Меню Рубрики

Титриметрические методы при анализе питьевой воды

Титриметрический анализ основан на точном измерении объема стандартного раствора реагента (титранта), израсходованного на реакцию с анализируемым веществом. Вещества реагируют между собой в эквивалентных количествах.

В титриметрическом анализе титрантами называют растворы, титр которых известен. Титром раствора называется концентрация растворенного вещества, выраженная в г/мл или мг/мл. Например, выражение «титр H2SO4 равен 0,0049 г/мл» означает, что каждый миллилитр данного раствора серной кислоты содержит 0,0049 г H2SO4. Титр обозначается буквой Т с указанием формулы вещества: ТH2SO4=0,0049 г/мл. Таким образом, титр – это способ выражения концентрации вещества.

При титровании используют два раствора:

рабочий раствор — раствор титранта с точно известной концентрацией, объем которого необходимо определить с помощью бюретки;

титруемый раствор – раствор анализируемого вещества с точно известным объемом, концентрацию которого необходимо определить.

Титрование – это процесс постепенного прибавления раствора титранта (T) к точно отмеренному объему анализируемого раствора вещества (A) до момента, когда оба вещества прореагируют друг с другом, то есть до момента достижения точки эквивалентности.

В точке эквивалентности количество прибавленного титранта эквивалентно количеству анализируемого вещества. При титровании необходимо точно установить момент наступления эквивалентности, т.е. фиксировать точку эквивалентности.

Расчеты результатов титрования основаны на принципе эквивалентности, согласно которому объемы растворов титранта и анализируемого вещества, количественно реагирующих между собой, обратно пропорциональны их концентрациям:

где V(T) и V(A) – объемы (л) и c(Т) и с(А)– молярные концентрации (моль/л) раствора титранта и анализируемого вещества соответственно.

Уравнение (1) составляет основу титриметрических определений. Для определения концентрации одного из растворов (или массы вещества в данном растворе) необходимо знать точно объемы реагирующих растворов, точную концентрацию другого раствора и установить момент, когда два вещества прореагируют в эквивалентных количествах.

Существует два способа получения растворов с точно известной концентрацией вещества, т.е. стандартных растворов. В зависимости от этого различают первичные стандартные растворы (приготовленные) и вторичные стандартные растворы (установленные).

Приготовление первичного стандартного раствора. Точную навеску, взятую на аналитических весах, растворяют в мерной колбе. В результате получают раствор, в котором точно известно количество вещества и объем раствора. Полученные растворы называют растворами с приготовленным титром. Титр раствора равен навеске вещества (г, мг), деленной на объем (мл). Чтобы перейти к молярной концентрации эквивалента, достаточно титр раствора умножить на 1000 и разделить на молекулярную массу.

Приготовление вторичного стандартного (стандартизированного) раствора. В этом случае нет необходимости брать точную навеску вещества. Вещество взвешивают на технохимических весах, растворяют в определенном объеме, и получают раствор вещества приблизительно нужной концентрации. Точную его концентрацию устанавливают титрованием с помощью раствора первичного стандарта. Полученные растворы называют растворами с установленным титром.

Стандартные растворы можно также приготовить с помощью фиксаналов (стандарт-титров). Фиксаналы предствляет собой запаянные стеклянные ампулы, содержащие количество вещества, необходимое для приготовления 1 л раствора. Промышленность выпускает фиксаналы с различными веществами, как в виде растворов (серная и хлорводородная кислоты, гидроксиды натрия и калия), так и сухие (перманганат калия, карбонат или оксалат натрия и др.). Для приготовления стандартного раствора из фиксанала, содержимое ампулы переносят в мерную колбу вместимостью 1 л. Для этого в каждой коробке с фиксаналами имеется стеклянный боек и стеклянная палочка. В горлышко колбы вставляют воронку и вкладывают стеклянный боек, о который разбивают дно ампулы. Затем стеклянной палочкой пробивают отверстие в верхней части ампулы и дают содержимому полностью вытечь или высыпаться в колбу, которую затем заполняют дистиллированной водой до метки.

источник

Данный урок — лабораторная работа разработан по предмету «Аналитическая химия» для обучающихся по профессии «Технология продукции общественного питания». В ходе лабораторной работы в основе определения общей жесткости воды используется один из методов титриметрического анализа — комплексонометрический.

Вода является универсальным растворителем на планете Земля. Как в загородных домах, так и в городе в квартирах с централизованным водопроводом существует проблема жесткой воды. Жесткость воды зависит от наличия в ней солей кальция и магния. Жесткость воды является характеристикой конкретного источника водоснабжения и не изменяется в процессе подготовки питьевой воды к централизованному водоснабжению. Как определить степень жесткости воды?

Цель: повторить основные понятия, используемые в титриметрическом анализе; научить определять общую жесткость воды комплексонометрическим методом; закрепить навыки работы с лабораторным оборудованием; развивать вычислительные навыки; воспитывать чувство ответственности и дисциплинированности при выполнении практической работы.

Оборудование: конические колбы, мерные круглодонные колбы, бюретки для титрования, реактивы: трилон Б, индикатор эриохром черный Т, водопроводная вода, аммиачно-буферная смесь; таблицы, инструкционные карты.

II. Актуализация знаний учащихся

Сегодня на уроке мы с Вами будем говорить о самом замечательном веществе на планете Земля — воде.

Вы, как будущие технологи общественного питания, будете использовать питьевую воду не только в быту, но и в своей профессиональной деятельности.

В Старом Осколе питьевая вода поступает в город из 14 водозаборов, расположенных в разных частях города и района.

1. Одинакова ли питьевая вода по своим свойствам? (нет)

2.Чем она отличается? (содержанием различных веществ — жесткостью)

Абсолютно чистой воды в природе не существует. Она всегда содержит различные примеси как в растворенном, так и во взвешенном состоянии. От концентрации и природы этих примесей зависит пригодность воды для бытовых и промышленных нужд.

3.Что такое жесткость воды?

Жесткость воды определяется содержанием в ней растворимых солей магния, кальция, гидрокарбонатов, сульфатов, хлоридов.

4. Какие виды жесткости воды Вы знаете?

Жесткость временная (карбонатная) обусловлена содержанием гидрокарбонатов кальция и магния.

Жесткость постоянной (некарбонатной) обусловленна присутствием в воде хлоридов, сульфатов и других солей магния и кальция.

Общая жесткость воды представляет сумму жесткости карбонатной и некарбонатной.

5. Почему нежелательно использовать жесткую воду в быту?

Жесткая вода образует плотные слои накипи на внутренних стенках паровых котлов и кипятильников, в ней плохо развариваются пищевые продукты, при стирке белья в жесткой воде расходуется больше мыла.

III. Изучение нового материала

Тема нашего урока «Определение общей жесткости воды комплексонометрическим методом». Запишем ее в тетради.

В ходе урока мы должны научиться практическим путем определять общую жесткость воды, используя титриметрический анализ, в частности комплексонометрический метод.

Вспомним основы комплексонометрического метода анализа.

1. В чем состоит сущность комплексонометрического метода?

Сущность комплексонометрического метода состоит в образовании комплексных соединений анализируемых катионов с органическими реагентами — комплексонами.

Титрование — постепенное добавление раствора известной концентрации до достижения точки эквивалентности.

3. Что такое точка эквивалентности?

Точка эквивалентности — момент окончания реакции, т.к. вещества реагируют между собой в эквивалентных количествах.

4. С помощью чего устанавливают точку эквивалентности? (индикатора)

Индикаторы — вещества, при помощи которых устанавливают момент эквивалентности между взаимодействующими растворами.

6. Что такое стандартный (рабочий) раствор?

Стандартный раствор — раствор с точно установленной концентрацией, используемый для титриметрических измерений.

