Меню Рубрики

Генетические анализы на рак почки

Когда врач произносит слово рак, Гизела плачет не ради себя, а потому, что не может смотреть на слезы ее дочерей, которые заставляют ее чувствовать себя такой беспомощной.

В апреле прошлого года после планового обследования у гинеколога Гизела Дрехслер (66) узнала, что у нее образовалась опухоль в матке. Интернет быстро и безжалостно выдает семье приговор: только каждый второй пациент живет пять лет после определения этого диагноза — в зависимости от того, каким видом рака заболел пациент, высоко или низко агрессивным.

Правда даже специалист по работе с клетками и тканями человека с трудом распознает эти виды рака. Каждому четвертому пациенту врачи неправильно определяют классификацию.

Для Гизелы это означает абсолютный страх. Да, разумеется, за саму себя, но прежде всего за мужа, трех дочерей и шестерых внуков. «Моя семья была в полном отчаянии, и я не могла подобрать слов для утешения. Все что я могла – это осмелиться лечь на операцию, и ждать», — говорит она.

После операции Гизела натолкнулась на информацию о том, что Национальный центр опухолевых заболеваний (NCT) вместе с Немецким центром исследований рака (DKFZ) разработали новый метод. Он предназначен сделать лечение рака более безопасным и эффективным — благодаря генным исследованиям и комплексному программному обеспечению под названием „Treatment Map» («Карта Лечения»).

После генетического анализа опухоли, новое программное обеспечение для лечения рака оценивает результаты (до 40 гигабайт на одного пациента) и сравнивает их с системой базы данных, в которой изображена вся актуальная картина обследования.

Профессор Отмар Вистлер, директор DKFZ объясняет: «Посредством генетического анализа мы все точнее понимаем, что изменения в геноме стимулируют рост раковых клеток. Поэтому мы атакуем этот рост новыми препаратами».

Данный подход называется персонализированной медициной. Это огромный прогресс в лечении.

Профессор Дирк Йегер из НЗТ объясняет: «Химиотерапия остается важным оружием, но она не действует для всех. Например, мы лечим пациентов с раком кишечника после операции дополнительной химиотерапией, чтобы уменьшить риск рецидива. Тем не менее, эта терапия используется только для 15% больных. Это означает, что 85% страдают от некоторых серьезных побочных эффектов, но не выздоравливают от химиотерапии».

Проблема в том, что врачи долго не знали, на кого подействует терапия, на кого нет. После генного анализа опухоли ситуация меняется!

Тем не менее, пока что были распознаны более чем 200 видов рака с миллионами известных медикам генных изменений, которые могут возникнуть в любой комбинации — и специалисты постоянно ищут новые подходы. Именно поэтому для одного врача практически невозможно постоянно быть в курсе последних изменений.

Вот здесь-то и оказывается полезным новое программное обеспечение: в базе данных хранятся 3.5 миллиона специальных публикаций по раку со всего мира, и оценивается принцип действия 22 000 разрешенных и находящихся в процессе разработки лекарств.

После обследования генетического материала опухоли (секвенирования), программное обеспечение сравнивает результаты из базы данных. В таком виде лечащий врач получает рекомендации по терапии, в краткой форме:

  • какие лекарства действительно действуют на пациента (например, химиотерапия или препараты направленного действия).
  • какие лекарства НЕ действуют, поскольку генные мутации делают пациента устойчивым (резистентным).
  • какой вид лечения может вызвать серьезные побочные эффекты.
  • может ли быть опасное взаимодействие между лекарственными препаратами против рака и другими веществами (например, лекарства для регулирования кровяного давления).
  • Есть ли исследования в этой области, в которых пациент может участвовать.

Для Гизелы расшифровка этих данных означает уверенность в том, что ее опухоль больше ей не навредит!

Месяц спустя, после того, как врач обнаружила рак, она делится результатами нового исследования этой опухоли, которая теперь распределена в еще более конкретную группу — и Гизела слышит, что ее генетический профиль попадает в число семи процентов пациентов, выживших через пять лет после постановки диагноза.

Хайст: Гизеле не нужна химиотерапия, потому что в ее случае с уверенностью можно сказать, что опухоль не пустила метастазы. Таким образом, Гизеле очень повезло, потому что ее гены также показывают, что она бы перенесла лечение с очень тяжелыми побочными эффектами из-за присутствия двух активных ингредиентов.

Кроме того, анализ показывает, направленно действующее вещество, которое следует назначить Гизеле, несмотря на хорошие прогнозы, приведет к рецидиву.

«Когда мне все объяснили, я снова расплакалась», — делится Гизела. «Но на этот раз с облегчением».

источник

Информация о работе и расписание

Госпитальная высококвалифицированная медицинская помощь

Услуги центра по восстановительной медицине

Современная диагностика – шанс предупредить болезнь

Он-лайн консультации для врачей по сложным практическим случаям

Трудоустройство в ФГАУ ЛРЦ

Стандарты и порядки оказания медицинской помощи

Проведение этической экспертизы клинических исследований, медицинских испытаний

В нашем центре мы проводим генетические анализы на выявление мутаций, отвечающих за возникновение наследственного рака молочной железы, яичников, поджелудочной железы, предстательной железы, щитовидной железы, толстой кишки и наследственных других новообразований (ссылка на прейскурант услуг). Материалом для исследования является кровь.

2. Определение чувствительности к таргетной терапии опухолей

Одним из современных методов борьбы со злокачественными опухолями является таргетная терапия. Она заключается в использовании таргетных (то есть адресно действующих) лекарственных препаратов, которые способны убивать раковые клетки, не нанося вреда здоровым тканям. Назначение таргетной терапии показывает впечатляющие результаты при раке легкого, колоректальном раке и меланоме.

Генетическое тестирование позволяет врачам подобрать лекарства, воздействующие на конкретный вид мутировавших опухолевых клеток, что повышает эффективность лечения и уменьшает побочные эффекты от приема препаратов.

Анализ мутаций в опухолевых клетках позволяет сделать прогноз эффективности лечения таргетными препаратами. В нашем центре такие исследования проводят для большого спектра мутаций (ссылка на прейскурант услуг).

Материал для исследования

— парафиновый блок опухолевой ткани, фиксированной формалином (хранится в патологоанатомическом отделении)

— цитологическое стекло с опухолевыми клетками (хранится в клинико-диагностической лаборатории)

Определение мутаций онкогена EGFR при раке легкого.

Препараты-ингибиторы TK EGFR применяются в современной таргетной терапии немелкоклеточного рака легкого. Лишь около 20% случаев НМРЛ чувствительны к ингибиторам TK EGFR. Это связано с наличием в данных опухолях активирующих мутаций в гене EGFR.

При лечении ингибиторами TK EGFR улучшение состояния наблюдается у 80% пациентов с мутациями и менее чем у 10% пациентов без мутаций. У отдельных пациентов с мутациями EGFR положительный эффект очень сильный и длительный. По рекомендациям Европейского Общества Медицинских Онкологов (ESMO) наличие мутаций в гене EGFR является показанием к применению ингибиторов TK EGFR.

Кому рекомендуется EGFR тест?

Тест на мутации гена EGFR рекомендуется пациентам с НМРЛ для оценки возможности терапии препаратами Иресса или Тарцева.

Наличие в опухолях активирующих мутаций в гене EGFR является показанием к применению препаратов – ингибиторов TK EGFR (Иресса, Тарцева).

Определение мутаций онкогенов RAS при колоректальном раке

Препараты последнего поколения – ингибиторы EGFR – анти-EGFR антитела применяются в современной таргетной терапии рака толстой кишки.

Эффективность лечения этими препаратами зависит от наличия мутаций в онкогенах KRAS и NRAS, и некоторых других факторов. При отсутствии мутаций в генах семейства RAS эффективность лечения метастатического рака толстой и прямой кишки очень высока – увеличивается средняя продолжительность жизни больного на 1-2 года, уменьшается количество рецидивов.

В то же время, в случае наличия активирующих мутаций в гене KRAS в клетках опухоли больного, использование препаратов не приводит к позитивным результатам.

В связи с этим Американское Общество Клинических Онкологов и Европейское Медицинское Агенство рекомендует применение препаратов Эрбитукс и Вектибикс только для лечения опухолей, содержащих ген KRAS дикого типа (т.е. без мутаций).

Необходимость теста на наличие активирующих мутаций перед использованием препаратов указана и в руководствах по использованию этих препаратов.

Кому рекомендуется KRAS тест?

Таким образом, тест на мутации гена KRAS необходим пациентам с РТК для оценки возможности терапии препаратами-ингибиторами EGFR.

Наличие в опухолях активирующих мутаций KRAS является противопоказанием к применению препаратов – ингибиторов EGFR.

Прейскурант генетических услуг.

