эндо колонии только тех типов, которые оказались оксидазоотрицательными и имеют морфологию, характерную для бактерий семейства Enterobacteriaceae .

В некоторых случаях оксидазный тест бактерий, выросших на среде Эндо, проявляется недостаточно четко, особенно при исследовании колоний, окрашенных в темно-красный свет. В таких случаях нужно пересеять колонии со среды Эндо на питательный агар, после подращивания в течение 3 — 5 ч при температуре 37 ± 0,5 °С пробу на оксидазную активность повторить.

В пробирки с 1 мл 0,5 %-ной пептонной воды (или питательного бульона), имеющей рН 7,4 — 7,8, предварительно подогретой до температуры 37 ± 0,5 °С и с небольшим кусочком ваты, вносят петлей изучаемую колонию (или часть ее) с мембранного фильтра или со среды Эндо, профламбированным пинцетом погружают диск СИБ-лактозы. Среда в пробирке приобретает красный цвет. Посевы инкубируют при температуре 37 ± 0,5 °С. При ферментации лактозы с образованием кислоты и газа среда приобретает желтый или оранжевый цвет, а пузырьки газа скапливаются между волокнами ваты. В качестве контроля используют пробирки со средой и СИБ-лактозой без культуры. В сравнении с окраской среды в этих пробирках оценивают окраску среды в опытных пробирках.

Результаты учитывают в течение 1 — 5 ч. Скорость реакции зависит от посевной дозы и ферментативной активности бактерий. При образовании кислоты и газа результат считается положительным. При отсутствии кислоты и газа, а также при наличии только кислоты пробирки оставляют в термостате. Окончательный учет производят через 24 ч. Отсутствие в пробирках кислоты и газа, так же как и отсутствие только кислоты или только газа, через 24 ч позволяет дать окончательный отрицательный ответ, наличие кислоты и газа — положительный.

Ход исследования аналогичен изложенному в гл. 4, но вместо СИБ-лактозы используют СИБ-глюкозу.

Читайте также:  Анализы на токсичность хроническую воды

источник

Особенности стрептококков как СПМ:

Стрептококки не очень устойчивы в окружающей среде, они могут сохраняться только в течение нескольких дней в пыли помещений, на белье, предметах обихода больного. Однако сроки сохранения их жизнеспособности близки к продолжительности жизни ряда патогенных бактерий, попадающих в окружающую среду воздушно-капельным путем (например, таких как возбудитель дифтерии и др.)

Показателем более свежего загрязнения воздуха помещений является α-гемолитический стрептококк как наименее устойчивый. В воздухе необитаемых человеком помещений стрептококки не обнаруживаются.

Методы индикации и идентификации стрептококков более сложны и трудоемки в сравнении с таковыми стафилококков.

Особое место среди СПМ занимают термофильные микробы, присутствие которых в почве или воде водоемов свидетельствует о загрязнении их навозом, компостом или разложившимися фекалиями людей.

К термофильным микроорганизмам относятся грамположительные бактерии, кокки, бациллы, спириллы, актиномицеты, немногие виды грибов, которые способны активно размножаться при температуре 60 0 С и выше. Большая часть термофилов – аэробы.

Термофилы содержатся в кишечнике человека и животных в небольших количествах (10 1 – 10 3 в 1 г), в связи с этим они не могут служить показателем фекального загрязнения окружающей среды.

Термофильные микроорганизмы размножаются в компостных кучах и навозе, в которых благодаря их жизнедеятельности происходит нагревание до 60-70 0 С поверхностных слоев. В таких условиях идет процесс биотермического обезвреживания органических масс, подвергающихся самонагреванию, погибают патогенные микроорганизмы и кишечные палочки.

Таким образом, присутствие термофилов свидетельствует о давнем загрязнении почвы компостами, при этом БГКП (ОКБ) обнаруживаются в незначительных количествах. И, напротив, высокий титр БГКП (ОКБ) при малом числе термофилов – показатель свежего фекального загрязнения.

Термофилы служат также санитарно-показательными микроорганизмами для характеристики отдельных этапов процесса минерализации органических отходов.

