Меню Рубрики

Вода для инъекций методы анализа

Согласно приказу № 214 вода очищенная ежедневно из каждого баллона или на каждом рабочем месте подвергается качественному контролю на отсутствие хлоридов, сульфатов,кальция.

Вода очищенная для приготовления растворов для инъекций, глазных капель и лекарственных форм для новорожденных, кроме этих примесей проверяются на отсутствие восстанавливающих веществ, аммиака и углекислоты.

ВОССТАНАВЛИВАЮЩИЕ ВЕЩЕСТВА. 100 мл. воды доводят до кипения, прибавляют 1 мл. 0,01 Н раствора калия перманганата и 2 мл. разведенной серной кислоты, кипятят 10 минут, розовая окраска должна сохранится.

ДИОКСИД УГЛЕРОДА. При взбалтывании с равным количеством известковой воды в наполненном доверху и хорошо закрытом сосуде не должно быть помутнения в течение часа.

АММИАК. К 10 мл. воды прибавляют 0,15 мл. реактива Несслера, перемешивают и через 5 минут сравнивают с эталоном, состоящим из 0,0002% раствора аммиака и такого же количества реактива. Окраска используемого образцане должна превышать эталон.

ХЛОРИДЫ. К 10 мл. воды прибавляют 0,5 мл. раствора азотной кислоты, прибавляют 0,5 мл. раствора серебра нитрата. В растворе не должно быть изменений.

СУЛЬФАТЫ. К 10 мл воды прибавляют 0,5 мл. разведенной хлористоводородной кислоты, прибавляют 1 мл. раствора хлорида бария. В растворе не должно быть изменений.

СОЛИ КАЛЬЦИЯ. К 10 мл воды прибавляют 1 мл раствора хлорида аммония и 1 мл. раствора аммиака. Раствор делят на две равные части, к одной из них прибавляют 1 мл раствора оксалата аммония. Между растворами не должно быть заметных различий

Полный химический анализ воды очищенной и воды для инъекций по ВФС производятся ежеквартально в центре по контролю качества лекарственных средств.

Кроме химического анализа, вода очищенная и вода для инъекций подвергается бактериологическому контролю (не реже 2-х раз в квартал) и контролю на отсутствие пирогенных веществ (ежеквартально).

Капли глазные — лекарственная форма, предназначенная для инстилляции в глаз.

Глазные капли представляют собой водные или масляные растворы или тончайшие суспензии лекарственных веществ.

К глазным каплям предъявляются следующие требования: стерильность, стабильность, изотоничность, изогидричность, отсутствие видимых невооруженным глазом механических загрязнений.

Глазные капли и концентрированные растворы лекарственных веществ для их приготовления, должны изготавливаться в асептических условиях .

Осмотическое давление глазных капель должно соответствовать осмотическому давлению раствора натрия хлорида 0.9+0.2%. Для изотонирования можно использовать хлорид натрия, сульфат натрия, нитрит натрия в необходимом количестве, с учетом совместимости с лекарственными веществами.

Капли глазные должны быть изотоничны со слезной жидкостью. В отдельных случаях допускается применение гипертонических или гипотонических растворов, о чем должно быть указано в частных статьях.

Для приготовления капель глазных применяют растворители и вспомогательные вещества, разрешенные к медицинскому применению и указанные в частных статьях.

Для приготовления капель глазных используют стерильные растворители: воду дистиллированную, изотонические буферные растворы, масла и др.

В качестве стабилизаторов, консервантов, пролонгаторов и других вспомогательных веществ используют: натрия хлорид, натрия сульфат, натрия нитрат, натрия метабисульфит, натрия тиосульфат, натрия фосфорнокислые соли одно- и двузамещенные, кислоту борную, кислоту сорбиновую, нипагин, производные целлюлозы и др.

Капли глазные должны приготавливаться в асептических условиях и быть стерильными.

Стерилизацию капель глазных осуществляют методами, указанными в частных статьях в соответствии со статьей «Стерилизация».

Проверку капель глазных на стерильность проводят в соответствии со статьей «Испытание на стерильность» (с. 187).

Капли глазные должны выдерживать испытания на механические включения.

Испытания на механические включения проводят в соответствии с инструкцией, утвержденной Министерством здравоохранения СССР. Настоящая Инструкция устанавливает порядок визуального контроля глазных капель, изготовленных в аптеках, на отсутствие механических включений. Под механическими включениями подразумеваются посторонние подвижные нерастворимые вещества, кроме пузырьков газа, случайно присутствующие в растворах. В процессе изготовления растворы подвергаются первичному и вторичному контролю.

Первичный контроль осуществляется после фильтрования и фасовки раствора. При этом просматривается каждая флакон с раствором. При обнаружении механических включений раствор повторно фильтруют, вновь просматривают, укупоривают, маркируют и стерилизуют. Растворы, изготовленные асептически, просматривают один раз после розлива или стерилизующего фильтрования.

Вторичному контролю подлежат также 100% флаконов с растворами, прошедших стадию стерилизации перед их оформлением и упаковкой.

Контроль растворов на отсутствие механических включений осуществляется провизором — технологом с соблюдением условий и техники контроля.

Упаковка. Упаковка должна обеспечивать стабильность и стерильность препарата при хранении и транспортировании и иметь, как правило, устройство для закапывания.

Хранение. В прохладном, защищенном от света месте, если нет других указаний в частных статьях.

Отклонения, допустимые в общем объеме жидких лекарственных форм при изготовлении массо-объемным способом*(2.5.)

1. Отклонения, допустимые в массе навески отдельных лекарственных веществ в жидких лекарственных формах при изготовлении способом по массе или массо-объемным способом, а также в мазях, определяются не на концентрацию в процентах, а на массу навески каждого вещества, входящего в эти лекарственные формы (приложение 2, пп. 2.7 и 2.9.).

Например, при изготовлении 10 мл 2% раствора пилокарпина гидрохлорида берут массу навески 0,2 г, для которой допускается отклонение +- 10 %. При анализе достаточно установить, что было взято не менее 0,18 г и не более 0,22 г пилокарпина гидрохлорида.

Возьми: Раствора пилокарпина гидрохлорида 1% — 10 мл

По 2 капли 3 раза в день в оба глаза.

Rp.: Sol. Pilocarpini hydrochloridi 1% — 10 ml

Da. Signa. По 2 капли З раза в день в оба глаза.

Pilocarpini hydrochloridum — бесцветные кристаллы или белый кристаллический порошок без запаха. Гигроскопичен. Очень легко растворим в воде. Список А.

В прописи выписано одно лекарственное вещество, поэтому заключение о совместимости ингредиентов нецелесообразно.

Характеристика лекарственной формы.

Выписана жидкая лекарственная форма — глазные капли, представляющие собой раствор легкорастворимого вещества

Проверка доз веществ списка А и Б и норм одноразового отпуска.

В глазных каплях проверка доз не проводится.

Паспорт письменного контроля.

Лицевая сторона Оборотная сторона

Выдал: Pilocarpini hydrochloridi 0,1 Пилокарпина гидрохлорида 0,1

Дата. Подпись. Натрия хлорида 0,09 — (0,1 х 0,22)=

Получил: Pilocarpini hydrochlor >

Дата. Подпись. эквивалент пилокарпина гидро-

Дата. № рецепта хлорида по натрия хлориду.

Aquae pro injectionibus 10 ml Воды очищенной 10 мл

Pilocarpini hydrochloridi 0,1

Рассчитаем осмолярность раствора:

Rp.: Solutionis Natrii chloridi 0,9 %

В настоящее время для выражения осмотической активности оф- тальмологических, инъекционных и инфузионных растворов используют понятия «осмоляльность» и «осмолярность». Молярная концентрация — количество вещества в молях, содержащееся в 1 л раствора. Моляльная концентрация — это количество вещества в молях, содержащееся в 1 кг раствора. Осмоляльность или осмолярность указывает на содержание в моляльном или молярном растворе активных частиц (молекул, ионов), создающих определенное осмотическое давление. Офтальмологические и инъекционные растворы изготавливают в массо-объемной концентрации, поэтому более удобной в использовании является характеристика осмолярности.

Если количество осмотически активных частиц в осмолярном растворе таково, что создаваемое ими давление соответствует физиологическому, такие растворы называют изоосмолярными. Единицей измерения осмолярности является миллиосмоль (тысячная доля осмолярной концентрации). Теоретическую осмолярность рассчитывают по формуле

где С — миллиосмолярность раствора, мосмоль/л;

m — масса вещества в растворе, г/л;

n — число оомотически активных частиц в растворе, образовавшихся в результате диссоциации при растворении (n = 1, если вещество в растворе не диссоциирует; n = 2, если вещество при диссоциации образует два иона; n — 3, если — три и т.д.); М — молекулярная масса вещества, находящегося в растворе. В нашем примере.

Известно, что 0,9 % раствор натрия хлорида является изотоничным слезной жидкости и плазме крови, следовательно, концентрация 308 мОсм является изоосмолярной.

источник

Содержимое (Table of Contents)

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФАРМАКОПЕЙНАЯ СТАТЬЯ

Вода для инъекций ФС.2.2.0019.15

Вода для инъекций Взамен ГФ Х, ст. 74;

Aqua per injectionis взамен ФС 42-2620-97

Настоящая фармакопейная статья распространяется на нефасованную воду для инъекций, получаемую из воды питьевой методами дистилляции, ионного обмена, обратного осмоса, комбинацией этих методов или другим способом, или из воды, очищенной методом дистилляции, и предназначенную для производства или изготовления парентеральных и других лекарственных средств.

При использовании воды для инъекций в технологии парентеральных и других лекарственных средств, получаемых непосредственно перед применением, в условиях, исключающих последующую стерилизацию лекарственных препаратов, вода для инъекций должна быть стерильной.

Вода для инъекций должна быть апирогенной и не должна содержать антимикробных консервантов или других добавок.

Бесцветная прозрачная жидкость без запаха.

От 5,0 до 7,0 (ОФС «Ионометрия», метод 3). К 100 мл воды очищенной прибавляют 0,3 мл насыщенного раствора калия хлорида.

К 20 мл воды для инъекций прибавляют 0,05 мл 0,1 % раствора фенолового красного. При появлении желтого окрашивания оно должно измениться на красное от прибавления не более 0,1 мл 0,01 М раствора натрия гидроксида. При появлении красного окрашивания оно должно измениться на желтое от прибавления не более 0,15 мл 0,01 М раствора хлористоводородной кислоты.

Определение проводят в соответствии с ОФС «Электропроводность» с помощью оборудования – кондуктометров, внесенных в Государственный реестр средств измерений.

Оборудование

электроды из подходящего материала, такого как нержавеющая сталь;

константа ячейки обычно устанавливается поставщиком и впоследствии проверяется через соответствующие интервалы времени с использованием сертифицированного стандартного раствора с электропроводностью менее 1500 мкСм/см или путем сравнения с ячейкой, имеющей аттестованную константу ячейки. Константа ячейки считается подтвержденной, если найденное значение находится в пределах 2 % от значения, указанного в сертификате; в противном случае должна быть проведена повторная калибровка.

