Меню Рубрики

Химический анализ воды в котельной

Типовая инструкция по организации химического контроля за ведением рационального водно-химического режима паровых, водогрейных котлов и тепловых сетей , страница 2

Настоящая инструкция определяет объем оперативного химического контроля, необходимого для правильного ведения процессов обработки воды, в це­лях поддержания оптимального водного режима тепловой станции, обеспечения безаварийной и экономичной эксплуатации котла, его элементов, вспомогательного оборудования и тепловых сетей.

2.1. Общий объем химического контроля за водно-химическим режимом теплостанций и тепловых сетей разрабатывает цех № 4 Предприятия «Теплоэнергоремонт» в зависимости от характера и количества установленного оборудования в соответствии с требованиями:

«Правила технической эксплуатации электрических станций и сетей Российской Федерации», «Правила устройства и безопасной эксплуатации паровых и водогрей­ных котлов», РД «Организация надежного водно-химического режима энергетиче­ского оборудования»(НПО ЦКТИХ ОСТ 108.034.03-81. РТМ 108.030.111-76, ГОСТ 21563-82, ГОСТ 20995-75.

2.2.Химический контроль должен обеспечивать:

а) проведение анализов отобранных проб воды, пара, растворов реагентов и др.

б) защиту всего оборудования от коррозии, выделения шлама и накипи;

в) определение технических и экономически обоснованных расходов реагентов,
подаваемых на узел обработки сточных вод, при регенерации фильтров, при щело­
чении и кислотных промывках оборудования, при консервации;

г) проверку проведения технологических процессов в установленных режимах;

д) своевременное отключение оборудования тешюстанции на восстановление;

е) выявление и устранение дефектов в работе водоподготовительного оборудова­
ния;

ж) выявление и устранение дефектов в работе деаэраторов;

з) выявление и устранение дефектов в работе оборудования тепловой станции, свя­
занного с качеством воды, пара, не отвечающего нормам;

и) допустимый органами санитарного надзора состав сточных вод.

2.3.Текущий оперативный химический контроль выполняется лаборан­том-аппаратчиком с целью проверки соответствия параметров качества воды ее нормативным значениям и правильности поддержания водно-химического режима котла в любой момент его эксплуатации.

2.4. Разовое изменение графика химконтроля разрешается лаборанту-
аппаратчику в случае нарушения водно;химического режима. Дополнительный
химконтроль осуществляется до полного восстановления режима оборудования.
Сокращение графика химконтроля запрещается. В пусковой период необходимо
усиление химконтроля по сравнению с тем, который проводился при нормальной
эксплуатации оборудования.

2.5. Данные анализа проб своевременно и аккуратно должны заносится в
журнал по водоподготовке.

2.6. Ответственность за соблюдение объема и графика химконтроля в
административном отношении возлагается на ведущего инженера теплотехника, в
оперативном — на дежурного инженера смены, инженера-химика и лаборанта-
аппаратчика.

2.7. Химический контроль на теплостанции состоит из следующих ос­
новных частей:

а) химконтроль за водоподготовкой: анализ исходной и химочищенной
воды;

б) химконтроль за установкой содоизвесткования: анализ отработанного
раствора соли и анализ умягченного раствора соли;

в) химкотроль за водным режимом котлов: анализ питательной воды,
конденсата бойлеров, котловой воды;

г) химконтроль за тепловыми сетями: анализ подпиточной и сетевой во­
ды.

2.8. К инструкции прилагается:

2.8.1. Рекомендуемый объем химического контроля водного режима
теплостанции с паровыми котлами.

2.8.2. Рекомендуемый объем химического контроля водного режима те­
плостанции с водогрейными котлами.

2.8.3. Форма журнала химического контроля для теплостанции с паро­
выми котлами.

2.8.4. Форма журнала химического контроля для теплостанции с водо­
грейными котлами.

2.8.5. Форма журнала натрий-катионитной установки.

2.8.6. Нормы качества воды для тепловых станций с паровыми котлами.

2.8.7. Нормы качества воды для тешюстанций с водогрейными котлами.

2.8.8. Основные методы анализа воды.

2.8.9. Режимная карта водно-химического режима парового котла.

2.8.10. Режимная карта водно-химического режима водогрейного котла.

3. ОТБОР ПРОБ И ПОДГОТОВКА ИХ К АНАЛИЗУ.

Точкой отбора проб называют место взятия пробы из аппарата или тру­бопровода с необходимыми приспособлениями для отбора: холодильники, дроссельные устройства, арматура, соединительные линии.

От места расположения то и ки отбора и наличия всех вспомогательных устройств зависит представительность отбираемой пробы.

Периодичность отбора проб разрабатывается исходя из характера изме­нения концентрации примесей в контролируемой среде.

Методы анализа, применяемые при контроле рабочей среды котельной должны быть едиными. Это обеспечит получение надежной и сопоставимой информации, которая помогает обобщать опыт ведения водных режимов в различных тепловых сетях.

Очень просто нарушить представительность при определении легколету­чих примесей, таких как кислород и углекислота.

Разработана специальная техника отбора проб на эти примеси, соблюде­ние которой способствует получению представительной пробы.

Очень важно для каждой точки отбора иметь свои пробоотборные сосуд! с соответствующей маркировкой.

3.1. Отбор проб производится в определенные часы на основании графи­ка химконтроля, утвержденного главным инженером предприятия.

Разовое изменение графика химконтролл разрешается лаборанту-аппаратчику в случае нарушения водно-химического режима. Дополнительный химконтроль осуществляется до полного восстановления режима работы оборудо­вания. Сокращение графика химконтроля запрещается.

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 266
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 602
  • БГУ 153
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 962
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 119
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1967
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 300
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 409
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 497
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 130
  • ИжГТУ 143
  • КемГППК 171
  • КемГУ 507
  • КГМТУ 269
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2909
  • КрасГАУ 370
  • КрасГМУ 630
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 139
  • КубГУ 107
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 367
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 330
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 636
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 454
  • НИУ МЭИ 641
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 212
  • НУК им. Макарова 542
  • НВ 777
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1992
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 301
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 119
  • РАНХиГС 186
  • РОАТ МИИТ 608
  • РТА 243
  • РГГМУ 118
  • РГПУ им. Герцена 124
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 122
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 130
  • СПбГАСУ 318
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 147
  • СПбГПУ 1598
  • СПбГТИ (ТУ) 292
  • СПбГТУРП 235
  • СПбГУ 582
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 193
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 380
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1655
  • СибГТУ 946
  • СГУПС 1513
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2423
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 324
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 306

Полный список ВУЗов

Чтобы распечатать файл, скачайте его (в формате Word).