САНИТАРНАЯ МИКРОБИОЛОГИЯ ВОДЫ

Вода является естественной средой обитания разнообразных. микроорганизмов (различные виды бактерий, грибы, простейшие и водоросли). Совокупность всех водных организмов называетсямикробиальный планктон. На количественный состав микрофлоры основное влияние оказывает происхождение воды – пресные поверхностные (проточные воды рек, ручьев; и стоячие озер, прудов, водохранилищ), подземные (почвенные, грунтовые, артезианские), атмосферные и соленые воды. По характеру пользования выделяют питьевую воду (централизованного и местного водоснабжения), воду плавательных бассейнов, лед медицинский и хозяйственную. Особого внимания требуют сточные воды.

Микрофлору водоемов образуют две группы:

-аллохтонные (попадающие извне при загрязнении из различных источников) микроорганизмы.

1. Автохтонная микрофлора – совокупность микроорганизмов, постоянно живущих и размножающихся в воде. Как правило, микрофлора воды напоминает микробный состав почвы, с которой вода соприкасается. В ее состав входят микрококки, сарцины, некоторые виды Proteus и Leptospira. Из анаэробов –Bacillus cereus и некоторые виды клостридий. Эти микроорганизмы играют значительную роль в круговороте веществ, расщепляя органические отходы, клетчатку и др.

2. Биологическое загрязнение водоемов.

Со сточными, ливневыми, талыми водами в водоемы попадают многие виды микроорганизмов, резко изменяющих микробный биоценоз. Основной путь микробного загрязнения – попадание неочищенных городских отходов и сточных вод. Также – при купании людей, скота, стирке белья и др. В воду могут попадать представители нормальной микрофлоры человека, УП, патогенной (возбудители кишечных инфекций, лептоспирозов, иерсиниозов, вирусы полиомиелита, гепатита А и т.д.). Следует помнить, что вода не является благоприятной средой для размножения патогенных микроорганизмов, для которых биотопами являются организм человека или животных.

Освобождение от контаминирующих микроорганизмов наблюдается после органического загрязнения водоемов за счет конкурентной активации сапрофитной микрофлоры, что приводит к быстрому разложению органических веществ, уменьшению численности бактерий, особенно «фекальных». Существует термин «сапробность» — (sapros– гнилой, греч.) обозначает комплекс особенностей водоема, в том числе состав и количество микроорганизмов в воде, содержащей органические и неорганические вещества в определенных концентрациях. Процессы самоочищения воды в водоемах происходят последовательно и непрерывно. Различают полисапробные, мезасапробные и олигосапробные зоны.

Полисапробные зоны– зоны сильного загрязнения. Содержат большое количество органических веществ и почти лишены кислорода. Количество бактерий в 1 мл воды в полисапробной зоне достигает миллиона и более.

Мезасапробные зоны – зоны умеренного загрязнения. Количество микроорганизмов – сотни тысяч в 1 мл.

Олигосапробные зоны – зоны чистой воды. Характеризуются окончившимся процессом самоочищения. Количество бактерий от 10 до 1000 в 1 мл воды.

Таким образом, патогенные микроорганизмы, попадающие в водоем, достаточно обильны в полисапробных зонах, постепенно отмирают в мезосапробных и практически не обнаруживаются в олигосапробных зонах.

При санитарно-микробиологическом исследовании воды выделяют ОКБ, энтерококки, стафилококки и патогенные микроорганизмы (сальмонеллы, холерные вибрионы, лептоспиры, шигеллы и др.). Все санитарно-микробиологические исследования воды регламентируют соответствующие ГОСТ.

Основания для санитарно-микробиологического исследования воды:

Выбор источника централизованного водоснабжения и контроль за ним;

Контроль эффективности обеззараживания питьевой воды централизованного водоснабжения;

Наблюдение за подземными источниками водоснабжения (артезианские скважины, почвенные воды и т.д.);

Наблюдение за источниками индивидуального водопользования (колодцы, родники и др.);

Наблюдение за санитарно-эпидемиологическим состоянием воды открытых водоемов;

Контроль эффективности обеззараживания воды плавательных бассейнов;

Проверка качества очистки и обеззараживания сточных вод;

Расследование водных вспышек инфекционных болезней.

