Меню Рубрики

Хроматографический анализ трансформаторного масла нормы

Хроматографический анализ газов, растворенных в трансформаторном масле

Необходимость контроля за изменением состава масла в процессе эксплуатации трансформаторов ставит вопрос о выборе такого аналитического метода, который смог бы обеспечить надежное качественное и количественное определение содержащихся в трансформаторном масле соединений. В наибольшей степени этим требованиям отвечает хроматография, представляющая собой комплексный метод, объединивший стадию разделения сложных смесей на отдельные компоненты и стадию их количественного определения. По результатам этих анализов проводится оценка состояния маслонаполненного оборудования.

Хроматографический анализ газов, растворенных в масле, позволяет выявить дефекты трансформатора на ранней стадии их развития, предполагаемый характер дефекта и степень имеющегося повреждения. Состояние трансформатора оценивается сопоставлением полученных при анализе количественных данных с граничными значениями концентрации газов и по скорости роста концентрации газов в масле. Этот анализ для трансформаторов напряжением 110 кВ и выше должен осуществляться не реже 1 раза в 6 месяцев.

Основными газами, характеризующими определенные виды дефектов в трансформаторе, являются: водород Н2, ацетилен С2Н2, этан С2Н6, метан СН4, этилен С2Н4, окись СО и двуокись СО2 углерода.

Водород характеризует дефекты электрического характера (частичные, искровые и дуговые разряды в масле); ацетилен — перегрев активных элементов; этан — термический нагрев масла и твердой изоляции обмоток в диапазоне температур до 300°С; этилен — высокотемпературный нагрев масла и твердой изоляции обмоток выше 300°С; окись и двуокись углерода — перегрев и разряды в твердой изоляции обмоток.

С помощью анализа количества и соотношения этих газов в трансформаторном масле можно обнаружить следующие дефекты в трансформаторе.

1. Перегревы токоведущих частей и элементов конструкции магнитопровода. Основные газы: этилен или ацетилен. Характерные газы: водород, метан и этан. Если дефектом затронута твердая изоляция, заметно возрастают концентрации окиси и двуокиси водорода.

Перегрев токоведущих частей может определяться: выгоранием контактов переключающих устройств; ослаблением крепления электростатического экрана; ослаблением и нагревом контактных соединений отводов обмотки низкого напряжения или шпильки проходного изолятора ввода; лопнувшей пайкой элементов обмотки; замыканием проводников обмотки и другими дефектами.

Перегрев элементов конструкции магнитопровода может определяться: неудовлетворительной изоляцией листов электротехнической стали; нарушением изоляции стяжных шпилек, ярмовых балок с образованием короткозамкнутого контура; общим нагревом и недопустимыми местными нагревами от магнитных полей рассеяния в ярмовых балках, бандажах, прессующих кольцах; неправильным заземлением магнитопровода и другими дефектами.

2. Дефекты твердой изоляции. Эти дефекты могут быть вызваны перегревом изоляции от токоведущих частей и электрическими разрядами в изоляции. При перегреве изоляции от токоведущих частей основными газами являются окись и двуокись углерода, их отношение СО2/СО, как правило, больше 13; характерными газами с малым содержанием являются водород, метан, этилен и этан; ацетилен, как правило, отсутствует.

При разрядах в твердой изоляции основными газами являются ацетилен и водород, а характерными газами любого содержания — метан и этилен. При этом отношение СО2/СО, как правило, меньше 5.

3. Электрические разряды в масле. Это частичные, искровые и дуговые разряды. При частичных разрядах основным газом является водород; характерными газами с малым содержанием — метан и этилен. При искровых и дуговых разрядах основными газами являются водород и ацетилен; характерными газами с любым содержанием — метан и этилен.

После выявления дефекта и его подтверждения не менее чем двумя-тремя последующими измерениями следует планировать вывод трансформатора из работы прежде всего с дефектами группы 2. Чем раньше выведен из работы трансформатор с развивающимся дефектом, тем меньше риск его аварийного повреждения и объем ремонтных работ.

Если по результатам диагностики трансформатор должен быть выведен из работы, но по каким-то объективным причинам это невозможно осуществить, его следует оставить на контроле с учащенным отбором проб масла и хромотографическим анализом газов.

Хроматографический анализ газов, растворенных в масле, позволяет выявлять не только развивающиеся дефекты в трансформаторе, но и общее состояние изоляции его обмоток. Объективным показателем, позволяющим оценить степень износа изоляции обмоток трансформатора, является степень ее полимеризации, снижение которой прямо характеризует глубину физико-химического разрушения (деструкции) изоляции в процессе эксплуатации. Деструкции целлюлозной изоляции сопутствует рост содержания в трансформатором масле окиси и двуокиси углерода и образование фурановых производных. В частности, наличие суммарной концентрации СО и СО2 более 1% может свидетельствовать о деградации целлюлозной изоляции. Образование фурановых производных является прямым следствием старения бумажной изоляции.

Метод жидкостной хроматографии позволяет определять и контролировать требуемое содержание в трансформаторном масле антиокислительных присадок, защищающих масло и другие изоляционные материалы трансформатора от старения.

источник

Необходимость контроля за изменением состава масла в процессе эксплуатации трансформаторов ставит вопрос о выборе такого аналитического метода, который смог бы обеспечить надежное качественное и количественное определение содержащихся в трансформаторном масле соединений. В наибольшей степени этим требованиям отвечает хроматография, представляющая собой комплексный метод, объединивший стадию разделения сложных смесей на отдельные компоненты и стадию их количественного определения. По результатам этих анализов проводится оценка состояния маслонаполненного оборудования.

Хроматографический анализ газов, растворенных в масле, позволяет выявить дефекты трансформатора на ранней стадии их развития, предполагаемый характер дефекта и степень имеющегося повреждения. Состояние трансформатора оценивается сопоставлением полученных при анализе количественных данных с граничными значениями концентрации газов и по скорости роста концентрации газов в масле. Этот анализ для трансформаторов напряжением 110 кВ и выше должен осуществляться не реже 1 раза в 6 месяцев [1, 14].

Основными газами, характеризующими определенные виды дефектов в трансформаторе, являются: водород Н 2 , ацетилен С 2 Н 2 , этан С 2 Н 6 , метан СН 4 , этилен С 2 Н 4 , окись СО и двуокись СО 2 углерода.

Водород характеризует дефекты электрического характера (частичные, искровые и дуговые разряды в масле); ацетилен – перегрев активных элементов; этан – термический нагрев масла и твердой изоляции обмоток в диапазоне температур до 300°С; этилен – высокотемпературный нагрев масла и твердой изоляции обмоток выше 300°С; окись и двуокись углерода – перегрев и разряды в твердой изоляции обмоток.

С помощью анализа количества и соотношения этих газов в трансформаторном масле можно обнаружить следующие дефекты в трансформаторе.

1 . Перегревы токоведущих частей и элементов конструкции магнитопровода . Основные газы: этилен или ацетилен. Характерные газы: водород, метан и этан. Если дефектом затронута твердая изоляция, заметно возрастают концентрации окиси и двуокиси водорода.

Перегрев токоведущих частей может определяться: выгоранием контактов переключающих устройств; ослаблением крепления электростатического экрана; ослаблением и нагревом контактных соединений отводов обмотки низкого напряжения или шпильки проходного изолятора ввода; лопнувшей пайкой элементов обмотки; замыканием проводников обмотки и другими дефектами.

Перегрев элементов конструкции магнитопровода может определяться: неудовлетворительной изоляцией листов электротехнической стали; нарушением изоляции стяжных шпилек, ярмовых балок с образованием короткозамкнутого контура; общим нагревом и недопустимыми местными нагревами от магнитных полей рассеяния в ярмовых балках, бандажах, прессующих кольцах; неправильным заземлением магнитопровода и другими дефектами.