7. Какие правила техники безопасности необходимо соблюдать при выполнении практической работы?

Правила техники безопасности при работе со стеклянной посудой; жидкостями и сыпучими, а также ядовитыми веществами.

Работу выполняем по парам. На столах имеются инструкционные карты.

IV. Выполнение практической работы

Работу выполняем по парам. На столах имеются инструкционные карты.

Цель работы: определить общую жесткость воды методом комплексонометрии.

Оборудование: бюретки, мерный цилиндр, мерные круглодонные колбы, конические колбы, цилиндры, воронки, шпатель; реактивы: раствор Трилона Б, эриохром черный Т (сухой), аммиачно-буферная смесь, водопроводная вода.

1. Мерной колбой отмерить 100 мл исследуемой Н2О и перелить ее в коническую колбу.

2. Добавить к воде 5 мл аммиачно-буферной смеси, затем 7-8 капель спиртового раствора индикатора эриохром черного Т или щепотку его смеси с NaCl или KCl (сухую).

3. Тщательно перемешать, раствор окрасится в винно-красный цвет.

4. Смесь оттитровать 0,05 Н раствором Трилона Б. К концу титрования раствор Трилона Б добавлять по каплям, встряхивая смесь в колбе после добавления каждой капли.

5.Титрование можно считать законченным если после добавления очередной капли окраска раствора приобретает синий цвет с зеленоватым оттенком и с добавлением лишней капли раствора комплексона не изменяется.

6. Определить объем трилона Б, израсходованного на титрование.

7.Титрование повторить 2-3 раза и для расчета взять среднее значение.

8. Произвести расчет общей жесткости воды.

Величину общей жесткости воды (Ж) в мг*экв/л вычисляют по формуле:

где N — нормальность раствора трилона Б, г-экв/л;

V — объем раствора трилона Б, мл;

9. Сделайте вывод о типе воды, пользуясь данными значениями жесткости воды.

Типы воды (по жесткости):

  • Очень мягкие — 0-1,5 мг-экв/л;
  • Мягкие — 1,5- 3,0 мг-экв/л;
  • Среднежесткие — 3,0- 4,5 мг-экв/л;
  • Довольно жесткие — 4,5 — 6,5 мг-экв/л;
  • Жесткие — 6,5 — 11,0 мг-экв/л;
  • Очень жесткие — свыше 11,0 мг-экв/л.

V. Подведение итогов работы

Сегодня на уроке мы практическим путем определили общую жесткость воды. Водопроводная вода, которую мы используем, является среднежесткой.

Какие способы устранения жесткости Вы знаете?

Способы устранения жесткости воды:

  • Карбонатная (временная) жесткость — кипячение; добавление известкового молока или соды.
  • Некарбонатная (постоянная) жесткость — добавление соды.

источник

46.Методы анализа воды: гравиметрические, титриметрические, фотометрические, потенциометрические, вольтамперометрические.

Гравиметрический – основан на определении массы вещества. В ходе анализа вещество отгоняется в виде какого-либо летучего соединения или осаждается из раствора в виде малорастворимого соединения. Осадок взвешивается в виде соединения строго определенного состава, весовая форма по составу совпадает с осаждаемой. По весу высушенного или прокаленного осадка вычисляется содержание определенного компонента в данном образце. Достоинства: высокая точность, отсутствие необходимости калибровки, простота. Недостатки: значительный расход времени на выполнение анализа.

Титриметрический. Основан на точном измерении количества реактива израсходованного на реакцию с определенными веществами. Титрированный раствор – раствор, концентрация которого известна с высокой точностью. Титрование – прибавление титрованного раствора к анализируемому для точного определения эквивалентного количества. Момент титрирования – точка эквивалентности. Титрирующий раствор – титрант. Используются реакции кислотно-основного взаимодействия, удовлетворяющие требованиям, которые предъявляются к титриметрическим реакциям. Взаимодействие должно происходить полностью и с высокой скоростью. Достоинства: быстрота выполнения, простота оборудования, удобство выполнения серийных анализов, большой набор химических реакций. Недостатки: необходимость предварительной стандартофикации растворов титранта и калибровки мерной посуды.

Фотометрический. Измеряет поглощение света анализируемым раствором обычно после введения в него реактива, реагирующего с определенным компонентом сточной воды с образованием интенсивно поглощающего свет соединения. Приборы: Источник света – светофильтр – кювета с раствором – детектор. Конструкция прибора зависит от области спектра применения. Излучение выбирают такое, что бы соединение имело max светопоглощение, а примеси – min. Достоинства – широкая область применения, высокая чувствительность. Недостатки: калибровка аппаратуры, посуды.

Потенциометрия и потенциометрическое титрование. Потенциометрия основана на измерении небольших равновесных напряжений между электродами гальванической ячейки. Метод можно применять для установления активности веществ в растворе (прямая потенциометрия) и для нахождения точки эквивалентности при титриметрических определениях (потенциометрическое титрование). Прямая ПМ находит применение при определении рН растворов, а также многих ионов с использованием ионоселективных электродов. В анализе природных вод и питьевой воды ионоселективные электроды применяют для определения кадмия, меди, свинца, серебра, щелочных металлов, бромид-, хлорид-, цианид-, фторид-, иодид — и сульфид-ионов.

Вольтамперометрические методы анализа. Это совокупность методов исследования кривых ток-потенциал и их зависимостей от электродных реакций и концентраций определяемых веществ. Один из основных ВАМ методов – полярография. Метод заключается в получении и анализе кривых ток-потенциал на ртутном капельном электроде. Методом полярографии можно определить любые вещества, способные к эл-хим превращениям на электродах. Качественная информация следует из значения потенциала полуволны (φ1/2), количественная – из определения высоты волны (id).

Типичная полярографическая волна, используемая для качественного и количественного определения электродно-активных веществ.

источник

Сущность метода и его достоинства

Титриметрический или объемный метод анализа является одним из методов количественного анализа. В основе этого метода лежит точноеизмерение объемов растворов двух веществ, реагирующих между собой. Количественное определение с помощью титриметрического метода анализа выполняется довольно быстро, что позволяет проводить несколько параллельных определений и получать более точное среднее арифметическое.

По характеру химической реакции, лежащей в основе определения вещества, методы титриметрического анализа подразделяют на следующие группы: метод нейтрализации или кислотно-основного титрования; метод окисления — восстановления; метод осаждения и метод комплексообразования.

Титрование — это постепенное прибавление титрованного раствора реагента (титранта) к анализируемому раствору для определения точки эквивалентности.

Титриметрический метод анализа основан на измерении объема реагента точно известной концентрации, затраченного на реакцию взаимодействия с определяемым веществом.

Точка эквивалентности — момент титрования, когда достигнуто эквивалентное соотношение реагирующих веществ. Достигнув точки эквивалентности, титрование заканчивают и отмечают объем раствора, пошедший на данную реакцию. Следовательно, в титриметрическом методе анализа первостепенное значение имеет точное определение точки эквивалентности. Точку эквивалентности (т.э.) определяют по изменению окраски индикатора (химического индикатора) или с помощью инструментальных индикаторов, приборов фиксирующих измене какого-то свойства среды в процессе титрования.

Индикаторы — это вещества, которые изменяют свое строение и физические свойства при изменении среды. В области точки эквивалентности индикатор изменяет свой цвет, образует осадок или вызывает какой-то другой наблюдаемый эффект. Индикаторы — это вещества, которые позволяют с известной степенью достоверности установить конечную точку титрования (к.т.т.). При правильном выборе индикатора точка эквивалентности (т.э.) должнасовпадать с конечной точкой титрования (к.т.т.). На практике между этимиточками наблюдается некоторая разница. Чтобы погрешность титрования была минимальной, необходимо чтобы разница между точкой эквивалентности и точкой конца титрования тоже была минимальной.