Определение чувствительности к таргетной терапии

Определение мутаций в гене K-ras (2, 3, 4 экзоны) для определения резистентности опухоли к цетуксимабу, панитумумабу

Определение мутаций в гене N-ras (2, 3, 4 экзоны) для определения резистентности опухоли к цетуксимабу, панитумумабу

Определение мутаций в гене EGFR (18, 19, 20, 21 экзоны) для определения чувствительности опухоли к гефитинибу, эрлотинибу, афатинибу

Определение шести мутаций в генах BRCA1/2 для определения чувствительности опухоли к олапарибу

Определение мутации в гене BRAF (мутация V600E) для определения чувствительности к вемурафенибу, дабрафенибу, траметинибу

Анализ метилирования гена MGMT для определения чувствительности к темозоломиду

Определение чувствительности к таргетной терапии

Синдром фон Хиппель-Линдау

Прямое секвенирование гена VHL (1-3 экзоны)

Определение двух мутаций в гене CHEK2

Определение восьми мутаций в генах BRCA1/2

MMR (mismatch repair system) статус — анализ микросателлитной нестабильности: оценка системы репарации (анализ маркеров D2S123, D17S250, D5S346, BAT25, BAT26)

Разработка прямой ДНК-диагностики других заболеваний

Определение мутаций при синдромах МЭН 2А/2Б (10, 11, 13-16 экзонов гена RET)

Наследственные онкологические синдромы

Поиск мутаций при наследственном раке молочной железы в генах BRCA1, BRCA2, CHEK2, PALB2, ATM, BRIP1, TP53, PTEN, STK11, CDH1, NBN, BARD1, MLH1, MRE11, MSH2, MSH6, MUTYH, PMS1, PMS2, RAD50, RAD51C.

Поиск мутаций при наследственном раке яичников в генах BRCA1, BRCA2, TP53, STK11, MEN1, MLH1, MSH2, MSH6, PMS2.

Поиск мутаций при наследственном эндометриальном раке в генах MLH1, MSH2, MSH6, PMS2, PTEN.

Поиск мутаций при наследственном колоректальном раке в генах APC, AXIN2, EPCAM, MLH1, MLH3, MSH2, MSH6, MUTYH, PMS1, PMS2, STK11, PTEN, SMAD4, BMPR1A.

Поиск мутаций при наследственном раке желудка в генах CDH1, MLH1, MSH2, MSH6, PMS2, EPCAM, APC.

Поиск мутаций при наследственном раке поджелудочной железы в генах CDH1, PRSS1, BRCA2, CDKN2, ATM, PALB2, MLH1, MSH2, MSH6, PMS2, EPCAM.

Поиск мутаций при наследственном раке почки в генах VHL, MET, FH, FLCN.

Поиск мутаций при наследственном раке предстательной железы в генах BRCA2, CHEK2, CDH1, PTEN, ELAC2, HSD17B3, HSD3B2, RNASEL, SRD5A2, HOXB13, HPC5, MAD1L1, HPC4, HIP1, MSR1, KLF6, PTEN, MXI1, CD82, ZFHX3, HPCQTL19, HPC3, HPC6, AR.

Поиск мутаций при наследственном раке щитовидной и паращитовидной желез в генах RET, NTRK1, PRKAR1A, PTEN, CDC73, MEN1.

Поиск мутаций при наследственных новообразованиях кожи в генах NF1, NF2, CDKN2A, CDK4, CMM1.

Поиск мутаций при наследственной феохромоцитоме в генах SDHAF2, SDHB, SDHC, SDHD, RET, VHL, MAX, NF1.

Поиск мутаций при наследственной параганглиоме в генах SDHB, SDHC, SDHD, SDHAF2.

Поиск мутаций при синдроме множественной эндокринной неоплазии в генах MEN1, RET, CDKN1B.

источник

АНАЛИЗ МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИХ НАРУШЕНИЙ, АССОЦИИРОВАННЫХ С РАЗВИТИЕМ ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЙ ПОЧКИ.

МИХАЙЛЕНКО Дмитрий Сергеевич

АНАЛИЗ МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИХ НАРУШЕНИЙ, АССОЦИИРОВАННЫХ С РАЗВИТИЕМ ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЙ ПОЧКИ.

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата медицинских наук

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Ежегодно в мире регистрируют около 200 тыс. новых случаев рака почки и почти 100 тыс. смертей от этого заболевания, что позволяет считать его одной из основных проблем современной онкоурологии. В России диагностируют до 9 тыс. случаев опухолей почки в год, более 90% которых приходятся на почечно-клеточные карциномы — рак почки (РП). По темпам прироста заболеваемости РП уступает только новообразованиям предстательной и щитовидной желез [Алексеев Б.Я., 2007].

В настоящее время диагностика и прогноз РП основываются на данных инструментальных методов исследования и патоморфологических критериях, что далеко не всегда позволяет правильно оценить прогноз заболевания и возможности лечения [Yin-Goen 2006]. Это обусловливает необходимость создания эффективных тест-систем для проведения своевременной лабораторной диагностики, мониторинга и определения прогноза течения РП. Необходимым этапом создания системы маркеров РП является анализ наиболее характерных и часто встречающихся молекулярно-генетических нарушений в первичных опухолях почки. В качестве таких повреждений генома опухолевых клеток могут выступать мутации, потеря гетерозиготности и аберрантное метилирование ряда генов-супрессоров.

Ген VHL инактивируется в большинстве случаев самого распространенного морфологического типа РП — светлоклеточного рака почки (СРП) вследствие соматических мутаций, метилирования промотора и потери гетерозиготности [Banks R.E., 2006]. Также при СРП выявляют аллельные делеции других генов-супрессоров. Вопрос о влиянии мутаций и метилирования VHL и делеций генов-супрессоров в области 3р (VHL, RASSF1, FHIT) на прогрессию первичной опухоли и прогноз заболевания остается открытым. Идентифицирован ряд генов-супрессоров, аберрантное метилирование которых наблюдается в различных морфологических типах опухолей [Lovisolo J.A., 2006]. Анализ наиболее часто метилируемых генов будет способствовать созданию системы диагностических и прогностических маркеров РП.

Опубликованы данные об исследованиях полиморфизмов различных генов при РП [Karami S., 2008]. Некоторые полиморфизмы могут представлять интерес как потенциальные маркеры предрасположенности к спорадическому РП в популяции европейской части России или влиять на течение заболевания.

РП практически не чувствителен к лучевой и химиотерапии, поэтому хирургическое удаление опухоли является основным методом лечения РП. Определенные успехи связаны с внедрением в практику таргетных препаратов, механизм действия которых напрямую связан с генетическими нарушениями в опухолевых клетках [Costa L.J., 2007]. В связи с этим вопрос о лечении метастатического РП и местнораспространенных форм заболевания требует максимально точной оценки прогноза развития первичной опухоли, знания ее особенностей на молекулярно-генетическом уровне.

Таким образом, комплексное исследование соматических мутаций, потери гетерозиготности, метилирования 5‘-регуляторных областей генов-супрессоров и полиморфных вариантов генов, задействованных в развитии РП, будет способствовать формированию системы новых молекулярно-генетических маркеров РП.

Целью исследования является комплексный молекулярно-генетический анализ при РП, направленный на выявление и характеристику диагностических и прогностических маркеров заболевания.

1. Изучить мутации, аллельные делеции и метилирование промотора гена VHL и провести сравнительный анализ выявленных изменений относительно патологических параметров первичной опухоли и клинических особенностей заболевания.

2. Провести анализ потери гетерозиготности областей локализации генов VHL, RASSF1, FHIT и TP53 в парных образцах РП на различных стадиях заболевания и степенях дифференцировки первичной опухоли.

3. Оценить частоты аберрантного метилирования генов-супрессоров VHL, RASSF1, FHIT, SFRP1 и CDH1 в образцах РП и провести сравнительный анализ метилирования этих генов относительно патологических параметров первичной опухоли и клинических особенностей заболевания.

4. Исследовать метилирование CpG-динуклеотидов в промоторной области гена HOXB13, построить карту аберрантного метилирования этого гена.

5. Определить частоты аллелей и генотипов полиморфных вариантов генов ABCB1, TGFBR1, IL10, VDR в норме и у больных РП. Провести сравнительный анализ полученных данных между группами пациентов и контроля, а также между различными клиническими группами больных РП.

Научная новизна. Идентифицированы 33 новые мутации в гене VHL. Впервые исследованы сочетанные делеции генов VHL, RASSF1, FHIT и ТР53 при СРП. Изучено метилирование 5‘-регуляторных областей генов VHL, RASSF1 , FHIT, SFRP1 и CDH1 с помощью мультилокусной метилчувствительной ПЦР. Впервые показана ассоциация аберрантного метилирования RASSF1 с прогрессией первичной опухоли на ранних стадиях РП (Р = 0.047). С помощью бисульфитного секвенирования построена карта метилирования промотора гена-кандидата HOXB13 в первичных опухолях почки. С помощью нового метода — минисеквенирования с детекцией в режиме фрагментного анализа — изучены полиморфные варианты генов ABCB1, TGFBR1 , IL10 и VDR. Впервые в России определены в норме частоты генотипов исследуемых SNP генов IL10 и TGFBR1, получены данные о возможном влиянии полиморфизмов в генах VDR и TGFBR1 на развитие опухолей почки.