2. Дефекты твердой изоляции . Эти дефекты могут быть вызваны перегревом изоляции от токоведущих частей и электрическими разрядами в изоляции. При перегреве изоляции от токоведущих частей основными газами являются окись и двуокись углерода, их отношение

СО 2 /CO, как правило, больше 13; характерными газами с малым содержанием являются водород, метан , этилен и этан; ацетилен , как правило, отсутствует.

При разрядах в твердой изоляции основными газами являются ацетилен и водород, а характерными газами любого содержания — метан

и этилен. При этом отношение СО 2 /CO , как правило, меньше 5.

3. Электрические разряды в масле . Это частичные, искровые и дуговые разряды. При частичных разрядах основным газом является водород; характерными газами с малым содержанием — метан и этилен. При искровых и дуговых разрядах основными газами являются водород

и ацетилен; характерными газами с любым содержанием — метан и этилен.

После выявления дефекта и его подтверждения не менее чем двумятремя последующими измерениями следует планировать вывод трансформатора из работы прежде всего с дефектами группы 2. Чем раньше выведен из работы трансформатор с развивающимся дефектом, тем меньше риск его аварийного повреждения и объем ремонтных работ.

Если по результатам диагностики трансформатор должен быть выведен из работы, но по объективным причинам это невозможно осуществить, его следует оставить на контроле с учащенным отбором проб масла и хромотографическим анализом газов.

Хроматографический анализ газов, растворенных в масле, позволяет выявлять не только развивающиеся дефекты в трансформаторе, но и общее состояние изоляции его обмоток. Объективным показателем, позволяющим оценить степень износа изоляции обмоток трансформатора, является степень ее полимеризации, снижение которой

прямо характеризует глубину разрушения (деструкции) изоляции в процессе эксплуатации. Деструкции целлюлозной изоляции сопутствует рост содержания в трансформатором масле окиси и двуокиси углерода и образование фурановых производных. В частности, наличие суммарной концентрации СО и СО 2 более 1% может свидетельствовать о деградации целлюлозной изоляции. Образование фурановых производных является прямым следствием старения бумажной изоляции.

Метод жидкостной хроматографии позволяет определять и контролировать требуемое содержание в трансформаторном масле антиокислительных присадок, защищающих масло и другие изоляционные материалы трансформатора от старения.

Трансформаторы являются наиболее сложным оборудованием систем электроснабжения. Ремонт трансформатора, связанный с его разгерметизацией, выемкой и ремонтом активной части, требует высокой квалификации ремонтного персонала, больших материальных и временных затрат.

Вывод трансформатора в ремонт через определенный календарный промежуток времени не может считаться достаточно оправданным, поскольку в плановый ремонт может быть выведен вполне работоспособный трансформатор. Поэтому текущие и капитальные ремонты трансформаторов систем электроснабжения проводят в соответствии с их действительным техническим состоянием (система РТС).

Для оценки действительного состояния трансформатора при его техническом обслуживании периодически проводятся профилактические проверки, измерения, испытания, диагностирование. При обнаружении явных или прогнозировании развивающихся дефектов, которые могут привести к отказу трансформатора планируется вывод его в ремонт.

Предварительно проводится ряд мероприятий, обеспечивающих четкое выполнение ремонтных работ: подготовка помещения (площадки), грузоподъемных механизмов, оборудования, инструментов, материалов, запасных частей. Кроме того, составляются ведомость объема работ и смета, которые являются исходными документами для определения трудовых и денежных затрат, сроков ремонта, потребности в материалах.

Любой ремонт трансформатора, связанный с разгерметизацией и выемкой активной части относится к капитальному. В зависиости от состояния активной части различают:

капитальный ремонт без замены обмоток;

капитальный ремонт с частичной или полной заменой обмоток, но без ремонта магнитной системы;

капитальный ремонт с заменой обмоток и частичным или полным ремонтом магнитной системы.

Ремонт трансформаторов мощностью до 6300 кВ . А выполняется, как правило, на специализированных ремонтных предприятиях. Ремонт трансформаторов большей мощности, у которых затраты на транспортировку могут превосходить стоимость ремонта, выполняется непосредственно на подстанциях. В этом случае персонал специализированного ремонтного предприятия выезжает к месту установки трансформатора.

По завершению ремонта активная часть трансформатора промывается сухим трансформаторным маслом. Для старого электрооборудования со сроком службы более 25 лет следует использовать интенсивную промывку активной части, добавляя в промывочное масло специальные присадки, обладающие повышенной растворяющей способностью. Это позволяет интенсифицировать процесс выделения из изоляции и активной части трансформатора воды, механических примесей, продуктов старения масла и твердых изоляционных материалов, что положительно сказывается на характеристиках изоляции.

Твердая изоляция обмоток трансформатора обладает гигроскопичностью. В период выполнения ремонтных работ на открытой активной части изоляция обмоток впитывает влагу из окружающей среды. Поэтому по окончании ремонта возникает вопрос о необходимости сушки изоляции обмоток трансформатора.

Трансформаторы, у которых при ремонте выполнялась полная или частичная замена обмоток, подлежат обязательной сушке. Трансформаторы, прошедшие ремонт без замены обмоток, могут быть включены в работу без сушки изоляции при условиях, что:

характеристики изоляции не выходят за пределы нормированных значений;

продолжительность пребывания активной части на открытом воздухе Т откр при определенной его влажности не превышает значений, приведенных в табл. 4.1.

Сушка изоляции существляется ее нагреванием в вакуумных шкафах, сухим горячим воздухом в специальных камерах, в собственном баке (без масла).

Вакуум ускоряет испарение влаги и облегчает условия ее выделения из изоляции. Предварительно нагретую активную часть трансформатора помещают в вакуумный шкаф. Выдерживая определенный режим температуры и вакуума, проводят сушку изоляции. Этот способ сушки достаточно сложный, требует значительных затрат и применяется, как

правило, на трансформаторов и крупных ремонтных предприятиях.

При сушке изоляции сухим нагретым воздухом активную часть трансформатора помещают в теплоизолированную и защищенную изнутри от возгорания камеру. В нижнюю часть камеры с помощью воздуходувки подается нагретый сухой воздух, удаляемый через вытяжное отверстие в верхней части камеры.

Одним из наиболее распространенных в эксплуатации является способ сушки изоляции в собственном баке без масла с применением вакуума, допустимого для конструкции бака. На поверхности бака 1 (рис. 9.6) размещается намагничивающая обмотка 2, подключаемая к источнику переменного напряжения U . Между баком и обмоткой прокладывается слой теплоизоляции (асбест или стеклоткань).

При протекании по обмотке переменного тока в стальных конструкциях трансформатора возникает переменный магнитный поток. Токи, индуктируемые этим потоком, нагревают трансформатор. Влага из изоляции обмоток испаряется.

В отверстие в крышке бака трансформатора вставляется вытяжная труба 3, через которую пары влаги вытягиваются в приемник конденсата 5 4. Этот насос создает внутри бака разряжение, допустимое для данной конструкции бака.

Рис. 9.6. Принципиальная схема сушки изоляции трансформатора

В [9, 10] приводятся аналитические выражения для расчета параметров намагничивающей обмотки.

При всех способах сушки с помощью термодатчиков

контролируется температура активной части трансформатора, которая должна быть в пределах 95…105 о С.