Читайте также:  Анализ на качество сточных вод

К реакциям, применяемым в количественном объемном анализе, предъявляют следующие требования:

1. Реакция должна протекать в соответствии со стехиометрическим уравнением реакции и должна быть практически необратима. Результат реакции должен отражать количество анализируемого вещества.

Константа равновесия реакции должна быть больше 10.

2. Реакция должна протекать без побочных реакций, иначе нельзя применять закон эквивалентов:

C1 (1/z*X V 1 (р-ра Х) = C2 (1/z*У) V 2 (р-ра У)

  • 3. Реакция должна протекать с достаточно большой скоростью, т.е. за 1-3 секунды. Это главное достоинство титриметрического анализа.
  • 4. Должен существовать способ фиксирования точки эквивалентности. Окончание реакции должно определяться достаточно легко и просто.

Достоинства титриметрического анализа:

  • 1) быстрота определения;
  • 2) простота оборудования;
  • 3) возможность автоматизации;
  • 4) точность — относительная погрешность 0,1 — 0,01 %.

Титриметрический метод анализа используется для определения неорганических и органических веществ. Титрование можно проводить в водных и неводных средах.[31]

Определение общей жесткости водопроводной воды

Отмерить мерным цилиндром 50 мл водопроводной воды (из-под крана) и перелить её в колбу емкостью 250 мл, добавить 5 мл аммиачно-буферного раствора и индикатор — эриохром черный Т — до появления розовой окраски (несколько капель или несколько кристаллов). Заполнить бюретку раствором ЭДТА 0,04 н (синонимы — трилон Б, комплексон III) до нулевой отметки.

Приготовленную пробу медленно при постоянном перемешивании оттитровать раствором комплексона III до перехода розовой окраски в голубую. Результат титрования записать. Повторить титрование ещё один раз.

Если разница результатов титрований превышает 0,1 мл, то оттитровать пробу воды третий раз. Определить средний объем комплексона III (VК, СР)

израсходованного на титрование воды, и по нему рассчитать общую жесткость воды.

Общую жесткость воды ЖОБЩ рассчитать по закону эквивалентов в единицах ммольэкв/л.

Определить класс жесткости водопроводной воды.

Умягчение воды методом катионирования и определение общей жесткости умягченной воды

Очистить водопроводную воду от примесей, пропустив её через колонку, заполненную катионитом. Умягченную воду собрать в стакан (можно пользоваться заранее приготовленной умягченной водой, собранной в колбу).

Определить общую жесткость 100 мл умягченной воды Ж К ОБЩ по методике опыта 1 и класс жесткости умягченной воды.

Рассчитать величину ммольэкв/л ионов жесткости, поглощенных катионитом при умягчении водопроводной воды: ЖОБЩ — Ж К ОБЩ.

Записать уравнения процессов, протекающих при катионировании, для случаев:

Определение карбонатной и некарбонатной жесткости воды

Отобрать мерным цилиндром 50 мл водопроводной воды и перелить её в коническую колбу. Добавить к исследуемой воде несколько капель метилового оранжевого до появления желтой окраски, которая должна соответствовать или быть очень близкой к окраске контрольного раствора с этикеткой «до титрования». Заполнить бюретку раствором соляной кислоты 0,1 н до нулевой отметки.

Оттитровать приготовленную пробу раствором соляной кислоты. Оттитрованная проба должна иметь оранжевую, но не розовую окраску индикатора, и соответствовать или быть очень близкой к окраске контрольного раствора с этикеткой «после титрования».

Результат титрования записать. Повторить титрование ещё один раз. Если результаты двух титрований совпадут (различие не должно превышать 0,1 мл), рассчитать карбонатную жесткость воды. В противном случае оттитровать ещё одну пробу воды. Определить среднее значение объема раствора соляной кислоты, израсходованной на титрование воды. Рассчитать карбонатную жесткость ЖК воды в единицах ммольэкв/л, используя закон эквивалентов.

Определить некарбонатную жесткость:

Рис. 3. Титрование воды в лабораторных условиях

источник

Контроль качества водных ресурсов и сточных вод играет огромную роль в обеспечении личной (населения страны) безопасности. Какие методы анализа воды сегодня применяются? О чем говорят получаемые в ходе исследования результаты?

Чтобы иметь возможность регулировать и контролировать качество питьевых ресурсов специалисты используют лабораторные методы анализа воды, основывающиеся на выявление физических и химических особенностей тестируемого образца. Насколько важны процессы исследования водных ресурсов и сточных вод? Они имеют чрезвычайную важность, поскольку позволяют предупредить загрязнение окружающей среды и ухудшение экологической остановки. Но их главная задача остановить развитие огромного числа заболеваний у населения, которые ежедневно контактируют и пьют некачественную воду. В нашей независимой лаборатории можно по невысокой цене заказать исследование различных классов жидкостей. Мы гарантируем достоверность результатов и применение самых современных методик.

Процедура контроля и процессы водоочистки в жилых и загородных домах, на производственных и промышленных предприятиях начинается с мероприятий по выявлению и подсчету количества содержащихся в потребляемой (используемой) воде компонентов и соединений. Современная методика анализа воды позволяет с высокой точность идентифицировать вещество в составе образца и его объем на единицу массы. Все тесты проводятся в лабораторных условиях при помощи специального оборудования, химических реагентов и препаратов.

Существуют следующие типы исследований проб сточных и питьевых вод:

  • Химический — применяется весовой и объемный методы анализа.
  • Электрохимический — процедура использует полярографический и потенциометрический методы анализа.
  • Оптический — образец исследуется посредством фотометрических, люминесцентных и спектрометрических методик. Считаются самыми результативными, но за счет необходимости использовать очень редкое и сложное оборудование являются и наименее применяемыми, дорогостоящими. Используются для покомпонентного тестирования как питьевых, сточных, так и хозяйственно-бытовых, промышленных вод.
  • Санитарно-микробиологический, паразитологический и бактериологический — применяются титрационный, АТФ, чашечный подсчет, мембранная фильтрация выращивание и прочие методы анализа: сточная вода, питьевая и хозяйственно-бытовая проверяются комплексами, составленными из перечисленных тестов.
  • Фотохимический — покомпонентный состав пробы определяется фотохимическим методом.
  • Хроматографический — один из самых сложных типов исследования, который использует метод тонкослойной хроматографии, жидкостной колоночной хроматографии и высокоэффективной жидкостной хроматографии. Чтобы оценить пробу также необходимо использовать сложное и редкое оборудование.
  • Органолептический — эталонный метод исследования проб. Применяется исключительно к питьевым видам образцов.
  • Токсикологический и радиационный — приборные способы проверки наличия в предъявленном образце вредных для здоровья токсинов, α и β-частичек.

Перечисленные типы исследований разработаны для проверки качества жидкости применяемой для приготовления пищи, питья и используемой в хозяйственно-бытовых нуждах. Однако многие методы анализа питьевой воды пригодны и для установления степени загрязненности сточных вод прошедших через очистные сооружения. Наша лаборатория проводит все существующие виды тестов жидкостей по доступной стоимости. Чтобы сдать воду на анализ в лабораторию, мы рекомендуем купить специальную тару для ее забора, хранения и транспортировки.