Санитарно-микробиологический анализ питьевой воды

В настоящее время регламентируется Методическими указаниями МУК 4.2.1018-01.

1. Определение ОМЧ– общее число мезофильных аэробных и факультативно-анаэробных микроорганизмов, способных образовывать колонии на питательном агаре приt 0 37 0 Cв течение 24 часов.

Из каждой пробы делают посев не менее двух объемов по 1 мл в 2 чашки Петри по 1 мл воды + 8-12 мл расплавленного остуженного (45-49 0 С) питательного агара, перемешивают, дают застыть, ставят в термостат 37 0 С, 24 часа. Затем подсчитывают все выросшие на чашке колонии при увеличении в 2 раза (но не более 300 колоний на чашке). Количество колоний на чашках суммируют и делят на 2 – результат выражают в КОЕ на 1 мл воды. Допускается до 50 КОЕ на 1 мл воды.

Определение общих и термотолерантных колиформных бактерий методом мембранной фильтрации (основной метод).

Общие колиформные бактерии — ОКБ –грам-, оксидаза-, не образующие спор палочки, способные расти на дифференциальных лактозных средах, ферментирующие лактозу до КГ приt 0 37 0 С в течение 24 часов.

Термотолерантные колиформные бактерии — ТКБ –входят в число ОКБ, обладают всеми их признаками, кроме того, способны ферментировать лактозу до КГ при t 0 44 0 С в течение 24 часов.

Метод основан на фильтрации установленного объема воды через мембранные фильтры, выращивании посевов на дифференциальной питательной среде с лактозой и последующей идентификации колоний по культуральным и биохимическим признакам.

Анализируют 3 объема по 100 мл, можно дробить объемы (10, 40, 100, 150 мл). Отмеренный объем воды фильтруют через мембранные фильтры. Фильтры помещают на среду Эндо (до трех фильтров на 1 чашку) и инкубируют t 0 37 0 С в течение 24 часов.

Если нет роста – отрицательный результат – ОКБ и ТКБ не обнаружены. Если есть типичные лактозопозитивные колонии с отпечатком на обратной стороне фильтра, подсчитывают, подтверждают их принадлежность к ОКБ и ТКБ. Для этого исследуется

-принадлежность к грамотрицательным бактериям

-ферментация лактозы до КГ (в двух пробирках – при t 0 37 0 С и 44 0 С).

Результат высчитывают по формуле Х=а∙100/V, где

Х – число колоний в 100 мл воды.

Результат выражают в КОЕ ОКБ (ТКБ) в 100 мл воды. В норме ОКБ (ТКБ) в 100 мл воды питьевой не должны определяться.

Споры сульфитредуцирующих клостридий – спорообразующие анаэробные палочковидные бактерии, редуцирующие сульфит натрия на железо-сульфитном агаре приt 0 44 0 С в течение 16-18 часов. Метод основан на выращивании посевов в железо-сульфитном агаре в условиях, приближенных к анаэробным, и подсчете числа черных колоний.

Объем воды 20 мл прогревают на водяной бане 75-80 0 С в течение 15 минут для исключения вегетативных форм, затем фильтруют через бактериальный фильтр, который помещают в пробирку с расплавленным железо-сульфитным агаром (70-80 0 С), остужают, помещают в термостатt 0 44 0 С на 16-18 часов.

Колифаги – вирусы бактерий, способные лизировать E.coliи формировать приt 0 37 0 С через 18-20 часов зоны лизиса бактериального газона (бляшки) на питательном агаре. Число бляшек не подсчитывается – анализ качественный.

Исследование сточных вод регламентируетсяМУ 2.1.5.800 – 99 «Организация Госсанэпиднадзора за обеззараживанием сточных вод», 1999 год. Применяют прямой посев на 4 чашки со средой Эндо по 0,5 мл (2 мл – весь объем). Затем подсчитывают количество КОЕ ОКБ и ТКБ, делают перерасчет на 100 мл воды.