Кондуктометр. Точность измерения должна быть не менее 0,1 мкСм/см в низшем диапазоне.

Калибровка системы (ячейки электропроводности и кондуктометра). Калибровка должна проводиться с использованием одного или более соответствующих стандартных растворов (ОФС «Электропроводность»). Допустимое отклонение должно составлять не более 3 % от измеренного значения электропроводности.

Калибровка кондуктометра. Калибровку кондуктометра проводят с использованием сопротивлений высокой точности или эквивалентным прибором после отсоединения ячейки электропроводности для всех интервалов, использующихся для измерения электропроводности и калибровки ячейки, с погрешностью не более 0,1 % от сертифицированной величины.

В случае невозможности отсоединения ячейки электропроводности, вмонтированной в производственную линию, калибровка может быть проведена относительно предварительно калиброванной ячейки электропроводности, помещенной в поток воды рядом с калибруемой ячейкой.

Измеряют электропроводность без температурной компенсации с одновременной регистрацией температуры. Измерение электропроводности с помощью кондуктометров с температурной компенсацией возможно только после соответствующей валидации.

Находят ближайшее значение температуры (табл. 1), меньше измеренного. Соответствующая величина электропроводности является предельно допустимой.

Вода для инъекций соответствует требованиям, если измеренное значение электропроводности не превышает найденного по табл. 1 предельно допустимого значения.

Таблица 1 – Предельно допустимые значения электропроводности воды для инъекций в зависимости от температуры

мкСм/см

0,6 55 2,1 5 0,8 60 2,2 10 0,9 65 2,4 15 1,0 70 2,5 20 1,1 75 2,7 25 1,3 80 2,7 30 1,4 85 2,7 35 1,5 90 2,7 40 1,7 95 2,9 45 1,8 100 3,1 50 1,9

Для значений температур, не представленных в табл. 1, рассчитывают максимально допустимое значение электропроводности путем интерполяции ближайших к полученному верхнему и нижнему значениям, приведенным в табл. 1.

Если величина электропроводности превышает приведенное в табл. 1 значение, продолжают испытания в соответствии с требованиями стадии 2.

Не менее 100 мл воды для инъекций помещают в сосуд и перемешивают. При постоянном перемешивании устанавливают температуру в пределах 25 ± 1 ºС и измеряют электропроводность через каждые 5 мин до тех пор, пока изменение электропроводности за 5 мин не составит менее
0,1 мкСм/см. Фиксируют это значение электропроводности.

Вода для инъекций удовлетворяет требованиям, если полученное значение электропроводности составляет не более 2,1 мкСм/см.

Если значение электропроводности более 2,1 мкСм/см, проводят испытания в соответствии с требованиями стадии 3.

Испытание выполняют в течение приблизительно 5 мин после проведения испытания по стадии 2, поддерживая температуру в пределах
25 ± 1 ºС. Прибавляют свежеприготовленный насыщенный раствор калия хлорида к воде для инъекций (0,3 мл на 100 мл воды для инъекций) и определяют pH с точностью до 0,1.

Определяют предельное значение электропроводности (табл. 2) для данного рН.

Вода для инъекций удовлетворяет требованиям по электропроводности, если величина электропроводности, полученная на стадии 2, не превышает значения, приведенного в табл. 2. Если полученная на стадии 2 величина электропроводности превышает значение, приведенное в табл. 2, или значение рН находится за пределами диапазона 5,0–7,0, то вода для инъекций не соответствует требованиям по показателю «Электропроводность».

Таблица 2 – Предельно допустимые значения электропроводности воды для инъекций в зависимости от рН

мкСм/см

рН Электропроводность,

мкСм/см

5,0 4,7 6,1 2,4 5,1 4,1 6,2 2,5 5,2 3,6 6,3 2,4 5,3 3,3 6,4 2,3 5,4 3,0 6,5 2,2 5,5 2,8 6,6 2,1 5,6 2,6 6,7 2,6 5,7 2,5 6,8 3,1 5,8 2,4 6,9 3,8 5,9 2,4 7,0 4,6 6,0 2,4

Не более 0,001 %. 100 мл воды для инъекций выпаривают досуха и сушат при температуре от 100 до 105 ºС до постоянной массы.

100 мл воды для инъекций доводят до кипения, прибавляют 0,1 мл 0,02 М раствора калия перманганата и 2 мл серной кислоты разведенной 16 %, кипятят 10 мин; розовое окрашивание должно сохраниться.

При взбалтывании воды для инъекций с равным объемом раствора кальция гидроксида (известковой воды) в наполненном доверху и хорошо закрытом сосуде не должно быть помутнения в течение 1 ч.

К 5 мл воды для инъекций осторожно прибавляют 0,1 мл свежеприготовленного раствора дифениламина; не должно появляться голубое окрашивание.

Не более 0,00002 % (ОФС «Аммоний»). Определение проводят с использованием эталонного раствора, содержащего 1 мл стандартного раствора аммоний-иона (2 мкг/мл) и 9 мл воды, свободной от аммиака. Для определения отбирают 10 мл испытуемой пробы.

Примечание. Стандартный раствор аммоний-иона (2 мкг/мл) готовят разбавлением стандартного раствора аммоний-иона (200 мкг/мл) водой, свободной от аммиака.

К 10 мл воды для инъекций прибавляют 0,5 мл азотной кислоты, 0,5 мл 2 % раствора серебра нитрата, перемешивают и оставляют на
5 мин. Не должно быть опалесценции.

К 10 мл воды для инъекций прибавляют 0,5 мл хлористоводородной кислоты разведенной 8,3 % и 0,1 мл 5 % раствора бария хлорида, перемешивают и оставляют на 10 мин. Не должно быть помутнения.

К 100 мл воды для инъекций прибавляют 2 мл буферного раствора аммония хлорида, рН 10,0, 50 мг индикаторной смеси протравного черного 11 и 0,5 мл 0,01 М раствора натрия эдетата; должно наблюдаться чисто синее окрашивание раствора (без фиолетового оттенка).

Не более 0,000001 % (ОФС «Алюминий», метод 1).

Испытуемый раствор. К 400 мл воды очищенной прибавляют 10 мл ацетатного буферного раствора, рН 6,0 и 100 мл воды дистиллированной, перемешивают.

Эталонный раствор. К 2 мл стандартного раствора алюминий-иона
(2 мкг/мл) прибавляют 10 мл ацетатного буферного раствора, рН 6,0 и 98 мл воды дистиллированной, перемешивают.

Контрольный раствор. К 10 мл ацетатного буферного раствора, рН 6,0 прибавляют 100 мл воды дистиллированной и перемешивают.

Определение проводят одним из приведенных методов.

Метод 1. В пробирку диаметром около 1,5 см помещают 10 мл испытуемой воды для инъекций, прибавляют 1 мл уксусной кислоты разведенной 30 %, 2 капли 2 % раствора натрия сульфида и перемешивают. Через 1 мин производят наблюдение окраски раствора по оси пробирки, помещенной на белую поверхность. Не должно быть окрашивания.

Метод 2. 120 мл воды для инъекций упаривают до объёма 20 мл. Оставшаяся после упаривания вода в объеме 10 мл должна выдерживать испытание на тяжёлые металлы (ОФС «Тяжелые металлы») с использованием эталонного раствора, содержащего 1 мл стандартного раствора свинец-иона (5 мкг/мл) и 9 мл испытуемой воды для инъекций.

Примечание. Стандартный раствор свинец-иона (5 мкг/мл) готовят разбавлением стандартного раствора свинец-иона (100 мкг/мл) испытуемой водой для инъекций.

Общее число аэробных микроорганизмов (бактерий и грибов) не более 10 КОЕ в 100 мл. Не допускается наличие Еscherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa в 100 мл.

Для анализа микробиологической чистоты воды для инъекций отбирают образец в объеме не менее 1000 мл.

Исследование проводят методом мембранной фильтрации в асептических условиях в соответствии с методами ОФС «Микробиологическая чистота», п.12.

Воду для инъекций хранят и распределяют в условиях, предотвращающих рост микроорганизмов и исключающих возможность любой другой контаминации.

Хранение воды для инъекций осуществляют в специальных сборниках при условии постоянной циркуляции при температуре не ниже 85 ºС, в течение не более 1 сут.

источник

Вода для инъекций – это стерильная жидкость прозрачного цвета. У нее нет запаха, вкуса и цвета. Применение этой воды необходимо для инъекций внутривенно, внутримышечно и под кожу. Ее используют, чтобы приготовить лекарственные растворы для инъекций, инфузионные растворы, а также для растворения препаратов. Кроме этого, ее применяют и наружно – увлажняют перевязочный материал, промывают раны. Вода для инъекций( в/в; в/м; п/к:) должна соответствовать требованиям ГФ. Эта жидкость поставляется в стеклянных ампулах или ампулах, изготовленных из полимерного волокна. Ампулы бывают на 1, 1.5, 2, 5, 10 мл.

Воду для инъекций следует применять в стерильных условиях и придерживаться их, вскрывая лекарственные средства, ампулы и шприцы. Такая осторожность необходима потому, что вода для инъекций используется с препаратами, которые напрямую контактируют с кровью и со слизистыми оболочками. Если возникнет подозрительный осадок, такой раствор запрещено использовать. Следует отметить, что в случае применения масляного растворителя или какого-то другого, воду для инъекций уже не используют. Это очень важный момент, поэтому подготавливая все к инъекции, необходимо уточнить информацию о растворителе, который нужен для определенного лекарственного средства. Воду для инъекций нельзя смешивать со средствами для наружного применения.

Дозировка воды для инъекций, как растворителя для различных препаратов, происходит строго по инструкции или по назначению врача. На первый взгляд, такая жидкость может показаться безобидным средством, но это не так. Рассеянное отношение к такому процессу может вызвать нежелательные последствия, поэтому следует забыть о самолечении. Воду для инъекций можно приобрести в аптеке без предоставления рецепта.

Цель: осуществить контроль качества лекарственного средства — воды для инъекций различных производителей:

  1. Изучить ассортимент воды для инъекций в аптеках города Зеи.
  2. Провести контроль качества воды для инъекций различных производителей.
  3. Сделать вывод о качестве воды различных производителей.

1. Контроль качества воды для инъекций разных производителей

Для исследования воды для инъекций различных изготовителей мной были взяты и пронумерованы следующие образцы.

  • Образец № 1- вода для инъекций ОАО «ДАЛЬХИМФАРМ»
  • Образец № 2 –вода для инъекций ОАО «НОВОСИБХИМФАРМ»

1.1. Приемочный контроль

Образцы № 1 и № 2 были проверены согласно приказу МЗ РФ от 16 июля 1997 г. N 214 на соответствие по показателям «Описание», «Упаковка», «Маркировка».