  • Содержание в пробе природных веществ и их концентрации. Обязательный тест для образцов, взятых из естественных водоемов: скважина, колодец, водопроводная вода.
  • Содержание в пробе химических элементов и соединений, попавших в образец в результате очистки воды. Данные методы контроля воды применяются ко всем видам проб: сточные, хозяйственно-бытовые, промышленные, питьевые воды;
  • Наличие в пробе бактерий и патогенных микробов, вирусных микроорганизмов и палочек. Тест, которым исследуется питьевая вода и образцы, взятые с поверхностных источников: озера, водохранилища, реки и так далее. Присутствие бактерий в жидкости, с которой контактирует человек (не пьет), также может вызвать ряд заболеваний.
  • Присутствие запаха. Органолептические и санитарно-микробиологические тесты позволяют выявить «виновников» запаха. Ими являются микроорганизмы и продукты их жизнедеятельности. Важное исследование питьевой и хозяйственно-бытовой воды.
  • Степень жесткости, мутности. Анализу обязательно подвергают хозяйственно-бытовые и питьевые образцы.

Полученные результаты сравнивают с нормативами СанПиН, в которых оговорено допустимое и нормальное присутствие в воде макро- и микроэлементов, солей, природных веществ и прочего. Если количественные величины примесей, минералов и солей попали в разрешенный СанПиН диапазон, тестируемый образец можно считать пригодным для питья, бытовых, промышленных целей. Аналогично оцениваются сточные воды. Если их физико-химический и токсический состав соответствует установленным нормам, то очищенную системой загрязненную жижу можно выбрасывать в окружающую среду. Она не станет причиной ее загрязнения и отравления людей. По каждому виду вод разработаны свои критерии оценки и нормы.

Контроль качества воды следует проводить не только предприятиям, но и людям, использующим водопроводную, колодезную и скважинную воду. По результатам теста можно с легкостью определить, какие системы фильтрации и очистки будут наиболее эффективны. В нашей независимой компании можно по доступной цене заказать любые типы анализов различных классов вод.

источник

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

«Новгородский государственный университет имени Ярослава Мудрого»

Институт сельского хозяйства и природных ресурсов

Отделение естественных наук и природных ресурсов

Определение жесткости воды

Определение жесткости воды (титриметрический метод)

Методические указания к лабораторной работе

Великий Новгород, 2011 г.- 16 стр.

Важнейшим свойством природных вод является их жесткость. Жёсткость природных вод более всего обусловлена содержанием в них растворимых солей кальция и магния.

Если в воде находятся ионы металлов, образующие с мылом нерастворимые соли жирных кислот, то в такой воде затрудняется образование пены при стирке белья или мытье рук, вследствие чего возникает ощущение жёсткости. Отсюда и возникло понятие «жёсткой» воды.

В жёсткой воде плохо развариваются продукты питания, так как катионы Ca2+ и Мg2+ с белками пищи образуют нерастворимые соединения. В такой воде плохо завариваются чай, кофе. Постоянное употребление жёсткой воды может привести к расслаблению желудка и отложению солей в организме человека. В результате этого образуются камни в почках (мочекаменная болезнь).

Мягкая вода (дистиллированная вода), т. е. вода, с ничтожно малыми примесями инородных веществ и минеральных солей, используется в основном для медицинских или исследовательских целей в различных лечебно-оздоровительных программах и процедурах для вывода из организма шлаков.

Частое употребление мягкой воды может привести к тому, что из организма начнут вымываться и полезные микроэлементы: кальций, магний, калий. Прежде всего, это опасно для костей, крепость которых зависит от наличия кальция и микроэлементов, обеспечивающих нормальную работу нашего организма. Например, в регионах, где вода отличается мягкостью, т. е. пониженным содержанием минеральных примесей, ученые отмечают рост числа сердечно-сосудистых заболеваний. Там же где вода более жесткая, ситуация с заболеваниями сердца обстоит гораздо лучше – подобные случаи регистрируются нечасто. Кроме того, жесткость воды оказывает влияние и на уровень заболеваний кариесом – чем больше минеральных веществ, тем реже обращения к стоматологам.

Также установлено, что в связи с низким уровнем минерализации мягкая вода обладает неудовлетворительными органолептическими свойствами и оказывает неблагоприятное воздействие на водно-солевой обмен и функциональное состояние гипофиз-адреналиновой системы, регулирующей основные обменные процессы в организме.

При постоянном употреблении дистиллированной питьевой воды у пациентов отмечен также ряд изменений со стороны электролитного обмена – повышение концентрации хлоридов, калия и натрия в крови и усиленное их выведение с мочой. В связи с этим, для питьевой воды научно обоснована необходимость учета дополнительного критерия – физиологической полноценности.

В промышленности жёсткая вода, используемая для питания паросиловых установок, приносит особенно большой вред. При работе паровых котлов в жёсткой воде, содержащей Са(НСOз)2, Мg(НСO3)2 или CaS04, на внутренней поверхности стенок котла образуется слой накипи, уменьшающий их теплопроводность и тем самым понижающий коэффициент полезного действия установки. Замедленная теплопередача через стенки котла приводит к их перегреву и вследствие этого к ускоренной коррозии (окислению кислородом воздуха). В результате прочность стенок котла постепенно понижается, что может привести к его взрыву.

Образование осадка (накипи) при использовании воды, обладающей временной жёсткостью, связано с выпадением в осадок малорастворимых карбонатов — СаСO3 и MgCO3 . Если в воде присутствует сульфат кальция, то он выпадает в осадок из-за резкого понижения его растворимости при нагревании. Особенно прочная, но вместе с тем пористая, малотеплопроводная накипь образуется при одновременном содержании в воде гидрокарбонатов и сульфата кальция.

Соли магния (МqCI2 и МgSO4) и СаС12, содержащиеся в воде, не приводят к образованию в котлах накипи, так как они хорошо растворимы в воде, но вызывают коррозию стенок и металлической арматуры. Эти соли как электролиты способствуют протеканию электрохимических процессов на поверхности стали и тем самым ускоряет процесс её коррозии под действием воды и кислорода. Кроме того, MgCI2 и МgSO4 как соли слабого основания и сильных кислот гидролизуются, повышая концентрацию водородных ионов и создавая кислую среду, что также ускоряет процесс коррозии стали.

В химической промышленности использование жёсткой воды может оказаться недопустимым в тех случаях, когда соли, придающие ей жёсткость, препятствуют протеканию запланированных в данном производстве химические процессов или загрязняют получаемый продукт (например, полупроводниковое производство).

В строительной практике жёсткость воды должна учитываться, если гидротехническое сооружение или фундаментальные части зданий подвергаются действию грунтовых вод. Из солей, придающих воде жёсткость, вредное действие на бетон оказывают MgCI2, МgSO4 , СаSO4. Первая соль вызывает так называемую магнезиальную коррозию бетона, вторая — сульфатно-магнезиальную, третья ― сульфатную коррозию бетона. На стальные строительные конструкции, находящиеся в воде, вредное действие оказывают все соли, обусловливающие постоянную жёсткость. Причины ускорения коррозии стали те же, что и для паровых котлов.

Т. о. в каждом отдельном случае необходимо учитывать характер возможного воздействия природных вод. Для этого необходимо знать ее важнейшую характеристику — жёсткость.

В данных методических указаниях излагаются методики определения временной и постоянной жёсткости воды, а также способы её устранения.

Для количественного определения жёсткости воды применяют методы титриметрического анализа.

2. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

2.1 Жёсткость природных вод

Жёсткость природных вод, в основном, обусловлена содержанием в них растворимых солей кальция и магния. Разумеется, жёсткость воды могут вызывать не только ионы Ca2+ и Мg2+, но и катионы других металлов, однако в естественных водах из катионов, образующих нерастворимые мыла, в значительных количествах прucутствуют только катионы кальция и магния. Эти ионы входят в состав гидрокарбонатов Са(НСО3)2, Mg(HCO3)2, сульфатов (СаSO4 и MgSO4) и хлоридов (СаСl2 и MgCl2). Содержание других растворимых солей кальция и магния в природных водах обычно очень мало.