Вода бассейнов исследуется по Санитарно-эпидемиологическим правилам и нормативам —СанПиН 2.1.2.1188-03. В100 мл водыбассейновдопускается не более 1 КОЕ ОКБ, не допускается ТКБ, колифаги, золотистый стафилококк, возбудители кишечных инфекций, синегнойная палочка. Лабораторный контроль по основным микробиологическим показателям (ОКБ, ТКБ, колифаги и золотистый стафилококк) проводится 2 раза в месяц. Исследования на наличие возбудителей кишечных инфекций проводятся при неблагоприятной эпидемической ситуации.

При появлении спорадических случаев пневмоний неясной этиологии или возникновении среди посетителей бассейна эпидемических внесезонных вспышек ОРЗ проводятся исследования воды на наличие легионелл (Legionella pneumophilia), размножению которых способствует теплая вода и брызги. При дыхании мелкодисперсный аэрозоль, содержащий легионеллы, попадает в легкие, что может вызвать «болезнь легионеров» или понтиакскую лихорадку.

Получение неудовлетворительных результатов исследований воды по основным микробиологическим, паразитологическим показателям; обнаружение возбудителей кишечных инфекционных или паразитарных заболеваний, синегнойной палочки является основанием для полной смены воды в ванне. Смена воды в ванне бассейна должна сопровождаться механической чисткой ванны, удалением донного осадка и дезинфекцией с последующим отбором проб на анализ.

ЗАБОЛЕВАНИЯ ИНФЕКЦИОННОЙ ПРИРОДЫ,

КОТОРЫЕ МОГУТ ПЕРЕДАВАТЬСЯ ЧЕРЕЗ ВОДУ ПЛАВАТЕЛЬНЫХ БАССЕЙНОВ

Степень связи с водным фактором

1.Адено-вирусная фаринго-конъюктивальная лихорадка

2.Эпидермофития («чесотка пловцов»)

6.Отиты, синуситы, тонзиллиты, конъюктивиты

8.Грибковые заболевания кожи

16.Острые сальмонеллезные гастроэнтериты

Связь с водным фактором: +++ — высокая, ++ — существенная, + — возможная

Микробиологический анализ воды открытых водоемов регламентируется МУК 4.2.1884-04 «Санитарно-микробиологический и санитарно-паразитологический анализ воды поверхностных водных объектов».

САНИТАРНАЯ МИКРОБИОЛОГИЯ ПОЧВЫ

Почва является главным резервуаром и естественной средой обитания микроорганизмов, которые участвуют в процессах самоочищения почвы, а также в круговороте веществ в природе. Качественный состав почвы очень разнообразен и включает преимущественно спорообразующие бактерии, актиномицеты, спирохеты, простейшие, сине-зеленые водоросли, микоплазмы, грибы и вирусы. Наиболее многообразен микробный пейзаж в околокорневой зоне растений – ризоферная зона. Количество микроорганизмов в почве достигает нескольких миллиардов в 1 г. Живая масса микроорганизмов в почве на 1 га – около 1000 кг.

Микроорганизмы распределены в почве неравномерно. На поверхности (1-2 мм) их относительно мало. Наиболее многообразна и многочисленна микрофлора на глубине 10-20 см, где идут основные биохимические процессы превращения органических веществ. При этом патогенные микроорганизмы и попавшие в почву представители нормальной микрофлоры тела человека и животных, как правило, длительно не выживают. Однако, многие бактерии, входящие в состав нормальной микрофлоры человека, также включаются в биоценоз почвы. Существует трудность в разделении микрофлоры почвы на резидентную и временно присутствующую. Для выяснения роли почвы в передаче инфекционных болезней необходимо знать возможную продолжительность сохранения патогенных бактерий в почве.

1-я группавключает патогенные микроорганизмы, постоянно обитающие в почве, например,Clostridium botulinum. Бактерии попадают в почву с испражнениями человека и животных, их споры сохраняются в ней неопределенно долго.

2-я группа включает спорообразующие патогенные микроорганизмы, для которых почва является вторичным резервуаром. Бактерии попадают в почву с выделениями человека и животных, а также с трупами погибших животных. При благоприятных условиях они могут размножаться и сохраняться в виде спор длительное время.

3-я группа включает патогенные микроорганизмы, попадающие в почву с выделениями человека и животных и сохраняющиеся в течение нескольких недель или месяцев. В нее входят споронеобразующие бактерии.