Контроль по показателю «Описание» включает проверку внешнего вида, цвета. В случае сомнения (другой цвет оболочки, помутнение и т.п.) проводят сравнение с описанием, обозначенным в инструкции по применению препарата. При несоответствии описания воды для инъекции не подлежит приемке.

Читайте также:  Анализ на качество воды инвитро

При проверке по показателю «Упаковка» обращают внимание на ее целостность (групповая и индивидуальная упаковка не должны быть повреждены, подмочены и т.п.), наличие инструкции или листка-вкладыша на русском языке. При отсутствии вторичной упаковки на каждую первичную упаковку должна быть инструкция. В этом случае обращают особое внимание на условия хранения, обозначенные в тексте инструкции.

При контроле по показателю «Маркировка» обращается внимание на четкость маркировки, ее соответствие на первичной, вторичной и групповой упаковке, соответствие номера серии препарата номеру серии в накладной.

Оба образца соответствуют приказу МЗ РФ от 16 июля 1997 г. N 214 и прошли приемочный контроль.

1.2. Органолептический контроль.

Характер запаха воды определяют ощущением воспринимаемого запаха (землистый, хлорный, нефтепродуктов и др.). Определение запаха при 20 °С.

В колбу с притертой пробкой вместимостью 250 — 350 см 3 отмеривают 100 см 3 испытуемой воды с температурой 20 °С. Колбу закрывают пробкой, содержимое колбы несколько раз перемешивают вращательными движениями, после чего колбу открывают и определяют характер и интенсивность запаха.

Определение запаха при 60 °С.

В колбу отмеривают 100 см 3 испытуемой воды. Горлышко колбы закрывают часовым стеклом и подогревают на водяной бане до 50 — 60 °С.

Содержимое колбы несколько раз перемешивают вращательными движениями.

Сдвигая стекло в сторону, быстро определяют характер и интенсивность запаха.

Интенсивность запаха воды определяют при 20 и 60°С и оценивают по пятибалльной системе согласно требованиям.

Результат: оба образца при 20 и 60 0 С не имеют запах – оценка интенсивности запаха равна 0 баллов.

Различают четыре основные вида вкуса: соленый, кислый, сладкий, горький.

Все другие виды вкусовых ощущений называются привкусами.

Характер вкуса или привкуса определяют ощущением воспринимаемого вкуса или привкуса (соленый, кислый, щелочной, металлический и т.д.).

Испытываемую воду набирают в рот малыми порциями, не проглатывая, задерживаю 3 — 5 с. Интенсивность вкуса и привкуса определяют при 20 °С и оценивают по пятибалльной системе согласно требованиям.

Результат: оба образца не имеют привкус – оценка интенсивности вкуса и привкуса равна 0 баллов.

Цветность воды определяют фотометрически — путем сравнения проб испытуемой жидкости с растворами, имитирующими цвет природной воды. Для проведения испытаний применяют следующие аппаратуру, материалы, реактивы: фотоэлектроколориметр (ФЭК) с синим светофильтром (λ = 413 нм); кюветы с толщиной поглощающего свет слоя 5 — 10 см.

Приготовление основного стандартного раствора (раствор № 1)

0,0875 г двухромовокислого калия (К2Cr2О7), 2,0 г сернокислого кобальта (CoSO4 · 7H2O) и 1 см 3 серной кислоты (плотностью 1,84 г/см 3 ) растворяют в дистиллированной воде и доводят объем раствора до 1 дм 3 . Раствор соответствует цветности 500°.

Приготовление разбавленного раствора серной кислоты (раствор № 2)

1 см 3 концентрированной серной кислоты плотностью 1,84 г/см 3 доводят дистиллированной водой до 1 дм 3 .

Приготовление шкалы цветности

Для приготовления шкалы цветности используют набор цилиндров Несслера вместимостью 100 см 3 .

В каждом цилиндре смешивают раствор № 1 и раствор № 2 в соотношении, указанном на шкале цветности.

Градусы цветности

Раствор в каждом цилиндре соответствует определенному градусу цветности. Шкалу цветности хранят в темном месте. Через каждые 2 — 3 месяца ее заменяют.

Результат: оба образца имеют цветность менее 5 градусов цветности.

1.3. Полный химический анализ.

Часть исследуемой воды для инъекций объемом 15-20 см 3 сливаем в химический стакан вместимостью 50 см 3 и используют для измерения рН. Настройку рН-метра проводят по трем буферным растворам с рН 4,01, 6,80 и 9,18, приготовленным из стандарт-титров. Показания прибора считывают не ранее чем через 1,5 мин после погружения электродов в измеряемую среду, после прекращения дрейфа измерительного прибора. Во время работы настройку прибора периодически проверяют по буферному раствору с рН 6,86.

Рис.5. Измерение рН в исследуемом образце № 1

Результат: 1 образец – рН1 -7,1; рН2 – 6,9; рНсредняя — 7,0+-0,2

Результат: 2 образец — рН1 -7,15; рН2 – 6,9 ;рНсредняя — 7,05+-0,2

  • Определение хлоридов

50 см 3 анализируемой воды для инъекций помещают в чашку, прибавляют 0,1 см 3 раствора углекислого натрия и выпаривают досуха. Остаток растворяют в 3 см 3 воды, если раствор мутный его фильтруют через плотный беззольный фильтр «синяя лента», промытый 1%-ным горячим раствором азотной кислоты, и переносят в пробирку с плоским дном вместимостью 15 см 3 , диаметром 15мм. Чашку смывают 2 см 3 воды, присоединяя промывные воды к раствору, прибавляют при перемешивании 0,5 см 3 25%-ного раствора азотной кислоты и 0,5 см 3 раствора азотнокислого серебра.

Воду считают соответствующей требованиям настоящего стандарта, если наблюдаемая через 20 мин на темном фоне опалесценция анализируемого раствора не будет интенсивнее апалесценции раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме: 0,001 мг. CI, 0,1 см 3 раствора углекислого натрия, 0,5 см 3 25%-ного раствора азотной кислоты и 0,5 см 3 раствора азотнокислого серебра.

Результат: оба образца содержат не более 0,02 мг/л CI — .

  • Определение сульфатов

40 см 3 анализируемой воды для инъекций помещают в стакан вместимостью 50 см 3 ( с меткой на 10 см 3 ) и упаривают на электроплите до метки затем охлаждают, прибавляют медленно при помешивании 2 см 3 этилового спирта, 1 см 3 раствора соляной кислоты и 3 см 3 раствора хлористого бария, предварительно профильтрованного через плотный беззольный фильтр «синяя лента».

Воду считают соответствующей требованиям настоящего стандарта, если опалесценция анализируемого раствора, наблюдаемая на темном фоне через 30 мин, не будет интенсивнее опалесценции раствора сравнения приготовленного одновременно с анализируемым и содержащего: 10 см 3 анализируемой воды, содержащей 0,015 мг SO4 , 2 см 3 этилового спирта, 1 см 3 раствора соляной кислоты и 3 см 3 раствора хлористого бария.

Результат: оба образца содержат не более 0,5 мг/лSO4 2- .

  • Определение жесткости.

Жесткость воды является одним из основных показателей, характеризующим применение воды в различных отраслях.

Жесткостью воды называется совокупность свойств, обусловленных содержанием в ней щелочноземельных элементов, преимущественно ионов кальция и магния.

Жесткостью воды называется совокупность свойств, обусловленных концентрацией в ней щелочноземельных элементов, преимущественно ионов кальция (Са 2+ ) и магния (Mg 2+ ). Жесткость воды выражается в градусах жесткости (°Ж). Градус жесткости соответствует концентрации щелочноземельного элемента, численно равной 1/2 его моля, выраженной в мг/дм 3 (г/м 3 ). Метод основан на образовании комплексных соединений трилона Б с ионами щелочноземельных элементов. Определение проводят титрованием пробы раствором трилона Б при рН = 10 в присутствии индикатора. Наименьшая определяемая жесткость воды — 0,1 °Ж.

Если исследуемая проба была подкислена для консервации или проба имеет кислую среду, то в аликвоту пробы добавляют раствор гидроксида натрия до рН = 6 — 7. Если проба воды имеет сильнощелочную среду, то в аликвоту пробы добавляют раствор соляной кислоты до рН = 6 — 7. Контроль рН проводят по универсальной индикаторной бумаге или с использованием рН-метра. Для удаления из воды карбонат и бикарбонат ионов (что характерно для подземных или бутылированных вод) после добавления к аликвоте пробы раствора соляной кислоты до рН = 6 — 7 проводят ее кипячение или продувание воздухом или любым инертным газом в течение не менее пяти минут для удаления углекислого газа. Критерием наличия в воде значительного количества карбонатов может служить щелочная реакция воды.

Присутствие в воде более 10 мг/дм 3 ионов железа; более 0,05 мг/дм 3 каждого из ионов меди, кадмия, кобальта, свинца; свыше 0,1 мг/дм 3 каждого из ионов марганца (II), алюминия, цинка, кобальта, никеля, олова, а также цветность более 200 °Ж и повышенная мутность вызывают при титровании нечеткое изменение окраски в точке эквивалентности и приводят к завышению результатов определения жесткости. Ортофосфат- и карбонат-ионы могут осаждать кальций в условиях титрования при рН = 10.

Порядок проведения определений

Выполняют два определения, для чего пробу анализируемой воды делят на две части.

В колбу вместимостью 250 см 3 помещают первую часть аликвоты пробы анализируемой воды объемом 100 см 3 , 5 см 3 буферного раствора, от 5 до 7 капель раствора индикатора или от 0,05 до 0,1 г сухой смеси индикатора и титруют раствором трилон Б.

Вторую часть аликвоты пробы объемом 100 см 3 помещают в колбу вместимостью 250 см 3 , добавляют 5 см 3 буферного раствора, от 5 до 7 капель раствора индикатора или от 0,05 до 0,1 г сухой смеси индикатора, добавляют раствор трилона Б, которого берут на 0,5 см 3 меньше, чем пошло на первое титрование, быстро и тщательно перемешивают и титруют (дотитровывают).

Результат: общая жесткость в двух образцах составляет менее 0,1 0 Ж.

  • Определение сухого остатка

500см 3 анализируемой воды для инъекций приливают порциями в платиновую или кварцевую чашку, предварительно прокаленную при 600-700 0 С до постоянной массы, и выпаривают на водяной бане или под инфракрасной лампой, соблюдая меры предосторожности во избежание загрязнения, для этого закрывают чашку воронкой большого диаметра, укрепленной на штативе, или выпаривают в боксе из органического стекла. Затем чашку с сухим остатком выдерживают в течение 1 часа в сушильном шкафу при 105-110 0 С, охлаждают в эксикаторе и взвешивают. Все взвешивания производят на весах с наибольшим пределом взвешивания 200г, результат взвешивания записывают с точностью до четвертого десятичного знака. Воду считают соответствующей требованиям настоящего стандарта, если масса сухого остатка не будет превышать 2,5 мг.