Читайте также:  Сдавать анализ онкомаркер перед месячными

Практическая значимость. Проведено комплексное молекулярно-генетическое исследование 127 первичных опухолей почки (светлоклеточных, папиллярных и хромофобных карцином). Оптимизирован метод комплексной оценки молекулярно-генетических нарушений VHL (соматических мутаций, аберрантного метилирования и потери гетерозиготности) при СРП. Выявлена высокая частота повреждений гена VHL при СРП. Разработаны системы из двух STR-маркеров для тестирования аллельных делеций в областях локализации генов VHL, RASSF1, FHIT и ТР53 при РП. Определена ассоциация множественных аллельных делеций генов-супрессоров на 3р (Р = 0.036), а также метилирования генов RASSF1 и CDH1 с клинико-морфологическими характеристиками опухоли (Р = 0.001), что позволит использовать анализ этих генов в качестве маркеров прогрессии на различных стадиях РП. Результаты, полученные в представленной работе, могут быть использованы в разработке системы молекулярно-генетических маркеров РП, в частности, определение мутаций и метилирования гена VHL — при оптимизации таргетной терапии. Положения, выносимые на защиту:

1. Мутации, потеря гетерозиготности и/или метилирование гена VHL происходят на ранних стадиях СРП в большинстве случаев заболевания.

2. Потеря гетерозиготности двух и более генов-супрессоров, локализованных в области 3р, отражает прогрессию первичной опухоли.

3. Аберрантное метилирование является существенным механизмом инактивации генов-супрессоров VHL, RASSF1, FHIT, SFRP1, CDH1 и наблюдается в 85% первичных почечно-клеточных карцином. Построена карта метилирования промотора гена-кандидата HOXB13 при спорадическом РП.

4. Метилирование генов RASSF1 и CDH1 ассоциировано с прогрессией и метастазированием первичной опухоли, соответственно, что позволяет рассматривать их как составную часть системы молекулярных маркеров РП.

Личное участие автора в получении результатов, изложенных в диссертации. Все эксперименты и методики были разработаны и проведены автором лично. Автор провел статистический анализ всех полученных данных и сформулировал выводы. Описание собственных исследований, анализ и обсуждение результатов выполнены автором самостоятельно.

Апробация работы. Результаты исследования были представлены на ежегодных Европейских конференциях по генетике человека в 2007-2008 гг., на конгрессах Российского общества онкоурологов в 2006-2007 гг., на Российском онкологическом конгрессе в 2007 г., конференции «Генетика в России и в мире» в 2006 г., конференции по биологии и генетике в 2007 г., конференции «Фундаментальные науки и прогресс клинической медицины» в 2008 г., а также на межлабораторных семинарах ГУ МГНЦ РАМН. Прочитана лекция на кафедре генетики Факультета усовершенствования врачей Российского государственного медицинского университета Росздрава.

Публикации. Результаты диссертационной работы отражены в 14 печатных работах соискателя, в том числе, 6 статей опубликовано в журналах,рекомендованных ВАК МОН РФ соискателям ученой степени кандидата медицинских наук.

Внедрение результатов работы в клиническую практику. На основании результатов проведенной работы разработаны новые медицинские ДНК-технологии «Молекулярно-генетическая методика оценки прогрессии первичной опухоли при светлоклеточном раке почки» и «Молекулярно-генетическая методика оптимизации таргетной терапии при светлоклеточном раке почки» (Разрешения на применение новой медицинской технологии ФС № 2008/150 от 22.07.2008 и ФС № 2008/152 от 23.07.2008, соответственно). Методические подходы, разработанные в диссертационной работе, используются в Межклинической лаборатории молекулярных методов диагностики ГОУ ВПО ММА им. И.М. Сеченова: анализ терминальных мутаций в гене VHL при диагностики синдрома Хиппеля-Линдау, определение аллельных делеций генов-супрессоров в области 3р при спорадическом РП.

Объем и структура диссертации. Диссертационная работа изложена на 123 страницах машинописного текста, состоит из оглавления, введения, списка сокращений, обзора литературы, подробного изложения использованных материалов и методов, описания собственных результатов и их обсуждения, заключения, выводов, практических рекомендаций и списка цитируемой литературы, включающего 143 ссылки. Диссертация иллюстрирована 18 таблицами и 18 рисунками.

МАТЕРИАЛЫ И МЕТОДЫ Образцы опухолей почки предоставлены Урологической клиникой им. Р.М. Фронштейна ГОУ ВПО ММА им. И.М. Сеченова, ГУ МРНЦ РАМН и ФГУ МНИОИ им. П.А. Герцена (всего 127 образцов РП). Все случаи РП классифицированы по TNM согласно требованиям Международного противоракового союза (UICC, версия 1997 г.). Из них 53% (67/127) соответствовали I стадии заболевания, 12% (15/127) — II, 21% (27/127) — III и 14% (18/127) — IV. На момент постановки диагноза 17% (21/127) пациентов в изучаемой выборке имели метастазы в регионарных лимфатических узлах и/или отдаленные метастазы.

Геномную ДНК из замороженных образцов опухолей и соответствующих им участков гистологически не измененной ткани выделяли с помощью протеиназы К с последующей фенол-хлороформной экстракцией. Архивные образцы опухолей, заключенные в парафиновые блоки, предварительно депарафинизировали с помощью ксилола и этанола.

Мутации VHL выявляли с помощью ПЦР экзонов 1-3, SSCP-анализа ПЦР-продуктов и последующего секвенирования. При анализе ДНК, полученной из парафиновых блоков, амплифицировали 3‘-часть 1-го экзона.

Для анализа потери гетерозиготности (ПГ) генов VHL, RASSF1, FHIT и ТР53 была разработана оригинальная система из STR-маркеров (по два микросателлитных локуса на каждый ген): D3S1317 и D3S1038 (VHL), D3S1568 и D3S966 (RASSF1), D3S1234 и D3S1300 (FHIT), D17S1353 и IVS1 (TP53). Проводили ПЦР вариабельных локусов, затем ПЦР-продукты разделяли в 10% денатурирующем ПААГ (IVS1-TP53 — в 8% ПААГ).

Метилирование генов VHL, RASSF1, FHIT, SFRP1 и CDH1 определяли с помощью метилчувствительной ПЦР (МЧ-ПЦР). Дизайн праймеров осуществлен в настоящем исследовании с помощью программ PerlPrimer и Vector NTI. Предварительно проводили обработку геномной ДНК метилчувствительной рестриктазой BstHHI («СибЭнзим», Новосибирск).

При подготовке к бисульфитному секвенированию геномную ДНК обрабатывали бисульфитом натрия, который вызывает переход неметилированных остатков цитозина в урацил, но не изменяет метилированные цитозины. Дизайн метилспецифических праймеров был выполнен с помощью интерактивной программы MethPrimer.

ПЦР-продукты, предназначенные для секвенирования, подвергали электрофорезу в 1%-ом агарозном геле, затем эллюировали с помощью колонок Quantum Prep® Freeze‘N Squeeze DNA Gel Extraction Spin Columns («Bio-Rad Laboratories»). Секвенирование проводили с использованием BigDye® Terminator v 3.1. Cycle Sequencing Kit и генетического анализатора ABI3100 в соответствиями с протоколами фирмы «Applied Biosystems».

Мультилокусную ПЦР полиморфизмов ABCB1, TGFBR1, IL10, VDR проводили с использованием праймеров, фланкирующих исследуемые SNP в каждом из генов (методика разработана в ходе настоящей работы). Не вошедшие в реакцию праймеры и dNTP инактивировали экзонуклеазой I из E.coli и щелочной фосфатазой («Fermentas», Литва). Далее к ПЦР-продуктам добавляли внутренние праймеры для каждого SNP и проводили реакцию с использованием ABI Prism® SNaPshot TM Multiplex Kit («Applied Biosystems»), затем проводили обработку продуктов реакции щелочной фосфатазой. Детекцию проводили на генетическом анализаторе ABI PRISM 3100 («Applied Biosystems»).

Статистический анализ частот аллелей и генотипов полиморфизмов, метилирования и ПГ проводили с помощью точного двустороннего критерия Фишера. Комплексный анализ встречаемости генетических нарушений в нескольких группах осуществляли при использовании критерия % .