Читайте также:  Анализ на фосфаты в котловой воде

Жёсткость, придаваемая воде гидрокарбонатами кальция и магния, называется карбонатной или временной жесткостью. В воде содержащей ионы HCO3-, устанавливается равновесие:

— разложения угольной кислоты H2CO3 ↔ СО2 + H2O (2)

— электролитическая диссоциация НСО3- ↔ Н++СО32- (3)

Равновесия в зтих процессах связаны между собой. При нагревании воды растворимость СO2 уменьшается, часть её улетучивается и равновесие (2) смещается вправо. Вследствие этого смещается вправо равновесие (I), создаётся избыток ионов ОН-, которые взаимодействуют с ионами Н, + вызывая смещение вправо равновесия (3).

В результате зтих реакций ионы НСО3- переходят в ионы СО32- no суммарному уравнению

Таким образом, при кипячении воды жёсткость, вызванная присутствием гидрокарбонатов кальция и магния, устраняется и поэтому называется временной жёсткостью.

Жёсткость, обусловленная хлоридами и сульфатами этих металлов, называется постоянной жёсткостью, она кипячением не устраняется..

Суммарная жёсткость воды носит название общей жесткости. Жесткость воды (степень жёсткости) принято выражать в ммллиэквивалентах ионов Са2+ и Mg2+ в I л воды (мэкв/л). I мэкв/л соответствует содержанию в I л воды 20,04 мг кальция или 12,16 мг магния. В зависимости от содержания ионов Са2+ и Mg2+ природные воды делятся на следующие группы:

Величина общей жесткости (мэкв/л)

2.2 Методы устранения жёсткости воды

Из сказанного выше следует, что использование для промышленных нужд природных вод возможно в ряде случаев только после предварительной очистки, которая состоит в устранении их жесткости, опреснении воды.

Применяемые на практике методы устранения жёсткости природной воды условно можно разделить на химические и физические. В первом случае уменьшение жёсткости связано с добавлением к воде различных химических веществ (реагентные методы). Физические методы понижения жёсткости воды основаны на использовании различного рода воздействия на воду (магнитное «электрическое поле, ультразвук и др.) и потому могут считаться безреагентными.

В данном методическом пособии рассматриваются только химические методы устранения жесткости воды.

В самом общем виде химические методы устранения жёсткости воды основаны на химических реакциях, в результате которых катионы кальция и магния, придающие жёсткость воде, переводятся в нерастворимые соединения (осадок). Таких методов несколько.

Если вода обладает только временной жёсткостью, то для её устранения применяют известковый способ, т. е. обрабатывают воду известью Са(OН)2:

Са(НСО3)2 + Са(OН)2 = 2СаСO3 + H2O

Mg(HCO3)2 + Са(ОН)2 = СаСO3 + MgCO3 + 2H2O

Так как ПР(MgCO3) больше, чем ПР(Mg(ОН)2), то окончательное удаление Mg2+ происходит не в виде карбоната, а в виде гидроксида:

MgCO3 + Са(ОН)2 = СаСO3 + Mg(ОН)2

Суммируя уравнения, относящиеся к гидрокарбонату магния, получим:

Mg(HCO3)2 +2Са(ОН)2 = 2СаСO3 + Mg(ОН)2 + 2H2O

Таким образом, при взаимодействии извести с гидрокарбонатами кальция и магния образуются осадки СаСO3 и Мg(OН)2.

При этом способе недопустим избыток извести, который может привести к повышению жёсткости. Поэтому количество вводимой извести должно точно соответствовать результатам анализа воды на жёсткость.

Для устранения как временной, так и постоянной жёсткости воды нередко применяют известково-содовый способ устранения жёсткости. Известь осаждает гидрокарбонаты кальция и магния, как указано выше, а сода — хлориды и сульфаты по реакциям:

CaCI2 + Nа2CO3 = CaCO3 + 2NaCI

СаSO4 + Nа2CO3 = CaCO3 + Nа2SO4

MgCI2 + Nа2CO3 = MgCO3 + 2NaCI

MgSO4 + Nа2CO3 = MgCO3 + Nа2SO4

MgCO3 также переосаждается в виде Мg(OН)2

Кроме указанных способов, основанных на добавлении к воде растворимых реактивов, широкое распространение получили способы устранения жёсткости, основанные на прохождении (фильтрации) воды через слой специальных веществ — ионообменных смол (ионитов).

Иониты представляют собой твёрдые электролиты, у которых один ион является поливалентным и нерастворимым, а ионы противоположного знака могут обмениваться на ионы, находящиеся в водном растворе. При этом, если обмениваются катионы, иониты называются катионитами, при обмене анионов — анионитами, а сам метод носит название метода ионного обмена. Этот метод может быть использован как для умягчения воды, так и для её обессоливания (деионизации).

Ионообменные свойства смолам придают имеющиеся в них активные группы. Для катионитов такими группами являются — SO3H, — SiOOH, — COOН, — ОН; для анионитов — — NH2, — NH2OH и другие. К ионитам относятся также и некоторые сложные неорганические соединения, в частности алюмосиликаты натрия (пермутиты).

В общем случае процесс диссоциации ионообменных смол можно представить в виде:

катионит: _R — СООН = RСOO — + H+

анионит: R-NH2.HOH = R-NH3 + + ОН —

Использование ионитов позволяет практически полностью удалить из воды растворенные в ней соли, являющиеся электролитами. Вода, прошедшая через такие ионообменники, близка к дистиллированной, но обходится в несколько раз дешевле воды, полученной перегонкой.

2.3 Сущность титриметрического анализа

Титриметрический анализ заключается в измерении объема титранта (раствора с точно известной концентрацией), затраченного на реакцию с определяемым веществом.

Процесс постепенного добавления титранта к анализируемой пробе называется титрованием, а момент завершения реакции – точкой эквивалентности.

Расчет в титриметрическом анализе основан на законе эквивалентов: количества вещества эквивалентов всех участвующих в реакции веществ равны.

Условимся в дальнейшем любое анализируемое вещество обозначать «Х», а любой титрант «Т», тогда закон эквивалентов можно записать следующей формулами:

или СН(Х)∙ V(Х) = СН(Т) ∙V(Т) (1)

С(1/z Х) или СН(Х) – молярная концентрация эквивалента анализируемого вещества, моль/л или ммоль/л (часто в аналитической химии мэкв/л количество моль-эквивалентов вещества в литре раствора);

V(Х) – объем раствора анализируемого вещества, л или мл;

С(1/z Т) или СН(Т) — молярная концентрация эквивалента титранта, моль/л или ммоль/л (часто в аналитической химии мэкв/л количество моль-эквивалентов вещества в литре раствора);

V(Т) — объем раствора титранта, л или мл;

m(X) — масса анализируемого вещества, г;

M(1/zX)- молярная масса эквивалента анализируемого вещества, г/моль;

M(1/zT) — молярная масса эквивалента титранта, г/моль.

(возможны комбинации между формулами 1 и 2)

Выделим три основных задачи, которые необходимо решить для успешного проведения титриметрического анализа.

1. Необходимо знать точную концентрацию титранта (понятие «точная концентрация» здесь условно: ясно, что оперируя экспериментальными данными, имеющими приблизительный характер, мы лишь оговариваем степень точности. Точной будем называть такую концентрацию, которая в числовом выражении имеет три значащих цифры, например: 1,38; 0, 0138; 0,400).

2. Необходимо знать точные объемы растворов реагирующих веществ, т. е. титранта и анализируемого вещества.

3. Необходимо правильно выбирать реакцию для определения и надежно фиксировать точку эквивалентности.