Сухой остаток сохраняют для определения остатка после прокаливания.

Определение остатка после прокаливания

Чашку с остатком после выпаривания, прокаливают в течении 5 мин при 600-700 0 С , охлаждают в эксикаторе и взвешивают (результат взвешивания записывают с точностью до четвертого десятичного знака).

Воду считают соответствующей требованиям настоящего стандарта, если масса остатка прокаливания не будет превышать 0,5 мг.

Результат: образец № 1 – 1,1 мг/л.

  • Определение аммиака и аммонийных солейПроведение анализа

100 см 3 анализируемой воды для инъекций помещают в пробирку вместимостью 120 см 3 (с притертой пробкой), диаметром 20 мм, прибавляют 2,5 см 3 раствора гидроокиси натрия и перемешивают. Затем прибавляют 1 см 3 реактива Несслера и снова перемешивают.

Воду считают соответствующей требованиям настоящего стандарта, если наблюдаемая через 20 мин по оси пробирки окраска анализируемого раствора не будет интенсивнее окраски раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме: 100 см 3 воды, не содержащей аммиака и аммонийных солей, 0,002 мг NH4 , 2,5 см 3 раствора гидроокиси натрия 1 см 3 реактива Несслера.

Результат: оба образца содержат не более 0,001 мг/см 3 NH4 .

  • Определение нитратов

25 см 3 анализируемой воды для инъекций помещают в чашку, прибавляют 0,005 см 3 раствора гидроокиси натрия, перемешивают и выпаривают досуха. Чашку сразу же снимают с бани, к сухому остатку прибавляют 1 см 3 раствора хлористого натрия, 0,5 см 3 раствора индигокармина и осторожно при перемешивании добавляют 5 см 3 серной кислоты.

Через 15 мин содержимое чашки количественно переносят в коническую колбу вместимостью 50 см 3 , чашку ополаскивают в два приема 25 см 3 дистиллированной воды, присоединяя ее к основному раствору, и содержимое колбы перемешивают.

Воду считают соответствующей требованиям настоящего стандарта, если окраска анализируемого раствора не будет слабее окраски раствора сравнения, приготовленного следующим образом: в фарфоровую чашку помещают , 0,5 см 3 раствора, 0,005 см 3 NO3 , 0,05 см 3 раствора гидроокиси натрия и выпаривают досуха на кипящей водяной бане. Чашку сразу же снимают с водяной бани; далее сухой остаток обрабатывают таким же образом одновременно с сухим остатком, полученным после выпаривания анализируемой воды, прибавляя также количества реактивов в том же порядке

Результат: оба образца содержат не более 0,01 мг/см 3 NO3 .

  • Определение железа

40 см 3 анализируемой воды для инъекций помещают в пробирку из бесцветного стекла вместимостью 100 см 3 (с притертой пробкой), диаметром 20 мм, прибавляют 0,5 см 3 раствора серной кислоты, 1 см 3 раствора надсернокислого аммония, 3 см 3 раствора роданистого аммония, перемешивают, прибавляют 3,7 см 3 изоамилового спирта, тщательно перемешивают и выдерживают до расслоения раствора.

Воду считают соответствующей требованиям настоящего стандарта, если наблюдаемая окраска спиртового слоя анализируемого раствора не будет интенсивнее окраски спиртового слоя раствора сравнения, приготовленного одновременно с анализируемым таким же образом и содержащего: 20 см 3 анализируемой воды, 0,001 мг Fe 0,25 см 3 раствора серной кислоты, 1 см 3 раствора надсернокислого аммония, 1,5 см 3 раствора роданистого аммония , 3 см 3 изоамилового спирта.

Результат: оба образца содержат не более 0,1 мг/см 3 .

  • Определение кальция

10 см 3 анализируемой воды для инъекций помещают в чашку и выпаривают досуха. Сухой остаток обрабатывают 0,2 см 3 раствора соляной кислоты и количественно переносят 5 см 3 воды в пробирку из бесцветного стекла вместимостью 15 см 3 . Затем прибавляют 1 см 3 раствора гидроокиси натрия, 0,5 см 3 раствора мурексида и перемешивают.

Воду считают соответствующей требованиям настоящего стандарта, если наблюдаемая через 5 мин розовато-фиолетовая окраска анализируемого раствора по розовому оттенку не будет интенсивнее окраски раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме: 0,008 мг Са, 0,2 см 3 раствора соляной кислоты, 1 см 3 раствора гидроокиси натрия, 0,5 см 3 раствора мурексида.

Результат: оба образца содержат не более 0,01 мг/см 3- .

  • Определение медиПроведение анализа

50 см 3 анализируемой воды для инъекций помещают в пробирку из бесцветного стекла вместимостью 100 см 3 (с притертой пробкой), диаметром 20 мм, прибавляют 1 см 3 раствора соляной кислоты, перемешивают, прибавляют 3,8 см 3 изоамилового спирта и дважды по 1 см 3 раствора диэтилдитиокарбамата натрия, перемешивая немедленно после прибавления каждой порции раствора диэтилдитиокарбамата натрия в течении 1 мин и выдерживают до расслоения.

Воду считают соответствующей требованиям настоящего стандарта, если наблюдаемая окраска спиртового слоя анализируемого раствора не будет интенсивнее окраски спиртового слоя раствора сравнения, приготовленного одновременно с анализируемым таким же образом и содержащего: 25 см 3 анализируемой воды, 0,0005 мг Сu 1 см 3 раствора соляной кислоты, 3 см 3 изоамилового спирта и 2 см 3 раствора диэтилдитиокарбамата натрия.

Результат: оба образца содержат не более 0,001 мг/см 3- .

  • Определение свинцаПроведение анализа

20 см 3 анализируемой воды для инъекций помещают в чашку и выпаривают досуха. Сухой остаток обрабатывают 1 см 3 раствора уксусной кислоты и снова выпаривают досуха. Затем чашку охлаждают, остаток смачивают 0,1 см 3 раствора уксусной кислоты, количественно переносят 3 см 3 воды в пробирку из бесцветного стекла с плоским дном вместимостью 15 см 3 диаметром 15 мм, прибавляют 0,2 см 3 раствора железистосинеродистого калия, 0,25 см 3 раствора сульфарсазена, перемешивают, прибавляют 2 см 3 раствора тетраборнокислого натрия и снова перемешивают.

Воду считают соответствующей требованиям настоящего стандарта, если окраска анализируемого раствора, наблюдаемая по оси пробирки в проходящем свете на белом фоне, не будет интенсивнее окраски стандартного раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме: 0,001 мг РЬ, 0,1 см 3 раствора уксусной кислоты, 0,2 см 3 раствора железистосинеродистого калия, 0,25 см 3 раствора сульфарсазена, и 2 см 3 раствора тетраборнокислого натрия.

Результат: оба образца содержат не более 0,0 01 мг/см 3- .

  • Определение цинкаПроведение анализа
  • см 3 анализируемой воды для инъекций помещают в чашку и выпаривают досуха. Чашку охлаждают, сухой остаток, количественно переносят 3 см 3 воды в пробирку из бесцветного стекла с плоским дном вместимостью 15 см 3 диаметром 15 мм, прибавляют при перемешивании 0,8 см 3 раствора винной кислоты, 0,2 см 3 раствора лимонной кислоты, 0,8 см 3 раствора аммиака и 0,5 см 3 раствора сульфарсазена. Воду считают соответствующей требованиям настоящего стандарта, если окраска анализируемого раствора, наблюдаемая по оси пробирки в проходящем свете на белом фоне, не будет интенсивнее окраски стандартного раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме: 0,001 мг Zn, 0,8 см 3 раствора винной кислоты, 0,2 см 3 раствора лимонной кислоты, 0,8 см 3 раствора аммиака и 0,5 см 3 раствора сульфарсазена.

Результат: оба образца содержат не более 0,0 1 мг/см 3

Проанализировав различных производителей воды для инъекций, проведя исследования образцов № 1 и №2 на органолептические показатели и полный химический анализ, можно сделать вывод: обе воды для инъекций почти идентичны друг другу и отличаются только по показателям рН и сухому остатку. Из вышесказанного я предлагаю широко использовать воду для инъекций обеих производителей в аптеках города Зеи и области для внутривенных, внутримышечных и подкожных инъекций и для приготовления лекарственных растворов для инъекций, инфузионных растворов, а также для растворения препаратов и для наружного применения для увлажнения перевязочного материала и промывания ран.

  1. Изучен ассортимент воды для инъекций в аптеках города Зея.
  2. Проведен контроль качества воды для инъекций различных производителей(Дальхимфарм, Новосибхимфарм)
  3. По результатам исследования оба образца воды для инъекций соответствуют требованиям, регламентируемые фармакопейными статьями ФС 42-2619-97 «Вода очищенная» и ФС 42-2620-97 «Вода для инъекций».
  1. Для реализации воды очищенной для инъекций рекомендуются оба образца.
  2. При отпуске воды очищенной для инъекций покупателям следует проверить целостность упаковки, срок годности, по возможности органолептические свойства.
  3. Напоминать потребителям о правилах хранения, применения воды для инъекций.
  1. Муравьев И.А. Технология лекарств. Том 2-М: Медицина,1980;
  2. Государственный регистр лекарственных средств России. Энциклопедия лекарств. Ежегодный сборник.1993 г.;
  3. Государственная фармакопея СССР – 10 изд. — М: Медицина ,1968;
  4. Государственная фармакопея СССР- 11изд, Выпуск 2, 1989;
  5. ГОСТ 17768-90 Лекарственные средства.

источник

AQUA PURIFICATA

К 10 мл воды прибавляют 0,5 мл разведенной азотной кислоты, 0,5 мл 2% раствора нитрата серебра. Через 5 минут вода должна оставаться прозрачной.В присутствии примесей хлоридов выпадает белый творожистый осадок (или белая опалесценция), не растворимый в азотной кислоте и растворимый в растворе гидрооксида аммония.

AgCl↓ + 2NH4OH -= [Ag(NH3)2]Cl + 2H20 хлорид диаммин серебра

К 10 мл воды прибаатяют 0,5 мл разведенной хлористоводородной кислоты, 1 мл 5 % раствора бария хлорида. Через 10 минут вода должна оставаться прозрачной.

В присутствии примесей сульфатов наблюдают выделение белого кристаллического осадка, который не растворим в растворах минеральных кислот и щелочей.

К 10 мл воды добавляют 1 мл раствора оксалата аммония. Через 10 минут вода должна оставаться прозрачной.

В присутствии солей кальция наблюдают белый осадок, растворимый r азотной и соляной кислотах, но не растворимый в уксусной кислоте и растворе гидроксида аммония.

