Меню Рубрики

Полный химический анализ воды для инъекций

Основная задача химического контроля в аптеке – оценка качества изготовления лекарственных средств. Различают два вида химического контроля: качественный и полный анализ (количественный + качественный). При проведении качественного анализа лекарственные средства оцениваются по двум показателям: «Подлинность» и «Испытания на чистоту и допустимые пределы примесей». Полный контроль включает качественный анализ и «Количественное определение ЛС, входящих в состав».

В обязательном порядке качественному анализу подвергаются:

  • Вода для инъекций и очищенная вода: ежедневно. Проверяется отсутствие хлоридов, сульфатов и солей кальция. Воду для изготовления стерильных растворов дополнительно проверяют на отсутствие восстанавливающих веществ, солей аммония и углерода диоксида.
  • Лекарственные средства, концентраты и полуфабрикаты, поступающие из помещений хранения в ассистентскую комнату, а в случае сомнения — лекарственные средства, поступающие в аптеку со склада.
  • Концентраты, полуфабрикаты и жидкие лекарственные средства в бюреточной установке и в штангласах с пипетками в ассистентской комнате при заполнении.
  • Лекарственные средства промышленного производства, расфасованные в аптеке, а изготовленная и расфасованная в аптечном учреждении внутриаптечная заготовка.

Выборочному качественному анализу подвергаются:

  • Изготовленные в аптеке лекарственные формы: у каждого фармацевта в течение рабочего дня, но не менее 10% от общего количества изготовленных лекарственных форм.
  • Гомеопатические разведения четвертого десятичного разведения, содержащие ядовитые и сильнодействующие биологически активные вещества или ядовитые и сильнодействующие неорганические и органические соединения.
  • Результаты качественного анализа регистрируются в журналах по установленным формам.

В обязательном порядке полному химическому контролю подвергаются:

  • Все растворы для инъекций и инфузий до стерилизации, включая определение величины рН, изотонирующих и стабилизирующих веществ. После стерилизации данные растворы проходят проверку на рН, подлинность и количественное содержание действующих веществ.
  • Стерильные растворы для наружного применения (офтальмологические растворы для орошений, растворы для лечения ожоговых поверхностей и открытых ран и др.).
  • Глазные капли и мази, в состав которых входят наркотические и ядовитые вещества.
  • Все лекарственные формы для новорожденных детей.
  • Растворы атропина сульфата и кислоты хлористоводородной (для внутреннего употребления), растворы ртути дихлорида и серебра нитрата.
  • Все концентраты, полуфабрикаты, тритурации, в том числе жидкие гомеопатические разведения неорганических и органических лекарственных веществ и их тритурации до третьего десятичного разведения.
  • Каждая серия всей внутриаптечной заготовки.
  • Стабилизаторы, применяемые при изготовлении растворов для инъекций и буферные растворы, применяемые при изготовлении глазных капель.
  • Концентрация этилового спирта при разведении в аптеке, а в случае необходимости — при приеме со склада.
  • Концентрация этилового спирта в водно-спиртовых гомеопатических растворах, разведениях и каплях.
  • Каждая серия гомеопатических гранул на распадаемость.

Выборочному качественному и количественному анализу в выборочном порядке подвергаются лекарственные формы, изготовленные в аптеке, они проверяются в количестве не менее трех лекарственных форм при работе в одну смену с учетом различных видов лекарственных форм.

Результаты полного химического контроля регистрируются в журнале по установленной форме. В журнале обязательно регистрируются все случаи неудовлетворительного изготовления лекарственных средств.

источник

В контрольно-аналитическую лабораторию из аптеки поступила на анализ вода очищенная и вода для инъекций.

· Где и в какие сроки проводится полный фармакопейный анализ воды очищенной и воды для инъекций? Каким испытаниям подвергаются?

· Можно ли считать воду отвечающей требованиям качества только на основании химического анализа?

· Какие факторы нужно учитывать при организации получения воды в аптеке, её хранения и использования? Каким нормативным документом при этом необходимо пользоваться?

· Как проверяет воду очищенную и воду для инъекций провизор-аналитик в условиях аптеки?

Получение воды очищенной (дистиллированной). Требования, предъявляемые к ней. Вода очищенная ФС 42-2619-89 (Aqua purificata), используемая в производстве инъекционных лекарственных форм, должна быть максимально химически очищена и отвечать соответствующей НТД. В каждой серии полученной воды обязательно проверяют значение рН (5,0—6,8- потенциометрическим методом), наличие восстанавливающих веществ, угольного ангидрида, нитратов, нитритов, хлоридов, сульфатов, кальция и тяжелых металлов ГФ 11 выпуск 2 стр. 165. Допускается наличие аммиака — не более 0,00002%, сухого остатка — не более 0,001%. Воду получают дистилляцией, ионным обменом, обратным осмомом

Испытания на восстан. В-ва выполняют путем кипячения в течении 10 мин. Смеси, состоящей из 100мл воды 2мл р. Серной кислоты 1 мл 0.01 М свежеприг. Р-ра перманг. Калия должно сохраняться розовое окрашивание.

Содержание диоксида углерода контр. По отсут помутнения в теч 1 часа у смеси, сост. Из равных обьемов испытуемой и известковой воды(гидроксид кальция) наполненном и закрытом сосуде.

Отсутствие нитратов и нитритов доказывают по отриц. Реакции с 1 мл 0,05% р-ра дефиниламинак к. серной кислоте( не должно появл. Голубое окраш.

Вода для иньекций должна выдерживать испытания , приведенная фс вода очищ., и быть апироген(гф 11 вып.2 стр.183). Не содержать антимикробных в-в и др. добавок выдерживать испытания на мех. Вкл. Вода очищ. 8мин. 120 хр 30 сут при 25 градусах, вода для ин.вода для стер. Для иньекц годна 24 часа-не простерилизованная.

2.Аптека изготовляет большое количество растворов антисептиков (перекиси водорода, хлорамина Б, серебра нитрата, йода, калия перманганата). Какую воду при этом нужно использовать? Требуется ли дополнительная её подготовка?

· После изготовления раствора калия перманганата 5% было отмечено выпадение осадка. В чем причина, можно ли предотвратить это явление?

· В растворе эуфиллина так же наблюдалось выпадение осадка. Какое соединение выпало в осадок и почему?

· Можно ли использовать для изготовления наружных лекарственных форм воду очищенную независимо от даты её получения?

При изготовлении растворов окислителей проверяют воду очищенную на отсутствие восстанавливающих веществ; а также веществ, образующих осадки при избыточном содержание углексилоты в воде очищенной — для растворов эуфиллина.

Какие лекарственные формы получают с использованием воды из лекарственного растительного сырья?

· Приведите в качестве примера название лекарственных форм, полученных с использованием воды из корневищ с корнями валерианы, пастушьей сумки, листьев толокнянки.

· Назовите латинские наименования перечисленных лекарственных растений, лекарственного сырья, семейств, химический состав, применение в медицине.

Из корневищ с корнями валерианы и пастушьей сумки приготавливают настои, лекарственные формы, получаемые с использованием воды.

Трава пастушьей сумки — Herba Bursae pastoris сырье пастушьей сумки обыкновенной — Capsella bursa-pastoris (L.) Medik., семейства крестоцветных — Brassicaceae (Crucifeme).

Трава пастушьей сумки содержит значительное количество витамина Ki (филлохи-нон), кислоту аскорбиновую, флавоноиды; синигрин; дубильные вещества; р-ситостерин; кислоты органические.