источник

Измерение растворенного кислорода в технологических водах котельных и теплосетей. Приборный или химический анализ

А.Г. Кутин, ведущий специалист, ООО «ВЗОР», г. Нижний Новгород

Надежность работы оборудования, трубопроводов котельной и тепловой сети зависит в большой степени от качества водоподготовки, которая, в свою очередь, немыслима без должного контроля на всех участках технологического процесса. Контроль содержания растворенного кислорода в теплоэнергетике является важнейшей задачей для предотвращения повреждаемости металла кислородной коррозией.

Содержание кислорода в технологических водах нормируется жестко и обычно лежит в пределах, не превышающих 50 мкг/дм 3 . В отечественной теплоэнергетике середины-конца прошлого века для контроля содержания растворенного кислорода широко применялись химические методы анализа, изложенные, например, в ОСТ 34-70-953.23-92, ГОСТ-26449.3-85. Наиболее часто применяемым являлся визуально-колориметрический метод с использованием метиленового голубого индикатора, причем персоналом химических лабораторий иногда применялись не только типовые шкалы с максимальным определением кислорода до 100 мкг/дм 3 , но и с более широкими диапазонами до 200 и 400 мкг/дм 3 . Немногим реже встречается использование колориметрического метода с использованием индигокармина. На многих объектах использовались шкалы до 100, 140, 170 мкг/дм 3 . Достаточно редко встречается применение колориметрического метода с использованием сафранина «Т» со шкалой до 30 мкг/дм 3 . В некоторых случаях лабораториями применялся йодометрический анализ с возможностью измерения высоких концентраций (от 200 мкг/дм 3 ) при контроле нарушений в работе оборудования, но применение данного анализа для контроля высоких концентраций кислорода не распространено, т.к. считается, что шкалы колориметрических методов достаточны не только для контроля нормативного содержания кислорода, но и для выявления превышения данных норм.

В последние два десятилетия в российской теплоэнергетике все более широко стали применяться анализаторы растворенного кислорода.

Опыт внедрения кислородомеров МАРК производства ООО «ВЗОР» более чем на 300 ТЭС и теплосетей России и ближнего зарубежья показал, что многие объекты работали с существенными нарушениями норм растворенного кислорода, и данные нарушения не всегда выявлялись колориметрическими методами, а йодометрический метод для определения высоких концентраций кислорода не применялся лабораториями, т.к. считалось, что нарушений нет либо они незначительны. Иногда, в случаях несоответствия показаний приборов и химического анализа, правильность показаний кислородомеров ставилась под сомнение как персоналом химических лабораторий, так и руководством. Необходимо отметить, что анализаторы растворенного кислорода МАРК всех поколений, включая самые ранние разработки, включены в госреестр СИ РФ. Также главным конструктором ООО «ВЗОР» Родионовым А.К. опубликована методика проверки такой важнейшей характеристики датчиков растворенного кислорода приборов МАРК как линейность [1]. Данная методика позволяет проверить погрешность прибора на всем диапазоне измерения (от 1-3 до 20000 мкг/дм 3 ) и свидетельствует о высокой линейности характеристики датчиков (отклонение от линейности не более 0,5% на всем диапазоне).

Случаи несоответствия данных, полученных поверенными анализаторами растворенного кислорода и визуально-колориметрическим методом с использованием метиленового голубого, был выявлен и опубликован, например, специалистами ГУП ТЭК-СПб [2]. Выяснилось, что при реально больших концентрациях растворенного кислорода метиленовый голубой реактив дает существенное занижение результатов (рис.1-2).

При концентрации свыше 200 мкг/дм 3 показания, полученные кислородомером, совпадают с методом Винклера, при этом анализ с использованием метиленового голубого не только не показывает высоких концентраций, но и главное, не показывает максимума шкалы 100 мкг/дм 3 , что не позволяет при использовании только лишь этого метода выявить серьезные нарушения в работе теплоэнергетического оборудования.

Для проверки достоверности анализа с применением метиленового голубого реактива авторами статьи была предложена методика насыщения деаэрированной воды кислородом воздуха, диффундирующего через стенки силиконового шланга. При постоянном потоке деаэрированной воды концентрация кислорода в ней оказывается пропорциональной длине шланга. На рис. 3 показаны результаты замеров приборным методом и методом с использованием метиленового голубого. Как видно из графиков, зависимость результатов измерений метиленовым голубым от длины шланга является весьма нелинейной. Результаты существенно занижены по сравнению с результатами приборного анализа.

Подобный метод позволяет оперативно и наглядно проводить «сверку» показаний кислородомеров с результатами химического анализа. Метод неоднократно использовался специалистами ООО «ВЗОР» совместно со специалистами теплоэнергетических предприятий для анализа качества проводимых кислородных измерений. На одной из ТЭС был проведен опыт сличения результатов замеров поверенным анализатором растворенного кислорода с результатами анализа двумя химическими методами, применявшимися на данной ТЭС. До этого между собой на станции два метода никогда не сравнивались. Результаты испытаний приведены на рис. 4.

Читайте также:  Данные химических анализов сточных вод и

Как видно из эксперимента, показания кислородомера пропорциональны длине шланга, показания химических анализов не только ниже, но, главное, не соответствуют друг другу, отличаясь в 2-3 раза. Сходимость есть только на нулевой точке.

В некоторых случаях при выявлении серьезных нарушений в работе энергетического оборудования с помощью кислородомера проводилась проверка реакции метода с использованием метиленового голубого на сырой воде, насыщенной кислородом (табл. 1).

Таблица 1. Пример искажения измерений при использовании метиленового голубого.