АЛГОРИТМ ВНУТРИАПТЕЧНОГО КОНТРОЛЯ ВОДЫ ОЧИЩЕННОЙ

1. Работа с рецептом не проводится

Проверка записей в «Журнале регистрации результатов контроля «Воды очищенной», «Воды для инъекций».

1. Органолептический контроль

Бесцветная прозрачная жидкость без запаха и механических включений.

По приказу М3 РФ № 214 от 16.10.97 проводится качественный химический контроль на отсутствие примесей хлоридов, сульфатов, солей кальция.

1. Оформление результатов контроля

Сделать записи в «Журнале регистрации результатов контроля «Воды очищенной», «Воды для инъекций» (наличие и отсутствие ионов отмечается знаком + или —).

Состоит в проверке правильности оформления баллонов для ассистентской:

Aqua purificata Дата получения.

• поставить номер анализа и подпись.

ВНУТРИАПТЕЧНЫЙ КОНТРОЛЬ ВОДЫ ДЛЯ ИНЪЕКЦИЙ. AQUA PRO INJECTIONIBUS

Определение примесей хлоридов, сульфатов и солей кальция см. выше.

Читайте также:  Анализ на кристаллы околоплодных вод

1. Восстанавливающие вещества

100 мл воды доводят до кипения, прибавляют 2 мл разведенной серной кислоты, 1 мл 0,01 моль/л раствора перманганата калия и кипятят 10 минут. Розовая окраска должна сохраниться. В присутствии примесей восстанавливающих веществ происходит обесцвечивание раствора.

К 10 мл воды (в пробирке) прибавляют 3 капли реактива Несслера. Через 5 минут вода должна оставаться бесцветной или допускается едва заметное, слегка желтоватое окрашивание.

При взбалтывании воды очищенной с равным объемом известковой воды в наполненном доверху и хорошо закрытом сосуде не должно быть помутнения в течение 1 часа.

В присутствие примесей диоксида углерода наблюдают появление белой мути.

Алгоритм внутриаптечного контроля воды для инъекций составьте | самостоятельно, аналогично приведенному выше.

АНАЛИЗ РАСТВОРА ПЕРЕКИСИ ВОДОРОДА 3 % — 50 МЛ № 20 ВНУТРИАПТЕЧНАЯ ЗАГОТОВКА

1. Освоить внутриаптечный контроль внутриаптечной заготовки раствора перекиси водорода.

2. Научиться делать обзор возможных методов химического анализа и выбирать наиболее рациональный.

3. Совершенствовать навыки титриметрического определения с использованием окрашенного титранта.

4. Научиться делать заключение и оформлять результаты анализа.

Вопросы для самоподготовки

I. Перечислите требования ГФ по изготовлению и отпуску растворов перекиси водорода.

1. Приказ М3 РФ № 751 о химическом контроле внутриаптечной заготовки. Особенности внутриаптечного контроля данного вида продукции. Составьте алгоритм внутриаптечного контроля.

2. Приведите реакции подлинности раствора перекиси водорода.

3. Приведите обзор возможных методов количественного определения лекарственной формы и выберите наиболее рациональный и экономически выгодный.

4. Укажите различия внутриаптечного контроля раствора перекиси водорода и его фармакопейного анализа.

Материальное обеспечение

Титрованные растворы и индикаторы:

• 0,1 моль/л раствор перманганата калия.

Посуда, приборы, оборудование:

• мерные пипетки 2 мл и 5 мл;

Общие указания

Изготовление и отпуск растворов перекиси водорода следует производить в соответствии с указаниями ГФ, приведенными в соответствующих статьях.

В ГФ X включена статья Solutio Hydrogenii peroxydi diluia (2,73,3%).

Perhydrolum, т.е. концентрированный раствор перекиси водорода (27,5 — 31 %), рассматривается в ГФ X в разделе «Реактивы».

1. Если в рецепте прописано «Solutio Hydrogenii peroxydi» и не указана концентрация, то следует отпустить «Solutio Hydrogenii peroxydi 3 %».

2. Если в рецепте прописан раствор перекиси водорода другой концентрации, чем 3 %, то его изготовляют разведением пергидроля или раствора перекиси водорода водой, исходя из фактического содержания перекиси водорода в исходном препарате.

Перекись водорода проявляет как окислительные, так и восстановительные свойства. Она устойчива в чистом состоянии и в водных растворах (при обычной температуре), однако присутствие солей тяжелых металлов, диоксида марганца, следов щелочей, окислителей и восстановителей, даже попадание пылинок и соприкосновение с шероховатой поверхностью стек-ла резко ускоряет процесс разложения перекиси водорода.

Разложению перекиси водорода способствуют и ферменты — катала-
за, пероксидаза, содержащиеся в крови, слюне и других биологических жид-
костях. Однако существует ряд ингибиторов этой реакции, которые исполь-
зуют для предотвращения разложения не только концентрированных, но и
разбавленных растворов перекиси водорода. Так, при изготовлении внутри-
аптечной заготовки добавляют 0,05 % бензоата натрия.

Хранят 3 % раствор перекиси водорода в склянках с притертыми стек-
лянными пробками в прохладном, защищенном от света месте. Препарат весь-
ма не стоек и разрушается даже от щелочности стекла.

По приказу М3 РФ № 214 от 26.10.15 внутриаптечные заготовки под-
лежит полному химическому контролю обязательно (каждая серия).

В письменном контроле проверяются записи в книге учета лабора-
торных и фасовочных работ (на русском языке). Каждая серия внутриаптеч-
ной заготовки и фасовки подвергается физическому контролю, проверяют
не менее 3-х упаковок (флаконов).

Rp: Solutionis Hydrogenii peroxydi 50 ml
D.S. Наружное

№ 20 Внутриаптечная заготовка

Бесцветная прозрачная жидкость без запаха или со слабым своеоб-
разным запахом, кислой реакции среды.

Подлинность

К 0,5 мл препарата прибавляют 2—3 капли разведенной серной кисло-
ты, 1-2 мл эфира, 3-4 капли раствора калия дихромата и взбалтывают. Эфир-

ный слой окрашивается в синий цвет.

Количественное определение

Помещают 2 мл препарата в мерную колбу емкостью 50 мл и объем доводят водой до метки, перемешивают.

1. Метод перманганатометрии

К 5 мл полученного раствора прибавляют 3 мл разведенной серной кислоты и титруют 0,1 моль/л раствором калия перманганата до слабо-розового окрашивания.

1 мл 0,1 моль/л раствора калия перманганата соответствует 0,001701 г перекиси водорода, которой в препарате должно быть 2,7- 3,3 %.

АЛГОРИТМ ВНУТРИАПТЕЧНОГО КОНТРОЛЯ ВНУТРИАПТЕЧНОЙ ЗАГОТОВКИ РАСТВОРА ПЕРЕКИСИ ВОДОРОДА 3 % — 50 МЛ № 20

Проверяется запись в книге учета лабораторных и фасовочных работ: Воды очищенной 900 мл

№ анализа Подпись провизора-аналитика

1. Органолептический контроль

Бесцветная прозрачная жидкость без запаха или со слабым запахом без механических включений.

Проверяется не менее 3-х флаконов от данной серии внутриаптечной заготовки.

Проверяется герметичность укупорки.

По приказу М3 РФ № 751 проводится полный химический контроль обязательно.

Качественный химический контроль:

Количественный химический контроль:

Содержание Н22 в пределах [2,7 — 3,3 %] (раствор стандартный, поэтому содержание указывается в процентах, как в ГФ ).

1. Оформление результатов анализа:

• заполнить «Журнал регистрации органолептического, физически/ го и химического контроля внутриаптечной заготовки, лекарственных форм, изготовленных по индивидуальным рецептам (требованиям ЛУ), концентратов, полуфабрикатов, тритураций, спирта этилового и фасовки»;

• в книге учета лабораторных и фасовочных работ поставить № анализа и подпись провизора-аналитика

• основная этикетка «Наружное», дополнительная «Хранить в прохладном, защищенном от света месте»;

• указаны номер и место нахождения аптеки, состав на русском языке, номер серии, срок годности (2 года), дата изготовления, цена.

Дата добавления: 2018-08-06 ; просмотров: 853 ; ЗАКАЗАТЬ РАБОТУ

источник

Анализ содержания, использование и роль нормативных документов, регламентирующих производство и контроль качества воды. Требования к воде для инъекций, возможные источники загрязнения, а также процессы, применяемые при ее очистке и системы распределения.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Методы получения воды для инъекций. Современное оборудование

Вода для инъекций — бесцветная прозрачная жидкость без вкуса и запаха. Вода для инъекций должна выдерживать испытания, приведенные в статье «Вода очищенная», должна быть апирогенной, не содержать антимикробных веществ и других добавок Такое определение нам дает Государственная Фармакопея, но для производства лекарственных средств этого мало. Вода для фармацевтических целей относится к ключевым элементам, обеспечивающим безопасность изготавливаемых лекарственных средств. Без применения воды самого разного качества не обходится практически ни одно фармацевтическое предприятие или аптека. Она может использоваться как сырье, вспомогательный материал, а так же как энергоноситель на разных стадиях технологического процесса и для различных целей.

В зависимости от качества исходной воды, ее химического состава, возможных примесей выбирается дальнейшая технология приготовления лекарственного препарата.

В данной курсовой работе мы рассмотрим:

нормативные документы, регламентирующие производство и контроль качества воды;

возможные виды загрязнения воды;

способы получения и очистки воды для инъекций;

1. Нормативные документы, регламентирующие производство и контроль качества воды. Термины и определения

инъекция загрязнение вода очистка

Данным документом регламентируются методы приготовления и хранения воды для инъекций, а также контрольные процедуры в соответствии с требованиями, изложенными в следующих документах:

1. «Правила организации производства и контроля качества лекарственных средств (GMP)». ОСТ 42-510-98 Утвержден Министром здравоохранения Российской Федерации 1998 г.

2. «Производство и контроль медицинских иммунобиологических препаратов для обеспечения их качества». Санитарные правила (СП) 3.3.2.015-94. Утверждено постановлением Госкомсанэпиднадзора России от 12.08.94 г. М, 1994 г., 48 с.

3. «Организация и контроль производства лекарственных средств. Стерильные лекарственные средства». Методические указания (МУ) 42-51-1-93 — 42-51-26-93. Утверждены начальником Управления по стандартизации и контролю качества лекарственных средств и изделий медицинской техники и инспекцией по качеству Министерства здравоохранения Российской Федерации 8.02.93 г. М., 1993 г., 74 с.

4. Государственная Фармакопея изд. XI, вып. 2, стр. 183, 193.

5. Фармакопейная статья ФС 42-2620-97 «Вода для инъекций».

6. Вода для инъекций — вода, соответствующая требованиям фармакопейной статьи ФС 42-2620-97.

7. Пирогены — вещества вызывающие повышение температуры при парэнтеральном введении млекопитающему.

8. Уровень тревоги — значение контролируемого параметра, превышение которого свидетельствует о том, что технологический процесс близок к выходу за рамки нормальных рабочих условий. Достижение уровня тревоги является только предупреждением, и корректировки при этом могут быть необязательны.