Применяют в качестве кровоостанавливающего средства главным образом при маточных кровотечениях после родов. Более эффективна свежая трава растения. Трава пастушьей сумки усиливает тонус мускулатуры матки и суживает периферические сосуды.

Корневища с корнями валерианы — Rhizomata cum radicibus Valerianae сырье валерианы лекарственной — Valeriana officinalis, семейства валериановых — Valerianaceae

В корневищах валерианы содержится эфирное масло, количество которого колеблется от 0,3 до 2 % в зависимости от ботанической формы растения, Главной составной частью эфирного масла является борнилизовалерианат. В свободном состоянии находятся изо-валериановая кислота и борнеол. В масле содержатся бициклический монотерпеновый спирт — миртинол — в свободном виде и в виде эфира изовалериановой кислоты. Из би циклических монотерпенов присутствуют камфен, из моноциклических терпенов L-лимонен, спирт D-терпинеол. 6-кариофиллен. Кроме эфирного масла, в подземных органах валерианы содержатся основные седативно действующие вещества, называемые ва-лепотриатами

Препараты валерианы — классическое седативное (успокаивающее) средство при состояниях нервного возбуждения, неврозах сердечно-сосудистой системы, сопровождающихся спазмом коронарных сосудов и сердцебиением. Используются также комбинации с другими лекарственными средствами для лечения острых неврозов. Валериана проявляет комплексное лечебное действие (действующие вещества — валепотриаты и их компоненты, свободная изовалериановая кислота; борнилизовалерианат и другие эфиры

Где и в какие сроки будет осуществлена проверка воды на апирогенность?

· К какой группе имущества относится аппарат для получения воды очищенной?

· Какие виды стоимости может иметь данная группа имущества?

· По какой стоимости она будет отражена в бухгалтерском балансе и на счетах?

Проверка воды очищенной на апирогенность осуществляется 1 раз квартал в баклаборатории.

• Аппарат, используемый для получения воды очищенной — аквадистил лятор. Относится к основным средствам (ОС).

• Данная группа средств имеет первоначальную стоимость, восстановительную стоимость, остаточную стоимость.

• Отражение в бухгалтерском балансе производится по остаточной стоя мости на 01 счете — основные средства.

В аналитическую лабораторию поступили инъекционные растворы эуфиллина и кислоты никотиновой. Для их анализа применялся раствор меди сульфата. Обоснуйте выбор данного реагента. Укажите результаты реакции.

· Приведите другие способы идентификации этих препаратов. Обоснуйте.

· Объясните возможность применения эуфиллина в виде растворов для инъекций. Обоснуйте значение рН для этого раствора.

· Какое вещество вводят в состав инъекционного раствора кислоты никотиновой при его изготовлении. Обоснуйте.

Эуфиллин представляет собой белый или белый с желтоватым оттенком кристаллический порошок со слабым аммиачным запахом. Растворим в воде, пэтому можно использовать в виде водных растворов для инъекций.

Реакциями на теофиллин, присутствующий в эуфиллине, является взаимодействие в щелочной среде с солями меди, кобальта, серебра, ртути, т.к. наличие иона водорода имидной группы в положении 7 обусловливает кислотные свойства. С солями кобальта теофиллин образует белый с розоватым оттенком осадок (отличие от теобромина):

Аналогично образуется серебряная соль теофиллина, которая представляет полупрозрачный студенистый осадок.

Этилендиамин в эуфиллине (аминофиллине) открывают с помощью раствора сульфата меди (фиолетовое окрашивание).

Для испытания подлинности кислоты никотиновой Реакции разложения кислоты никотиновой происходят при нагревании с кристаллическим карбонатом натрия. Образуется пиридин, который легко обнаружить по характерному запаху:

Кислота никотиновая ввиду кислотных свойств ее растворов образует окрашенные нерастворимые соли, например, с ионами меди (II) — осадок синего цвета (никотинат меди). В качестве реактива использутю ацетат меди

Если эту реакцию выполнять в присутствии тиоцианата аммония, то получается тройное комплексное соединение, окрашенное в зеленый цвет.

Характерные окрашенные продукты образуют производные никотиновой кислоты (как и другие производные пиридина) с 2,4-динитрохлорбензолом в спиртовой среде после добавления раствора гидроксида натрия. В щелочной среде происходит образование неустойчивой соли пиридиния, имеющей желтую окраску, которая после размыкания цикла превращается в производное глутаконового альдегида (полиметиновое соединение), окрашенное в бурый или красный цвет (с различными оттенками). Затем окраска постепенно исчезает, так как в результате гидролиза образуются 2,4-динитроанилин и глутаконовый альдегид (желтого цвета):

Соли пиридиниевых оснований (полиметиновые основания) образуются и при использовании таких реагентов, как тиоцианат брома (бромродан), тиоцианат хлора (хлорродан), цианид брома, хлороформ, хлоралгидрат. Тиоцианат брома получают при добавлении к бромной воде тиоцианата аммония до обесцвечивания:

Br2 + NH4NCS ¾ BrNCS + NH4Br

В присутствии указанных реагентов при нагревании в щелочной среде происходит размыкание пиридинового цикла:

При последующем добавлении первичных ароматических аминов (анилин, прокаин, сульфацил-натрий) происходит их конденсация с образовавшимся глутаконовым альдегидом и получаются шиффовы основания, окрашенные в желтый, оранжевый или красный цвет:

Кислоту никотиновую можно определить иодометрически после оcаждения никотината меди:

2CuSO4 + 4KI ¾ Cu2I2 + I2 + 2K2SO4

I2 + 2Na2S2O3 ¾ 2NaI + Na2S4O6

Последнее изменение этой страницы: 2016-04-23; Нарушение авторского права страницы

источник

5. Дайте сравнительную характеристику методам очистки, применяемым при получении воды очищенной и воды для инъекций в условиях крупного фармацевтического производства.

Укажите технологические приемы, применяемые для депирогенизации воды для инъекций.

Предложите технологическую и аппаратурную схему участка хранения воды.

Основной способ получения воды для инъекций — дистилляция. Оборудование для данного способа — аквадистилляторы. Основными узлами их являются: испаритель, конденсатор и сборник. Чтобы получить апирогенную воду необходимо отделить капли воды от паровой фазы. Для этой цели служат специальные приспособления разной концентрации — сепараторы они бывают центробежные, плёночные, объёмные, комбинированные. Следует учитывать, что при кипении воды происходит пузырьковое и поверхностное парообразование. Пузырьки пара вырываются из жидкости, увлекают её за собой и превращаются в маленькие капельки, в которых могут быть пирогенные вещества, так как в сущности какая-то часть капель воды остаётся неперегнанной.

Согласно ФС-42-2620-97 вода для инъекций должна удовлетворять всем требованиям, предъявляемым в ФС-42-2619-97 к воде очищенной и быть апирогенной.

Апирогенность- это отсутствие пирогенных веществ, которые вызывают лихорадочное состояние организма при внутрисосудистом введении. Пирогенны являются клеточно-тканевыми продуктами или содержатся в микроорганизмах и выделяются в процессе их жизнедеятельности.

В химическом отношении пирогенны вещества представляют собой липополисахаридные или липополисахаридно-протеиновые комплексы наружных мембран микроорганизмов. Фосфолипидная часть придаёт им отрицательный заряд, поэтому они могут адсорбироваться на положительно-заряженных фильтрующих перегородках. Пирогены не летучие вещества, с водяным паром не перегоняются, поэтому основным методом получения апирогенной воды является дистилляция очищенного пара от попадания капель воды. Пирогены — вещества очень устойчивые, термостойки и разрушаются только при температуре 250-300°С в течение 1-2 часов.