Очевидно, что в сырой недеаэрированной воде содержание растворенного кислорода составляет несколько тысяч микрограмм на литр и соответственно колориметрический метод должен давать окраску, соответствующую максимальному значению по шкале. Иногда это выполняется, однако выявлены десятки случаев, когда максимальной окраски не получалось, метод показывал некое промежуточное значение, что является ошибкой измерения в 50-200 (!) раз. Метод с индигокармином не давал максимальной окраски в сырой воде дважды за всю историю сравнений. При сравнении результатов приборного анализа с методом с использованием сафранина «Т» расхождений не было выявлено ни разу. В итоге можно отметить, что наиболее часто применяемый метод с использованием метиленового голубого может давать существенное занижение результатов при анализе растворенного кислорода и, как следствие, не удается выявить и устранить нарушения ведения водно-химического режима.

Надо отметить, что на достаточно большом количестве объектов при внедрении анализаторов растворенного кислорода их показания соответствовали результатам химического анализа. Как правило, на этих станциях концентрация растворенного кислорода не превышала установленных норм, а нарушения выявлялись и своевременно устранялись. Персонал таких объектов, в первую очередь, и отказывался от химического анализа в пользу приборного контроля. Причинами же серьезных искажений при измерении растворенного кислорода визуально-колориметрическими методами может быть как низкое качество химреактивов, так и ошибки персонала при проведении анализа. Для примера ниже показаны результаты измерений относительно высокой концентрации кислорода разными методами и разными операторами. Виден исключительно большой разброс полученных результатов (табл. 2).

Таблица 2. Результаты измерения кислорода различными методами и операторами.

ГРЭС, прямоточные котлы, блоки 300 МВт
метод питательная вода
МАРК-ЗОЗТ, МАРК-409, мкг/л 200-205
Индигокарминовый, мкг/л 90
Метод Винклера (лаборант), мкг/л 480
Метод Винклера (инженер), мкг/л 320

На данный момент подавляющее большинство химических лабораторий тепловых электростанций и тепловых сетей РФ перешли на приборный контроль растворенного кислорода. Тем не менее, есть объекты, где применение кислородомеров саботируется инженерным персоналом и лаборантами, либо находится под запретом руководства из-за высоких показаний и выявления неудовлетворительного кислородного режима. В журнале фиксируются некие нормативные цифры, полученные с помощью визуально-колориметрического анализа, притом что на объектах и теплосетях выявляются высокие уровни язвенной кислородной коррозии.

Анализ опыта внедрений кислородомеров МАРК на многих ТЭС показал, что примерно в 30% случаях, даже при использовании исправного поверенного анализатора растворенного кислорода, результат измерения оказывается некорректным. Самой распространенной ошибкой персонала было применение силиконовых присоединительных шлангов для подачи пробы к проточным кюветам. Диффузия кислорода из атмосферного воздуха приводила к сильным завышениям результатов. Типовые шланги из резины либо ПВХ не допускают диффузии кислорода из атмосферы в пробу. Тем не менее, они имеют свойство накапливать кислород в стенках при нахождении на воздухе, и при малых потоках пробы результаты могут быть завышены на несколько микрограмм. Рекомендуемая скорость потока через кювету датчика должна быть в пределах 400-800 мл/мин, однако на многих пробоотборных точках такой поток обеспечить невозможно в силу ряда причин, в первую очередь, проблем с охлаждением. Предприятием ВЗОР разработан принципиально новый кислородомер, адаптированный к реальным условиям эксплуатации на отечественных ТЭС и котельных.

Рис. 5. Измерительный узел кислородомера.

Конструкция их измерительного узла (см. рис. 5) позволяет отказаться от применения классических гибких шлангов для подачи пробы. Датчик с помощью специального устройства крепится на любую пробоотборную линию диаметром от 5 до 20 мм. Отказ от гибких полимерных шлангов позволяет производить измерения на любых, даже сверхмалых, скоростях потока (от 25 мл/мин) и производить измерения без искажений остаточным кислородом с внутренних стенок подводящих шлангов. Типовое время измерения 2-3 минуты. Также расширен температурный диапазон прибора, можно производить измерения на пробах с температурой до 70 О С.

1. Родионов А.К. Методика измерения метрологических характеристик датчика растворенного кислорода // Теплоэнергетика. 2009. № 7. С. 2-6.

источник

Для технической воды существуют свои нормы и требования по качеству, которые имеют непосредственное отношение к особенностям производственного процесса. Одной из сфер применения технической воды является покрытие нужд котельных. С их помощью организуются системы отопления в жилых домах и производственных цехах, обеспечивается нормальный ход технологического процесса на отдельных производствах. При этом оборудование, устанавливаемое для выполнения столь важной миссии, весьма чувствительно к качеству потребляемой воды.

Присутствие в воде хлора, железа, повышенная жесткость, щелочность, pH, наличие кислорода, углекислоты, солесодержание — все это способно стать причиной поломок, образования наростов накипи и отложений. Это портит оборудование, снижает эффективность его работы, а в ряде случаев может стать причиной выхода оборудования из строя и дорогостоящего ремонта. Чтобы избежать негативных последствий использования жидкости ненадлежащего качества, выполняется анализ котловой воды.

Поступление в котельные установки качественного теплоносителя влияет на эффективность функционирования всей системы и позволяет обеспечить:

  • Безопасную работу установленного оборудования.
  • Достаточную теплоотдачу.
  • Уменьшение ремонтных и профилактических расходов.
  • Длительный срок работы установок.
  • Увеличение коэффициента сжигания топлива.

Образец протокола
лабораторного исследования

Поступающая в котлы вода влияет на ряд критериев работы установок:

Накипеобразование. Повышенная жесткость воды является фактором, вызывающим образование накипи на плоскостях теплообмена. Из-за этого будет снижаться теплоотдача, работа оборудования будет неэффективной. Приборы потребуют частой чистки и обслуживания, не исключается их перегрев. Как результат – поломка отдельных агрегатов котельных установок либо их полный выход из строя.

Появление ржавчины на оборудовании и трубах. Чрезмерное содержание в воде кислорода ускоряет процессы коррозии на металлических элементах. Низкая кислотность жидкости способствует распространению ржавчины на значительную площадь всего котла. Если в воде присутствует много щелочи, это приведет к излишнему пенообразованию, что становится причиной нарушения целостности стальных компонентов установок.