9. Уровень действия — значение контролируемого параметра, превышение которого указывает на то, что процесс вышел за рамки нормальных рабочих условий. Достижение уровня действия указывает на то, что необходимо предпринять корректирующее вмешательство для приведения технологического процесса в норму.

10. Биопленка — совокупность микроорганизмов в среде, в которой мало питательных веществ. Микроорганизмы в биопленке защищены от воздействия многих стерилизующих факторов.

11. Санация — совокупность процедур очистки и стерилизации, обеспечивающих состояние системы, гарантирующее сохранение свойств воды в пределах соответствующих нормативных документов.

12. Стандартная операционная инструкция — инструкция по проведению определенного процесса, одобренная ОБТК и главным инженером или ОТК и отделом гарантии качества. Данный термин соответствует международному термину «Standard operational procedure» (SOP).

13. Валидация — оценка и документированное подтверждение того, что производственный процесс обеспечивает получение продукции, соответствующей установленным требованиям.

14. Установочная характеристика — документ, подтверждающий соответствие фактической характеристики оборудования паспортным данным (протоколу заводских испытаний).

15. Операционная характеристика — документ, подтверждающий то, что оборудование, включенное в процесс, соответствует установочной характеристике, а продукт, получаемый при данном технологическом процессе, соответствует установленным требованиям.

16. Эксплуатационная характеристика — документ, подтверждающий то, что оборудование или система соответствует операционной характеристике по истечению длительного периода времени.

Как уже было сказано вода для инъекций должна выдерживать испытания, приведенные в статье «Вода очищенная», должна быть апирогенной, не содержать антимикробных веществ и других добавок. Здесь стоит рассмотреть, что же такое вода очищеная и, какие же испытания она должна выдерживать.

Как сказано в ФС 42 — 0324 — 09 т. II ГФ 12 издания

· Вода очищенная (Aqua purificata) бесцветная прозрачная жидкость без запаха и вкуса, имеющая pH от 5,0 до 7,0. Выдерживающая испытания на:

· Сухой остаток. Остаток не должен превышать 0,001%.

· Аммиак. Окраска, появившаяся в испытуемом растворе, не должна превышать эталон (0,00002%).

Микробиологическая чистота. Должна соответствовать требованиям на питьевую воду (не более 100 микроорганизмов в 1 мл) при отсутствии бактерий сем. Enterobacteriaceae, Staphylococcus aureus, Pseudomonas aeruginosa. Испытания проводят в соответствии со статьей «Испытание на микробиологическую чистоту»

Давайте рассмотрим какие же загрязнения могут быть в воде, в принципе. В зависимости от качества исходной воды, ее химического состава, возможных примесей (механические и коллоидные частицы, микроорганизмы, бактериальные эндотоксины и др.) в технологической схеме получения воды для фармацевтических целей большое значение имеют стадии предварительной очистки: фильтрация, ионный обмен, обратный осмос и др.

Механические и коллоидные частицы. 1,0 мкм и могут быть как органическими, так и неорганическими. Коллоиды могут портить мембраны установок обратного осмоса и увеличивать удельную электрическую проводимость воды.

Содержание песка, ила, глины и других механических частиц могут являться причиной помутнения воды. Механические частицы могут забивать клапаны, фильтры тонкой очистки и повреждать мембраны обратного осмоса. Коллоидные частицы имеют размер 0,01 — коллоидных частиц может быть определено весовым методом.

Растворенные неорганические вещества. Силикаты, хлориды, бикарбонаты, сульфаты, фосфаты и ионы металлов представляют собой анионы и катионы. Их остаточная суммарная концентрация в очищенной воде оценивается по удельной электрической проводимости (или сопротивлению) воды.

Растворенные неорганические газы. В очищенной воде чаще всего встречается растворенный в воде углекислый газ в виде слабой угольной кислоты и кислород. Содержание диоксида углерода в очищенной воде оценивается по цветной реакции с дифениламином. Кислород может вызывать коррозию металлических поверхностей. Для его определения могут быть использованы элементные анализаторы. Большая часть растворенных газов удаляется ионообменной смолой.

Растворенные органические вещества. Органические вещества — это продукты разложения остатков растений и животных, а также продукты жизнедеятельности человека. Это могут быть белки, спирты, хлорамин и остатки пестицидов, гербицидов и детергентов. Для определения общего углерода может быть использован персульфатный анализатор.

Микроорганизмы. В воде могут встречаться бактерии, грибы, простейшие водоросли и вирусы. Количество микроорганизмов оценивается с помощью культивирования проб и измеряется количеством колониеобразующих единиц на миллилитр воды. Для обеззараживания водопроводной воды обычно используют хлорирование. Микробиологическую чистоту питьевой воды оценивают по МУК 4.2.671-97. Микробиологическую чистоту воды очищенной и воды для инъекций оценивают по ГФ XII, вып. 2, с. 193.

Бактериальные эндотоксины. Бактериальные эндотоксины представляют собой липополисахариды клеточных стенок и являются одним из факторов, обуславливающих пирогенность воды. Пирогены вызывают лихорадку при введении млекопитающему.

Пирогенность определяют по ГФ XII, вып. 2, введением пробы кролику и наблюдением за температурой его тела. Эндотоксины определяют с помощью LAL.-теста по ВФС 42-2960-97 «Определение содержания бактериальных эндотоксинов».

4. Процессы, применяемые при очистке воды

Теперь, когда мы рассмотрели, какими могут быть загрязнения нашей исходной воды, следует подобрать подходящий метод очистки. Для начала рассмотрим общие методы очистки.

Подогрев и термостатирование. Поддержание температуры воды в заданных пределах особенно важно при наличии в схеме стадии обратного осмоса. При низких температурах пропускная способность мембраны существенно снижается. Вода высокой температуры может растворять смолы умягчителей.

Оборудованием этой стадии могут быть теплообменники с применением одного из видов энергоносителей (пар, газ, электричество, вода). Автоматическая схема должна обеспечивать поддержание температуры в заданных пределах. Поверхность, соприкасающаяся с водой не должна ухудшать ее качество. Температура воды измеряется температурными датчиками.

Грубая фильтрация. Грубая фильтрация позволяет удалять из воды частицы размером более SO-100 мкм.

В качестве оборудования для грубой фильтрации используются фильтры с песчаной набивкой. Выбор сорта песка зависит от результатов анализа воды с учетом сезонных изменений. Фильтр периодически промывается. Исправность фильтра контролируется разностью давления воды до и после фильтра.

Умягчение. Умягчение позволяет понизить жесткость воды за счет удаления ионов кальция и магния. За счет чего значительно снижается содержание ионов перед подачей воды для очистки на ионообменники и мембраны обратного осмоса.

В качестве оборудования на этой стадии могут служить автоматические умягчители, работающие на принципе замены ионов кальция и магния ионами натрия. Умягчители периодически регенерируются раствором хлорида натрия. Исправность работы умягчителя можно контролировать периодическим измерением жесткости воды на входе и на выходе.

Фильтрация через угольный фильтр. Фильтрация через угольный фильтр позволяет снизить концентрацию органических веществ и хлора.

Используются стандартные патронные фильтры с активированным углем. Исправность фильтра контролируется разностью давления воды до и после фильтра.

Обратный осмос. На стадии обратного осмоса вода очищается от органических соединений и солей. Удаление примесей происходит за счет пропускания воды через полупроницаемую мембрану при давлении, превышающем осмотическое. Для увеличения эффективности процесса используется тангенциальная подача воды к поверхности мембраны при рециркуляции. Оборудование представляет собой системы мембран. Мембраны имеют размеры пор 0,0005 — 0,001 мкм.

Контроль систем обратного осмоса осуществляется измерением удельной электрической проводимости воды на выходе из системы.

Ультрафиолетовое облучение. Фотохимическое окисление воды ультрафиолетовыми лучами с длинами волн 185 и 245 нм может устранять следы органических соединений и убивать микроорганизмы в воде. Ультрафиолетовое облучение с длиной волны 254 нм может быть использовано также и для предотвращения размножения бактерий в резервуарах для хранения воды.

Оборудование представляет собой лампы ультрафиолетового свечения. Правильность работы ламп контролируется по их излучающей способности.

Ультрафильтрация. Ультрафильтрация предназначена для удаления из воды пирогенов и других растворенных органических веществ, молекулярная масса которых превышает 10 000.

Оборудование представляет собой системы мембран. Ультрафильтрационные мембраны имеют диаметр пор 0,001 — 0,05 мкм. Вещества, задерживаемые ультрафильтрационной мембраной, располагаются в области молекулярных масс от 10 000 до 1 000 000. Вода проникает через мембрану, в то время как загрязнения задерживаются.

Правильность работы системы контролируется по разности давления воды до и после мембран.

Дистилляция. В процессе дистилляции вода переводится в пар и обратно в жидкую фазу, при этом происходит отделение примесей. Дистилляция является наиболее эффективным методом очистки воды для разных целей. В качестве оборудования на этой стадии используются одно- или многокорпусные дистилляторы. Наиболее эффективны многокорпусные установки. В них вода последовательно перегоняется через несколько колонн (обычно от 3-х до 8-ми). Исходная вода проходит в противотоке с конденсатом и поэтапно нагревается на каждой ступени. Одновременно с этим охлаждается и конденсируется дистиллят, что приводит к значительной экономии энергии.

Дистилляционная установка должна согласовываться с резервуаром для хранения воды, т.е. включаться и выключаться в зависимости от уровня в резервуаре. Должен осуществляться непрерывный автоматический контроль качества дистиллята по удельной электрической проводимости. При неудовлетворительном качестве дистиллят должен быть возвращен на повторную обработку. В случае устойчивого неудовлетворительного качества дистиллята необходимо остановить систему и провести санацию. Возобновление наполнения резервуара возможно только при уверенности в удовлетворительном качестве дистиллята.

Микрофильтрация. Микрофильтрация позволяет удалить из воды мелкие частицы и микроорганизмы. Фильтр с диаметром отверстий 2-3 мкм используется перед мембранами обратного осмоса и ультрафильтрации. Фильтр с диаметром отверстий 0,22 мкм используется в конце системы получения воды для инъекций и в системах распределения с целью предотвращения механической и микробиологической контаминации.

Деионизация. Деионизация позволяет очистить воду от ионов — заряженных частиц. Оборудование для деионизации представляет собой колонки с ионообменной смолой. Различаются деионизаторы раздельного действия (катионо — анионообменники) и смешанного действия.

Контроль правильности работы деионизаторов осуществляется измерением удельной электрической проводимости воды на выходе из системы.

5. Схемы получения воды для инъекций

Теперь рассмотрим, непосредственно, методы получения воды для инъекций.

За исходную воду принимается вода очищенная.