Для удаления пирогенов из растворов лекарственных веществ используют адсорбцию на оксиде аммония, крахмале, активированном угле, целлюлозе, а также на ионообменных смолах, но одновременно адсорбируются лекарственные вещества и, кроме того, сами растворы требуют очистки от механических включений, что является существенным недостатком.

Читайте также:  Полный анализ питьевой воды список показателей

Новым эффективным путём освобождения раствором от пирогенов является ультрафильтрация -это разделение и фракционирование растворов, при котором макромолекулы (от 1000 до 100000 Да) отделяются от раствора низкомолекулярных веществ фильтрацией через мембраны. Например, в настоящее время мембранным фильтром является фильтр «Владипор» с размером пор, способных задерживать более 99% пирогенных веществ.

В условиях крупного фармацевтического производства для получения воды для инъекций используется метод дистилляции и метод обратного осмоса.

Аппарат — термокомпрессионный аквадистиллятор позволяет получить воду для инъекций за счёт сепарации пара и поверхностного парообразования. Он более технически совершенен и производителен, но сложен в эксплуатации.

Дистиллятор Финн-Аква. В этом аппарате получается высококачественная вода для инъекций за счёт сепарации пара и поверхностного парообразования. Обладает высокой производительностью.

Таким образом, получение воды для инъекций методом дистилляции имеет положительные качества:

Возможность получения горячей воды

Возможность обработки оборудования горячим паром

Неэкономичность(из-за большого потребления электроэнергии и воды)

Метод обратного осмоса (гиперфильтрация) — это процесс, основанный на переходе воды из раствора через полупроницаемую мембрану под действием внешнего давления. Разность давления является движущей силой обратного осмоса. Под действием избыточного давления диффундируют молекулы воды, соли и почти все химические соединения проникнуть не могут (задерживаются).

Высокая производительность Отрицательные:

Возможность микробной контаминации

Необходимость замены мембран 24 раза в год

Невозможность обработки оборудования паром

Необходимость обработки оборудования формальдегидом

Хранение воды для инъекций.

Использовать следует свежеприготовленную воду. Максимальный срок хранения воды для инъекций 24 часа в асептических условиях: в специальных системах неинертного материала, где вода находится в постоянном движении при высокой температуре(80-95 С), то есть циркулирует из одной ёмкости в другую с постоянной скоростью.

Оценка качества воды для инъекций производится по следующим показателям:

наличие восстанавливающих примесей;

6. Какие требования предъявляются к воде, используемой в биотехнологическом процессе при выращивании посевного материала и проведения микробиологического синтеза? Проведите сравнение с фармакопейными статьями.

Незаменимым элементом питательных сред является вода, которая составляет единую систему с элементами клетки. Вода-растворитель способствует проникновению в клетку необходимых веществ и выводу из нее продуктов обмена. В клетках вода находится и в виде соединений с углеводами, белками и другими веществами, тесно взаимодействуя с макромолекулами клетки. Гидратирование и дегидратирование органических молекул — важнейший этап в превращении химических компонентов цитоплазмы. Вода участвует в реакциях гидролиза и конденсации, поддерживает объёмную структуру клетки при наличии гидростатического давления.

Для питательных сред используют специально подготовленную воду.

Очистка воды проходит 4 стадии:

1) удаление механических загрязнений на префильтре (пористое стекло, электрокоагуляция);

2) очистка от органических загрязнений (активированный уголь);

3) деионизация с использованием ионообменных смол (катиониты, аниониты);

4) стерилизация на мембранных фильтрах с размером пор от 0,22 до 0,45 мкм.

Анализ воды очищенной и воды для инъекций в условиях аптек проводится согласно требованиям ФС 42-2619-97. Согласно приказу № 214 от 16 июля 1997 г. «… вода очищенная ежедневно на каждом рабочем столе проверяется на отсутствие хлоридов, сульфатов и солей кальция. Вода, предназначенная для изготовления растворов для инъекций, для новорожденных и глазных капель, кроме указанных выше испытаний должна быть проверена на отсутствие восстанавливающих веществ, аммиака и углекислоты в соответствии с требованиями Государственной фармакопеи. Ежеквартально вода направляется в контрольно-аналитическую лабораторию для полного химического анализа.

Анализ воды очищенной и воды для инъекций в условиях аптек

1. Хлориды (недопустимая примесь)

I пробирка: 10 мл воды + 0,5 мл разведенной азотной кислоты, делят на 2 равные части;

II пробирка: ко 2 части + 0,25 мл AgNO3

Через 5 мин содержимое пробирок сравнивают

2. Сульфаты (недопустимая примесь)

I пробирка: 10 мл воды + 0,5 мл разведенной HCl, делят на 2 равные части;

II пробирка: ко 2 части + 0,5 мл BaCl2

Через 10 мин содержимое пробирок сравнивают

3. Соли кальция (недопустимая примесь)

I пробирка: 10 мл воды + 1 мл NH4Cl + 1 мл раствора NH3, делят на 2 равные части;

Через 10 мин содержимое пробирок сравнивают

I пробирка: 10 мл воды + 0,15 мл реактива Несслера,

II пробирка: к 1 мл эталонного раствора аммиака + 9 мл воды, не содержащей NH3 + 0,15 мл реактива Несслера

Через 5 мин обе пробирки сравнивают. Окраска, появившаяся в испытуемой воде, не должна превышать окраски в эталоне

5. Восстанавливающие вещества

100 мл воды нагревают до кипения, добавляют 1 мл раствора KMnO4 (0,01 моль/л), УЧ (1/5 KMnO4), 2 мл разведенной серной кислоты и кипятят 10 мин.

Розовое окрашивание должно сохраняться

К 5 мл воды добавляют 5 мл известковой воды, закрывают пробкой, взбалтывают.

Через 1 час не должно появиться мути

Примечание. Недопустимые примеси определяют по следующей схеме: К 10 мл испытуемого раствора прибавляют применяемые для каждой реакции реактивы, кроме основного реактива. Затем раствор делят на 2 равные части: к одной из них прибавляют основной реактив и оба раствора сравнивают между собой, между ними не должно быть заметной разницы.

Нитраты и нитриты (недопустимая примесь). К 5 мл воды прибавляют 1 мл раствора дифениламина в кислоте серной концентрированной; не должно появиться голубого окрашивания. В присутствии нитратов и нитритов дифениламин окисляется до окрашенного дифенилдифенохинондиимина гидросульфата.

Определение сухого остатка (представляет собой нелетучие примеси). Выпаривают 100 мл воды на водяной бане, затем высушивают при 100-105 0 С до постоянной массы и взвешивают. Остаток не должен превышать 0,001%.

Для обнаружения солей тяжелых металлов (недопустимая примесь) проводят реакцию с раствором натрия сульфида в присутствии кислоты уксусной разведенной:

Не должно быть бурого окрашивания. Наблюдение окраски проводят по оси пробирок диаметром около 1,5 см, помещенных на белую поверхность.

Микробиологическая чистота соответствует требованиям к питьевой воде – не более 100 микроорганизмов в 1 мл и не более 3 бактерий группы кишечной палочки в 1 литре. При отсутствии бактерий сем. Enterobacteriaceae, Staphylococcus aureus, Pseudomonas aeruginosa. Испытания проводят по ФС “Испытание на микробиологическую чистоту”. На воде очищенной готовят микстуры и жидкости для наружного применения.

Хранение: вода очищенная простерилизованная в течение 8 мин при 120 о С имеет срок годности 30 сут. при 25 о С.