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ Изучение инактивации гена VHL при спорадическом раке почки

Инактивация гена VHL вследствие молекулярно-генетических нарушений выявляется в большинстве светлоклеточных карцином почки, при этом влияние инактивирующих событий на развитие опухоли неоднозначно. В настоящей работе определяли мутации (рис. 1), аллельные делеции и метилирование как причины инактивации VHL. Мутации VHL были определены в 31.7% (39/123) СРП. Все выявленные мутации соматические, что, наряду с клиническими данными, позволило исключить синдром Хиппеля-Линдау и рассматривать имеющиеся образцы как выборку спорадического СРП. Среди мутаций 69.2% (27/39) составляли делеции, протяженность которых варьировала от 1 до 42 п.н., 18.0% (6/39) — инсерции, дупликации и комплексная мутация, оставшиеся 12.8% (5/39) приходятся на однонуклеотидные замены. Впервые идентифицированные мутации определены в 84.6% (33/39) образцов СРП.

Большинство делеций и инсерций, а также дупликации и комплексная мутация, составляющие 56.4% (22/39), приводили к сдвигу рамки считывания и формированию новых стоп-кодонов.

Рисунок 1. Определение мутации c.472C-G. Вверху — результат SSCP-анализа экзона 3 гена VHL (N и Т — нормальная и опухолевая ткани, соответственно), ПЦР-продукт с аномальной подвижностью в образце 5Т; секвенирование ПЦР-продукта 5Т с обратного праймера, идентификация мутации.

Аллельные делеции VHL при СРП определяли по STR-маркерам D3S1317 и D3S1038. Проанализированы 94 образца замороженных тканей опухолей и соответствующих им образцов нормальной почечной паренхимы, взятых на расстоянии не менее 1.5 см от края новообразования. Информативность используемых микросателлитных локусов составила 47.9% (45/94) для D3S1317 и 77.7% (73/94) — для D3S1038. Система из двух STR-маркеров позволяла определять аллельные делеции в 91.5% (86/94) случаев. ПГ обнаружена в 27.9% (24/86) информативных образцов СРП.

Метилирование промотора VHL исследовали с помощью МЧ-ПЦР (рис. 2). Исследовали 94 парных образца тканей опухолей и почечной паренхимы, а также 29 парафиновых блоков с архивными образцами СРП (всего 123 опухоли). Метилирование промотора гена определено только в образцах СРП и не выявлено в гистологически нормальной ткани. Частота аберрантного метилирования составила 14.6% (18/123) выборки СРП.

Рисунок 2. Анализ метилирования VHL. М — маркер молекулярной массы (pUC19/MspI, размеры фрагментов в п.н. указаны слева), ОК — отрицательный контроль амплификации, ПК — положительный контроль амплификации, К+ — внутренний контроль ПЦР (экзон 2 гена VHL), МЕТ — анализируемый участок промотора VHL, 1-12 — анализируемые образцы опухолей. Аберрантное метилирование выявлено в образцах 5 и 10.

Сопоставлены участки CpG-островка, анализируемого в представленной работе и у других авторов. Показано, что все праймеры для метилспецифической ПЦР (МС-ПЦР) в других исследованиях локализованы внутри участка, изученного в настоящей работе. Один из праймеров всегда содержал CpG-динуклеотиды в позициях -162, -164 и -168, два из которых (-162 и -168) входят в сайты узнавания метилчувствительной рестриктазы BstHHI. Методом МС-ПЦР изучали метилирование 8 остатков цитозина в области с.-24_-168. В настоящей работе проведен анализ метилирования с помощью МЧ-ПЦР семи CpG-динуклеотидов на том же участке. Таким образом, МЧ- и МС-ПЦР могут служить альтернативными методами определения метилирования промотора VHL.

У больных на I стадии СРП соматические мутации в гене VHL выявлены в 35.4% (23/65) случаев, ПГ — в 28.2% (11/39) информативных случаев и аберрантное метилирование — в 20.0% (13/65) образцов. В целом, хотя бы одно из нарушений гена VHL обнаружено у 53.8% (35/65) больных с I стадией заболевания, что свидетельствует в пользу инактивации VHL на ранних стадиях СРП.

Следует отметить, что инактивация VHL влияет не только на развитие первичной опухоли, но и может определять тактику лечения СРП. В последние 3 года в лечении метастатического СРП произошли существенные изменения, и в настоящее время это заболевание можно считать одним из наиболее удачных примеров применения таргетных препаратов. Эти препараты представляют собой ингибиторы определенных тирозинкиназ или факторов роста, которые взаимодействуют лишь с определенными молекулами, играющими ключевую роль в развитии РП. Наиболее эффективные из них — Сутент и Нексавар, ключевые мишени которых (VEGFR 1-го и 2-го типов, PDGFR) гиперэкспрессируются в ответ на инактивацию VHL. Следовательно, СРП, несущий молекулярно-генетические нарушения VHL, может представлять собой наиболее оптимальный случай для терапии одним из этих препаратов. Выдвинутое предположение нашло подтверждение в первом исследовании, показавшем более выраженный эффект применения Сутента у пациентов с соматическими мутациями VHL, чем у пациентов без мутаций [Личиницер М.Р., 2007].

Таким образом, соматические мутации, ПГ и аберрантное метилирование промотора VHL могут рассматриваться как перспективные маркеры СРП. Указанные молекулярно-генетические нарушения присутствуют в первичной опухоли на ранних стадиях заболевания и влияют на чувствительность опухоли к таргетным препаратам.

Исследование аллельных делеций генов VHL, RASSF1, FHIT и TP53

Помимо VHL, для СРП характерны аллельные делеции других генов-супрессоров, которые могут оказывать влияние на развитие злокачественного новообразования. Для определения прогностической значимости аллельных делеций в настоящем исследовании определена ПГ областей локализации генов VHL, RASSF1, FHIT (гены-супрессоры в области 3p) и ТР53 (рис. 3). А 1Т 1Ы 2Т 2N ЗТ ЗЫ Б 4Ы 4Т 5N 5Т БЫ GT

Рисунок 3. Выявление ПГ. А — результат электрофореза в 8% ПААГ пентануклеотидного повтора IVS1 гена ТР53 (T и N — опухолевая и нормальная ткани, соответственно), 1 -гомозигота, 2 — ПГ в опухолевой ткани, 3 — нормальная гетерозигота; В — результат денатурирующего электрофореза в ПААГ микросателлита D3S1568 (образцы нанесены на гель в обратном порядке), 4 — гомозигота, 5 — ПГ в опухолевой ткани (область гена RASSF1), 6 — нормальная гетерозигота.

Информативность STR-локуса D3S1568 составила 58.5% (55/94), D3S966 -62.8% (59/94), D3S1300 — 67.0% (63/94), D3S1234 — 85.1% (80/94), D17S1353 -67.0% (63/94) и IVS1 — 61.7% (58/94), информативность и характеристики систем из двух STR-маркеров для VHL указаны в предыдущем разделе. Системы из двух вариабельных локусов позволяли определять ПГ гена RASSF1 в 85.1% (80/94), FHIT — 95.7% (90/94) и TP53 — 89.4% (84/94) случаев.

ПГ гена RASSF1 обнаружена в 27.5% (22/80), FHIT — 35.6% (32/90), TP53 -17.9% (15/84) и, как упоминалось ранее, VHL — 27.9% (24/86) информативных образцов СРП. Аллельные делеции хотя бы одного гена на 3р наблюдали в 56.4% (53/94), а в совокупности из четырех исследованных генов — в 60.6% (57/94) информативных случаев.

источник

Неотъемлемой частью традиционного лечения онкологии является воздействие на весь организм с помощью химиотерапевтических препаратов. Однако клинический эффект от этого лечения не всегда бывает достаточно высок. Это случается из-за сложного механизма возникновения рака и индивидуальных различий организмов пациентов, их ответа на лечение и количество осложнений. Чтобы повысить эффективность лечения в целом, в мире начали уделять все больше внимания индивидуализации лечения.

Индивидуальному подбору лечения в онкологии стали придавать большое значение вслед за развитием и внедрением в широкую клиническую практику таргетных препаратов, а генетический анализ помогает их правильно подобрать.

Индивидуальное лечение – это, прежде всего, точное лечение конкретной опухоли. Почему лечение должно проводиться точно, обьяснять нет необходимости. Поэтому получение большего количества полезных сведений об организме дает надежду на жизнь: 76% онкопациентов имеют те или иные варианты генных мутаций. Генетические анализы помогут найти эту мишень, исключить неэффективное лечение, чтобы не потерять самое продуктивное для лечения время. А также снизить физическое и психологическое бремя пациента и его родных.

Генетические анализы при онкологии — это анализы, определяющие мутации генов, устанавливающих последовательности ДНК и РНК. Каждая опухоль имеет свой индивидуальный генетический профиль. Генетический анализ помогает подобрать препараты таргетной терапии, именно те, которые подойдут конкретно для вашей формы опухоли. И помогут сделать выбор в пользу более эффективного лечения. Например, у пациентов с немелкоклеточным раком легких при наличии мутации EGFR эффективность лечения Гефитинибом составляет 71,2%, а химиотерапии Карбоплатин+Паклитаксел 47,3%. При отрицательном значении EGFR эффективность Гефитиниба 1,1%, то есть препарат не эффективен. Анализ этой мутации напрямую дает понять, какое лечение лучше предпочесть.