Рис. 1. Схема аквадистиллятора

Первый метод заключается в одном процессе — дистилляции. Выбор схемы является наилучшим. Дистилляция, как метод получения воды для инъекций рекомендуется всеми международными организациями, курирующими производство лекарственных средств. На схеме изображена дистилляционная установка: 1 — испаритель; 2 — дефлегматор; 3 — конденсатор; 4 — холодильник; 5, 6 — сборники соотв. дистиллята и кубового остатка.

Следующий метод включает процесс обратного осмоса. Сочетая грубую фильтрацию, умягчение, фильтрацию через угольный фильтр, дистилляцию, подогрев и термостатирование и обратный осмос можно получить систему получения воды для инъекций из водопроводной воды. На практике это реализуется в использовании двухступенчатой установки обратного осмоса. Получение воды для инъекций методом обратного осмоса не требует больших капитальных затрат. Недостатками этого метода является продолжительность времени обработки воды, высокие требования к мембранам и большие отходы воды.

Третья схема это комплекс таких процессов, как деионизация и фильтрация через фильтр с диаметром отверстий 0,22 мкм. Исходная вода для этой схемы должна быть приготовлена по предыдущей схеме обратного осмоса. Выбор этой схемы позволяет экономить как капитальные, так и эксплутационные затраты.

Читайте также:  Анализ на инфекции околоплодных вод

Воду для инъекций можно получить на установках типа Milli-Q, в которых используется схема два, что позволяет получить высокоочищенную апирогенную воду с удельным электрическим сопротивлением до 18 МОм-см при 25°С (удельное электрическое сопротивление воды для инъекций, полученной по схеме 6.2.1. — 2 МОм-см). При таком удельном электрическом сопротивлении вода обладает большой активностью, что необходимо учитывать при организации хранения воды.

В промышленных условиях воду для инъекций получают из деминерализованной воды, т.е. освобожденной от нежелательных катионов и анионов. Для получения апирогенной воды необходимо удалить микроорганизмы и пирогенные вещества — это продукты жизнедеятельности и распада микроорганизмов, микробные клетки будут удаляться при перегонке в виде капельной фазы, что проводиться разными способами:

1. например, центробежный способ улавливания капельной фазы в аквадистилляторе «Финн — аква»;

2. в термокомпрессионном аквадистилляторе капельная фаза испаряется на стенках трубок испарителя;

3. в трехступенчатом горизонтальном аквадистилляторе — капельная фаза удаляется из пара в верхней части каждого корпуса барботируется через ситчатую тарелку с постоянным слоем проточной апирогенной воды.

Для этого используют следующие аппараты: дистиллятор «Финн — аква», «термокомпрессионные аквадистилляторы», трехступенчатые горизонтальные аквадистилляторы.

Аквадистиллятор «Финн — аква» (рис. 1). Принцип работы: деминерализованная вода подается через регулятор давления (1) в конденсатор — холодильник (2), проходит теплообменники камер предварительного нагрева (3), нагревается в зону испарения (5). Здесь вода нагревается с помощью системы трубок, обогреваемых паром изнутри, до кипения. Создается интенсивный поток пара, который направляется во второй корпус, а капли с помощью центробежной силы прислоняются к стенкам и стекают вниз. Корпус 1 обогревается техническим паром, который выводится в линию технического конденсата.

Рис. 2. Аквадистиллятор «Финн-аква»

1 — регулятор давления; 2 — конденсатор-холодильник; 3 — теплообменники трех корпусов камер предварительного нагрева; 4 — парозапорное устройство линии технического конденсата; 5 — система трубок теплообменников (зона испарения); 6 — трубы для подачи избытка воды в испаритель следующего корпуса; 7-труба для слива конденсата в конденсатор-холодильник; 8 — труба для поступления вторичного пара в холодильник 2; 9 — специальный теплообменник для дистиллята.

Избыток деминерализованной воды через трубку (6) подается из корпуса (1) в корпус (2) и (3).Вода из корпуса (2) по трубе (7) и корпуса (3) по трубе 8 поступает в холодильник — конденсатор (2), а потом в специальный теплообменник для дистиллята (9), где температура 80-95 С. Далее полученную воду проверяют на качество, если не соответствует, то ее не используют.

Преимущества аквадистиллятора «Финн-аква» перед другими аквадистиляторами:

1) образующемуся потоку пара придают спиралеобразное вращательное движение с большой скоростью, за счет центробежной силы капли прижимаются к стенкам аппарата и стекают в нижнюю часть испарителя;

2) в испарителе за счет поверхности кипящих пленок создается интенсивный поток пара, который движется снизу вверх со скоростью 20-60 м/с;

3) в теплообменнике (9) дистиллят охлаждается до температуры 80-90С, что предотвращает рост микроорганизмов.

Термокомпрессионный аквадистиллятор (рис. 2). Принцип работы состоит в следующем: деминерализованная вода подается в регулятор давления (4) и через регулятор уровня поступает в нижнюю часть конденсатора — холодильника (1), заполняет его межтрубное пространство и поступает в камеру предварительного нагрева (5), а из нее — в трубки испарителя (6).Здесь вода закипает и пар заполняет межтрубное пространство (2) и откачивается компрессором (3).В камере испарения создается разряжение и вода в трубках закипает. Вторичный пар в компрессоре сжимается, проходит в межтрубное пространство и нагревает воду в трубках до кипения. В межтрубном пространстве образуется конденсат, который направляется в верхнюю часть конденсатора холодильника, охлаждается и собирается в сборник дистиллята.

Рис. 3. Термокомпрессионный аквадистиллятор

1-конденсатор — холодильник; 2-паровое пространство камеры предварительного нагрева; 3 — компрессор; 4-регулятор давления деминерализованной воды; 5 — камера предварительного нагрева воды деминерализованной; 6-трубки испарителя;

Трехступенчатый горизонтальный аквадистиллятор (рис. 3) состоит из трех корпусов, может быть и более, работает на деминерализованной воде. Корпус (1) представляет собой испаритель с трубчатым паровым нагревателем (5), технический греющий пар подается в верхнюю его часть, а отработанный выводится в нижней части. Внутрь испарителя заливается нагретая в конденсаторе-холодильнике (2) вода деминерализованная до постоянного уровня и нагревается до кипения.

Пар верхней части каждого корпуса проходит через ситчатую тарелку с постоянным слоем проточной апирогенной воды (4). Барботаж способствует эффективному задержанию капель из пара. Очищенный пар поступает в нагреватель второго корпуса и нагревает воду до кипения. Вторичный пар второго корпуса барботирует через слой воды в ситчатой тарелке и поступает в нагреватель третьего. Очищенный вторичный пар третьего корпуса поступает в конденсатор-холодильник 2 — общий для всех корпусов. Капельная фаза удаляется из пара.

Преимущества аквадистиллятора объясняются тем, что вода получается достаточно хорошего качества:

в корпусах-испарителях большая высота парового пространства;

удаление капельной фазы производится за счет того, что вторичный пар проходит через ситчатую тарелку с постоянным слоем проточной апирогенной воды, т.е. барботаж способствует эффективному задержанию капель из пара.

Рис. 4. Трехступенчатый горизонтальный аквадистиллятор. Условные обозначения: 1 корпус — испаритель; 2 — конденсатор-холодильник; 3 — сборник дистиллята; 4-ситчатая тарелка с апирогенной водой; 5-испаритель с трубчатым паровым нагревателем; 6 — воздушный фильтр

6. Хранение воды для инъекций

Воду для инъекций хранят при температуре от 3°С до 7°С или от 80°С до 95°С в закрытых емкостях, изготовленных из материалов, обеспечивающих сохранение свойств воды в пределах действующих нормативных документов и защищающих ее от попадания механических включений и микробиологической контаминации. Длительность хранения устанавливается после валидации.

При необходимости длительного хранения воды для инъекций необходимо организовать ее циркулирующюю при температуре в интервале 85-90°С. Для этого применяются специальные сосуды. В качестве материала всех поверхностей, находящихся в контакте с водой для инъекций, рекомендуется использовать нержавеющую сталь 02Х17Н13М2 (международное обозначение AISI 316L) электрополированную с шероховатостью поверхности (Ra) не более 0,8 мкм.

Сосуд для хранения воды для инъекций должен быть оборудован:

¦ рубашкой для подачи пара и охлаждающей воды;

¦ системой душирования для обеспечения непрерывного смачивания всей внутренней поверхности сосуда;

¦ гидрофобным воздушным фильтром;

¦ системой регулирования уровня.

7. Системы распределения воды для инъекций

Системы распределения воды для инъекций предназначены для доставки воды к точке потребления при неизменном ее качестве.

В систему распределения входят трубопровод, насосная система, контрольно-измерительные приборе, точки ответвления к потребителям.

Система распределения может быть тупиковой или закольцованной. Закольцованная система имеет начало и конец в сосуде для хранения воды.

Система распределения может быть холодной и горячей. В холодной системе распределения вода находится при комнатной температуре. В горячей системе распределения вода находится при температуре 85-90°С.

Требования к материалам поверхностей, находящихся в контакте с водой аналогичны требованиям, предъявляемым к материалам, находящимся в контакте с водой при ее хранении.

Конфигурация закольцованной системы распределения должна обеспечивать постоянный ток воды по трубопроводу. Скорость потока должна быть не менее 1,5 м/с. Поток должен быть турбулентным. Компоненты системы и распределительные линии должны быть снабжены дренажными приспособлениями — так, чтобы система могла быть полностью осушена. В системах распределения необходимо избегать образования застойных зон и условий, сдерживающих скорость потока. Вода, выходящая из системы, не должна возвращаться обратно, поэтому при проектировании должны быть приняты меры для предотвращения обратного потока в системе.

Система может работать в режиме постоянной стерильности (закольцованная горячая система), или периодически проходить стерилизацию (во всех остальных случаях). Периодичность стерилизации системы задается пользователем после валидации. Участки соединения с клапанами отбора воды из системы должны иметь отношение длина-диаметр не более 6. В точках отбора воды из систем, работающих при высоких температурах, необходимо устанавливать теплообменники для охлаждения воды. Необходимо предусмотреть возможность стерилизации участка отбора воды из системы.

Система распределения воды для инъекций должна быть горячая закольцованная.

Санация систем распределения воды очищенной и воды для инъекций

Санация системы проводится с целью поддержания условий, обеспечивающих сохранение свойств воды в системе в пределах требований действующих нормативных документов. Санацию систем можно проводить как тепловым, так и химическим способом. Для поддержания стерильных условий в системе можно также использовать ультрафиолетовое облучение, с длиной волны 254 нм. Метод санации выбирается после окончания валидационных процедур.

Тепловой способ санации системы подразумевает постоянную циркуляцию воды при высоких температурах или периодическое использование пара. Тепловые методы предотвращают развитие биопленки, но они неэффективны, если требуется убрать уже возникшую биопленку.

В процессе тепловой стерилизации следует обеспечивать однородность температуры по всей системе.