Анализ питательной воды котла может показать, что в ней присутствуют посторонние примеси, которые могут попасть в оборудование, в результате чего появляются такие проблемы, как:

  • Загрязнение теплообменников
  • Блокировка установок, отводящих конденсат
  • Засорение регулирующих преград.

Всех вышеназванных негативных последствий можно избежать, если предварительно провести лабораторные анализы технических вод, обратившись в компанию «Русватер». Подобная процедура выступает неотъемлемой частью химводоподготовки котельных, позволяющей наладить верный водно-химический режим котлов.

№ п/п Вариант №1 Вариант №2 Вариант №3
1 Ph Ph Ph
2 Прозрачность Прозрачность Прозрачность
3 Жесткость общая Жесткость общая Жесткость общая
4 Щелочность общая Щелочность общая Щелочность общая
5 Щелочность по ф/ф Щелочность по ф/ф Щелочность по ф/ф
6 Хлориды Хлориды Хлориды
7 Железо общее Железо общее Железо общее
8 Сухой остаток Сухой остаток Сухой остаток
9 Растворенный кислород Растворенный кислород Растворенный кислород
10 Сульфаты Нефтепродукты Сульфаты/Нефтепродукты
11 Углекислота свободная
СРОК ВЫПОЛНЕНИЯ 3 рабочих дня
ЦЕНА 2 500 рублей 2 750 рублей 3 000/3 250 рублей
Стоимость выезда
для отбора пробы
2 000 рублей в пределах КАД, 30 руб./км начиная от КАД

Паровые и водогрейные котлы не терпят чрезмерного образования пены, так как она становится причиной утечки жидкости и дает неточные данные по уровню воды, блокирует горелки и активирует аварийное оборудование. По этой причине к качеству воды для котлов предъявляются высокие требования, благодаря которым пенообразование берется под контроль именно в процессе анализа сетевой воды.

Выполнить контроль концентрации растворенных элементов можно с помощью TDS-метра. Кроме того разработан целый ряд методов, направленных на определение таких параметров котловой воды, как:

  • прозрачность;
  • щелочность;
  • жесткость;
  • содержание хлоридов, нитратов, фосфатов, растворенного кислорода, аммиака, соединений железа,
  • свободной углекислоты;
  • сухого остатка и солесодержания;
  • значения pH.

Качество котловой воды регламентируется следующими документами:

  • ГОСТ Р 55682.12-2013/ЕН 12952-12:2003 Котлы водотрубные и котельно-вспомогательное оборудование. Часть 12. Требования к качеству питательной и котельной воды
  • РД 24.031.120-91 Методические указания. Нормы качества сетевой и подпиточной воды водогрейных котлов, организация водно-химического режима и химического контроля
  • РД 24.032.01-91. Нормы качества питательной воды и пара, организация водно-химического режима и химического контроля паровых стационарных котлов-утилизаторов и энерготехнологических котлов
  • СНиП II-35-76 «Котельные установки».
  • ГОСТ 20995-75. Котлы паровые стационарные давлением до 3,9 МПа. Показатели качества питательной воды и пара.

Жесткая вода не образует пену, однако из-за нее в котле образуется накипь. Умягчение воды решает проблему жесткости, но не справляется с образованием пены. В случае загрязнения жидкости взвешенными коллоидными частицами на воде также будет появляться пена, при этом подобные компоненты трудно поддаются фильтрации из-за малого диаметра – фильтры не могут их задержать.

Если проблема заключается в излишней пене, добавление в воду составов, снижающих ее интенсивность, будет малоэффективным, если причиной ее образования будет чрезмерная концентрация взвешенных коллоидных частиц. Для этого требуется контролировать концентрацию растворенных элементов и подобрать равновесный режим солесодержания в воде, в том числе и посредством анализа воды на жесткость в котельной. В результате пенообразование будет снижено, а установка продолжит работу в экономичном режиме.

Для поддержания надлежащего качества котловой воды изначально требуется установление исходных параметров. С этой целью проводится анализ воды для котельной, позволяющий определить отклонения от нормы. В зависимости от результатов выбирается конкретный метод водоподготовки, который приведет качество воды к нормам, указанным в инструкции завода-изготовителя, а также в нормативных документах.

Специалисты компании «Русватер» выполняют анализ промышленной воды с использованием современных систем и оборудования. Мы предлагаем полный комплекс услуг, сопутствующих правильной водоподготовке промышленного оборудования любых типов и назначения.

источник

Нормы проектирования водоподготовки отопительных и промышленных котельных определяются СНиП II-35-76* «Котельные установки». Согласно этому документу «Водно-химический режим работы котельной должен обеспечивать работу котлов, пароводяного тракта, теплоиспользующего оборудования и тепловых сетей без коррозионных повреждений и отложений накипи и шлама на внутренних поверхностях, получение пара и воды требуемого качества». Состав системы водоподготовки в котельной (в теплоэнергетике принято сокращение ВПУ – водоподготовительная установка) определяется качеством исходной воды, требованиями к очищенной воде, производительностью установки. Требования к очищенной воде зависят от ее назначения и определяются нормативными документами.

Вода в теплоэнергетике. Термины и определения.

Вода, используемая для паровых и водогрейных котлов, в зависимости от технологического участка, имеет разные наименования, закрепленные в нормативных документах:

Сырая вода – вода из источника водоснабжения, не прошедшая очистку и химическую обработку.

Питательная вода – вода на входе в котел, которая должна соответствовать заданным проектом параметрам (химический состав, температура, давление).

Добавочная вода – вода, предназначенная для восполнения потерь, связанных с продувкой котла и утечкой воды и пара в пароконденсатном тракте.

Подпиточная вода – вода, предназначенная для восполнения потерь, связанных с продувкой котла и утечкой воды в теплопотребляющих установках и тепловых сетях.
Котловая вода — вода, циркулирующая внутри котла.

Прямая сетевая вода – вода в напорном трубопроводе тепловой сети от источника до потребителя тепла.

Читайте также:  Данные по анализу водопроводной воды

Обратная сетевая вода – вода в тепловой сети от потребителя до сетевого насоса.