В титриметрическом анализе могут использоваться не все химические реакции, а только те, которые отвечают определенным требованиям. Перечислим основные:

1. реакция должна быть практически необратимой;

2. реакция должна протекать в строгом соответствии с уравнением химической реакции, без побочных продуктов (это требование часто формулируется как «стехеометричность процесса»);

3. реакция должна протекать достаточно быстро;

4. должен существовать способ фиксирования точки эквивалентности.

2.3.1 Кислотно-основные индикаторы

Многие кислотно-основные реакции удовлетворяют этим требованиям, которые были перечислены выше.

Использование в качестве титрантов только сильных кислот и сильных оснований обеспечивает практическую необратимость многих реакций.

Реакции между кислотами и основаниями не сопровождаются, как правило, какими-либо внешними эффектами, поэтому для фиксирования точки эквивалентности приходится использовать специальные вещества-индикаторы.

Кислотно-основные индикаторы – это слабые кислоты или основания, степень ионизации которых определяется концентрацией Н+-ионов в растворе.

Для индикатора-кислоты НInd существует равновесие:

НInd H+ + Ind-

Чем больше будет концентрация Н+-ионов, тем меньше будет степень ионизации индикатора. Молекулярная HInd и ионная Ind- -формы индикатора имеют разные окраски. Таким образом, концентрация ионов Н+ влияет на соотоношение концентраций HInd и ионная Ind-, что, в свою очередь, определяет характер или яркость окраски. Для характеристики растворов в химии широко пользуются водородным показателем, рН.

В первом приближении: рН = — lgс(Н+) (в дальнейшем определение будет уточнено).

В кислых растворах рН 7, в нейтральных рН=7.

Все индикаторы изменяют свою окраску не скачкообразно, а плавно, т. е. в определенном интервале значений рН, называемом интервалом перехода. Поскольку индикаторы как кислоты или основания отличаются друг от друга по силе, они имеют разные интервалы перехода (см. справочник).

Значение рН раствора в процессе титрования постоянно меняется, вблизи точки эквивалентности наблюдается так называемый скачок титрования – резкое изменение рН раствора при незначительном добавлении титранта.

Для надежного фиксирования точки эквивалентности надо подобрать такой индикатор, интервал перехода окраски которого попадал бы в скачок титрования.

В аналитической практике из индикаторов чаще других применяют метилоранж (МО, интервал перехода 3,1 – 4,4) и фенолфталеин (ФФ, интервал перехода 8,0 – 9,6). При титровании сильной кислоты сильным основанием скачок титрования находится в диапазоне рН от 4 до 10 (при концентрации реагирующих веществ, равной 0,1 моль·дм-3).

В данном случае могут использоваться метилоранж и фенолфталеин.

При титровании слабой кислоты сильным основанием точка эквивалентности смещается с линии нейтральности в щелочную область вследствие гидролиза образующейся в точке эквивалентности соли (рН>7). Скачок титрования сужается и будет тем уже, чем слабее титруемая кислота. В этом случае в качестве индикатора может быть использован из двух упомянутых индикаторов только фенолфталеин.

При титровании слабого основания сильной кислотой по завершении реакции образуется соль, гидролизирующаяся по катиону; точка эквивалентности смещается в кислую область. Для фиксирования точки эквивалентности можно использовать метилоранж, нельзя – фенолфталеин.

При уменьшении концентрации реагирующих веществ скачок титрования сужается, что усложняет проблему выбора индикатора. При титровании многоосновных кислот или солей могут наблюдаться два скачка титрования.

2.3.2 Титранты, применяемые в кислотно-основном титровании

Различают ацидиметрию – титрование с помощью кислот и алкалиметрию – титрование с помощью оснований. Ацидиметрически можно определять основания и соли, вступающие в необратимое взаимодействие с сильными кислотами (например, карбонаты – вследствие выделения газообразного продукта, бораты – вследствие образования слабой борной кислоты). Алкалиметрически можно определять кислоты и гидролизующие соли.

В ацидиметрии используется в основном раствор хлорводородной кислоты (соляная кислота), с концентрациями от 0,05 до 0,2 моль·дм-3.

Раствор НСl нельзя приготовить по точной массе исходного вещества из-за его летучести, поэтому титрант готовят приблизительной концентрации разбавлением концентрированного раствора, а затем его стандартизируют. Для этого нужно иметь первичный стандарт – вещество, раствор которого можно приготовить по точной массе и которое реагирует с титрантом. Для определения точной концентрации титранта используют вспомогательное титрование, которое и называют стандартизацией титранта.

В качестве первичных стандартов для раствора HCl используют декагидрат тетрабората натрия Na2B4O7·10H2O (бура) или декагидрат карбоната натрия Na2CO3·10H2O.

В основе стандартизации лежат следующие реакции:

В алкалиметрии титрантом является раствор гидроксида натрия. Этот раствор также нельзя приготовить по точной массе, т. к. исходное вещество вследствие его взаимодействия с углекислым газом всегда загрязнено примесью карбоната натрия.

Титрант готовят приблизительной концентрации, разбавляя водой 50%-ный раствор (т. к. растворимость карбоната натрия в концентрированном растворе NaОН мала, он из этого раствора выпадает в осадок).

Стандартизацию приготовленного титранта проводят по дигидрату щавелевой кислоты Н2С2О4·2Н2О:

2.3.3 Применение кислотно-основного титрования

Кислотно-основное титрование позволяет решать многие задачи, возникающие при клиническом анализе биологических жидкостей как при постановке диагноза, так и при лечении больных. Определение кислотности желудочного сока, буферной емкости крови, спинномозговой жидкости – примеры использования кислотно-основного титрования в повседневной практике.

С помощью этого метода можно анализировать лекарственные вещества, устанавливать доброкачественность продуктов питания (например, молока).

Большое значение имеет рассматриваемый метод и при санитарно-гигиенической оценке объектов окружающей среды, в частности определение жесткости воды.

Промышленные стоки могут содержать или кислые, или щелочные продукты. Закисление или защелачивание природных водоемов и почвы приводит порой к необратимым последствиям, в связи с чем контроль кислотно-основного баланса весьма важен.

2.3.4 Посуда, применяемая для измерения объемов растворов

Мерные колбы (рис. 1) представляют собой круглые плоскодонные стеклянные сосуды с длинной узкой шейкой (горлом) с кольцевой меткой.

Мерные колбы служат для измерения объемов растворов, приготовления растворов определенной концентрации. Объем жидкости, вмещаемой колбой, выражают в миллилитрах. На колбе указывают ее емкость и температуру, при которой эта емкость измерена. Мерные колбы имеют притёртые пробки. Обычно применяются колбы на 50, 100, 250, 500 и 1000 мл.

Рис. 1. Мер — Рис. 2. Пи — Рис. 3. Бюретки

Пипетки служат для точного отмеривания определенного объема жидкости и представляют собой стеклянные цилиндричес­кие, оттянутые сверху и снизу узкие трубки (рис. 2,а). В верхней части пипетки имеется отметка, показывающая, до какого уровня нужно заполнить снизу пипетку, чтобы вылитая из нее жидкость имела объем, указанный на пипетке. Чаще всего пользуются пи­петкой емкостью 10 или 20 мл. Существуют измерительные пи­петки, имеющие вид узкой градуированной трубки (рис. 2,6).

Для наполнения пипетки на ее верхний конец надевают ( или прислоняют) резиновую грушу, а нижний опускают в сосуд с жидкостью. Сжиманием груши из пипетки осторожно вытесняют такой объем воздуха, который после разжимания груши будет замещен объемом жидкости. Жидкость набирают выше штриха желаемого объема, затем быстро снимают грушу, закрывают отверстие указательным пальцем, придерживая пипетку средним и большим пальцами.

Слегка ослабляя нажим указательного пальца на верхнее отверстие пипетки, позволяют жидкости медленно и по каплям вытекать из пипетки.