С помощью генетических анализов можно точно подобрать наиболее эффективный препарат, что позволит избежать потери времени и бесполезных нагрузок на организм.

  • Больным на поздних стадиях онкологии.

Подбор эффективной таргетной терапии может значительно продлить жизнь пациентов с поздними стадиями, лечение которых традиционными методами уже не представляется возможным.

  • Больным с редкими видами рака или же с онкологией неизвестного происхождения.
Читайте также:  Сдать генетический анализ на рак

В таких случаях подбор стандартного лечения представляет большую сложность, а генетические анализы позволяют подобрать точное лечение даже без определения конкретного вида рака.

  • Больным, ситуация которых не поддается лечению традиционными методами.

Это хороший выбор для пациентов, которые уже исчерпали возможности традиционного лечения, потому что генетические анализы позволяют выявить целый ряд дополнительных препаратов, которые можно применять.

  • Больным с рецидивами. Генетические анализы при рецидивах рекомендуется проверять повторно, потому что генные мутации могут измениться. И тогда по новым генетическим анализам будут подбираться новые препараты таргетной терапии.

В Китае, стране с высокими показателями по заболеваемости онкологией, индивидуализация лечения получила широкое признание, а генетические анализы для подбора таргетной терапии прочно вошли в клиническую практику. В Харбине генетические анализы проводятся на базе отделения онкологии Хэйлунцзянской центральной больницы «Нункэн»

Наиболее информативно пройти полный комплекс генетических анализов – это секвентирование второго поколения, проводимое с помощью высокоплотного нейтронного потока. Технология генетических анализов второго поколения позволяет за один раз проверить 468 важных опухолевых генов, можно выявить все типы всех генетических участков, имеющих отношение к опухоли, обнаружить особые типы ее генных мутаций.

Определяются разрешенные FDA лекарственные мишени, мишени для экспериментальных лекарств.

  • Гены, определяющие пути лекарств к мишеням — более 200 генов
  • Гены, восстанавливающие ДНК — более 50 генов

Лучевая и химиотерапия, ингибиторы PARP, иммуная терапия

  • Показательные наследственные гены — около 25 генов

Имеющие отношение к некоторым мишеням и эффективности химиотерапии.

  • Другие высокочастотные мутирующие гены

Имеющие отношение к прогнозам, диагностике.

Из-за большого количества больных, китайские специалисты – онкологи традиционно пошли дальше своих коллег из других стран в развитии и применении таргетной терапии.

Исследования таргетной терапии в различных вариациях ее применения привели к интересным результатам. Разные таргетные препараты действуют на соответствующие мутации генов. Но сами генные мутации, как оказалось, далеко не так жестко привязаны к определеному виду рака.

Например, у пациента с раком печени после проведения полного комплекса генетических анализов была выявлена мутация, при которой высокий эффект показывает препарат Иресса, предназначенный для рака легкого. Лечение этого пациента препаратом для рака легкого привело к регрессу опухоли печени! Этот и другие подобные случаи придали совершенно новый смысл определению генетических мутаций.

В настоящее время проверка полного комплекса генетических анализов позволяет расширить список препаратов таргетной терапии теми лекарствами, которые изначально не предусматривались для использования, что существенно увеличивает клиническую эффективность лечения.

Генетические анализы определяются по тканям опухоли (это предпочтительнее! подойдет опухолевый материал после операции или после пункционной биопсии) или по крови (кровь из вены).

Для более точного определения генных мутаций, особенно при рецидивах, рекомендуется проводить повторную биопсию с забором нового опухолевого материала. Если биопсия практически невозможна или рискованна, тогда анализ проводят по венозной крови.

Результат готов через 7 дней. Заключение содержит не только результат, но и конкретные рекомендации с названиями подходящих препаратов.

источник

Рак начинается с мутации – изменения генотипа. Иногда этот измененный ген передается по наследству. И человек даже не подозревает, что носит в себе маленькую бомбу замедленного действия, часовой механизм которой может запустить любой неблагоприятный фактор. Выявить такие мутации и помогает тест на генетическую предрасположенность к раку.

Важно понимать, что не все генетические мутации являются наследственными, и их наличие не означает автоматическое появление рака, но оно может значительно увеличить риск развития онкопатологии.

Они присутствуют в репродуктивных клетках родителя (сперматозоидов или яйцеклеток) и поэтому передаются ребенку. Такая поломка гена обнаруживается во всех клетках ребенка и может передаваться из поколения в поколение.

Они встречаются в клетке того или иного органа, передаются только клеткам, которые образовались из измененной исходной клетки, и не могут передаваться из поколения в поколение. эта разновидность генных сбоев составляет подавляющее большинство случаев.

Генетическое тестирование не предлагается, если в семье обнаружен единичный случай рака. Оно необходимо людям, чья семейная история свидетельствует о наличии наследственной формы рака.

Вам стоит задуматься о генетическом тесте на рак, если были выявлены:

  • три или более случаев рака одного вида в одной и той же ветви семьи;
  • хотя бы один случай рака у довольно молодого родственника (например, до 50 лет для рака толстой кишки);
  • разные виды рака (груди и яичника) у двух родственных женщин.

В этих случаях риск оказаться носителем такого гена довольно высок, и вы можете сами столкнуться с онкологическим диагнозом, а также с множественными опухолями (например, злокачественной опухолью груди и яичников в возрасте до 50 лет). Тест на генетическую предрасположенность к раку поможет выявить наличие или отсутствие наследственного онкологического заболевания, благодаря чему сможете принимать важные решения о профилактике и лечении.

Генетический скрининг взрослых поможет выявить предрасположенность к:

  • Некоторым вида рака молочной железы и яичников. При этом выявляется наследственная генетическая мутация BRCA1 или BRCA2.
  • Семейный аденоматозный полипозный колит. Этот вид патологии составляет менее 1% всех видов рака толстой кишки. Он характеризуется наличием сотен полипов в толстой кишке. У таких людей в возрасте от 25 до 40 лет полипы обычно вырождаются в рак кишечника.
  • Синдром фон Хиппель-Линдау – редкое наследственное генетическое заболевание, характеризующееся развитием доброкачественных опухолей в кровеносных сосудах мозжечка, спинного мозга и сетчатки (несет нарушения зрения). В почках эти кисты могут дегенерировать рак у людей в среднем возрасте.
  • Ксеродерма пигментная – наследственная редкая генетическая болезнь, ответственная за исключительную чувствительность к ультрафиолетовым лучам солнца. Эти мутации приводят к возникновению очень ранних раковых заболеваний кожи.
  • Медуллярный рак щитовидной железы – редкий наследственный рак развивается из клеток C щитовидной железы, выделяя кальцитонин (гормон), который регулирует уровень кальция в крови.

В рамках одной семьи чаще передаются:

  • ретинобластома (рак глаз наблюдается у детей);
  • синдром Ли Фраумени (носители предрасположены к различным опухолям);
  • опухоль Вильмса (опухоль почек у детей).

Порядок прохождения исследования включает несколько важных этапов:

  • Знакомство с врачом и создание генеалогического древа.
  • Составление медицинской истории с использованием медицинских документов.
  • В зависимости от ситуации: клинический осмотр.
  • В зависимости от ситуации: анализ крови для лабораторного анализа.
  • Критическая оценка всех клинических и лабораторных данных
  • Установление диагноза
  • Оценка генетического риска для самого человека, для его потомства
  • Беседа о психологической и / или социальной среде, имеющей отношение к диагнозу, причинам, рискам и профилактике

Анализ генов может занять несколько месяцев. Это может показаться длинным периодом, но такая длительность иллюстрирует сложность и тщательность работы лабораторного анализа.

Когда мутация идентифицирована, проверяется (анализом крови), была ли аномалия передана потомкам этого человека.

Генетический скрининг на рак молочной железы и другие наследственные онкопатологии можно пройти в одном из 8 аккредитованных центров генетики

В результате теста вы можете:

  • Удостовериться в отсутствии мутировавших генов. Это хороший результат, однако, отсутствие мутации не означает, что вы не заболеете на рак. Вы просто подвержены тому же риску, что и население в целом.
  • Обнаружить носительство измененного гена. В этом случае врач предложит различные решения в зависимости от типа рака, начиная от тщательного мониторинга и заканчивая профилактическими операциями.

Бельгия – европейская страна с наиболее развитым уровнем медицины.