Источниками сырой воды могут быть реки, озера, артезианские и грунтовые скважины, городской или поселковый водопровод. Для каждого источника характерны различные примеси и загрязнения, поэтому подбор ВПУ начинают с анализа образца сырой воды. Анализ воды должна проводить специализированная аккредитованная лаборатория. Для поверхностных источников необходимы несколько анализов в разные сезоны, так как состав воды нестабилен.
Обращаясь к нормативной документации для определения требований к подготавливаемой воде необходимо также знать тип используемого котла.

Классификация котлов. Термины и определения.

Все котлы можно разделить на:
— паровые котлы , предназначенные для получения пара;
— водогрейные котлы , предназначенные для нагрева воды под давлением;
— пароводогрейные , предназначенные для получения пара и нагрева воды под давлением.

По способу получения энергии для нагрева воды или получения пара котлы делятся на:
— Энерготехнологические – котлы, в топках которых осуществляется переработка технологических материалов (топлива);
— Котлы-утилизаторы – котлы, в которых используется теплота отходящих горячих газов технологического процесса или двигателей;
— Электрические – котлы, использующие электрическую энергию для нагрева воды или получения пара.

По типу циркуляции рабочей среды котлы делятся на котлы с естественной и принудительной циркуляцией . В зависимости от количества циркуляций, котлы могут быть прямоточные – с однократным движением рабочей среды, и комбинированные – с многократной циркуляцией.

Относительно движения рабочей среды к поверхности нагрева выделяют:
— Газотрубные котлы , в которых продукты сгорания топлива движутся внутри труб поверхностей нагрева, а вода и пароводяная смесь – снаружи труб.
— Водотрубные котлы , в которых вода или пароводяная смесь движется внутри труб, а продукты сгорания топлива – снаружи труб.

Пепейдя по ссылке можно найти нормативную документацию, в которой указаны требования к качеству воды.

Помимо нормативной документации необходимо учесть рекомендации производителя котла, указанные в инструкции по эксплуатации/ руководстве пользователя.

Сетевая вода ГВС должна соответствовать нормам «СанПиН 2.1.4.1074-01. Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества».

Примеси, содержащиеся в воде, можно разделить на две группы: растворенные и нерастворенные (механические). Высокая мутность , наличие взвешенных и коллоидных частиц ведет к накоплению шлама и забиванию трубной системы котла и нарушению циркуляции. В зависимости от источника воды и количественных показателей нерастворенных загрязнений выбирается метод механической очистки, осветления. В самом простом случае это механический фильтр с рейтингом фильтрации 200-500 мкм, а при поверхностном водозаборе может потребоваться обработка коагулянтами, флокулянтами, с дальнейшим отстаиванием и осветлением.

К растворенным примесям, влияющим на работу котлового оборудования, в первую очередь относят соли жесткости . При использовании жесткой воды происходит образование накипи на поверхности, ухудшается теплоотдача, происходит перегрев труб со стороны нагрева, что может привести к их разрушению. В зависимости от типа котла предъявляются менее или более жесткие требования по содержанию солей кальция и магния в питательной и котловой воде. На основании требований к очистке, исходной жесткости воды и требуемой производительности выбирается способ умягчения. К основным способам можно отнести:
1.Умягчение на Na-катионитовой смоле;
2.Известкование;
3.Умягчение, снижение общего солесодержания на установках обратного осмоса;
4.Умягчение, снижение общего солесодержания последовательным пропусканием воды через Н-, ОН-ионообменные фильтры.

Наиболее распространённым методом умягчения для котельных небольшой мощности является метод ионного обмена на Na-катионитном фильтре. При протекании воды через слой загрузки ионы кальция и магния замещают ионы натрия в гранулах смолы. Таким образом, ионы жесткости извлекаются из воды, а для поддержания ионного баланса в эквивалентном соотношении выделяются ионы натрия, соли которого обладают высокой растворимостью. Подробнее об умягчении можно узнать в соответствующем разделе сайта. Для непрерывного умягчения используют установки типа Duplex (Дуплекс ) — два фильтра работают одновременно, но регенерируются поочерёдно; или типа Twin (Твин) – два фильтра работают по очереди, регенерация происходит в момент работы другого фильтра. Стоить отметить, что для регенерации Na-китионнообменных фильтров промышленного и коммерческого назначения экономически целесообразно использовать не таблетированную соль, а насыпью. Для возможности применения соли в насыпь необходимы солерастворяющие установки (солерастворители). Ознакомиться с ними можно также на нашем сайте, перейдя по ссылке.

Подготовка питательной воды методом обратного осмоса применяется, когда необходимо очень высокое качество воды и/или получаемого пара, а также когда необходимо решение нескольких задач, например, если помимо умягчения необходимо снизить щелочность воды, удалить хлориды или сульфаты . Установки обратного осмоса (УОО) всегда рассчитываются индивидуально для каждого случая, исходя из качества исходной воды. Очищенная на обратноосмотических мембранных элементах вода называется «пермеатом» и имеет пониженный водородный показатель рН. УОО работают на накопительные емкости, а до подачи исходной воды на установку обязательно необходима предподготовка. Подробнее об установках обратного осмоса можно узнать из соответствующего раздела сайта.

Для воды из скважины характерным является превышение содержания железа и марганца , которые также влияют на рабочий режим котлового оборудования. Выбор метода обезжелезивания определяется многими факторами – от производительности установки до сопутствующих примесей.

Для предотвращения кислородной коррозии необходимо удалить растворенный кислород из питательной воды. Различают несколько видов деаэрации, но наиболее часто применяется термический и химический способ. Химический (реагентный) – введение в воду вещества, связывающего растворенный кислород, чаще всего применяют сульфит, гидросульфит или тиосульфат натрия. При термической обработке питательная вода нагревается до температур, близких к температуре кипения, при этом растворимость газов в воде уменьшается и происходит их удаления. Аппараты, в которых производится термическая дегазация, называются «деаэраторы». Бывают деаэраторы атмосферного, повышенного давления и вакуумные. По способу нагрева деаэраторы делятся на струйные, барботажные и комбинированные. В деаэраторах, помимо кислорода, удаляется также растворенный в воде углекислый газ , который является причиной углекислотной коррозии. Для уменьшения содержания углекислого газа в подпиточной воде используют также подщелачивание.