Aqua pro injectionibus. Вода для инъекций

Должна отвечать требованиям, предъявляемым к воде очищенной. Вода для инъекций также должна быть апирогенной, не содержать антимикробных веществ и других добавок. Для определения пирогенности инъекционных препаратов и, в том числе воды для инъекций в настоящее время используют ЛАЛ-реактив, наряду с испытаниями на кроликах. Имеется ФС «Бактериальные эндотоксины» в которой описаны требования к ЛАЛ-реактиву, процедура анализа, расчеты предельного содержания бактериальных эндотоксинов.

ЛАЛ-тест может быть использован в медицине для ранней диагностики заболеваний, вызванных грамотрицательными бактериями. С его помощью можно быстро обнаружить бактериальные эндотоксины. Основан тест на способности лизатов амебоцитов (клеток крови) мечехвоста Limulus polyphemus (Лизат Амебоцитов Лимулюс – ЛАЛ-реактив) специфически реагировать с эндотоксинами бактерий (липополисахаридами). Реакция между эндотоксинами и лизатом дает помутнение реакционной смеси и увеличение ее вязкости вплоть до образования плотного геля. Такой результат является доказательством присутствия эндотоксинов. Анализ называется гель-тромб-тест. Метод используется для качественного и количественного определения реального содержания бактериальных эндотоксинов в испытуемом препарате.

Основным методом проведения анализа на соответствие показателю «Бактериальные эндотоксины» является качественный анализ. Если в частной статье ГФ нет других указаний, проводится качественный анализ. Этот метод является также арбитражным.

ЛАЛ-реактив представляет собой лиофилизированный препарат. Вода для ЛАЛ- теста должна соответствовать требованиям, предъявляемым к «Воде для инъекций». Она не должна содержать бактериальные эндотоксины в количестве, определяемым используемым ЛАЛ-реактивом в данном тесте.

Преимуществом данного реактива перед тестом на кроликах заключается в его высокой чувствительности. Кроме того, определение не требует много времени, результат может быть получен через 30-60 мин.

Для производства ЛАЛ-реактивов используют кровь мечехвостов.

Используют воду для инъекций свежеприготовленную или хранящуюся не более 24 часов при температуре 5-10 0 С или 80-95 0 С в закрытых ёмкостях из материала, не изменяющего свойства воды, защищающего от пыли и микробной обсеменённости. Воду для инъекций в ампулах выпускают в ампулах из нейтрального стекла по 1,2,3,5,10,20 мл, которые стерилизуют при 120 0 С в течение 20 минут. Контроль стерильности проводят по ГФ XI (Т. 2 стр. 187).

источник

Вода для инъекций – это стерильная жидкость прозрачного цвета. У нее нет запаха, вкуса и цвета. Применение этой воды необходимо для инъекций внутривенно, внутримышечно и под кожу. Ее используют, чтобы приготовить лекарственные растворы для инъекций, инфузионные растворы, а также для растворения препаратов. Кроме этого, ее применяют и наружно – увлажняют перевязочный материал, промывают раны. Вода для инъекций( в/в; в/м; п/к:) должна соответствовать требованиям ГФ. Эта жидкость поставляется в стеклянных ампулах или ампулах, изготовленных из полимерного волокна. Ампулы бывают на 1, 1.5, 2, 5, 10 мл.

Воду для инъекций следует применять в стерильных условиях и придерживаться их, вскрывая лекарственные средства, ампулы и шприцы. Такая осторожность необходима потому, что вода для инъекций используется с препаратами, которые напрямую контактируют с кровью и со слизистыми оболочками. Если возникнет подозрительный осадок, такой раствор запрещено использовать. Следует отметить, что в случае применения масляного растворителя или какого-то другого, воду для инъекций уже не используют. Это очень важный момент, поэтому подготавливая все к инъекции, необходимо уточнить информацию о растворителе, который нужен для определенного лекарственного средства. Воду для инъекций нельзя смешивать со средствами для наружного применения.

Дозировка воды для инъекций, как растворителя для различных препаратов, происходит строго по инструкции или по назначению врача. На первый взгляд, такая жидкость может показаться безобидным средством, но это не так. Рассеянное отношение к такому процессу может вызвать нежелательные последствия, поэтому следует забыть о самолечении. Воду для инъекций можно приобрести в аптеке без предоставления рецепта.

Цель: осуществить контроль качества лекарственного средства — воды для инъекций различных производителей:

  1. Изучить ассортимент воды для инъекций в аптеках города Зеи.
  2. Провести контроль качества воды для инъекций различных производителей.
  3. Сделать вывод о качестве воды различных производителей.

1. Контроль качества воды для инъекций разных производителей

Для исследования воды для инъекций различных изготовителей мной были взяты и пронумерованы следующие образцы.

  • Образец № 1- вода для инъекций ОАО «ДАЛЬХИМФАРМ»
  • Образец № 2 –вода для инъекций ОАО «НОВОСИБХИМФАРМ»

1.1. Приемочный контроль

Образцы № 1 и № 2 были проверены согласно приказу МЗ РФ от 16 июля 1997 г. N 214 на соответствие по показателям «Описание», «Упаковка», «Маркировка».

Контроль по показателю «Описание» включает проверку внешнего вида, цвета. В случае сомнения (другой цвет оболочки, помутнение и т.п.) проводят сравнение с описанием, обозначенным в инструкции по применению препарата. При несоответствии описания воды для инъекции не подлежит приемке.

При проверке по показателю «Упаковка» обращают внимание на ее целостность (групповая и индивидуальная упаковка не должны быть повреждены, подмочены и т.п.), наличие инструкции или листка-вкладыша на русском языке. При отсутствии вторичной упаковки на каждую первичную упаковку должна быть инструкция. В этом случае обращают особое внимание на условия хранения, обозначенные в тексте инструкции.

При контроле по показателю «Маркировка» обращается внимание на четкость маркировки, ее соответствие на первичной, вторичной и групповой упаковке, соответствие номера серии препарата номеру серии в накладной.

Оба образца соответствуют приказу МЗ РФ от 16 июля 1997 г. N 214 и прошли приемочный контроль.

1.2. Органолептический контроль.

Характер запаха воды определяют ощущением воспринимаемого запаха (землистый, хлорный, нефтепродуктов и др.). Определение запаха при 20 °С.

В колбу с притертой пробкой вместимостью 250 — 350 см 3 отмеривают 100 см 3 испытуемой воды с температурой 20 °С. Колбу закрывают пробкой, содержимое колбы несколько раз перемешивают вращательными движениями, после чего колбу открывают и определяют характер и интенсивность запаха.

Определение запаха при 60 °С.

В колбу отмеривают 100 см 3 испытуемой воды. Горлышко колбы закрывают часовым стеклом и подогревают на водяной бане до 50 — 60 °С.

Содержимое колбы несколько раз перемешивают вращательными движениями.

Сдвигая стекло в сторону, быстро определяют характер и интенсивность запаха.

Интенсивность запаха воды определяют при 20 и 60°С и оценивают по пятибалльной системе согласно требованиям.

Результат: оба образца при 20 и 60 0 С не имеют запах – оценка интенсивности запаха равна 0 баллов.

Различают четыре основные вида вкуса: соленый, кислый, сладкий, горький.

Все другие виды вкусовых ощущений называются привкусами.

Характер вкуса или привкуса определяют ощущением воспринимаемого вкуса или привкуса (соленый, кислый, щелочной, металлический и т.д.).

Испытываемую воду набирают в рот малыми порциями, не проглатывая, задерживаю 3 — 5 с. Интенсивность вкуса и привкуса определяют при 20 °С и оценивают по пятибалльной системе согласно требованиям.