В процессе сушки периодически измеряется сопротивление изоляции. При проведении измерений питание намагничивающей

источник

Эффективный метод выявления дефектов оборудования на ранней стадии развития, не обнаруживаемых традиционными способами

Хроматографический анализ газов растворенных в масле, является специальным методом, служащим для обнаружения повреждений и дефектов конструктивных узлов электрооборудования, но практически не информирующем о качестве и состоянии самого масла. Хроматографический анализ (ХАРГ) позволяет:

  • отслеживать развитие процессов в оборудовании,
  • выявлять дефекты на ранней стадии их развития, не обнаруживаемые традиционными способами,
  • определять предполагаемый характер дефекта и степень имеющегося повреждения
  • ориентироваться при определении места повреждения.

Для оценки состояния маслонаполненного оборудования используются газы: водород (Н2), метан (CH4), этан (C2H6), этилен (C2H4), ацетилен (С2Н2), угарный газ (CO), углекислый газ (CO2). Кроме этого, всегда присутствуют кислород и азот, а их концентрация изменяется в зависимости от герметичности корпуса трансформатора и могут выделяться такие газы как пропан, бутан, бутен и другие, но их исследование в диагностических целях не получило широкого распространения.

Состояние оборудования оценивается сопоставлением полученных при анализе количественных данных с граничными значениями концентрации газов и по скорости роста концентрации газов в масле. Важно различать нормальные и чрезмерные объемы газа. Нормальное старение или газовая генерация изменяется в зависимости от конструкции трансформатора, нагрузки и типа изоляционных материалов.

Взаимосвязь основных газов и наиболее характерных видов дефектов.

Водород (Н2) Дефекты электрического характера: частичные разряды, искровые и дуговые разряды
Метан (CH4) Дефекты термического характера: нагрев масла и бумажно-масляной изоляции в диапазоне температур (400-600)°С
или нагрев масла и бумажно-масляной изоляции, сопровождающийся разрядами;
Этан (C2H6) Дефекты термического характера: нагрев масла и бумажно-масляной изоляции в диапазоне температур (300-400)°С;
Этилен (C2H4) Дефекты термического характера: нагрев масла и бумажно-масляной изоляции выше 600°С
Ацетилен (С2Н2) Дефекты электрического характера: электрическая дуга, искрение
Угарный газ (CO) Дефекты термического характера: старение и увлажнение масла и/или твердой изоляции;
Углекислый газ (CO2) Дефекты термического характера: старение и увлажнение масла и/или твердой изоляции;
нагрев твердой изоляции
Читайте также:  Анализ мазка эпителий норма у мужчин

С2Н4 — в случае нагрева масла
и бумажно-масляной
изоляции выше 600°С

— нагрев и выгорание контактов переключающих устройств;
— ослабление и нагрев места крепления электростатического экрана;
— обрыв электростатического экрана; — ослабление винтов компенсаторов отводов НН;
— ослабление и нагрев контактных соединений отвода НН и шпильки проходного изолятора;
— лопнувшая пайка элементов обмотки: замыкание параллельных и элементарных проводников обмотки и др

С2Н2 — в случае перегрева масла,
вызванного дуговым разрядом.

Перегревы элементов конструкции остова. — неудовлетворительная изоляция листов электротехнической стали;
— нарушение изоляции стяжных шпилек или накладок, ярмовых балок с образованием короткозамкнутого контура;
— общий нагрев и недопустимый местный нагрев от магнитных полей рассеяния в ярмовых балках, бандажах,
рессующих кольцах и винтах;
— неправильное заземление магнитопровода;
— нарушение изоляции амортизаторов и шипов поддона реактора, домкратов и прессующих колец
при распрессовке и др. Частичные разряды Н2 СН4 и С2Н2
с малым содержанием
Искровые и дуговые разряды Н2 или С2Н2 СН4 и С2Н2
с любым содержанием Ускоренное старении и/или увлажнение твердой изоляции СО и СO2 Перегрев твердой изоляции СO2

Для получения объективных результатов хроматографического анализа трансформаторного масла необходимо квалифицированно произвести отбор проб из маслонаполненного оборудования. Более подробные требования по отбору проб трансформаторного масла представлены в разделе Отбор проб масла

Периодичность проведения ХАРГ трансформаторного масла

Наименование оборудования Периодичность
для трансформаторов 110 кВ и выше не реже 1 раза в 6 месяцев
для герметичных вводов, имеющих удовлетворительные результаты регламентных испытаний
— для вводов 110-220 кВ
— для вводов 330-750 кВ
1 раз в 4 года
1 раз в 2 года

Преимущество этого метода состоит в том, что образцы масла можно отобрать в любое время без вывода оборудования из работы.

Детальную информацию по проведению и использованию хроматографического анализа трансформаторного масла вы можете получить из руководящих документов:

  • РД 153-34.0-46.302-00 «Методические указания по диагностике развивающихся дефектов трансформаторного оборудования по результатам хроматографического анализа газов, растворенных в масле»
  • РД 34.46.303-98 «Методические указания по подготовке и проведению хроматографического анализа газов, растворенных в масле силовых трансформаторов»

источник

Хроматографический анализ газов в масле (ХАРГ) — один из наиболее чувствительных и точных методов оценки состояния маслонаполненного оборудования. Этот вид контроля давно и довольно широко используется в эксплуатации для диагностики состояния измерительных трансформаторов (ИТ) несмотря на то, что требования к выполнению этого анализа не включены в РД [1]. Поскольку до настоящего времени отсутствуют российские нормативы граничного содержания газов в масле нормально работающих ИТ, заключение по результатам анализа в эксплуатации нередко дается на основании зарубежного опыта (Стандарт МЭК [2]) или российских норм для силовых трансформаторов и вводов РД [3]. Такой подход представляется неправильным и необоснованным.

Действительно, по данным российских авторов [4, 5] и опыта, накопленного в энергопредприятиях, граничные значения для ИТ разных конструкций и классов напряжения могут быть различными и значительно отличаются от нормативов, предлагаемых в [2, 3].

Поэтому установление граничных концентраций газов в масле работающих ИТ представляется авторам достаточно актуальной задачей. В настоящей статье обсуждаются результаты ХАРГ эксплуатируемых трансформаторов тока (ТТ) звеньевой конструкции типа ТФЗМ и трансформаторов напряжения (ТН) типа НКФ.

Для получения статистически значимых выборок данных авторами статьи был собран большой объем результатов ХАРГ при профилактическом контроле ИТ. В выборках представлены данные об ИТ, эксплуатируемых в различных климатических регионах, в том числе ОАО «Ленэнерго», МЭС Северо-Запада, Центра, Юга, сетевых предприятий Сибири, Урала и Дальнего Востока, Центрального региона. Расчет граничных значений проводился с помощью экспертно-диагностической информационной системы «Альбатрос», разработанной И.В. Давиденко, Уральский Политехнический институт, с программным модулем статистической обработки результатов ХАРГ согласно требованиям РД [6, п. 4]. В базу данных для расчета включалось по одному результату анализа при профилактическом контроле каждой единицы ИТ.

В отличие от РД [6] – число интервалов для расчета было увеличено с 15 до 50; – в качестве граничных концентраций газового компонента в масле нормально работающих в эксплуатации ИТ рассматривались расчетные значения концентрации, соответствующие уровням интегральной функции распределения F = 0,90 или 0,95. Установленные таким образом значения граничных концентраций оказываются не превышенными у 90 или 95 % общего количества ИТ рассматриваемой группы. Данные, собранные отдельно по классам напряжения для каждого типа ИТ, группировались в выборки для расчета граничных концентраций вначале по отдельным предприятиям. Это позволило рассмотреть влияние региональных климатических условий на процессы, происходящие в изоляции, а также таких факторов, как особенности измерительного комплекса и парка оборудования.