К химическим методам относится применение окисляющих агентов, например, галогенные соединения, перекись водорода, озон и др. Галогенные соединения являются эффективными дезинфицирующими средствами, но они достаточно трудно выводятся из системы и недостаточно эффективны в случае уже возникшей биопленки. Соединения типа перекиси водорода, озона, окисляют бактерии, что приводит к их ликвидации. В процессе химической санации следует обеспечить однородность распределения используемого вещества по системе. После санации необходимо проконтролировать удаление используемого вещества из системы.

Облучение ультрафиолетом сдерживает развитие биопленок в системе Тем не менее, ультрафиолет обладает только частичной эффективностью против микроорганизмов планктонного происхождения. Сам по себе ультрафиолет не уничтожает уже существующую биопленку. Тем не менее, в сочетании с тепловой или химической технологией санации, он становится очень эффективным и может продлить интервал между различными процедурами санации системы. Частота санации задается пользователем после валидации и может варьироваться в зависимости от результатов мониторинга системы.

Как и все оборудование, и все процессы в производстве лекарственных средств, системы и оборудование водоподготовки подлежат валидации.

Система, используемая для приготовления, хранения и распределения воды очищенной и воды для инъекций должна быть сконструирована таким

образом, чтобы предотвратить микробное загрязнение и образование пирогенов.

Валидационные процедуры осуществляются службой главного инженера предприятия совместно с ОБТК.

Оборудование системы должно быть проверено и оформлено приемосдаточным и пуско-наладочным актами, составлена установочная характеристика, например, при монтаже системы получения воды для инъекций должно быть проверено соответствие характеристик оборудования протоколу заводских испытаний. При этом контролируются:

¦ емкость для хранения воды для инъекций;

¦ индикатор температуры; И теплообменник,

Затем следует провести валидацию системы. На первой фазе составляют операционную характеристику системы. При разработке операционной характеристики необходимо предусмотреть:

— калибровку датчиков давления, температурных пробников, датчиков скорости потока, кондуктометра, аппаратуры для микробиологических анализов, набора для LAL — теста (если таковой используется).

— создание документации, которая должна включать стандартные инструкции СИ №№…, где описывается работа системы для получения воды для инъекций, методы контроля воды, записи обучения персонала участка приготовление воды.

Контрольные точки для проверки системы воды для инъекций должны иметь лампы-индикаторы включения / выключения, ручное переключение, отключение всех функций, систему оповещения об аварийных ситуациях, систему контроля температуры, давления, объема, скорости потока.

Таким образом, на первой стадии валидации изучаются рабочие параметры и процедуры по очистке и дезинфекции. Контрольные замеры должны проводиться ежедневно после каждой стадии очистного процесса, а также на каждой точке потребления на протяжении 2-4 недель. Контроль проводят в соответствии с ФС 42 2619-97 и ФС 42 2620-97.

Например: при использовании схемы 6,1.1. для получения воды очищенной первоначально устанавливаются параметры для каждого процесса, т.е.:

1) давление воды до и после фильтра для грубой фильтрации и уровни тревоги и действия при уменьшении разности давлений. При этом необходимы данные химического анализа, подтверждающие эффективность данной стадии;

2) жесткость воды (содержание кальция) до и после стадии умягчения и уровни тревоги и действия при изменении данного показателя;

3) давление воды до и после угольного фильтра, уровни тревоги и действия при уменьшении разности давления. При этом необходимы данные химического анализа, подтверждающие эффективность данной стадии;

4) Удельная электрическая проводимость (или сопротивление) воды после дистилляции.

При этом необходимы данные, подтверждающие соответствие полученной воды всем требованиям ФС 42-2619-97.

Все процессы, используемые для получения воды очищенной, должны быть также охарактеризованы по микробиологической чистоте.

Второй фазой оценки системы является проверка того, что система в состоянии постоянно обеспечивать необходимое качество воды при работе в соответствии с установленными рабочими параметрами. Контрольные замеры производятся таким же образом и в такой же период, как и при начальной фазе, каждые три месяца. К концу второй фазы полученные данные должны свидетельствовать о том, что система будет постоянно производить воду требуемого качества. На основании полученных результатов должна быть составлена эксплуатационная характеристика системы.

Эксплуатационная характеристика должна включать те же калибровочные инструменты, что и операционная характеристика, утвержденные СОИ на каждый метод, операцию, работу всей системы, а также любую специфическую задачу при получении воды в данной системе.

Приводятся все тесты, показывающие соответствие воды требованиям нормативной документации по химическим показателям, микробному загрязнению, температуре, давлению, скорости потока, объему, пирогенности.

В результате третьей фазы оценки должны быть получены гарантии того, что если система будет работать в соответствии с инструкциями на протяжении большого периода времени (1 года), она будет в состоянии постоянно производить воду необходимого качества. Любые изменения в качестве исходной воды, которые могут нарушить нормальное функционирование, и особенно качество конечного продукта, должны выявляться именно на этой стадии оценки.

Контрольные замеры производятся в обычном порядке и с установленной частотой.

Для систем производства воды для инъекций контрольные замеры следует проводить ежедневно и по крайней мере из одной точки потребления; все точки потребления вместе при этом проверяются раз в неделю.

Таким образом, при валидации системы необходимо доказать, что система позволяет получать воду требуемого качества в течение 20-30 последовательных дней, а также в течение 1 года.

В результате валидации получают, во-первых, необходимые данные для разработки инструкций; во-вторых, данные, показывающие, что система в состоянии постоянно производить воду, отвечающую необходимым характеристикам, а также данные, показывающие, что сезонные изменения исходной водопроводной воды не влияют на работу системы или качество конечного продукта.

Целью нашей курсовой работы было узнать какие методы применяются для очистки воды в современной фармацевтической промышленности.

Благодаря, проведенному мною исследованию, мы выяснили, какие загрязнения могут находится в воде, какие этапы очистки существуют, а так же как контролировать оборудование и технологию. Мы ознакомились с техническим регламентом и нормативными документами по воде для инъекций

Вода занимает одно из самых важных мест в жизни человека, даже если он здоров, то не может просуществовать без нее более месяца. А если болен — ему требуются лекарственные препараты, большинство из которых приготовлено с применением воды того или иного типа.

Список используемой литературы

1. ГОСТ 17768-90 Лекарственные средства.

2. ГОСТ Р50766-95 «Помещения чистые. Классификация. Методы аттестации. Основные требования». М: Госстандарт России, 1995;

3. ГОСТ 12.3.002-75 «Процессы производственные. Общие требования безопасности»

4. ГОСТ Р 52249-2009-Правила организации производства и контроль качества лекарственных средств GMP.

5. Государственная фармакопея РФ — 12 изд. — М: Медицина, 2010-с 426,445,888;

6. Государственная фармакопея СССР — 11 изд, Вып 2, 1989 — с. 183

7. Государственный регистр лекарственных средств России. Энциклопедия лекарств. Ежегодный сборник. 2004 г.-с. 307;

8. И.И. Краснюк. Технология лекарств. Х.: Изд-во НФАУ, Золотые страницы, 2002. — 704 с;

9. ОСТ 64-02-003-2002 — Продукция медицинской промышленности «.Технологические регламенты производства. Содержание, порядок разработки, согласования и утверждения

10. ОСТ 64-7-472-83 ССБТ — Технологический процесс производства готовых лекарственных средств. Производство инъекционных растворов в ампулах. Требования безопасности.

11. Перечень ПДК ГН 2.15. 689-98 Предельно допустимые концентрации (ПДК)

12. Положение о единой системе организации работы по охране труда и технике безопасности в медицинской промышленности. Утверждено Министерством СССР 1984 г.

13. Положение о порядке разработки и содержании раздела

«Безопасная эксплуатация производства» технологический регламент РД 09-251 — 98.

14. Правила безопасности для производств фитохимических препаратов, инъекционных растворов в ампулах, таблетированных лекарственных форм.

15. Тарасевич. Л.А. Медуницин Н.В.:Методические рекомендации МУ 78-113. Приготовление воды очищенной и воды для инъекций. Москва 1988 г.

Требования нормативной документации к получению, хранению и распределению воды очищенной и воды для инъекций. Контроль качества и методы получения. Сбор и подача воды очищенной на рабочее место фармацевта и провизора-технолога, обработка трубопровода.

контрольная работа [33,8 K], добавлен 14.11.2013

Сравнительный анализ требований отечественной и зарубежной фармакопеи. Категории качества воды, используемые на фармацевтических предприятиях, методы очистки. Нормативные документы, регламентирующие производство и контроль качества воды в РФ и за рубежом.

курсовая работа [61,1 K], добавлен 17.10.2014

Изучение отечественных и зарубежных нормативных документов по контролю качества, получению, распределению и хранению вод для фармацевтических целей. Нормативные требования к воде очищенной и воде для инъекций, регламентируемые различными фармакопеями.

курсовая работа [56,1 K], добавлен 18.08.2014

Лекарственные формы для инфузий. Требования, предъявляемые к производству инфузионных растворов. Общая технологическая схема производства. Получение воды для инъекций. Модуль фильтрации жидких лекарственных средств. Автоматическая моечная установка.

курсовая работа [925,6 K], добавлен 22.11.2013

Основные требования к воде в фармацевтической промышленности. Международные фармакопейные статьи на воду. Метод получения воды для инъекций. Требования к хранению различных типов воды во избежание испарения и для сохранения качественных показателей.

курсовая работа [326,7 K], добавлен 11.06.2015

Требования по физико-химическим показателям и микробиологической чистоте, предъявляемые к воде для инъекций. Химическая, технологическая и аппаратурная схемы производства. Способы стерилизации инъекционных растворов. Выбор фильтрующих материалов.

курсовая работа [666,7 K], добавлен 24.09.2015

Удивительные свойства воды. Роль воды в жизни человека. Питьевой режим и баланс воды в организме. Источники загрязнения питьевой воды. Способы очистки воды. Характеристика бальнеологических ресурсов Беларуси. Важнейшие минеральные источники страны.

реферат [193,4 K], добавлен 16.09.2010

Получение воды для фармацевтических целей путем очищения от примесей. Виды воды, используемой на фармацевтическом предприятии: питьевая, умягченная, очищенная, вода для инъекций. Схемы очистки воды. Дистилляция, очистка методом ионного обмена, фильтрация.

реферат [277,3 K], добавлен 23.06.2009

Определение назначения прямого вирусологического контроля качества воды. Характеристика коли-фагов как санитарно-показательных микроорганизмов и индикаторов вирусного загрязнения. Практическое исследование питьевой воды бактериологической лабораторией.

контрольная работа [16,9 K], добавлен 22.11.2012

Гигиенические требования к внутренней планировке и отделке помещений. Асептический блок: помещение и оборудование. Правила эксплуатации бактерицидных ламп. Получение воды очищенной и для инъекций. Условия приготовления стерильных лекарственных форм.

курсовая работа [364,9 K], добавлен 26.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.

источник