Читайте также:  Полный и сокращенный химический анализ воды

Результат: оба образца не имеют привкус – оценка интенсивности вкуса и привкуса равна 0 баллов.

Цветность воды определяют фотометрически — путем сравнения проб испытуемой жидкости с растворами, имитирующими цвет природной воды. Для проведения испытаний применяют следующие аппаратуру, материалы, реактивы: фотоэлектроколориметр (ФЭК) с синим светофильтром (λ = 413 нм); кюветы с толщиной поглощающего свет слоя 5 — 10 см.

Приготовление основного стандартного раствора (раствор № 1)

0,0875 г двухромовокислого калия (К2Cr2О7), 2,0 г сернокислого кобальта (CoSO4 · 7H2O) и 1 см 3 серной кислоты (плотностью 1,84 г/см 3 ) растворяют в дистиллированной воде и доводят объем раствора до 1 дм 3 . Раствор соответствует цветности 500°.

Приготовление разбавленного раствора серной кислоты (раствор № 2)

1 см 3 концентрированной серной кислоты плотностью 1,84 г/см 3 доводят дистиллированной водой до 1 дм 3 .

Приготовление шкалы цветности

Для приготовления шкалы цветности используют набор цилиндров Несслера вместимостью 100 см 3 .

В каждом цилиндре смешивают раствор № 1 и раствор № 2 в соотношении, указанном на шкале цветности.

Градусы цветности

Раствор в каждом цилиндре соответствует определенному градусу цветности. Шкалу цветности хранят в темном месте. Через каждые 2 — 3 месяца ее заменяют.

Результат: оба образца имеют цветность менее 5 градусов цветности.

1.3. Полный химический анализ.

Часть исследуемой воды для инъекций объемом 15-20 см 3 сливаем в химический стакан вместимостью 50 см 3 и используют для измерения рН. Настройку рН-метра проводят по трем буферным растворам с рН 4,01, 6,80 и 9,18, приготовленным из стандарт-титров. Показания прибора считывают не ранее чем через 1,5 мин после погружения электродов в измеряемую среду, после прекращения дрейфа измерительного прибора. Во время работы настройку прибора периодически проверяют по буферному раствору с рН 6,86.

Рис.5. Измерение рН в исследуемом образце № 1

Результат: 1 образец – рН1 -7,1; рН2 – 6,9; рНсредняя — 7,0+-0,2

Результат: 2 образец — рН1 -7,15; рН2 – 6,9 ;рНсредняя — 7,05+-0,2

  • Определение хлоридов

50 см 3 анализируемой воды для инъекций помещают в чашку, прибавляют 0,1 см 3 раствора углекислого натрия и выпаривают досуха. Остаток растворяют в 3 см 3 воды, если раствор мутный его фильтруют через плотный беззольный фильтр «синяя лента», промытый 1%-ным горячим раствором азотной кислоты, и переносят в пробирку с плоским дном вместимостью 15 см 3 , диаметром 15мм. Чашку смывают 2 см 3 воды, присоединяя промывные воды к раствору, прибавляют при перемешивании 0,5 см 3 25%-ного раствора азотной кислоты и 0,5 см 3 раствора азотнокислого серебра.

Воду считают соответствующей требованиям настоящего стандарта, если наблюдаемая через 20 мин на темном фоне опалесценция анализируемого раствора не будет интенсивнее апалесценции раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме: 0,001 мг. CI, 0,1 см 3 раствора углекислого натрия, 0,5 см 3 25%-ного раствора азотной кислоты и 0,5 см 3 раствора азотнокислого серебра.

Результат: оба образца содержат не более 0,02 мг/л CI — .

  • Определение сульфатов

40 см 3 анализируемой воды для инъекций помещают в стакан вместимостью 50 см 3 ( с меткой на 10 см 3 ) и упаривают на электроплите до метки затем охлаждают, прибавляют медленно при помешивании 2 см 3 этилового спирта, 1 см 3 раствора соляной кислоты и 3 см 3 раствора хлористого бария, предварительно профильтрованного через плотный беззольный фильтр «синяя лента».

Воду считают соответствующей требованиям настоящего стандарта, если опалесценция анализируемого раствора, наблюдаемая на темном фоне через 30 мин, не будет интенсивнее опалесценции раствора сравнения приготовленного одновременно с анализируемым и содержащего: 10 см 3 анализируемой воды, содержащей 0,015 мг SO4 , 2 см 3 этилового спирта, 1 см 3 раствора соляной кислоты и 3 см 3 раствора хлористого бария.

Результат: оба образца содержат не более 0,5 мг/лSO4 2- .

  • Определение жесткости.

Жесткость воды является одним из основных показателей, характеризующим применение воды в различных отраслях.

Жесткостью воды называется совокупность свойств, обусловленных содержанием в ней щелочноземельных элементов, преимущественно ионов кальция и магния.

Жесткостью воды называется совокупность свойств, обусловленных концентрацией в ней щелочноземельных элементов, преимущественно ионов кальция (Са 2+ ) и магния (Mg 2+ ). Жесткость воды выражается в градусах жесткости (°Ж). Градус жесткости соответствует концентрации щелочноземельного элемента, численно равной 1/2 его моля, выраженной в мг/дм 3 (г/м 3 ). Метод основан на образовании комплексных соединений трилона Б с ионами щелочноземельных элементов. Определение проводят титрованием пробы раствором трилона Б при рН = 10 в присутствии индикатора. Наименьшая определяемая жесткость воды — 0,1 °Ж.

Если исследуемая проба была подкислена для консервации или проба имеет кислую среду, то в аликвоту пробы добавляют раствор гидроксида натрия до рН = 6 — 7. Если проба воды имеет сильнощелочную среду, то в аликвоту пробы добавляют раствор соляной кислоты до рН = 6 — 7. Контроль рН проводят по универсальной индикаторной бумаге или с использованием рН-метра. Для удаления из воды карбонат и бикарбонат ионов (что характерно для подземных или бутылированных вод) после добавления к аликвоте пробы раствора соляной кислоты до рН = 6 — 7 проводят ее кипячение или продувание воздухом или любым инертным газом в течение не менее пяти минут для удаления углекислого газа. Критерием наличия в воде значительного количества карбонатов может служить щелочная реакция воды.

Присутствие в воде более 10 мг/дм 3 ионов железа; более 0,05 мг/дм 3 каждого из ионов меди, кадмия, кобальта, свинца; свыше 0,1 мг/дм 3 каждого из ионов марганца (II), алюминия, цинка, кобальта, никеля, олова, а также цветность более 200 °Ж и повышенная мутность вызывают при титровании нечеткое изменение окраски в точке эквивалентности и приводят к завышению результатов определения жесткости. Ортофосфат- и карбонат-ионы могут осаждать кальций в условиях титрования при рН = 10.

Порядок проведения определений

Выполняют два определения, для чего пробу анализируемой воды делят на две части.

В колбу вместимостью 250 см 3 помещают первую часть аликвоты пробы анализируемой воды объемом 100 см 3 , 5 см 3 буферного раствора, от 5 до 7 капель раствора индикатора или от 0,05 до 0,1 г сухой смеси индикатора и титруют раствором трилон Б.

Вторую часть аликвоты пробы объемом 100 см 3 помещают в колбу вместимостью 250 см 3 , добавляют 5 см 3 буферного раствора, от 5 до 7 капель раствора индикатора или от 0,05 до 0,1 г сухой смеси индикатора, добавляют раствор трилона Б, которого берут на 0,5 см 3 меньше, чем пошло на первое титрование, быстро и тщательно перемешивают и титруют (дотитровывают).

Результат: общая жесткость в двух образцах составляет менее 0,1 0 Ж.