Существенных отличиймежду граничными концентрациями для разных предприятий внутри групп по типам и классам напряжения ИТ обнаружено не было. Это позволило объединить выборки по предприятиям в каждой группе в одну расчетную выборку. Для подтверждения диагностической ценности установленных граничных концентраций газов были рассмотрены случаи забракованных в эксплуатации и аварийных ИТ с дефектами, известными по результатам разборки. Диагностика состояния по результатам ХАРГ проводилась по методике, включающей различные диагностические критерии, в том числе [6, п.2] с использованием граничных концентраций газов. Газ с максимальным отношением измеренного и граничного значений считался основным, остальные газы с отношениями измеренного и граничного значения больше единицы считались газами с высоким содержанием. Вид развивающегося дефекта определялся по сочетанию основного и характерных газов [6, табл.1]. Полученные диагнозы сопоставлялись с результатами разборки ИТ и/или с результатами измерения других характеристик изоляции.

Результаты расчета граничных концентраций для ТТ звеньевой конструкции типа ТФЗМ (старое название ТФНД) 220 и 500 кВ по объединенным выборкам представлены в табл. 1. Как видно из табл. 1, у этих двух выборок граничные значения всех газов довольно близки. (Необходимо отметить, что данные по ТФЗМ-500 имелись лишь для нижних блоков). С учетом того, что трансформаторов тока типа ТФЗМ-500 выпускаются в двухступенчатом исполнении (2 блока по 220 кВ), то есть конструкция изоляции у них одинакова, эти две выборки были объединены.

Результаты расчета для объединенной выборки 528 единиц представлены в последней строке табл.

1. Результаты расчета граничных значений содержания газов в масле ТФЗМ-110 представлены в табл.

2. У этих ТТ обращают на себя внимание высокие значения граничных концентраций некоторых газов. А именно, граничные концентрации водорода Н2, метана СН4 и этана С2Н6 у ТФЗМ класса напряжения 110 кВ на два порядка выше, чем у ТФЗМ классов напряжения 220 и 500 кВ, хотя граничные значения остальных газов низкие и близки к ТФЗМ других классов напряжения.

Если учесть, что в обоих случаях речь идет о негерметичной конструкции (со свободным дыханием), то трудно объяснить, почему высокие концентрации имеют место для газов с малой растворимостью в масле: водорода и метана. При этом достоверность результатов анализа не вызывает сомнений, поскольку на тех же предприятиях, на которых получены высокие граничные концентрации газов для ТФЗМ-110, граничные концентрации у ТТ других типов и классов напряжения гораздо ниже. Можно предположить, что это явление связано с какими-то особенностями конструкции или недостатками технологии изготовления ТФЗМ 110 кВ. Так, объем масла в ТФЗМ 110 кВ почти в 7 раз меньше, чем в ТФЗМ 220 кВ (сравним соотношение объемов в других конструкциях ТТ соседних классов напряжения. Например, у ТТ типа ТФРМ 330 кВ масса масла меньше, чем у ТФРМ 500 кВ всего в 1,2 раза). Возможно, именно малый объем масла и оказывает влияние на повышение концентраций газов у ТФЗМ 110 кВ, однако это касается только трех газов.

С другой стороны, хотя расчет граничных значений для ТФЗМ 110 кВ был выполнен по статистически значимому количеству единиц (467), работающих на многих предприятиях и в разных климатических регионах, на самом деле число работающих в ФСК и энергокомпаниях ТФЗМ 110 кВ намного больше. Не исключено, что при более широком охвате парка ТФЗМ-110 хроматографическим анализом можно ожидать некоторого снижения этих значений. Этот вопрос требует дальнейшего изучения, поэтому в настоящее время полученные для ТФЗМ 110 кВ граничные значения можно рекомендовать как справочные. Результаты расчета граничных концентраций газов в масле ТН типа НКФ по классам напряжения (уровни F = 0,90 и 0,95) представлены для сравнения в табл. 3.

Объемы выборок по классам напряжения представлены в единицах ТН, а для классов напряжения 220-500 кВ (поскольку это блочная конструкция и пробы масла на анализ берутся из каждого блока) дано и количество блоков 110 кВ. Из табл. 3 видно, что при достаточно представительных объемах выборок граничные концентрации газов у ТН разных классов напряжения достаточно близки между собой. Это позволяет объединить их вобщую выборку, тем более с учетом одинаковой конструкции блоков. Результаты расчета граничных значений для суммарной выборки ТН 110-500 кВ типа НКФ объемом 1291 блок (814 единиц) представлены в последней строке табл.3. Следует отметить, что расчетные значения концентраций углеводородных газов для ИТ (кроме ТФЗМ 110 кВ) на уровнях F=0,9 и 0,95 различаются примерно в 2-3 раза, причем они значительно ниже граничных концентраций для силовых трансформаторов, установленных при F = 0,9. В связи с этим авторы считают, что для ТФЗМ 220-500 кВ и НКФ 110-500 кВ следует принять в качестве граничных значения концентраций, соответствующие интегральной функции распределения F = 0,95, по крайней мере, по двум причинам.

• Использование расчетных значений концентраций газов в качестве граничных для нормально работающих ИТ предполагает постановку на учащенный контроль всего оборудования, в котором имеет место превышение нормативов даже по одному из газов. Применение граничных концентраций на уровне F = 0,9 привело бы к значительному количеству оборудования, подлежащего учащенному контролю (до 30 %). Учитывая то обстоятельство, что для отбора пробы масла на ХАРГ из ИТ, в отличие от силовых трансформаторов, необходимо их отключение, применение граничных концентраций на уровне F = 0,95 сократит количество необоснованных отключений. Известно, что публикация МЭК-61464 1998 г. [7] рекомендует для трансформаторных вводов использовать в качестве граничных значения на уровне F = 0,95 (такой же поход для ТТ с изоляцией конденсаторного типа принят в Португалии [8]), что значительно уменьшает число объектов, подлежащих дополнительному контролю.

• Расчетные значения концентраций для ИТ (за исключением ТФЗМ 110 кВ) на уровне F = 0,9 близки к пределам обнаружения. Чем ниже измеренная концентрация газа в масле, тем больше погрешность ее определения. Согласно РД [3], относительная погрешность анализа при содержании газов в масле ниже 10 мкл/л составляет более 50 %. Применение для оценки состояния оборудования результатов анализа с такой погрешностью может привести к отказу в работе, то есть снизить эффективность контроля. ТТ типа ТФЗМ 110 кВ представляют особый случай, для них предлагается использовать граничные концентрации 90 %-ного уровня, как уже отмечалось, в качестве справочных. Если сравнить результаты расчета граничных концентраций 95 %-ного уровня для ИТ типа ТФЗМ 220500 кВ и ТН типа НКФ 110-500 кВ (см. табл. 4), то видно, что у этих двух групп ИТ граничные концентрации близки. Это позволяет объединить их. Результаты расчета для объединенной группы представлены в последней строке табл. 4. Для подтверждения диагностической ценности полученных значений граничных концентраций газов в масле нормально работающих ИТ было проанализировано 12 случаев забракованных в эксплуатации и аварийных ИТ с дефектами, известными по результатам разборки (6 единиц ТТ типа ТФЗМ и 6 единиц ТН типа НКФ).

Рассмотрим два примера отбракованных ТТ типа ТФЗМ 110 кВ, результаты ХАРГ которых представлены в табл. 5. Значения содержания газов, превышающие граничные концентрации, выделены жирным шрифтом. Гистограммы рис. 1 и 2 показывают отношения измеренных значений каждого газа к граничным концентрациям.

Из табл. 5 и рис. 1 видно, что имеет место превышение граничных концентраций газов СН4, С2Н6 и СО2. По характерному составу газов (С2Н6 — основной газ, СН4 — характерный газ с высоким содержанием [6, табл. 1]), характер развивающегося повреждения диагностируется как слабый нагрев (t ? 300-400 oC), что согласуется и с повышенным содержанием СО2. При разборке ТТ был выявленослабленный контакт на шпильке заземления обмотки низкого напряжения, что подтверждает правильность поставленного диагноза.