Решив пройти генетическое тестирование в бельгийской клинике, вы можете рассчитывать на:

  • Высокий профессионализм всех специалистов. Он обусловлен и более длительным периодом обучения, и более высокими требованиями сертификации, и постоянным контролем качества выполняемой работы.
  • Максимально точный результат скрининга. Практически все генетические лаборатории бельгийских центров аккредитованы в соответствии с ISO 15189, что позволяет проследить весь цикл исследования – начиная от сбора материала до выдачи результата анализа.
  • Грамотную консультацию специалиста в случае обнаружения риска развития того или иного вида рака. Вам будут выданы самые полные рекомендации о дальнейшем образе жизни, предложат эффективные меры профилактики и последующих периодических скринингов.
  • Приемлемые цены. При практически одинаковом уровне медицины, стоимость тестирования здесь гораздо ниже, чем в Германии, Англии и др. странах Европы

источник

Высокая заболеваемость раком заставляет онкологов ежедневно трудиться над вопросами ранней диагностики и эффективного лечения. Генетический анализ на рак – это один из современных способов профилактики онкозаболеваний. Однако, так ли достоверно это исследование и всем ли оно должно назначаться? – вопрос, который беспокоит и ученых, и врачей, и пациентов.

Сегодня генетический анализ на рак позволяет выявить риск развития онкопатологий:

  • молочной железы;
  • яичников;
  • шейки матки;
  • простаты;
  • легких;
  • кишечника и толстой кишки в частности.

Также, существует генетическая диагностика на некоторые врожденные синдромы, существование которых повышает вероятность развития рака нескольких органов. Например, синдром Ли-Фраумени говорит о риске рака мозга, надпочечников, поджелудочной железы и крови, а синдром Пейтца-Егерса говорит о вероятности онкопатологий пищеварительной системы (пищевод, желудок, кишечник, печень, поджелудочная железа).

На сегодня ученые обнаружили ряд генов, изменения в которых в большинстве случаев приводят к развитию онкологии. Ежедневно в нашем организме развиваются десятки злокачественных клеток, но иммунная система, благодаря особым генам, способна с ними справиться. А при поломках в тех или иных структурах ДНК, эти гены работают неправильно, что дает шанс развитию онкологии.

Так, гены BRCA1 и BRCA2 защищают женщин от развития рака яичников и молочных желез, а мужчин – от рака предстательной железы. Поломки в этих генах напротив показывают, что имеется риск развития карциномы данной локализации. Анализ на генетическую предрасположенность к раку как раз дает информацию об изменениях в этих и других генах.

Поломки в этих генах передаются по наследству. Всем известен случай Анджелины Джоли. В ее семье был случай рака молочной железы, поэтому актриса решила пройти генетическую диагностику, которая и выявила мутации в генах BRCA1 и BRCA2. Правда, единственное, чем смогли помочь врачи в этом случае – провести операцию по удалению груди и яичников, чтобы не было точки приложения для мутировавших генов.

Противопоказаний к сдаче данного анализа не существует. Однако, не стоит его делать в качестве рутинного обследования и приравнивать к анализу крови. Ведь не известно, как результат диагностики повлияет на психологическое состояние пациента. Поэтому назначаться анализ должен только при наличии строгих к тому показаний, а именно зарегистрированных случаев рака у кровных родственников или при имеющемся у пациента предраковом состоянии (например, доброкачественное образование молочной железы).

Генетический анализ достаточно прост для пациента, так как проводится путем одного забора крови. После кровь подвергается молекулярно-генетическому исследованию, что позволяет определить мутации в генах.

В лаборатории имеется несколько реактивов, специфичных для той или иной структуры. За один забор крови может проводиться обследование на поломки в нескольких генах.

Специальной подготовки исследование не требует, однако следовать общепринятым правилам при сдаче крови не помешает. К таким требованиям относится:

  1. Исключение алкоголя за неделю до диагностики.
  2. Не курить в течение 3-5 дней перед сдачей крови.
  3. За 10 часов до обследования не есть.
  4. В течение 3-5 дней до сдачи крови придерживаться диеты с исключением жирных, острых и копченых продуктов.

Наиболее изученным является обнаружение поломок в генах BRCA1 и BRCA2. Однако, с течением времени врачи стали замечать, что годы генетического исследования значительно не повлияли на смертность женщин от рака молочной железы и яичников. Поэтому в качестве скринингового метода диагностики (проводимого каждому человеку) метод не годиться. А как обследование групп риска генетическая диагностика имеет место.

Основной акцент анализа на генетическую предрасположенность к раку состоит в том, что при поломке в определенном гене человек имеет риск развития рака или же риск передачи этого гена своим детям.

Доверять или нет полученным результатам – личное дело каждого пациента. Возможно, не следует при отрицательном результате проводить превентивное лечение (удаление органа). Однако, если поломки в генах обнаружены, то пристально следить за своим здоровьем и регулярно проводить профилактическую диагностику определенно стоит.

Чувствительность и специфичность – это понятия, которые показывают достоверность теста. Чувствительность говорит о том, сколько процентов пациентов с дефектным геном будет выявлено данным тестом. А показатель специфичности говорит о том, что с помощью данного теста будет обнаружена именно та поломка гена, которая кодирует предрасположенность к онкологии, а не к другим заболеваниям.

Определить процентные показатели для генетической диагностики рака достаточно сложно, так как исследовать нужно много случаев положительных и отрицательных результатов. Возможно, позже ученые смогут дать ответ на данный вопрос, но уже сегодня можно с точностью утверждать, что обследование имеет высокую чувствительность и специфичность, и на его результаты можно полагаться.

Полученный ответ не может на 100% уверить пациента в том, что он заболеет или не заболеет раком. Отрицательный результат генетического тестирования говорит о том, что риск развития рака не превышает средних цифр в популяции. Положительный ответ дает более точную информацию. Так, у женщин с мутациями в генах BRCA1 и BRCA2 риск карциномы груди составляет 60-90%, а карциномой яичников – 40-60%.

Данный анализ не имеет четких показаний к сдаче, будь то определенный возраст или состояние здоровья больного. Если у матери 20-ти летней девушки был обнаружен рак молочной железы, то ей не стоит ждать 10 или 20 лет чтобы обследоваться. Рекомендовано тут же пройти генетическое исследование на рак, чтобы подтвердить или исключить мутацию генов, кодирующих развитие онкопатологий.

Касательно опухолей предстательной железы, каждому мужчине после 50 лет с аденомой простаты или хроническим простатитом полезно будет провести генетическую диагностику, чтобы так же оценить риск. А вот выполнять диагностику лицам, в семье которых не было случаев злокачественной болезни, скорее всего неуместно.

Вы не уверены в правильности поставленного диагноза и назначенного Вам лечения? Ваши сомнения поможет развеять видеоконсультация специалиста мирового уровня. Это реальная возможность воспользоваться квалифицированной помощью лучших из лучших и при этом ни за что не переплачивать.

Показанием к проведению генетического анализа на рак являются случаи выявления злокачественных новообразований у кровных родственников. А назначаться обследование должно врачом-генетиком, который после и оценит результат. Возраст пациента для сдачи теста не имеет никакого значения, так как поломка в генах заложена с рождения, поэтому если в 20 лет гены BRCA1 и BRCA2 в норме, то выполнять то же исследование через 10 и более лет смысла нет.

При правильном проведении диагностики каких-либо экзогенных факторов, которые могут повлиять на результат нет. Однако, у небольшого количества пациентов в ходе обследования могут обнаруживаться генетические поломки, интерпретация которых невозможна по причине недостаточной изученности. И в сочетании неизвестных изменений с мутациями в раковых генах, могут повлиять на результат тестирования (т.е. снижается специфичность метода).

Читайте также:  Сдать общий анализ на рак

Генетический анализ на рак – это не исследование с четкими нормами, не стоит надеяться, что пациент получит на руки результат, где будет четко написано “низкий”, “средний” или “высокий” риск развития рака. Результаты обследования могут оцениваться только врачом-генетиком. На окончательный вывод влияет история семьи пациента:

  1. Развитие злокачественных патологий у родственников до 50 лет.
  2. Возникновение опухолей одной и той же локализации в нескольких поколениях.
  3. Повторные случаи рака у одного и того же человека.

Сегодня подобная диагностика не оплачивается страховыми компаниями и фондами, поэтому все расходы пациент вынужден брать на себя.

В Украине исследование одной мутации стоит около 250 грн. Однако, для достоверности данных должно быть исследовано несколько мутаций. Например, для рака молочной железы и яичников исследуется 7 мутаций (1750 грн.), для рака легких – 4 мутации (1000 грн.).

В России генетический анализ на рак молочной железы и яичников стоит порядка 4500 руб.

источник

Научный руководитель проекта ГЕНОМЕД

Геномед – это инновационная компания с командой врачей-генетиков и неврологов, акушеров гинекологов и онкологов, биоинформатиков и лабораторных специалистов, представляющая комплексную и высокоточную диагностику наследственных заболеваний, нарушений репродуктивной функции, подбор индивидуальной терапии в онкологии.