  • Определение сухого остатка

500см 3 анализируемой воды для инъекций приливают порциями в платиновую или кварцевую чашку, предварительно прокаленную при 600-700 0 С до постоянной массы, и выпаривают на водяной бане или под инфракрасной лампой, соблюдая меры предосторожности во избежание загрязнения, для этого закрывают чашку воронкой большого диаметра, укрепленной на штативе, или выпаривают в боксе из органического стекла. Затем чашку с сухим остатком выдерживают в течение 1 часа в сушильном шкафу при 105-110 0 С, охлаждают в эксикаторе и взвешивают. Все взвешивания производят на весах с наибольшим пределом взвешивания 200г, результат взвешивания записывают с точностью до четвертого десятичного знака. Воду считают соответствующей требованиям настоящего стандарта, если масса сухого остатка не будет превышать 2,5 мг.

Сухой остаток сохраняют для определения остатка после прокаливания.

Определение остатка после прокаливания

Чашку с остатком после выпаривания, прокаливают в течении 5 мин при 600-700 0 С , охлаждают в эксикаторе и взвешивают (результат взвешивания записывают с точностью до четвертого десятичного знака).

Воду считают соответствующей требованиям настоящего стандарта, если масса остатка прокаливания не будет превышать 0,5 мг.

Результат: образец № 1 – 1,1 мг/л.

  • Определение аммиака и аммонийных солейПроведение анализа

100 см 3 анализируемой воды для инъекций помещают в пробирку вместимостью 120 см 3 (с притертой пробкой), диаметром 20 мм, прибавляют 2,5 см 3 раствора гидроокиси натрия и перемешивают. Затем прибавляют 1 см 3 реактива Несслера и снова перемешивают.

Воду считают соответствующей требованиям настоящего стандарта, если наблюдаемая через 20 мин по оси пробирки окраска анализируемого раствора не будет интенсивнее окраски раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме: 100 см 3 воды, не содержащей аммиака и аммонийных солей, 0,002 мг NH4 , 2,5 см 3 раствора гидроокиси натрия 1 см 3 реактива Несслера.

Результат: оба образца содержат не более 0,001 мг/см 3 NH4 .

  • Определение нитратов

25 см 3 анализируемой воды для инъекций помещают в чашку, прибавляют 0,005 см 3 раствора гидроокиси натрия, перемешивают и выпаривают досуха. Чашку сразу же снимают с бани, к сухому остатку прибавляют 1 см 3 раствора хлористого натрия, 0,5 см 3 раствора индигокармина и осторожно при перемешивании добавляют 5 см 3 серной кислоты.

Через 15 мин содержимое чашки количественно переносят в коническую колбу вместимостью 50 см 3 , чашку ополаскивают в два приема 25 см 3 дистиллированной воды, присоединяя ее к основному раствору, и содержимое колбы перемешивают.

Воду считают соответствующей требованиям настоящего стандарта, если окраска анализируемого раствора не будет слабее окраски раствора сравнения, приготовленного следующим образом: в фарфоровую чашку помещают , 0,5 см 3 раствора, 0,005 см 3 NO3 , 0,05 см 3 раствора гидроокиси натрия и выпаривают досуха на кипящей водяной бане. Чашку сразу же снимают с водяной бани; далее сухой остаток обрабатывают таким же образом одновременно с сухим остатком, полученным после выпаривания анализируемой воды, прибавляя также количества реактивов в том же порядке

Результат: оба образца содержат не более 0,01 мг/см 3 NO3 .

  • Определение железа

40 см 3 анализируемой воды для инъекций помещают в пробирку из бесцветного стекла вместимостью 100 см 3 (с притертой пробкой), диаметром 20 мм, прибавляют 0,5 см 3 раствора серной кислоты, 1 см 3 раствора надсернокислого аммония, 3 см 3 раствора роданистого аммония, перемешивают, прибавляют 3,7 см 3 изоамилового спирта, тщательно перемешивают и выдерживают до расслоения раствора.

Воду считают соответствующей требованиям настоящего стандарта, если наблюдаемая окраска спиртового слоя анализируемого раствора не будет интенсивнее окраски спиртового слоя раствора сравнения, приготовленного одновременно с анализируемым таким же образом и содержащего: 20 см 3 анализируемой воды, 0,001 мг Fe 0,25 см 3 раствора серной кислоты, 1 см 3 раствора надсернокислого аммония, 1,5 см 3 раствора роданистого аммония , 3 см 3 изоамилового спирта.

Результат: оба образца содержат не более 0,1 мг/см 3 .

  • Определение кальция

10 см 3 анализируемой воды для инъекций помещают в чашку и выпаривают досуха. Сухой остаток обрабатывают 0,2 см 3 раствора соляной кислоты и количественно переносят 5 см 3 воды в пробирку из бесцветного стекла вместимостью 15 см 3 . Затем прибавляют 1 см 3 раствора гидроокиси натрия, 0,5 см 3 раствора мурексида и перемешивают.

Воду считают соответствующей требованиям настоящего стандарта, если наблюдаемая через 5 мин розовато-фиолетовая окраска анализируемого раствора по розовому оттенку не будет интенсивнее окраски раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме: 0,008 мг Са, 0,2 см 3 раствора соляной кислоты, 1 см 3 раствора гидроокиси натрия, 0,5 см 3 раствора мурексида.

Результат: оба образца содержат не более 0,01 мг/см 3- .

  • Определение медиПроведение анализа

50 см 3 анализируемой воды для инъекций помещают в пробирку из бесцветного стекла вместимостью 100 см 3 (с притертой пробкой), диаметром 20 мм, прибавляют 1 см 3 раствора соляной кислоты, перемешивают, прибавляют 3,8 см 3 изоамилового спирта и дважды по 1 см 3 раствора диэтилдитиокарбамата натрия, перемешивая немедленно после прибавления каждой порции раствора диэтилдитиокарбамата натрия в течении 1 мин и выдерживают до расслоения.

Воду считают соответствующей требованиям настоящего стандарта, если наблюдаемая окраска спиртового слоя анализируемого раствора не будет интенсивнее окраски спиртового слоя раствора сравнения, приготовленного одновременно с анализируемым таким же образом и содержащего: 25 см 3 анализируемой воды, 0,0005 мг Сu 1 см 3 раствора соляной кислоты, 3 см 3 изоамилового спирта и 2 см 3 раствора диэтилдитиокарбамата натрия.

Результат: оба образца содержат не более 0,001 мг/см 3- .

  • Определение свинцаПроведение анализа

20 см 3 анализируемой воды для инъекций помещают в чашку и выпаривают досуха. Сухой остаток обрабатывают 1 см 3 раствора уксусной кислоты и снова выпаривают досуха. Затем чашку охлаждают, остаток смачивают 0,1 см 3 раствора уксусной кислоты, количественно переносят 3 см 3 воды в пробирку из бесцветного стекла с плоским дном вместимостью 15 см 3 диаметром 15 мм, прибавляют 0,2 см 3 раствора железистосинеродистого калия, 0,25 см 3 раствора сульфарсазена, перемешивают, прибавляют 2 см 3 раствора тетраборнокислого натрия и снова перемешивают.

Воду считают соответствующей требованиям настоящего стандарта, если окраска анализируемого раствора, наблюдаемая по оси пробирки в проходящем свете на белом фоне, не будет интенсивнее окраски стандартного раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме: 0,001 мг РЬ, 0,1 см 3 раствора уксусной кислоты, 0,2 см 3 раствора железистосинеродистого калия, 0,25 см 3 раствора сульфарсазена, и 2 см 3 раствора тетраборнокислого натрия.