Из табл. 5 и рис. 2 видно, что имеет место превышение граничных концентраций газов С2Н2 и С2Н4. По характерному составу газов: С2Н2 — основной газ, С2Н4 — характерный газ с высоким содержанием [6, табл. 1], характер развивающегося повреждения диагностируется как дуговой разряд. При осмотре выявлен обрыв первичной обмотки от обмоткодержателя, что совпадает с поставленным диагнозом. Приведенные примеры подтверждают, что установленные для ТФЗМ-110 кВ граничные концентрации можно использовать в качестве справочных. Рассмотрим два примера отбракованных ТН типа НКФ 110 кВ. Результаты ХАРГ представлены в табл. 6. Значения, превышающие граничные концентрации, выделены жирным шрифтом. Гистограммы рис. 3 и 4 показывают отношения измеренных значений каждого газа к граничным концентрациям.

НКФ-110 кВ был снят по результатам ХАРГ. Из табл. 6, первая строка, и рис. 3 видно, что содержание газов С2Н4, С2Н6 и С2Н2 превышает граничные концентрации, причем С2Н2 — основной газ, С2Н6 и С2Н4 — характерные газы с высоким содержанием. По результатам ХАРГ можно диагностировать искровой разряд, сопровождающийся нагревом до 300 oC. При обследовании ТН было установлено, что омическое сопротивление нулевого вывода обмотки ВН изменилось более чем на 10 %. При разборке был обнаружен плохой контакт в нижней части обмотки ВН. Таким образом, применение ХАРГ для диагностики позволило своевременно обнаружить дефект.

Пример 4.

НКФ 110 кВ был поставлен на учащенный контроль по результатам ХАРГ, представленным в табл. 6, вторая строка. Из табл. 6 и рис. 4 видно, что содержание С2Н6, СО и СО2 превышает граничные значения, причем С2Н6 и СО2 — основные газы, СО — характерный газ с высоким содержанием. По [6, табл. 1] характер развивающегося повреждения диагностируется как нагрев до 300 oC бумаги и масла. Установлено, что до отбора пробы ТН подвергался феррорезонансным перенапряжениям, следствием которых был нагрев обмотки ВН и усиленное старение изоляции. Приведенные примеры подтверждают диагностическую ценность предложенных нормативных значений и целесообразность использования ХАРГ для оценки технического состояния ИТ. Для сравнения в табл. 7 даны предложения и рекомендации разных стран по граничным для нормально работающих маслонаполненных ИТ и силовых трансформаторов и браковочным концентрациям газов.

1. Установленные для отечественных ИТ граничные концентрации газов в масле значительно ниже рекомендуемых Стандартом МЭК [2] для ИТ и РД [3] для силовых трансформаторов.

2. Граничные концентрации газов в масле для ТТ типа ТФЗМ классов напряжения 220 и 500 кВ и для ТН типа НКФ классов напряжения 110-500 кВ близки между собой. Проведенные расчеты показали возможность объединения этих групп ИТ. Для них предложены единые нормативные значения граничных концентраций газов на уровне интегральной функции распределения F = 0,95.

Читайте также:  Анализ мазка 14 лет норма

3. Граничные концентрации водорода, метана и этана в масле для ТТ типа ТФЗМ-110 кВ по результатам расчета оказались примерно на два порядка выше, чем у остальных ТФЗМ. Они рассчитаны на уровне интегральной функции распределения F = 0,90 и предлагаются в качестве справочных. Вопрос о нормативных граничных концентрациях газов в масле нормально работающих ТФЗМ110 кВ требует дополнительного изучения.

4. Влияния региональных климатических условий на значения граничных концентраций газов в масле ИТ не выявлено.

5. Использование граничных значений для оценки состояния ИТ и своевременного принятия решения о мероприятиях по обслуживанию оборудования повысит надежность эксплуатации. Для обеспечения безаварийной эксплуатации ИТ недостаточно располагать только нормативными значениями граничных концентраций газов в масле.

Необходимо решить еще целый ряд вопросов, в том числе должны быть определены:

• опасные скорости нарастания газов в масле ИТ; периодичность повторного анализа газов в зависимости от уровня содержания и скорости нарастания газов;

• признаки характера повреждения, для чего надо установить связь между результатами ХАРГ и дефектами, выявленными в результате разборки;

• объем дополнительных измерений и эксплуатационных мероприятий в зависимости от характера предполагаемого дефекта;

• метрологические требования к методике проведения хроматографического анализа для оценки состояния измерительных трансформаторов. Все эти вопросы должны быть учтены при разработке РД или отраслевого стандарта.

источник

М Ai — предел обнаружения в масле i-го газа, %об;

A i — начальное значение концентрации i -г o газа, %об;

Ai — измеренное значение концентрации i -г o газа, %об;

Агр i — граничная концентрация i -г o газа, %об;

ai — относительная концентрация i -г o газа;

amaxi — максимальная относительная концентрация i -г o газа;

FLi — интегральная функция распределения;

N — общее число трансформаторов;

L — интервал измерения концентрации i -г o газа;

nLi — число трансформаторов с концентрацией газа А(1-1)i

V абс i — абсолютная скорость нарастания i -г o газа, %об/мес;

Ami , A ( m -1) i — два последовательных измерения концентрации i -г o газа, %об;

Td — периодичность диагностики, мес.;

V отнi — относительная скорость нарастания i -г o газа, %/мес;

b — коэффициент кратности последовательных измерений (принимать b = 5);

T 1d — минимальное время до повторного отбора пробы масла, мес.;

Аг i — концентрация i -г o газа в равновесии с газовой фазой, %об;

Bi — коэффициент растворимости i -г o газа в масле

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ДИАГНОСТИКЕ
РАЗВИВАЮЩИХСЯ ДЕФЕКТОВ ТРАНСФОРМАТОРНОГО
ОБОРУДОВАНИЯ ПО РЕЗУЛЬТАТАМ
ХРОМАТОГРАФИЧЕСКОГО АНАЛИЗА ГАЗОВ,
РАСТВОРЕННЫХ В МАСЛЕ

Настоящие Методические указания составлены на основе накопленного в России опыта применения «Методических указаний по диагностике развивающихся дефектов по результатам хроматографического анализа газов, растворенных в масле силовых трансформаторов» РД 34.46.302-89 (М: СПО Союзтехэнерго, 1989), с учетом рекомендаций публикации МЭК 599 и СИГРЭ и вводятся взамен упомянутого выше РД 34.46.302-89 и взамен противоаварийного циркуляра Ц-06-88(Э) «О мерах по повышению надежности герметичных вводов 110-750 кВ» от 27.07.1988 г.

Настоящие Методические указания распространяются на трансформаторы напряжением 110 кВ и выше, блочные трансформаторы, трансформаторы собственных нужд с любым видом защиты масла от атмосферы и высоковольтные герметичные вводы напряжением 110 кВ и выше, залитые трансформаторным маслом любой марки.

В Методических указаниях изложены: критерии диагностики развивающихся в трансформаторах дефектов (критерий ключевых газов, критерий граничных концентраций газов, критерий отношения концентраций пар газов для определения вида и характера дефекта, критерий скорости нарастания газов в масле); эксплуатационные факторы, влияющие на результаты АРГ; дефекты, обнаруживаемые в трансформаторах с помощью АРГ; основы диагностики эксплуатационного состояния трансформаторов по результатам АРГ; определение наличия дефекта в высоковольтных герметичных вводах по результатам анализа растворенных в масле газов.

Вероятность совпадения прогнозируемого и фактического дефектов в трансформаторах при использовании настоящих Методических указаний — 95 %.