Существует большое количество реагентов, предназначенных для ингибирования процессов солеотложения и коррозии. Традиционно применяют автоматически дозирующие станции для ввода реагента в предварительно подготовленную воду. В некоторых случаях реагенты совместимы и могут дозироваться из одной ёмкости рабочих растворов, в других – требуется наличие нескольких дозирующих станций. При использовании реагентной коррекционной обработки необходимо следить за приготовлением дозируемых растворов и постоянно контролировать концентрации дозируемых веществ в котловой воде.

Компания «АкваГруп» гарантирует индивидуальный подход к подбору и расчету установки ВПУ для каждого объекта.

источник

Химическая водоочистка (ХВО) современными методами и технологиями обеспечивает долгую и успешную жизнь котельному оборудованию, выгодное использование средств, исключение постоянного технического контроля и сервиса, так как предотвращает поломки, связанные с качеством питающей воды. Основной задачей систем водоподготовки для котельных является предотвращение образования накипи и последующего развития коррозии на внутренней поверхности котлов, трубопроводов и теплообменников. Такие отложения могут стать причиной потери мощности, а развитие коррозии может привести к полной остановке работы котельной из-за закупоривания внутренней части оборудования. Водоподготовке уделяется особое внимание, поскольку качественно подготовленное тепловое оборудование является залогом бесперебойной работы котельных в течение отопительного сезона. Следует иметь в виду, что водоподготовка обладает рядом особенностей, и способы очистки и подготовки воды, разработанные для крупных электростанций, не всегда применимы в отношении промышленных котельных.

Вода является одновременно универсальным растворителем и дешёвым теплоносителем, тем не менее она же может стать причиной поломки парового или водогрейного котла. В первую очередь, риски связаны с наличием в воде различных примесей. Предотвратить и решить проблемы связанные с работой котельного оборудования возможно только при чётком понимании причин их возникновения.

Можно выделить три основные группы посторонних примесей в воде:

  • нерастворимые механические
  • корр o зионноактивные
  • растворённые осадк o образующие

Любой тип примесей может стать причиной выхода из строя оборудования тепловой установки, а также снижения эффективности и стабильности работы котла. Применение в тепловых системах воды, не прошедшей предварительную механическую фильтрацию, приводит к более грубым поломкам – выводу из строя циркуляционных насосов, повреждению трубопроводов, уменьшению сечения, регулирующей и запорной арматуры.

Обычно в качестве механических примесей выступают глина и песок, присутствующие практически в любой воде, а также продукты коррозии тепл o передающих поверхностей, трубопроводов и других металлических частей системы, находящихся в постоянном контакте с агрессивной водой.

Растворённые в воде примеси являются причиной серьёзных неполадок в работе энергетического оборудования:

  • образование н a кипных отложений;
  • коррозия котловой системы;
  • вспенивание котловой воды и выносом солей с паром.

К растворенным примесям требуется особое внимание, поскольку их присутствие в воде не так заметно, как наличие механических примесей, а последствия их воздействия могут быть весьма неприятными – от снижения энергoэффективности системы до частичного или полного её разрушения.

Карбонатные отложения, вызванные осадочным образованиями жесткой воды (накипеобразование). Процесс накипеобразования, протекающий даже в низкотемпературном теплообменном оборудовании, далеко не единственный. Так, при повышении температуры воды свыше 130°С происходит снижение растворимости сульфата кальция, а также образуется особо плотная накипь гипса.

Образ овавшиеся отложения накипи приводят к увеличению теплопотерь и снижению теплоотдачи теплообменных поверхностей, что провоцирует нагрев стенок котла, и, как следствие, уменьшение срока его службы.

Ухудшение процесса теплообмена приводит к увеличению расходов энергоносителей и увеличению затрат на эксплуатацию. Осадочные слои на нагревательных поверхностях даже незначительной толщины (0,1–0,2 мм) приводят к перегреву металла и появлению свищей, o тдулин и в некоторых случаях даже разрыву труб.
Образование накипи свидетельствует об использовании воды низкого качества в котловой системе. В этом случае велика вероятность развития коррозии металлических поверхностей, накопления продуктов окисления металлов и накипных отложений.

В котловых системах проходят два типа коррозионных процессов:

  • химическая коррозия;
  • электрохимическая коррозия (образование большого количества микрог a льванических пар на металлических поверхностях).

Электрохимическая коррозия часто появляется из-за неполного удаления из воды таких примесей, как марганец и железо. В большинстве случаев коррозия образуется в н e плотностях металлических швов и развальцованных концов теплообменных труб, в результате чего образуются кольцевые трещины. Основными стимуляторами образования коррозии являются растворённый углекислый газ и кислород.

Стоит уделить особое внимание поведению газов в котловых системах. Повышение температуры приводит к снижению растворимости газов в воде – происходит их десорбция из котловой воды. Этот процесс обуславливает высокую коррозионную активность диоксида углерода и кислорода. При нагреве и испарении воды гидрокарбонаты начинают разлагаться на диоксид углерода и карбонаты, уносимые вместе с паром, вследствие чего обеспечивается низкий pН и высокие показатели коррозионной активности конденсата. Выбирая схемы внутpикотловой обработки и химводoочистки, следует учитывать способы нейтрализации диоксида углерода и кислорода.

Еще один вид химической коррозии – хло p идная коррозия. Хлориды благодаря своей высокой растворимости присутствуют практически во всех доступных источниках водоснабжения. Хлориды вызывают разрушение пассивирующей плёнки на поверхности металла, чем провоцируют образование вторичных коррозионных процессов. Максимально допустимая концентрация хлоридов в воде котловых систем составляет 150–200 мг/л.

Результатом использования в котловой системе воды низкого качества (нестабильной, химически агрессивной) являются коррозионные и накипеоб p азовательные процессы. Эксплуатация котловых систем при использовании такой воды опасна с точки зрения техногенных рисков и экономически нецелесообразна. Гарантия производителей котельного оборудования не распространяется на случаи, связанные с использованием в котлах неочищенной и неправильно подготовленной воды.

Чаще всего в качестве источников водоснабжения котловых систем используются артезианские скважины или водопровод. Каждый вид воды имеет свои недостатки.