Санитарно-микробиологическое исследование воды проводят с учетом комплекса показателей: общее количество сапрофитных микроорганизмов и наличие СПМ (ОКБ, ТКБ, Clostridium perfringens и др.). Высокая численность сапрофитной микрофлоры свидетельствует об органическом загрязнении, при микробной контаминации преобладают СПМ.

САНИТАРНАЯ МИКРОБИОЛОГИЯ ВОЗДУХА

Воздух является средой, в которой микроорганизмы не способны размножаться. Бактериальная обсемененность воздуха закрытых помещений всегда превышает обсемененность атмосферного воздуха, в том числе и патогенными микроорганизмами, попадающими в воздух от больных людей, животных и бактерионосителей. Микрофлору воздуха условно разделяют на резидентную (более часто обнаруживаемую) и временную, менее стойкую к воздействию различных факторов (обнаруживают спорадически).

Постоянная микрофлора воздуха формируется за счет почвенных микроорганизмов. В основном это микрококки, сарцины, B.subtilis, некоторые виды Actinomices, Penicillum, Aspergillus и др.

Временная микрофлора воздуха также формируется преимущественно за счет микроорганизмов почвы, а также за счет видов, поступающих с поверхности водоемов.

Контаминация воздуха патогенными микроорганизмами происходит в основном капельным путем в составе аэрозоля, образующегося при разговоре, кашле, чихании. В зависимости от размера капель, их электрического заряда, скорости движения в воздухе аэрозоль может иметь капельную и пылевую фазы, а также капельные ядрышки.

А) Капельная фаза – представлена мелкими каплями, длительно сохраняющимися в воздухе и испаряющимися до оседания.

Б) Пылевая фаза –представлена крупными, быстро оседающими и испаряющимися каплями; в результате образуется пыль, способная подниматься в воздушную среду.

В) Капельные ядрышки – мелкие капельки аэрозоля (до 100 нм), высыхая, остаются в воздухе во взвешенном состоянии и образуют устойчивую аэродисперсную систему. В них частично сохраняется влага, поддерживающая жизнеспособность микроорганизмов. Последние в составе капельных ядрышек могут переноситься на значительные расстояния.

Санитарно-микробиологические исследования воздуха.

Основной задачей исследований является гигиеническая и эпидемиологическая оценка воздушной среды, а также разработка комплекса мероприятий, направленных на профилактику аэрогенной передачи возбудителей инфекционных болезней. При оценке санитарного состояния закрытых помещений в зависимости от задач исследования определяют ОМЧ, наличие СПМ (стафилококков, α- и β-гемолитических стрептококков, являющихся показателями контаминации микрофлорой носоглотки человека).

Отбор проб в закрытых помещениях: точки отбора на каждые 20 м 2 — одна проба, по типу конверта.

Методы отбора: -седиментационные и

-аспирационные – основанные на принудительном осаждении микроорганизмов из воздуха на поверхность плотной питательной среды или в улавливающую жидкость. Используют прибор для отбора проб воздуха (ПОВ – 1), пробоотборник аэрозольный бактериологический (ПАБ – 1). Отбор проб проводят со скоростью 20-25 л/мин в течение 5-4 минут. Т.о., определяется микрофлора в 100 л воздуха.

Исследование микробной обсемененности воздушной среды в лечебных учрежденияхпроводят в соответствии с Приказом №720 от 31 июля 1978 года «Об улучшении медицинской помощи больным с гнойными хирургическими заболеваниями и усилении мероприятий по борьбе с внутрибольничной инфекцией».

Бактериологическое исследование предусматривает:

-определение общего содержания микробов (ОМЧ) в 1 м 3 воздуха;

-определение содержания золотистого стафилококка в 1 м 3 воздуха. Отбор проб проводят в следующих помещениях:

-отделениях и палатах реанимации и др. помещениях, требующих асептических условий.

Пробы воздуха отбирают аспирационным методом со скоростью протягивания воздуха 25 л/мин. Количество пропущенного воздуха должно составлять 100 литров для определения ОМЧ и 250 литров для определения наличия золотистого стафилококка.

Критерии оценки микробной обсемененности воздуха

источник