Методические указания рекомендуются к применению персоналу электрических станций, электрических сетей, подстанций, а также наладочных и ремонтных предприятий.

1.1 Хроматографический анализ растворенных в масле газов проводится в соответствии с методикой «Методические указания по подготовке и проведению хроматографического анализа газов, растворенных в масле силовых трансформаторов» (РД 34.46.303-98), обеспечивающей:

1.1.1 Определение концентраций следующих газов, растворенных в масле: водорода ( H 2 ), метана (СН4), ацетилена ( C 2 H 2 ), этилена ( C 2 H 4 ), этана ( C 2 H 6 ), оксида углерода (СО), диоксида углерода ( CO 2 ).

— для метана, этилена, этана — 0,0001 % об.

— для ацетилена — 0,00005 % об.

— для оксида и диоксида углерода — 0,002 % об.

1.1.3 Применяемые аппаратура и методики анализа должны обеспечивать погрешность измерения газов в масле не хуже указанной в таблице 1:

Суммарная погрешность измерения, %отн

1.2 Появлением газов в масле трансформатора считается значение концентрации, превышающее предел обнаружения в 5 раз.

С помощью АРГ в трансформаторах можно обнаружить две группы дефектов.

Основные газы: C 4 H 4 — в случае нагрева масла и бумажно-масляной изоляции выше 600 °С или C 2 H 2 — в случае перегрева масла, вызванного дуговым разрядом.

Характерными газами в обоих случаях являются: H 2 , CH 4 и C 2 H 6 .

2.1.1 Перегрев токоведущих соединений может определяться нагревом и выгоранием контактов переключающих устройств; ослаблением и нагревом места крепления электростатического экрана; обрывом электростатического экрана; ослаблением винтов компенсаторов отводов НН; ослаблением и нагревом контактных соединений отвода НН и шпильки проходного изолятора; лопнувшей пайкой элементов обмотки; замыканием параллельных и элементарных проводников обмотки и др.

2.1.2 Перегрев металлических элементов конструкции остова может определяться: неудовлетворительной изоляцией листов электротехнической стали; нарушением изоляции стяжных шпилек или накладок, ярмовых балок с образованием короткозамкнутого контура; общим нагревом и недопустимыми местными нагревами от магнитных полей рассеяния в ярмовых балках, бандажах, прессующих кольцах и винтах; неправильным заземлением магнитопровода; нарушением изоляции амортизаторов и шипов поддона реактора, домкратов и прессующих колец при распрессовке и др.

2.2 Группа 2. Электрические разряды в масле

Электрические разряды в масле могут быть разрядами большой и малой мощности.

2.2.1 При частичных разрядах основным газом является H 2 характерными газами с малым содержанием — CH 4 и C 2 H 2 .

2.2.2 При искровых и дуговых разрядах основными газами являются Н2 или C 2 H 2 ; характерными газами с любым содержанием — СН4 и C 2 H 4 .

2.3 Превышение граничных концентраций СО и СО2 может свидетельствовать об ускоренном старении и/или увлажнении твердой изоляции. При перегревах твердой изоляции основным газом является диоксид углерода.

2.4 Основные (ключевые) газы — наиболее характерные для определенного вида дефекта:

водород — частичные разряды, искровые и дуговые разряды;

ацетилен — электрическая дуга, искрение;

этилен — нагрев масла и бумажно-масляной изоляции выше 600 °С;

метан — нагрев масла и бумажно-масляной изоляции в диапазоне температур (400-600) °С или нагрев масла и бумажно-масляной изоляции, сопровождающийся разрядами;

этан — нагрев масла и бумажно-масляной изоляции в диапазоне температур (300-400) °С;

оксид и диоксид углерода — старение и увлажнение масла и/или твердой изоляции;

диоксид углерода — нагрев твердой изоляции.

2.5.1 Рассчитываются относительные концентрации газов (а i ) по формуле:

Здесь и далее буквенные обозначения параметров в расчетных формулах приведены в списке использованных обозначений .

2.5.2 По расчетным относительным концентрациям максимальное значение amaxi соответствует основному газу (кроме C О2; C О2 — основной газ, если C О2 > 1);

а i > 1 — характерный газ с высоким содержанием;

0,1 i — характерный газ с малым содержанием;

2.6 Перед включением в работу новых или прошедших ремонт трансформаторов необходимо определить начальные концентрации растворенных газов ( A i ) и последующие результаты анализов оценить по сравнению с этими значениями.

При этом, если измеренные концентрации A i превышают предел обнаружения ( МАi , см. п. 1.1.2), то, по возможности, провести дегазацию масла. Если такой возможности нет, то следует принять за исходные значения, измеренные перед включением.

3. ЭКСПЛУАТАЦИОННЫЕ ФАКТОРЫ, СПОСОБСТВУЮЩИЕ РОСТУ ИЛИ УМЕНЬШЕНИЮ КОНЦЕНТРАЦИЙ РАСТВОРЕННЫХ ГАЗОВ В МАСЛЕ ТРАНСФОРМАТОРОВ

3.1 При анализе состава растворенных в масле газов для диагностики эксплуатационного состояния трансформаторов необходимо учитывать условия их эксплуа тации за предыдущий промежуток времени и факторы, вызывающие изменения этого состава газов нормально работающих трансформаторов.

— остаточные концентрации газов от устраненного дефекта во время ремонта трансформатора (если не была проведена дегазация масла),

— увеличение нагрузки трансформатора,

— перемешивание свежего масла с остатками старого, насыщенного газами, находящегося в системе охлаждения, баках РПН, расширителе и т.д.,

— доливка маслом, бывшим в эксплуатации и содержащим растворенные газы,

— проведение сварочных работ на баке,

— повреждения масляных насосов с неэкранированным статором,

— перегревы из-за дефектов системы охлаждения (засорение наружной поверхности охладителей, отключение части масляных насосов и др.),

— перегрев масла теплоэлектронагревателями при его обработке в дегазационных и других установках,

— переток газов из бака расширителя контактора РПН в бак расширителя трансформатора, имеющего РПН типа РС-3 или РС-4,

— сезонные изменения интенсивности процесса старения,

— воздействие токов короткого замыкания и др.

3.3 Эксплуатационные факторы, вызывающие уменьшение концентрации растворенных в масле газов бездефектных трансформаторов:

— продувка азотом в трансформаторах с азотной защитой масла,

— уменьшение нагрузки трансформатора,

— доливка дегазированным маслом,

— частичная или полная замена масла в баке трансформатора,

— заливка маслом под вакуумом, в том числе — частичным вакуумом,

— замена масла в маслопроводах, навесных баках, расширителе, избирателе устройств РПН и т.д.

В приложении 1 приведены примеры влияния эксплуатационных факторов на результаты АРГ.

4.1 Критерий граничных концентраций позволяет выделить из общего количества трансформаторного парка трансформаторы с возможными развивающимися дефектами.

Такие трансформаторы следует взять под хроматографический контроль с учащенным отбором проб масла и проведением АРГ.

4.2 Для бездефектных трансформаторов концентрации газов за срок службы не должны превысить граничных значений.

4.3 Рекомендуется определять граничные концентрации растворенных газов в масле нормально работающих трансформаторов как минимум через 5 лет.

Для каждого трансформатора в статистическую обработку включаются все измеренные концентрации i — o г o газа за последний год эксплуатации.

4.5 За граничную концентрацию любого газа следует принимать такое значение, ниже которого оказывается концентрация этого газа у 90 % общего числа обследованных трансформаторов принятой группы.

4.6 Граничные концентрации определяются по интегральной функции распределения ( Fi ) следующим образом:

4.6.1 Измеренные концентрации i-го газа от 0 до Аmax по всем трансформаторам, кроме тех, которые были выведены в ремонт по результатам АРГ, следует разбить на L интервалов (можно принять L = 10-15).