Когда нижний край мениска бесцветной жидкости опустится до нужной отметки, указательным пальцем сильно зажимают отверстие пипетки.

Читайте также:  Анализ на глюкозу пить воду

Вынимают пипетку из сосуда и переносят ее в колбу, куда требуется перелить жидкость. Отводят указательный палец от верхнего края пипетки и дают содержимому свободно вылиться из пипетки полностью или до нужной отметки. При выливании жидкости пипетку держат вертикально, прислоняя кончик к стенке сосуда.

Если жидкость из пипетки выливают полностью, то по окончании сливания прикасаются на мгновение нижним концом пипетки к внутренней стенке сосуда, а оставшуюся в носике пипетки жидкость оставляют в пипетке, не стряхивают и не выдувают ее (пипетка отградуирована с учетом остающейся в кончике жидкости).

Бюретки (рис. 3) предназначены для выливания из них строго определенных объемов жидкости. Они представляют собой длинные стеклянные трубки, на которые нанесена шкала c деле­ниями. Чаще всего пользуются бюретками емкостью 25 или 50 мл, гра­дуированными на десятые доли миллилитра. В нижней части бюретки имеется кран. Иногда в бюретках нет крана, тогда на конец ее наде­вают отрезок резиновой трубки со стеклянным шариком внутри и стеклянной оттянутой внизу трубкой. Оттягивая пальцами резиновую труб­ку от шарика, можно

спускать жидкость из бю­ретки. Необходимо следить за тем, чтобы оття­нутый конец трубки был нацело заполнен сливаемой жидкостью.

Бюретку аккуратно заполняют жидкостью через воронку, которую слегка приподнимают. Затем (после каждого заполнения) воронку снимают с бюретки. Важно, чтобы в нижней части бюретки не оставалось пузырьков воздуха. Для этого у бюретки с носиком (капилляр) с резиновой трубкой достаточно загнуть носик бюретки вверх и, ослабив немного зажим, вытеснить воздух с небольшим количеством жидкости в стакан.

Показания уровня жидкости в бюретке следует снимать с максимально доступной вашему глазу точностью (глаз должен находиться на одной горизонтальной линии с нижним краем мениска, если жидкость бесцветна или на одной линии с верхним краем мениска, если жидкость окрашена). Необходимо пользоваться белым бумажным экраном.

На глаз всегда можно разделить самое малое деление на 3-4 части, а это значит объем жидкости может быть измерен с точностью до 2-3 сотых мл, т. е. например, 20,25 мл.

Титрование представляет собой постепенное приливание раствора известной концентрации (титранта) к анализируемому раствору точно заданного объема.

Приливание титранта производится при помощи бюретки и заканчивается в тот момент, когда количество титранта, определяемого объемом израсходованного раствора и его концентрацией, полностью прореагирует с веществом анализируемого (титруемого) раствора. Этот момент окончания титрования называется точкой эквивалентности, так как при этом количества вещества в титранте и в анализируемом растворе становятся эквивалентными. Конец титрования устанавливается визуально по изменению цвета раствора в связи с образованием или израсходованием какого-либо окрашенного вещества или с помощью индикатора, изменяющего свой цвет в присутствии (или в отсутствие) каких-либо веществ, участвующих в титровании.

Обратите внимание: изменение окраски раствора должно произойти от одной избыточной капли титранта и удерживаться не менее 1 минуты.

3. ТРЕБОВАНИЯ ТЕХНИКИ БЕЗОПАСНОСТИ

Выполняя опыты, нужно пользоваться растворами только указанной концентрации и соблюдать рекомендуемую дозировку. Не делать дополнительных опытов без разрешения преподавателя.

В работе нужно пользоваться только незагрязненными реактивами и чистой посудой. Следует аккуратно работать с реактивами: внимательно читать этикетки, не уносить реактивы общего пользования на свои рабочие столы, во избежание загрязнения реактивов держать склянки с растворами и сухими веществами закрытыми, не путать пробки, не высыпать и не выливать обратно в склянки неиспользованные или частично использованные реактивы.

Если во время работы будет пролита кислота или щёлочь, удалять их следует быстро, так как эти реактивы портят стол и другие предметы, и осторожно, чтобы не прожечь одежду и не повредить руки.

При нагревании растворов на электроплитке будьте внимательны: избегайте термических ожогов.

4 Экспериментальная часть

Цель работа — научиться определять временную, постоянную и общую жёсткость воды.

Опыт I. Определение временной жёсткости воды

Так как вода, содержащая гидрокарбонаты кальция и магния имеет щелочную реакцию (почему?), определение карбонатной жёсткости производятся непосредственным титрованием воды соляной кислотой в присутствии индикатора метилового оранжевого.

Для анализа в коническую колбу отмерить с помощью мерного цилиндра 100 мл исследуемой воды. Добавить 2-3 капли индикатора метилового оранжевого.

В приготовленную заранее бюретку налить 0,1Н раствор соляной кислоты. Установить уровень на нулевое деление и по каплям приливать соляную кислоту в воду до изменения окраски раствора от жёлтой до оранжево-розовой. Определить объём израсходованной на титрование кислоты.

Титрование повторить ещё два раза, каждый раз доливая в бюретку кислоту до нулевого деления.

Результаты титрования записать в таблицу 1:

источник

Органолептические показатели (мутность, прозрачность, цветность, запахи и привкусы) воды, потребляемой для хозяйственно-питьевых целей, определяются веществами, встречающимися в природных водах, добавляемыми в процессе обработки воды в виде реагентов и появляющимися в результате бытового, промышленного и сельскохозяйственного загрязнения водоисточников. К химическим веществам, влияющим на органолептические показатели воды, кроме нерастворимых примесей и гуминовых веществ относятся встречающиеся в природных водах или добавляемые в них при обработке хлориды, сульфаты, железо, марганец, медь, цинк, алюминий, гекса- мета- и триполифосфат, соли кальция и магния.

Водородный показатель рН большинства природных вод близок к 7. Постоянство рН воды имеет большое значение для нормального протекания в ней биологических и физико-химических процессов, приводящих к самоочищению. Для воды хозяйственно-питьевого назначения он должен находиться в пределах 6,5-8,5.

Количество сухого остатка характеризует степень минерализации природных вод; оно не должно превышать 1000 мг/л и лишь в отдельных случаях допускается 1500 мг/л.

Общая норма жесткости — 7 мг * экв/л.

В подземных водах, не подвергаемых обезжелезиванию, может быть допущено содержание железа 1 мг/л.

Азотсодержащие вещества (аммиак, нитриты и нитраты) образуются в воде в результате протекания химических процессов и гниения растительных остатков, а также за счет разложения белковых соединений, попадающих почти всегда со сточными бытовыми водами, конечным продуктом распада белковых веществ является аммиак. Присутствие в воде аммиака растительного или минерального происхождения не опасно в санитарном отношении. Воды, причиной образования аммиака в которых является разложение белковых веществ, непригодны для питья. Пригодной для питьевых целей считается вода, содержащая лишь следы аммиака и нитритов, а по стандарту допускается содержание не более 10 мг/л нитратов.

Сероводород может содержаться в природных водах в небольших количествах. Он придает воде неприятный запах, вызывает развитие серобактерий и интенсифицирует процесс коррозии металлов.

Токсические вещества (бериллий, молибден, мышьяк, селен, стронций и др.), а также радиоактивные вещества (уран, радий и стронцнй-90) попадают в воду с промышленными стоками и в результате длительного соприкосновения воды с пластами почвы, содержащими соответствующие минеральные соли. При наличии в воде нескольких токсических или радиоактивных веществ сумма концентраций или излучений, выраженная в долях концентраций, допустимых для каждого из них в отдельности, не должна превышать единицу.