Читайте также:  Полный анализ воды из колодца

Результат: оба образца содержат не более 0,0 01 мг/см 3- .

  • Определение цинкаПроведение анализа
  • см 3 анализируемой воды для инъекций помещают в чашку и выпаривают досуха. Чашку охлаждают, сухой остаток, количественно переносят 3 см 3 воды в пробирку из бесцветного стекла с плоским дном вместимостью 15 см 3 диаметром 15 мм, прибавляют при перемешивании 0,8 см 3 раствора винной кислоты, 0,2 см 3 раствора лимонной кислоты, 0,8 см 3 раствора аммиака и 0,5 см 3 раствора сульфарсазена. Воду считают соответствующей требованиям настоящего стандарта, если окраска анализируемого раствора, наблюдаемая по оси пробирки в проходящем свете на белом фоне, не будет интенсивнее окраски стандартного раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме: 0,001 мг Zn, 0,8 см 3 раствора винной кислоты, 0,2 см 3 раствора лимонной кислоты, 0,8 см 3 раствора аммиака и 0,5 см 3 раствора сульфарсазена.

Результат: оба образца содержат не более 0,0 1 мг/см 3

Проанализировав различных производителей воды для инъекций, проведя исследования образцов № 1 и №2 на органолептические показатели и полный химический анализ, можно сделать вывод: обе воды для инъекций почти идентичны друг другу и отличаются только по показателям рН и сухому остатку. Из вышесказанного я предлагаю широко использовать воду для инъекций обеих производителей в аптеках города Зеи и области для внутривенных, внутримышечных и подкожных инъекций и для приготовления лекарственных растворов для инъекций, инфузионных растворов, а также для растворения препаратов и для наружного применения для увлажнения перевязочного материала и промывания ран.

  1. Изучен ассортимент воды для инъекций в аптеках города Зея.
  2. Проведен контроль качества воды для инъекций различных производителей(Дальхимфарм, Новосибхимфарм)
  3. По результатам исследования оба образца воды для инъекций соответствуют требованиям, регламентируемые фармакопейными статьями ФС 42-2619-97 «Вода очищенная» и ФС 42-2620-97 «Вода для инъекций».
  1. Для реализации воды очищенной для инъекций рекомендуются оба образца.
  2. При отпуске воды очищенной для инъекций покупателям следует проверить целостность упаковки, срок годности, по возможности органолептические свойства.
  3. Напоминать потребителям о правилах хранения, применения воды для инъекций.
  1. Муравьев И.А. Технология лекарств. Том 2-М: Медицина,1980;
  2. Государственный регистр лекарственных средств России. Энциклопедия лекарств. Ежегодный сборник.1993 г.;
  3. Государственная фармакопея СССР – 10 изд. — М: Медицина ,1968;
  4. Государственная фармакопея СССР- 11изд, Выпуск 2, 1989;
  5. ГОСТ 17768-90 Лекарственные средства.

источник

К 10 мл воды прибавляют 0,5 мл разведенной азотной кислоты, 0,5 мл 2% раствора нитрата серебра. Через 5 минут вода должна оставаться прозрачной.

В присутствии примесей хлоридов выпадает белый творожистый осадок (или белая опалесценция), не растворимый в азотной кислоте и растворимый в растворе гидрооксида аммония.

К 10 мл воды прибавляют 0,5 мл разведенной хлористоводородной кислоты, 1 мл 5 % раствора бария хлорида. Через 1 0 минут вода должна оставаться прозрачной.

В присутствии примесей сульфатов наблюдают выделение белого кристаллического осадка, который не растворим в растворах минеральных кислот и щелочей.

К 10 мл воды добавляют 1 мл раствора оксалата аммония. Через 10 минут вода должна оставаться прозрачной.

В присутствии солей кальция наблюдают белый осадок, растворимый в азотной и соляной кислотах, но не растворимый в уксусной кислоте и растворе гидроксида аммония.

АЛГОРИТМ ВНУТРИАПТЕЧНОГО КОНТРОЛЯ ВОДЫ ОЧИЩЕННОЙ

1. Работа с рецептом не проводится

Проверка записей в «Журнале регистрации результатов контроля «Воды очищенной», «Воды для инъекций».

3. Органолептический контроль

Бесцветная прозрачная жидкость без запаха и механических включений.

4.Физический контроль—Не проводится.

По приказу МЗ РФ № 214 от 16.10.97 проводится качественный химический контроль на отсутствие примесей хлоридов, сульфатов, солей кальция.

6.Оформление результатов контроля

Сделать записи в «Журнале регистрации результатов контроля «Воды очищенной», «Воды для инъекций» (наличие и отсутствие ионов отмечается знаком + или -).

Состоит в проверке правильности оформления баллонов для ассистентской:

проверить этикетку: Aguae purificatae, Дата получения.

— поставить номер анализа и подпись.

ВНУТРИАПТЕЧНЫЙ КОНТРОЛЬ ВОДЫ ДЛЯ ИНЪЕКЦИЙ. AQUA PRO INJECTIONIBUS.

Определение примесей хлоридов, сульфатов и солей кальция см. выше.

4. Восстанавливающие вещества.

100 мл воды доводят до кипения, прибавляют 2 мл разведённой серной к-ты, 1 мл 0,01 моль/л р-ра перманганата калия и кипятят 10 минут. Розовая окраска должна сохраниться. В присутствии примесей восстанавливающих веществ происходит обесцвечивание р-ра.

К 10 мл воды (в пробирке) прибавляют 3 капли реактива Несслера. Через 5 минут вода должна оставаться бесцветной или допускается едва заметное, слегка желтоватое окрашивание.

При взбалтывании воды очищенной с равным объемом известковой воды в наполненном доверху и хорошо закрытом сосуде не должно быть помутнения в течение 1 часа.

В присутствие примесей диоксида углерода наблюдают появление белой мути.

Алгоритм внутриаптечного контроля воды для инъекций составьте самостоятельно, аналогично приведенному выше.

АНАЛИЗ РАСТВОРА ПЕРЕКИСИ ВОДОРОДА 3 % — 50 МЛ № 20 ВНУТРИАПТЕЧНАЯ ЗАГОТОВКА

Яр: Solutio Hydrogenii peroxydi 50 ml

№ 20 Внугриаптсчная заготовка

Бесцветная прозрачная жидкость без запаха или со слабым своеобразным запахом, кислой реакции среды.

К 0,5 мл препарата прибавляют 2—3 капли разведенной серной кислоты, 1 2 мл эфира, 3-4 капли раствора калия дихромата и взбалтывают. Эфирный слой окрашивается в синий цвет.

При стоянии синяя окраска переходит в зеленую, вследствие восстановления Cr(VI) в Cr(III).

Помещают 2 мл препарата в мерную колбу емкостью 50 мл и объем доводят водой до метки, перемешивают.

1. Метод перманганатометрии

К 5 мл полученного раствора прибавляют 3 мл разведенной серной кислоты и титруют 0,1 моль/л раствором калия перманганата до слабо-розового окрашивания.

T=Cf •f •M/1000=0,1 •1/2 •34,01/1000=0,001701 г/мл

5 мл полученного раствора помещают в склянку с притертой пробкой, прибавляют 2 мл раствора калия иодида, 3 мл разведенной серной кислоты и оставляют в темном месте на 10 минут. Выделившийся иод титруют 0,1 моль/ л раствором натрия тиосульфата до обесцвечивания (индикатор — крахмал).