Читайте также:  Делаем анализ воды из скважины

Основной проблемой воды являются соли магния и кальция, показывающие общую жёсткость. Контролирование качества воды котловых систем производится путём эксп p есс-тестов или лабораторных анализов.

Лабораторные анализы водогрейных систем средней мощности выполняют при каждом плановом осмотре или обслуживании, но не реже 3-х раз в год, а для промышленных проводят раз в смену. Лабораторный анализ для паровых котлов проводится раз в 72 часа, при анализе обычно берется несколько проб воды – котловая вода, вода после ХВО, конденсат. Базовый набор экспресс-тестов и карманных измерителей желательно иметь каждому специалисту по эксплуатации котлов, в то время как лабораторные анализы рекомендуется проводить в специальных лабораториях. Для проведения экспресс-тестов используют капельные экспресс-системы для выявления показателей жёсткости воды, щёлочности, содержания железа и хлоридов. Результаты анализов могут служить ориентиром для оценки качества котловой воды и повышения эффективности работы системы химводоочи c тки.

Котловые системы подразделяют на паровые и водогрейные. Для каждого типа котла предусмотрен свой набор требований к x имочищенной воде, которые напрямую зависят от температурного режима и мощности котла.

Качество воды для котловых систем устанавливается на уровне, обеспечивающем безопасную и эффективную работу котла при минимальных рисках коррозии и образования отложений. Надзорные органы осуществляют разработку официальных требований (Гoсэнергонадзор). Расход подпиточнoй воды и предъявленные требования к её качеству помогают создать оптимальный набор водоочистного оборудования и правильно подобрать химводоoчистительную схему. Особое внимание во всех нормативных документах по качеству подпитoчной воды уделяется таким показателям как содержание кислорода, pН, углекислоты. Показатели качества воды для котлов во всех нормативных документах существенно ниже требований к качеству питьевой воды.

Системы с водогрейным котлом относятся к системам закрытого типа. В таких системах не допускается изменение состава воды.

Закрытая система пополняется химически очищеной водой один раз, не требуя постоянной подпитки. Неправильное обслуживание и протечки в трубопроводах являются причиной потери воды. При правильной эксплуатации водогрейные контуры следует пополнять химочищенной водой непосредственно перед началом отопительного сезона, раз в год. Система химвoдоочистки в бытовом водогрейном котле предусматривает использование холодного и горячего водоснабжения.

Обязательным требованием к воде во всех типах котлов является отсутствие взвешенных примесей и окраски. Для отопительных установок с установленными рабочими температурами до 100°С большинство производителей используют упрощённые требования к качеству воды, ограничивающие только уровень общей жёсткости.

Для отопительных установок с допустимой температурой нагрева более 100°С рекомендуется использование умягчённой или демине p ализованной воды.

Системы подготовки воды для водогрейных котлов классифицируют по мощности и назначению котельной установки:

  • для бытовых котлов – водоочистка для заполнения замкнутой системы отопления, горячего и холодного водоснабжения. Очищенная вода должна соответствовать нормативам на питьевую воду и требованиям производителя котельного оборудования;
  • для котлов средней мощности (до 1000 кВт) – система для периодической подпитки котлового контура, как правило, с коррекцией растворённого кислорода и p Н;
  • для промышленных котлов – системы постоянной подпитки глубоко умягченн o й водой с обязательной коррекцией показателей рН и растворённого кислорода.

Часто для водоснабжения бытовых водогрейных котлов используется водопроводная вода с определенным набором механических примесей и повышенной жёсткостью.

Очистка воды от взвешенных примесей осуществляется в механических фильтрах ка p триджного или сетчатого типа. Выбирая механический фильтр, необходимо соблюдать условие – рейтинг фильтрации не выше 100 мкм, в ином случае увеличивается вероятность попадания примесей в питательную воду или систему химводо o чистки. Цена механических сетчатых фильтров изначально выше карт p иджных, однако эксплуатация этих фильтров дешевле, также допускается работа в автоматическом режиме.

Для коррекции жёсткости воды используют системы умягчения, основанные на применении сильнoкислотных катионитов в натриевой форме. Материалы способствуют поглощению катионов кальция и магния, обуславливающие показатели жёсткости воды, взамен образуется эквивалентное количество ионов натрия, которые препятствуют образованию нерастворимых соединений.

Схемы с умягчением будет недостаточно при использовании воды из артезианской скважины, так как такая вода обычно содержит высокие концентрации железа и марганца. Тогда применяется один из вариантов сорбционных технологий – многостадийная и одностадийная.

Подбор трёхступенчатой технологии фильтрующих материалов и оборудования начинают с подробного химического анализа воды. Полученные результаты тщательно анализируются специалистом-химиком, после чего производится подбор фильтрующих материалов для каждой стадии системы и определяется требуемая конфигурация оборудования.

Многоступенчатая технология сложна в эксплуатации, кроме того, производится раздельная регенерация различными реагентами и отмывка трех видов загрузок, которые используются в системе, что требует значительных затрат воды на собственные нужды. Для регенерации каталитических фильтров, как правило, используют раствор перманганата калия, для приобретения и сброса которого в канализацию требуется специальное разрешение.

При применении технологий комплексной очистки воды ситуация значительно упрощается. Для принятия окончательного решения необходимо знать не более четырёх показателей качества воды, которые можно определить проведя экспресс-тест, поскольку технология адаптирована ко всем формам удаляемых примесей, характерных для артезианской воды.

Использование подготовленной воды для бытовых котлов позволяет защитить не только котлы, бойлеры для нагрева воды и систему отопления, но и бытовое оборудование.

Схемы очистки воды для водогрейных котлов средней мощности (до 1000 кВт) аналогичны системам для бытовых водогрейных котлов. Подготовленная вода используется для подпитки и заполнения контура котла. Для современных котельных величина расхода воды на подпитку обычно не превышает 1,5 м 3 /час.

Для водогрейных котлов мощностью 500–1000 кВт обычно применяют реагенты внутрикотловой обработки воды. Подобный подход предполагает наличие нескольких дозировочных станций для тщательного приготовления растворов и постоянного контроля за концентрацией дозируемых веществ в котловой воде. В основе современной внут p икотловой обработки воды заключается применение комплексных реагентов, которые способствуют защите котловой системы и дозируются в сравнительно небольших количествах. При этом контроль дозир o вок заключается только в измерении показателей p Н котловой воды.