Методика. Определение общей жесткости.

Метод основан на образовании прочного комплексного соединения трилона Б с ионами кальция и магния.

Определение проводят титрованием пробы трилоном Б при рН 10 в присутствии индикатора.

1.1. Пробы воды отбирают по ГОСТ 2874 и ГОСТ 4979.

1.2. Объем пробы воды для определения общей жесткости должен быть не менее 250 см3.

1.3. Если определение жесткости не может быть проведено в день отбора пробы, то отмеренный объем воды, разбавленный дистиллированной водой 1:1, допускается оставлять для определения до следующего дня.

Пробы воды, предназначенные для определения общей жесткости, не консервируют.

2. АППАРАТУРА, МАТЕРИАЛЫ И РЕАКТИВЫ.

Посуда мерная лабораторная стеклянная по ГОСТ 1770 вместимостью: пипетки 10, 25, 50 и 100 см3 без делений; бюретка 25 см3.

Колбы конические по ГОСТ 25336 вместимостью 250-300 см3.

Трилон Б (комплексон III, двунатриевая соль этилендиамин­тетрауксусной кислоты) по ГОСТ 10652.

Аммоний хлористый по ГОСТ 3773.

Аммиак водный по ГОСТ 3760, 25 %-ный раствор.

Гидроксиламин солянокислый по ГОСТ 5456.

Кислота лимонная по ГОСТ 3118.

Натрий сернистый (сульфид натрия) по ГОСТ 2053.

Натрий хлористый по ГОСТ 4233.

Спирт этиловый ректификованный по ГОСТ 5962.

Цинк металлический гранулированный.

Магний сернокислый — фиксанал.

Хромоген черный специальный ЕТ-00 (индикатор).

Хром темно-синий кислотный (индикатор).

Все реактивы, используемые для анализа, должны быть квалификации чистые для анализа (ч. д. а.)

3.1. Дистиллированная вода, перегнанная дважды в стеклянном приборе, используется для разбавления проб воды.

3.2. Приготовление 0,05 н. раствора трилона Б.

9,31 г трилона Б растворяют в дистиллированной и доводят до 1 дм3. Если раствор мутный, то его фильтруют. Раствор устойчив в течение нескольких месяцев.

3.3. Приготовление буферного раствора.

10 г хлористого аммония (NH4 Cl) растворяют в дистиллированной воде, добавляют 50 см 3 25 %-ного раствора аммиака и доводят до 500 см 3 дистиллированной водой. Во избежание потери аммиака раствор следует хранить в плотно закрытой склянке.

3.4. Приготовление индикаторов.

0,5 г индикатора растворяют в 20 см 3 буферного раствора и доводят до 100 см3 этиловым спиртом. Раствор индикатора хрома темно-синего может сохраняться длительное время без изменения. Раствор индикатора хромогена черного устойчив в течение 10 сут. Допускается пользоваться сухим индикатором. Для этого 0,25 г индикатора смешивают с 50 г сухого хлористого натрия, предварительно тщательно растертого в ступке.

3.5. Приготовление раствора сернистого натрия.

5 г сернистого натрия Na2 S × 9H2 O или 3,7 г Na2 S × 5H2 O растворяют в 100 см 3 дистиллированной воды. Раствор хранят в склянке с резиновой пробкой.

3.6. Приготовление раствора солянокислого гидроксиламина.

1 г солянокислого гидроксиламина NH2 OH × HCl растворяют в дистиллированной воде и доводят до 100 см 3 .

3.7. Приготовление 0,1 н. раствора хлористого цинка.

Точную навеску гранулированного цинка 3,269 г растворяют в 30 см 3 соляной кислоты, разбавленной 1:1. Затем доводят объем в мерной колбе дистиллированной водой до 1 дм 3 . Получают точный 0,1 н. раствор. Разведением этого раствора вдвое получают 0,05 н. раствор. Если навеска неточная (больше или меньше чем 3,269), то рассчитывают количество кубических сантиметров исходного раствора цинка для приготовления точного 0,05 н. раствора, который должен содержать 1,6345 г цинка в 1 дм 3 .

3.8. Приготовление 0,05 н. раствора сернокислого магния.

Раствор готовят из фиксанала, прилагаемого к набору реактивов для определения жесткости воды и рассчитанного на приготовление 1 дм3 0,01 н раствора. Для получения 0,05 н. раствора содержимое ампулы растворяют в дистиллированной воде и доводят объем раствора в мерной колбе до 200 см 3 .

3.9. Установка поправочного коэффициента к нормальности раствора трилона Б.

В коническую колбу вносят 10 см 3 0,05 н. раствора хлористого цинка или 10 см3 0,05 н. раствора сернокислого магния и разбавляют дистиллированной водой до 100 см 3 . Прибавляют 5 см 3 буферного раствора, 5-7 капель индикатора и титруют при сильном взбалтывании раствором трилона Б до изменения окраски в эквивалентной точке. Окраска должна быть синей с фиолетовым оттенком при прибавлении индикатора хрома темно-синего и синей с зеленоватым оттенком при прибавлении индикатора хромогена черного.

Титрование следует проводить на фоне контрольной пробы, которой может быть слегка перетитрованная проба.

Поправочный коэффициент (К) к нормальности раствора трилона Б вычисляют по формуле:

где v — количество раствора трилона Б, израсходованное на титрование, см 3 .

4.1. Определению общей жесткости воды мешают: медь, цинк, марганец и высокое содержание углекислых и двууглекислых солей. Влияние мешающих веществ устраняется в ходе анализа.

Погрешность при титровании 100 см3 пробы составляет 0,05 моль/м3.

В коническую колбу вносят 100 см3 отфильтрованной испытуемой воды или меньший объем, разбавленный до 100 см3 дистиллированной водой. При этом суммарное количество вещества эквивалента ионов кальция и магния во взятом объеме не должно превышать 0,5 моль. Затем прибавляют 5 см3 буферного раствора, 5-7 капель индикатора или приблизительно 0,1 г сухой смеси индикатора хромогена черного с сухим натрием и сразу же титруют при сильном взбалтывании 0,05 н. раствором трилона Б до изменения окраски в эквивалентной точке (окраска должна быть синей с зеленоватым оттенком).

Если на титрование было израсходовано больше 10 см3 0,05 н. раствора трилона Б, то это указывает что в отмеренном объеме воды суммарное количество вещества эквивалента ионов кальция и магния больше 0,5 моль. В таких случаях следует определение повторить, взяв меньший объем воды и разбавив его до 100 см3 дистиллированной водой.

Нечеткое изменение окраски в эквивалентной точке указывает на присутствие меди и цинка. Для устранения влияния мешающих веществ к отмеренной для титрования пробе воды прибавляют 1-2 см3 раствора сульфида натрия, после чего проводят испытание, как указано выше.

Если после прибавления к отмеренному объему воды буферного раствора и индикатора титруемый раствор постепенно обесцвечивается, приобретая серый цвет, что указывает на присутствие марганца, то в этом случае к пробе воды, отобранной для титрования, до внесения реактивов следует прибавить пять капель 1 %-ного раствора солянокислого гидроксиламина и далее определить жесткость, как указано выше.

Если титрование приобретает крайне затяжной характер с неустойчивой и нечеткой окраской в эквивалентной точке, что наблюдается при высокой щелочности воды, ее влияние устраняется прибавлением к пробе воды, отобранной для титрования, до внесения реактивов 0,1 н. раствора соляной кислоты в количестве, необходимом для нейтрализации щелочности воды, с последующим кипячением или продуванием раствора воздухом в течение 5 мин. После этого прибавляют буферный раствор, индикатор и далее определяют жесткость, как указано выше.

источник