11мл 0,1 моль/л раствора калия перманганата или натрия тиосульфата соответствует 0,001701 г перекиси водорода, которой в препарате должно быть 2,7 — 3,3 %.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

источник

Проводится согласно требованиям ФС 42-2619-97. Согласно приказу
№ 214 от 16 июля 1997 года «. вода очищенная ежедневно на каждом рабочем месте проверяется на отсутствие хлоридов, сульфатов и солей кальция. Вода, предназначенная для изготовления растворов для инъекций, для новорожденных и глазных капель, кроме указанных выше испытаний, должна быть проверена дополнительно на отсутствие восстанавливающих веществ, аммиака и углекислоты в соответствии с требованиями Государственной фармакопеи. Ежеквартально вода направляется в контрольно-аналитическую лабораторию для полного химического анализа».

Анализ воды очищенной

Определяемая примесь Методика Результат анализа
1. Хлориды (недопустимая примесь) I пробирка: 10 мл воды + 0,5 мл разведенной азотной кислоты, делят на 2 равные части; II пробирка: ко 2 части + 0,25 мл AgNO3 (HNO3) Cl – + AgNO3 ¾® AgCl¯ + NO3 Через 5 мин содержимое пробирок сравнивают.
2. Сульфаты (недопустимая примесь) I пробирка: 10 мл воды + 0,5 мл разведенной HCl, делят на 2 равные части; II пробирка: ко 2 части + 0,5 мл BaCl2 (HCl) SO4 2– + BaCl2 ¾® BaSO4¯ + 2Cl – Через 10 мин содержимое пробирок сравнивают.
3. Соли кальция (недопустимая примесь) I пробирка: 10 мл воды + 1 мл NH4Cl + 1 мл раствора NH3, делят на 2 равные части; II пробирка: ко 2 части +0,5 мл (NH4)2C2O4 (NH4Cl, NH4OH) Ca 2+ +(NH4)2C2O4¾¾¾¾®CaC2O4¯+2NH4 + Через 10 мин содержимое пробирок сравнивают.

Анализ воды для инъекций

Определяемая примесь Методика Результат анализа
1. Хлориды см. выше
2. Сульфаты см. выше
3. Соли кальция см. выше
4. Аммиак (не более 0,00002%) I пробирка: 10 мл воды + 0,15 мл реактива Несслера; II пробирка: к 1 мл эталонного раствора аммиака + 9 мл воды, не содержащей NH3 + 0,15 мл реактива Несслера. NH3 + 2K2[HgI4] + 3KOH ® ® [O á ñ NH2] I – + 7KI + 2H2O Через 5 мин обе пробирки сравнивают. Окраска, появившаяся в испытуемой воде, не должна превышать окраски в эталоне.
5. Восстанавли- вающие вещества 100 мл воды нагревают до кипения, добавляют 1 мл раствора KmnO4 (0,01 моль/л), УЧ (1/5 KmnO4) 2 мл разведенной серной кислоты и кипятят 10 мин. 5Na2SO3 + 2KmnO4 + 3H2SO4 ® ® 2MnSO4 + K2SO4 + 5Na2SO4 + 3H2O Розовое окрашивание должно сохраниться.
6. Углекислота К 5 мл воды добавляют 5 мл известковой воды, закрывают пробкой, взбалтывают. CO2 + Ca(OH)2 ® CaCO3 ¯ + H2O Через 1 час не должно появиться мути.

Недопустимые примеси определяют по следующей схеме: К 10 мл испытуемого раствора прибавляют применяемые для каждой реакции реактивы, кроме основного реактива. Затем раствор делят на 2 равные части: к одной из них прибавляют основной реактив и оба раствора сравнивают между собой, между ними не должно быть заметной разницы.

Вопросы для подготовки студентов к лабораторным занятиям № 1-2 и контроля усвоения темы

1. Назовите внешние факторы, которые могут неблагоприятно влиять на лекарственные вещества при их хранении.

2. Назовите источники и причины примесей в лекарственных веществах.

3. Напишите уравнения химических реакций взаимодействия калия перманганата с соединениями, которые могут изменить его окраску.

4. Какая реакция применяется для обнаружения примеси солей кальция? Можно ли провести эту реакцию при рН раствора 2-3?

5. С каким реактивом определяют примесь солей аммония в сравнении с эталоном? На чем основана реакция?

6. Из какого вещества готовят эталонный раствор аммоний-иона?

7. Какие условия необходимо соблюдать при определении примесей с помощью эталонных растворов?

8. Какие жидкости считаются бесцветными?

9. Из какого вещества готовят эталонный раствор цинк-иона? Особенности приготовления раствора. Приведите уравнение фармакопейной реакции на цинк-ион.

10. Как проводят испытание на чистоту, если в ФС указано, что в данной концентрации раствора не должно обнаруживаться той или иной примеси?

11. Из какого вещества готовят эталонный раствор железо (III)-иона? Чем стабилизируют раствор? С каким реактивом и в какой среде определяют примесь солей железа?

12. Какой раствор, согласно требованиям ГФ Х1, считают прозрачным? Из каких веществ готовят эталоны мутности?

13. Из какого вещества готовят эталонный раствор для определения примеси тяжелых металлов? С какими реактивами проводят испытания?

14. Из каких веществ готовят эталонные растворы хлор-иона и сульфат-иона? С какими реактивами и в какой среде проводят определение этих примесей?

15. Какими методами, согласно ГФ Х1, проводится испытание на мышьяк в лекарственных веществах?

16. Какие требования предъявляются к реакциям, применяемым для определения примесей в лекарственных веществах?

17. Перечислите способы выражения растворимости, принятые ГФ Х1 для характеристики лекарственных веществ.

18. Какие факторы могут влиять на изменение растворимости лекарственных веществ?

19. Каким образом ГФ Х1 регламентирует допустимые примеси, обусловливающие: а) изменение цвета лекарственных веществ; б) изменение растворимости?

20. Приведите принцип расчета навески для приготовления эталонных растворов.

21. Решите задачи 1-8 из «Сборника ситуационных задач по фармацевтической химии» (для студентов 3 курса) – Пермь, 2001, с.3 [9].

22. Какие требования предъявляют ФС к воде очищенной и воде для инъекций?

23. Какие примеси в воде очищенной и воде для инъекций ФС допускают в определенных пределах и каких примесей не должно быть? Различия в проведении методик анализа. Уравнения реакций.

24. Как необходимо хранить воду очищенную и воду для инъекций? Какие факторы внешней среды могут влиять на их качество?

25. На каких свойствах нитратов и нитритов основана реакция их обнаружения с дифениламином? Напишите уравнения реакций, назовите продукты.

26. Как проводится определение восстанавливающих веществ в воде очищенной? Как проявляется внешний эффект данной реакции при наличии в воде очищенной восстанавливающих веществ?

27. Сроки хранения в аптеках воды очищенной и воды для инъекций.

28. Как часто и где должен проводиться полный химический анализ воды очищенной и воды для инъекций?

29. Какому обязательному качественному анализу должна подвергаться вода очищенная при внутриаптечном контроле?

30. Каким дополнительным испытаниям должна подвергаться вода, предназначенная для изготовления стерильных растворов, в условиях аптеки?

Тема: Титрованные растворы в ГФ Х1 издания. Приготовление.

4. Установка преподавателя о порядке проведения занятия.

5. Самостоятельная работа студентов.

5.1. Расчет навески для приготовления определенного объема титрованного раствора.

5.2. Установка поправочного коэффициента к молярной концентрации титрованных растворов (К) по методикам ГФ Х1.

5.3. Укрепление и разбавление титрованного раствора (теоретический расчет).

3. Оформление протоколов и отчет преподавателю.

источник