Вероятность P Li приближенно оценивается как частота наблюдения концентрации в интервале от A L-1 до A Li .

4.6.2 На каждом интервале определяем вероятность

4.6.3 Значения интегральной функции распределения с учетом (2) находятся как

4.6.4 Граничная концентрация i -го газа ( A г pi ) определяется при F Li = 0,9 наиболее просто графически (рис. 1)

Рис. 1. Определение граничной концентрации по интегральной функции распределения

4.7 При отсутствии достаточных статистических данных для определения граничных концентраций (п. 4.4) растворенных в масле трансформаторов газов можно пользоваться данными таблицы 2.

Граничные концентрации растворенных в масле газов

Трансформаторы напряжением 110-500 кВ

Трансформаторы напряжением 750 кВ

Реакторы напряжением 750 кВ

* для СО — в числителе приведено значение для трансформаторов с азотной или пленочной защитами масла, в знаменателе — для трансформаторов со свободным дыханием; для СО2 — в числителе приведены значения для трансформато ров со свободным дыханием при сроке эксплуатации до 10 лет, в знаменателе — свыше 10 лет, в скобках приведены те же данные для трансформаторов с пленочной или азотной защитами масла

Вид и характер развивающихся в трансформаторе повреждений определяется по отношению концентраций следующих газов: Н2, СН4, С2Н2, С2Н4 и С2Н6.

При этом рекомендуется использовать такие результаты АРГ, в которых концентрация хотя бы одного газа (из пяти перечисленных выше газов) была больше соответствующего граничного значения в 1,5 раза.

5.1.1 Условия прогнозирования «разряда»:

5.1.2 Условия прогнозирования «перегрева»:

Если при этом концентрация СО 0,05 %об — «перегрев твердой изоляции».

5.1.3 Условия прогнозирования «перегрева» и «разряда»:

— если повреждением не затронута твердая изоляция, то

— если повреждением затронута твердая изоляция, то

При интерпретации полученных значений отношений СО2/СО следует учитывать влияние эксплуатационных факторов п. 3.

5.3.1 Следует иметь в виду, что СО2 и СО образуются в масле трансформаторов при нормальных рабочих температурах в результате естественного старения изоляции.

Определение характера дефекта в трансформаторе по отношению концентраций пар газов

Характер прогнозируемого дефекта

Отношение концентраций характерных газов

Частичные разряды с низкой плотностью энергии

Разряды в заполненных газом полостях, образовавшихся вследствие не полной пропитки или влажности изоляции.

Частичные разряды с высокой плотностью энергии

То же, что и в п. 2 , но ведет к оставлению следа или пробою твердой изоляции.

Непрерывное искрение в масле между соединениями различных потенциалов или плавающего потенциала. Пробой масла между твердыми материалами.

Дуговые разряды; искрение, пробой масла между обмотками или катушками или между катушками на землю.

Термический дефект низкой температуры (

Перегрев изолированного проводника.

Термический дефект в диапазоне низких температур (150-300 °С)

Местный перегрев сердечника из-за концентрации потока. Возрастание температуры «горячей точки».

Термический дефект в диапазоне средних температур (300-700 °С)

То же, что и в п. 7 , но при дальнейшем повышении температуры «горячей точки».

Термический дефект высокой температуры (> 700 °С)

Горячая точка в сердечнике; перегрев меди из-за вихревых токов, плохих контактов; циркулирующие токи в сердечнике или баке.

5.3.2 Содержание СО2 в масле зависит от срока работы трансформатора и способа защиты масла от окисления.

В трансформаторах со «свободным дыханием» СО2 может попасть в масло из воздуха приблизительно до 0,03 %об.

6.1 Критерий скорости нарастания газов в масле определяет степень опасности развивающегося дефекта для работающих трансформаторов.

6.2 Изменение во времени концентрации отдельных газов в масле бездефектных трансформаторов может происходить под воздействием различных факторов (пп. 2.4.1 и 2.4.2), а также вследствие естественного старения изоляции.

6.3 Наличие развивающегося дефекта в трансформаторе, накладываясь на эти факторы, приводит, как правило, к заметному росту концентрации одного или нескольких газов.

6.4 Абсолютная скорость нарастания i -го газа определяется по формуле:

6.5 Относительная скорость нарастания i -го газа определяется по формуле:

Если относительная скорость нарастания газа/газов превышает 10 % в месяц, то это указывает на наличие быстро развивающегося дефекта в трансформаторе.

В случае выявления дефекта повторные анализы следует провести через короткие промежутки времени с целью подтверждения наличия дефекта и определения скорости нарастания газов.

Отбор проб масла для определения скорости нарастания газов рекомендуется проводить 1 раз в 7-10 дней в течение месяца для медленно развивающихся дефектов и через 2-3 дня — для быстро развивающихся дефектов.

7.1 Хроматографический контроль должен осуществляться в следующие сроки [ 1]:

● трансформаторы напряжением 110 кВ мощностью менее 60 МВА и блочные трансформаторы собственных нужд — через 6 мес. после включения и далее не реже 1 раза в 6 мес.;

● трансформаторы напряжением 110 кВ мощностью 60 МВА и более, а также все трансформаторы 220-500 кВ в течение первых суток, через 1, 3 и 6 мес. после включения и далее — не реже 1 раза в 6 мес.

● трансформаторы напряжением 750 кВ — в течение первых суток, через 2 недели, 1, 3 и 6 месяцев после включения и далее — не реже 1 раза в 6 мес.

Читайте также:  Анализ манту норма у детей

7.2 Периодичность АРГ для трансформаторов с развивающимися дефектами определяется динамикой изменения концентраций газов и продолжительностью развития дефектов.

Все дефекты в зависимости от продолжительности развития можно подразделить на:

7.2.1 Мгновенно развивающиеся дефекты — продолжительность развития которых имеет порядок от долей секунды до минут.

7.2.2 Быстро развивающиеся дефекты — продолжительность развития которых имеет порядок от часов до недель.

7.2.3 Медленно развивающиеся дефекты — продолжительность развития которых имеет порядок от месяцев до нескольких лет.

7.2.4 Методом хроматографического анализа растворенных в масле газов обнаруживаются медленно развивающиеся дефекты, возможно — быстро развивающиеся дефекты и нельзя определить мгновенно развивающиеся дефекты.

7.3 В случае выявления дефекта ( Ai > A г pi . и/или V отн i > 10 % в мес.) необходимо выполнить 2-3 повторных анализа растворенных газов (с периодичностью анализов по п.п. 6.6 ) для подтверждения вида и характера дефекта и принятия решения о дальнейшей эксплуатации трансформатора и/или выводе его из работы.

Минимальное время повторного отбора пробы масла ( T 1d ) для проведения анализа можно рассчитать по формуле:

8.1 Если в результате анализа А i i и Vi отн то нет данных, указывающих на наличие развивающегося дефекта в этом трансформаторе; контроль по АРГ проводится по графику — один раз в 6 мес.

8.2 Если в результате анализа А i > Агр i и Vi отн то провести повторный отбор пробы масла и хроматографический анализ растворенных в нем газов для подтверждения результатов измерения и соответственно:

8.2.4 Если в результате выполнения операций по п. 8.2.3 скорость Vi отн растет, то трансформатор оставить на учащенном контроле с периодичностью АРГ, определяемой по п. 7.3.

8.2.6 Если при выполнении п.п. 8.2.5 получается неравенство А i > Агр i и Vi отн > 10 % в месяц, а скорость V отн i , продолжает увеличиваться (быстро развивающийся дефект), то планировать вывод трансформатора из работы.