В сотрудничестве с мировыми лидерами в области молекулярной диагностики мы предлагаем более 200 молекулярно-генетических исследований, основаных на самых современных технологиях.

Использование секвенирования нового поколения, микроматричного анализа с мощными методами биоинформационного анализа позволяют быстро поставить диагноз и подобрать правильное лечение даже в самых сложных случаях.

Наша миссия заключается в предоставлении врачам и пациентам комплексных и экономически эффективных генетических исследований, информационную и консультационную поддержку 24 часа в сутки.

Окончила педиатрический факультет Воронежского государственного медицинского университета им. Н.Н. Бурденко в 2014 году.

2015 — интернатура по терапии на базе кафедры факультетской терапии ВГМУ им. Н.Н. Бурденко.

2015 — сертификационный курс по специальности «Гематология» на базе Гематологического научного центра г. Москвы.

2015-2016 – врач терапевт ВГКБСМП №1.

2016 — утверждена тема диссертации на соискание ученой степени кандидата медицинских наук «изучение клинического течения заболевания и прогноза у больных хронической обструктивной болезнью легких с анемическим синдромом». Соавтор более 10 печатных работ. Участник научно-практических конференций по генетике и онкологии.

2017 — курс повышения квалификации по теме: «интерпретация результатов генетических исследований у больных с наследственными заболеваниями».

С 2017 года ординатура по специальности «Генетика» на базе РМАНПО.

Канивец Илья Вячеславович, врач-генетик, кандидат медицинских наук, руководитель отдела генетики медико-генетического центра Геномед. Ассистент кафедры медицинской генетики Российской медицинской академии непрерывного профессионального образования.

Окончил лечебный факультет Московского государственного медико-стоматологического университета в 2009 году, а в 2011 – ординатуру по специальности «Генетика» на кафедре Медицинской генетики того же университета. В 2017 году защитил диссертацию на соискание ученой степени кандидата медицинских наук на тему: Молекулярная диагностика вариаций числа копий участков ДНК (CNVs) у детей с врожденными пороками развития, аномалиями фенотипа и/или умственной отсталостью при использовании SNP олигонуклеотидных микроматриц высокой плотности»

C 2011-2017 работал врачом-генетиком в Детской клинической больнице им. Н.Ф. Филатова, научно-консультативном отделе ФГБНУ «Медико-генетический научный центр». С 2014 года по настоящее время руководит отделом генетики МГЦ Геномед.

Основные направления деятельности: диагностика и ведение пациентов с наследственными заболеваниями и врожденными пороками развития, эпилепсией, медико-генетическое консультирование семей, в которых родился ребенок с наследственной патологией или пороками развития, пренатальная диагностика. В процессе консультации проводится анализ клинических данных и генеалогии для определения клинической гипотезы и необходимого объема генетического тестирования. По результатам обследования проводится интерпретация данных и разъяснение полученной информации консультирующимся.

Является одним из основателей проекта «Школа Генетики». Регулярно выступает с докладами на конференциях. Читает лекции для врачей генетиков, неврологов и акушеров-гинекологов, а также для родителей пациентов с наследственными заболеваниями. Является автором и соавтором более 20 статей и обзоров в российских и зарубежных журналах.

Область профессиональных интересов – внедрение современных полногеномных исследований в клиническую практику, интерпретация их результатов.

Прием врачей осуществляется по предварительной записи.

Шарков Артём Алексеевич – врач-невролог, эпилептолог

В 2012 году обучался по международной программе “Oriental medicine” в университете Daegu Haanu в Южной Корее.

С 2012 года — участие в организации базы данных и алгоритма для интерпретации генетических тестов xGenCloud (http://www.xgencloud.com/, Руководитель проекта — Игорь Угаров)

В 2013 году окончил Педиатрический факультет Российского национального исследовательского медицинского университета имени Н.И. Пирогова.

C 2013 по 2015 год обучался в клинической ординатуре по неврологии в ФГБНУ «Научный центр неврологии».

С 2015 года работает неврологом, научным сотрудником в Научно- исследовательском клиническом институте педиатрии имени академика Ю.Е. Вельтищева ГБОУ ВПО РНИМУ им. Н.И. Пирогова. Также работает врачом- неврологом и врачом лаборатории видео-ЭЭГ мониторинга в клиниках «Центр эпилептологии и неврологии им. А.А.Казаряна» и «Эпилепси-центр».

В 2015 году прошел обучение в Италии на школе «2nd International Residential Course on Drug Resistant Epilepsies, ILAE, 2015».

В 2015 году повышение квалификации — «Клиническая и молекулярная генетика для практикующих врачей», РДКБ, РОСНАНО.

В 2016 году повышение квалификации — «Основы молекулярной генетики» под руководством биоинформатика, к.б.н. Коновалова Ф.А.

С 2016 года — руководитель неврологического направления лаборатории «Геномед».

В 2016 году прошел обучение в Италии на школе «San Servolo international advanced course: Brain Exploration and Epilepsy Surger, ILAE, 2016».

В 2016 году повышение квалификации — «Инновационные генетические технологии для врачей», «Институт лабораторной медицины».

В 2017 году – школа «NGS в медицинской генетике 2017», МГНЦ

В настоящее время проводит научные исследования в области генетики эпилепсии под руководством профессора, д.м.н. Белоусовой Е.Д. и профессора, д.м.н. Дадали Е.Л.

Утверждена тема диссертации на соискание ученой степени кандидата медицинских наук «Клинико-генетические характеристики моногенных вариантов ранних эпилептических энцефалопатий».

Основные направления деятельности – диагностика и лечение эпилепсии у детей и взрослых. Узкая специализация – хирургическое лечение эпилепсии, генетика эпилепсий. Нейрогенетика.

Шарков А., Шаркова И., Головтеев А., Угаров И. «Оптимизация дифференциальной диагностики и интерпретации результатов генетического тестирования экспертной системой XGenCloud при некоторых формах эпилепсий». Медицинская генетика, № 4, 2015, с. 41.
*
Шарков А.А., Воробьев А.Н., Троицкий А.А., Савкина И.С., Дорофеева М.Ю., Меликян А.Г., Головтеев А.Л. «Хирургия эпилепсии при многоочаговом поражении головного мозга у детей с туберозным склерозом.» Тезисы XIV Российского Конгресса «ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ В ПЕДИАТРИИ И ДЕТСКОЙ ХИРУРГИИ». Российский Вестник Перинатологии и Педиатрии, 4, 2015. — с.226-227.
*
Дадали Е.Л., Белоусова Е.Д., Шарков А.А. «Молекулярно-генетические подходы к диагностике моногенных идиопатических и симптоматических эпилепсий». Тезис XIV Российского Конгресса «ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ В ПЕДИАТРИИ И ДЕТСКОЙ ХИРУРГИИ». Российский Вестник Перинатологии и Педиатрии, 4, 2015. — с.221.
*
Шарков А.А., Дадали Е.Л., Шаркова И.В. «Редкий вариант ранней эпилептической энцефалопатии 2 типа, обусловленной мутациями в гене CDKL5 у больного мужского пола». Конференция «Эпилептология в системе нейронаук». Сборник материалов конференции: / Под редакцией: проф. Незнанова Н.Г., проф. Михайлова В.А. СПб.: 2015. – с. 210-212.
*
Дадали Е.Л., Шарков А.А., Канивец И.В., Гундорова П., Фоминых В.В., Шаркова И,В,. Троицкий А.А., Головтеев А.Л., Поляков А.В. Новый аллельный вариант миоклонус-эпилепсии 3 типа, обусловленный мутациями в гене KCTD7// Медицинская генетика .-2015.- т.14.-№9.- с.44-47
*
Дадали Е.Л., Шаркова И.В., Шарков А.А., Акимова И.А. «Клинико-генетические особенности и современные способы диагностики наследственных эпилепсий». Сборник материалов «Молекулярно-биологические технологии в медицинской практике» / Под ред. чл.-корр. РАЕН А.Б. Масленникова.- Вып. 24.- Новосибирск: Академиздат, 2016.- 262: с. 52-63
*
Белоусова Е.Д., Дорофеева М.Ю., Шарков А.А. Эпилепсия при туберозном склерозе. В «Болезни мозга, медицинские и социальные аспекты» под редакцией Гусева Е.И., Гехт А.Б., Москва; 2016; стр.391-399
*
Дадали Е.Л., Шарков А.А., Шаркова И.В., Канивец И.В., Коновалов Ф.А., Акимова И.А. Наследственные заболевания и синдромы, сопровождающиеся фебрильными судорогами: клинико-генетические характеристики и способы диагностики. //Русский Журнал Детской Неврологии.- Т. 11.- №2, с. 33- 41. doi: 10.17650/ 2073-8803- 2016-11- 2-33- 41
*
Шарков А.А., Коновалов Ф.А., Шаркова И.В., Белоусова Е.Д., Дадали Е.Л. Молекулярно-генетические подходы к диагностике эпилептических энцефалопатий. Сборник тезисов «VI БАЛТИЙСКИЙ КОНГРЕСС ПО ДЕТСКОЙ НЕВРОЛОГИИ» / Под редакцией профессора Гузевой В.И. Санкт- Петербург, 2016, с. 391
*
Гемисферотомии при фармакорезистентной эпилепсии у детей с билатеральным поражением головного мозга Зубкова Н.С., Алтунина Г.Е., Землянский М.Ю., Троицкий А.А., Шарков А.А., Головтеев А.Л. Сборник тезисов «VI БАЛТИЙСКИЙ КОНГРЕСС ПО ДЕТСКОЙ НЕВРОЛОГИИ» / Под редакцией профессора Гузевой В.И. Санкт-Петербург, 2016, с. 157.
*
Головтеев А.Л., Шарков А.А., Троицкий А.А., Алтунина Г.Е., Землянский М.Ю., Копачев Д.Н., Дорофеева М.Ю. «Хирургическое лечение эпилепсии при туберозном склерозе» под редакцией Дорофеевой М.Ю., Москва; 2017; стр.274
*
Статья: Генетика и дифференцированное лечение ранних эпилептических энцефалопатий. А.А. Шарков*, И.В. Шаркова , Е.Д. Белоусова , Е.Л. Дадали. Журнал неврологии и психиатрии, 9, 2016; Вып. 2doi: 10.17116/jnevro 20161169267-73
*
Головтеев А.Л., Шарков А.А., Троицкий А.А., Алтунина Г.Е., Землянский М.Ю., Копачев Д.Н., Дорофеева М.Ю. «Хирургическое лечение эпилепсии при туберозном склерозе» под редакцией Дорофеевой М.Ю., Москва; 2017; стр.274
*
Новые международные классификации эпилепсий и эпилептических приступов Международной Лиги по борьбе с эпилепсией. Журнал неврологии и психиатрии им. C.C. Корсакова. 2017. Т. 117. № 7. С. 99-106