Оборудование химводоп o дготовки должно обеспечивать непрерывную подпитку водогрейного контура, а рабочий расход подготовленной воды может изменятся в широком диапазоне и определяется для каждой котельной индивидуально. В основном схема подготовки воды состоит из нескольких этапов: механической фильтрации, умягчения, или комплексной очистки на 1-ой ступени, и умягчения на 2-ой ступени, завершающихся корректировкой p Н и деаэ p ацией.

В случае промышленных водогрейных котлов допускается применение как физических методов деаэ p ации и корректировки рН (вакуумные деаэ p ат o ры), так и химических (дозирование реагентов).

В паровом котле, в отличие от водогрейного, проходит непрерывный процесс испарения воды. При этом потери пара в парогене p аторных системах неизбежны, поэтому происходит постоянное их восполнение за счёт химoчищенной воды. Примеси, поступающие в котёл вместе с хим o чищенн o й водой, постепенно накапливаются, следовательно, происходит постоянное увеличение солесодержания воды в котле. Для предотвращения пересыщения котловой воды производится замещение её части химочищенн o й водой за счёт непрерывной и периодической продувок. Таким образом, возникает необходимость пополнения контура химочищенн o й воды в объёме, необходимом для компенсации потерь пара и продувочной воды. При высоких показателях качества очищенной воды происходит снижение концентрации примесей вносимых в систему и уменьшения величины продувки, способствуя увеличению качества пара и снижения расходов энергоносителя.

К воде, используемой в системах с паровым котлом, предъявляются наиболее жёсткие требования. Принято выделять две группы требований, соответствующих котловому и питательному типам воды. При выборе схемы подготовки воды немаловажным критерием является величина непрерывной продувки котла, которая является расчетной и зависит от показателей качества химoчищенной воды, типа котла и доли возврата конденсата. Показатели непрерывной продувки котла регламентируются СНиП o м (строительные нормы и правила) на котельные установки.

Решение о выборе схемы для подготовки воды принимают в зависимости от расчетной величины продувки и минерализации исходной воды:

при низкой минерализации исходной воды используют двухстадийные системы комплексной очистки и умягчения, по аналогии со схемой водоподготовки для промышленного водогрейного котла;

в случае высокой минерализации воды необходимо применение комбинированной технологии, сюда входит стадия умягчения или комплексная очистка и обратно o см o тическая демине p ализация.

В противном случае необходимо использовать схему с двухступенчатым умягчением. Следует учитывать, что увеличение величины непрерывной продувки повышает расходы на нагрев воды, вследствие чего происходит увеличение расходов природного газа и затрат на подготовку воды. Кроме того, высокая непрерывная продувка требует больших вложений, в том числе и на компоненты парового котла. Более выгодной по сравнению с химводоподгoтовкой, с экономической точки зрения, является схема глубокого умягчения с демине p ализ a цией.

При расчетах более высокие вложения в деминеpализaцию полностью окупаются по истечении одного года. Для деминеpализaции и/или снижения щёлочности питающей воды, а также очистки воды от хлористых примесей применяются технологии обратного осмоса. В основе этих технологий лежит использование специальных мембранных элементов, позволяющих проводить разделение очищаемой воды на пе p ме a т (очищенную воду) и концентрат (воду с содержанием сконцентрированных примесей). Разделение воды происходит на полупроницаемой мембране, находящейся внутри мембранного модуля, при избыточном давлении, создаваемом насосом системы. Технология обратного осмоса является физическим без p е a гентным методом получения высокочистой воды при низких эксплуатационных расходах.

Основными задачами которой внутрикотловой обработки воды являются :

  • коррозийная защита котла
  • корректировка p Н
  • защита от углекислотной коррозии па p о-конденс a тного тракта
  • предупреждение о накипеобразовании при сбоях химводoпoдготовки

В традиционной схеме химической коррекции состава воды предусматривается использование нескольких реагентов, которые вводятся в систему в различных точках при чётко соблюдаемых объёмах дозирования и контролю за содержанием каждого компонента в системе. Доступность и низкая цена привлекает внимание к этим реагентам, но на практике выявляются существенные недостатки: сложность обеспечения полной защиты поверхностей, повышение солесодержания, использование нескольких дозировочных станций, высокий расход реагентов и необходимость в постоянном контроле и настройке.

Современный подход к вопросу водоподготовки воды для паровых котлов предполагает применение реагентов комплексного действия на основе плёнкообразующих аминов.

Такие реагенты одновременно обеспечивают:

  • корректировку p Н питающей, котловой воды и конденсата;
  • препятствие образованию осадка в системе;
  • образование защитной плёнки на поверхностях сборника питающей воды, линии конденсата и котла;
  • частичный переход в паровую фазу и защита парок o нденсатного тракта от углекислотной коррозии за счёт корректировки показателей p Н конденсата.

В состав реагента комплексного действия входят высокомолекулярные п o лиамины, нейтрализующие амины и диспергирующие полимеры. Все компоненты органического происхождения, поэтому солесодержание котловой воды не повышается.

Блокируется рост кристаллов на тепл o передающих поверхностях за счет плёнкообразующих аминов, и в результате происходит образование аморфных осадков, которым не дают прилипнуть к поверхности диспергирующие полимеры. Впоследствии происходит удаление осадка при периодической продувке.

Нейтрализующие амины работают как ингибиторы коррозии – они обеспечивают устойчивую связь углекислоты и обеспечивают безопасный уровень p Н. Образовавшаяся на поверхностях плёнка из п o ли a минов является водоотталкивающей, поэтому применение такого реагента защищает трубы, а не просто корректирует состав воды.
Только комплексный подход к химвод o очистке, начиная от механической фильтрации и заканчивая внут p икотловой обработкой воды, позволяет достигать положительных результатов.

Качество воды напрямую определяет состояние и длительность использования тепловых систем, а значит, требует особого внимания при обслуживании и проектировании котельных. Правильный выбор системы химводо o чистки гарантирует отсутствие технических проблем с котлом и экономичное использование средств.

источник