В 2011 году Окончила Московский Государственный Медико-Стоматологический Университет им. А.И. Евдокимова по специальности «Лечебное дело» Обучалась в ординатуре на кафедре Медицинской генетики того же университета по специальности «Генетика»

В 2015 году окончила интернатуру по специальности Акушерство и Гинекология в Медицинском институте усовершенствования врачей ФГБОУ ВПО «МГУПП»

С 2013 года ведет консультативный прием в ГБУЗ «Центр Планирования Семьи и Репродукции» ДЗМ

С 2017 года является руководителем направления «Пренатальная Диагностика» лаборатории Геномед

Регулярно выступает с докладами на конференциях и семинарах. Читает лекции для врачей различных специальной в области репродуции и пренатальной диагностики

Проводит медико-генетическое консультирование беременных по вопросам пренатальной диагностики с целью предупреждения рождения детей с врождёнными пороками развития, а так же семей с предположительно наследственной или врожденной патологией. Проводит интерпретацию полученных результатов ДНК-диагностики.

Латыпов Артур Шамилевич – врач генетик высшей квалификационной категории.

После окончания в 1976 году лечебного факультета Казанского государственного медицинского института в течение многих работал сначала врачом кабинета медицинской генетики, затем заведующим медико-генетическим центром Республиканской больницы Татарстана, главным специалистом министерства здравоохранения Республики Татарстан, преподавателем кафедр Казанского медуниверситета.

Автор более 20 научных работ по проблемам репродукционной и биохимической генетики, участник многих отечественных и международных съездов и конференций по проблемам медицинской генетики. Внедрил в практическую работу центра методы массового скрининга беременных и новорожденных на наследственные заболевания, провел тысячи инвазивных процедур при подозрении на наследственные заболевания плода на разных сроках беременности.

С 2012 года работает на кафедре медицинской генетики с курсом пренатальной диагностики Российской академии последипломного образования.

Область научных интересов – метаболические болезни у детей, дородовая диагностика.

Время приема: СР 12-15, СБ 10-14

Прием врачей осуществляется по предварительной записи.

В 2009 году закончил лечебный факультет КГМУ им. С. В. Курашова (специальность «Лечебное дело»).

Интернатура в Санкт-Петербургской медицинской академии последипломного образования Федерального агентства по здравоохранению и социальному развитию (специальность «Генетика»).

Интернатура по терапии. Первичная переподготовка по специальности «Ультразвуковая диагностика». С 2016 года является сотрудником кафедры кафедры фундаментальных основ клинической медицины института фундаментальной медицины и биологии.

Сфера профессиональных интересов: пренатальная диагностика, применение современных скрининговых и диагностических методов для выявления генетической патологии плода. Определение риска повторного возникновения наследственных болезней в семье.

Участник научно-практических конференций по генетике и акушерству и гинекологии.

Консультация по предварительной записи

Прием врачей осуществляется по предварительной записи.

Окончила в 2015 году Московский Государственный Медико-Стоматологический Университет по специальности «Лечебное дело». В том же году поступила в ординатуру по специальности 30.08.30 «Генетика» в ФГБНУ «Медико-генетический научный центр».
Принята на работу в лабораторию молекулярной генетики сложно наследуемых заболеваний (заведующий – д.б.н. Карпухин А.В.) в марте 2015 года на должность лаборанта-исследователя. С сентября 2015 года переведена на должность научного сотрудника. Является автором и соавтором более 10 статей и тезисов по клинической генетике, онкогенетике и молекулярной онкологии в российских и зарубежных журналах. Постоянный участник конференций по медицинской генетике.

Область научно-практических интересов: медико-генетическое консультирование больных с наследственной синдромальной и мультифакториальной патологией.

Консультация врача-генетика позволяет ответить на вопросы:

являются ли симптомы у ребенка признаками наследственного заболевания какое исследование необходимо для выявления причины определение точного прогноза рекомендации по проведению и оценка результатов пренатальной диагностики все, что нужно знать при планировании семьи консультация при планировании ЭКО выездные и онлайн консультации

Является выпускницей медико-биологического факультета Российского Национального Исследовательского Медицинского Университета имени Н.И. Пирогова 2015 года, защитила дипломную работу на тему «Клинико-морфологическая корреляция витальных показателей состояния организма и морфофункциональных характеристик мононуклеаров крови при тяжелых отравлениях». Окончила клиническую ординатуру по специальности «Генетика» на кафедре молекулярной и клеточной генетики вышеупомянутого университета.

ринимала участие в научно-практической школе «Инновационные генетические технологии для врачей: применение в клинической практике», конференции Европейского общества генетики человека (ESHG) и других конференциях, посвященных генетике человека.

Проводит медико-генетическое консультирование семей с предположительно наследственной или врожденной патологией, включая моногенные заболевания и хромосомные аномалии, определяет показания к проведению лабораторных генетических исследований, проводит интерпретацию полученных результатов ДНК-диагностики. Консультирует беременных по вопросам пренатальной диагностики с целью предупреждения рождения детей с врождёнными пороками развития.

Врач-генетик, врач акушер-гинеколог, кандидат медицинских наук.

Специалист в области репродуктивного консультирования и наследственной патологии.

Окончила Уральскую государственную медицинскую академию в 2005 году.

Ординатура по специальности «Акушерство и гинекология»

Интернатура по специальности «Генетика»

Профессиональная переподготовка по специальности «Ультразвуковая диагностика»

  • Бесплодие и невынашивание беременности
  • Планирование беременности
  • Беременность высокого риска
  • Генетическая тромбофилия
  • Вопросы пренатальной диагностики
  • Наследственная патология в семье

Помимо консультирования пациентов, занимается научной и преподавательской деятельностью – работает в должности доцента на кафедре акушерства и гинекологии факультета повышения квалификации УГМУ.

Регулярно участвует в научных конференциях и симпозиумах.

Является автором ряда статей и методических рекомендаций.

Работает в МЦ «Геномед» с 2015 года

Общий стаж работы – 11 лет

Является выпускницей Нижегородской государственной медицинской академии, лечебного факультета (специальность «Лечебное дело»). Окончила клиническую ординатуру ФБГНУ «МГНЦ» по специальности «Генетика». В 2014 году проходила стажировку в клинике материнства и детства (IRCCS materno infantile Burlo Garofolo, Trieste, Italy).

С 2016 года работает на должности врача-консультанта в ООО «Геномед».

Регулярно участвует в научно-практических конференциях по генетике.

Основные направления деятельности: Консультирование по вопросам клинической и лабораторной диагностики генетических заболеваний и интерпретация результатов. Ведение пациентов и их семей с предположительно наследственной патологией. Консультирование при планировании беременности, а также при наступившей беременности по вопросам пренатальной диагностики с целью предупреждения рождения детей с врожденной патологией.

источник