8.2.6.1 Если при выполнении п.п. 8.2.5 сохраняется неравенство А i > Агр i и Vi отн остается постоянной и меньше 10 % в мес., то для выяснения наличия повреждения рекомендуется провести дегазацию масла и выполнить несколько последовательных анализов.

Если после проведения дегазации концентрации газов меньше соответствующих граничных значений и не увеличиваются, то это свидетельствует об отсутствии повреждения. Такой трансформатор снимается с контроля, и дальнейшая периодичность отбора проб масла устанавливается один раз в 6 мес.

Если же после проведения дегазации масла вновь наблюдается рост концентрации растворенных газов при повторных АРГ со скоростью:

— V отн > 10 % в мес., то следует планировать вывод трансформатора из работы;

8.2.7 Если А i > Агр i и Vi отн £ 0, то следует проверить влияние эксплуатационных факторов согласно п. 3.4 и при их отсутствии можно предположить, что дефект развивается «вглубь» (выгорание контактов переключающих устройств, листов магнитопровода, металлических шпилек и т.д.). В этом случае следует планировать вывод трансформатора из работы.

8.3. Для трансформаторов с РПН, учитывая особенности их конструктивного выполнения, рекомендуется:

8.3.1 Для РПН в навесных баках в целях определения возможного перетока газов вследствие нарушения герметичности между баками контактора и трансформатора необходимо отобрать одновременно пробу масла из баков контактора и трансформатора.

8.3.2. Если измеренные концентрации одного или нескольких углеводородных газов в обоих пробах масла одинаковые, то это может указывать на переток газов.

В этом случае следует проверить состояние контактов контактора и состояние уплотнения между баками контактора и трансформатора. Если дефект выявлен, то его следует устранить.

8.3.3. Для РПН погружного типа может быть три вида дефектов:

— переток из бака контактора в бак трансформатора,

— переток в расширителе по уровню масла,

— переток газовой фазы по надмасляному пространству, если перегородка в общем расширителе выполнена не до самого верха.

8.3.3.1. Для РПН погружного типа отборы проб масла в целях выявления перетока следует производить одновременно из бака трансформатора и из расширителя контактора.

8.3.3.2. Если концентрации газов в пробе масла из бака трансформатора выше, чем в пробе масла из расширителя, то «перетока» нет и в этом случае диагностика по АРГ выполняется в соответствии с п. 8.2.6.

8.4. При срабатывании газового реле на сигнал или на отключение для диагностики возможного дефекта следует:

8.4.1. Отобрать пробу газа из газового реле (свободный газ) и одновременно пробу масла из бака трансформатора.

8.4.2. Определить концентрации газов отдельно в каждой из отобранных проб (Ас i — концентрации газов в свободном газе, А i — концентрации газов в масле).

8.4.3. По полученным концентрациям газов, растворенных в масле из бака трансформатора рассчитать концентрации этих же газов, соответствующих равновесному состоянию с газовой фазой, по формуле:

Коэффициент растворимости i -г o газа в масле принимается по табл. 4.

Значения коэффициентов растворимости (В i ) газов в масле (при температуре 20 °С и давлении 760 мм рт. ст.)

8.4.4. Сравнить концентрации свободного газа (Ас i ) с расчетными значениями Аг i и соответственно:

8.4.4.1 Если концентрации Ас i примерно равны Аг i , то это свидетельствует о том, что газ в реле выделился в равновесном состоянии в результате подсоса воздуха в газовое реле или в систему охлаждения трансформатора, или резкого снижения уровня масла в расширителе бака трансформатора и др. причин.

В этом случае следует определить причину срабатывания газового реле и устранить дефект.

8.4.4.2 Если концентрация Ас i значительно больше, чем Аг i , то это свидетельствует о быстро развивающемся дефекте, как правило, электрического вида. Обычно такие дефекты характеризуются высокими концентрациями водорода и ацетилена в пробе газа из газового реле.

В этом случае трансформатор требуется немедленно вывести из работы для устранения дефекта.

8.5. Во всех случаях при решении вопроса о дальнейшей эксплуатации трансформатора, в котором подозревается наличие того или иного дефекта, следует учитывать:

— возможность появления характерных газов, не связанных с дефектом трансформатора (например, неисправности в системе охлаждения, повреждения системы защиты масла и т.п.);

— особенности эксплуатации трансформатора;

8.6. Примеры диагностики эксплуатационного состояния трансформатора по результатам АРГ приведены в приложении 2.

9. ОПРЕДЕЛЕНИЕ НАЛИЧИЯ ДЕФЕКТА В ВЫСОКОВОЛЬТНЫХ ГЕРМЕТИЧНЫХ ВВОДАХ ТРАНСФОРМАТОРОВ ПО РЕЗУЛЬТАТАМ АНАЛИЗА РАСТВОРЕННЫХ В МАСЛЕ ГАЗОВ

9.1 С помощью АРГ в высоковольтных герметичных вводах трансформаторов можно обнаружить нарушение контактных соединений (искрение), проявление острых краев деталей (микроразряды в масле), ослабление контактных соединений верхней контактной шпильки (термическая деструкция масла) и локальные дефекты остова (микроразряды в остове).

В таблице 5 приведен перечень обнаруживаемых с помощью АРГ дефектов и их хроматографические признаки.

9.2 Основные газы, свидетельствующие о наличии дефектов: ацетилен (С2 H 2 ) и сумма концентраций углеводородных газов (ΣСx H y ); метан — С H 4 , этан — С2 H 6 , этилен — С2 H 4 и ацетилен — С2 H 2 .

9.3 Вводы подлежат отбраковке при достижении концентраций ацетилена — 0,0005 %об и более, либо при достижении суммы концентраций углеводородных газов:

— вводы (110-220) кВ — 0,03 %об и более;

— вводы (330-750) кВ — 0,015 %об и более

9.4 В процессе эксплуатации герметичных вводов, имеющих удовлетворительные результаты измерений в соответствии с [1] рекомендуется следующая периодичность измерений растворенных газов в масле вводов:

— вводы (110-220) кВ — 1 раз в четыре года;

— вводы (330-750) кВ — 1 раз в два года

Для всех вновь вводимых в работу высоковольтных герметичных вводов — через два года после начала их эксплуатации.

Дефекты высоковольтных герметичных вводов трансформаторов, обнаруживаемые с помощью АРГ

Основные хроматографические признаки дефекта

Образование углеродосодержащих частиц вследствие разрядов — ацетилен. Появление незавершенных искровых разрядов — водород. Возможно отложение загрязнений по поверхностям и прорастание по ним разряда — водород и ацетилен.

Острые края деталей в масле

Появление незавершенных искровых разрядов — водород. Накопление продуктов деструкции масла по поверхностям и прорастание по ним разряда — водород и ацетилен.

Нарушение контактных соединений

Появление искрового разряда в масле — водород и ацетилен. Отложение продуктов деструкции масла по поверхностям и прорастание по ним разряда — водород и ацетилен. Накопление продуктов деструкции масла — водород и ацетилен.

Ослабление контактных соединений верхней контактной шпильки

Термическая деструкция масла (осмоление) — метан, этан.

Микроразряды в остове — ацетилен и водород.

Приведены случаи появления в трансформаторном масле газов разложения, которые к дефектам активных частей отнести нельзя. Недостаточно внимательное интерпретирование результатов АРГ может привести к необоснованному выводу оборудования из работы и тем самым к серьезному экономическому ущербу в особенности, когда речь идет о мощном или диспетчерски ответственном трансформаторе.

1. В случае перегрузки или перенапряжения увеличиваются, как правило в два и более раза концентрации СО2 и СО по сравнению с граничными значениями, например, вследствие отказа или неправильной работы разрядников, выключателей, грозовых и коммутационных перенапряжений, перекоса фаз, короткого замыкания в электрически связанной сети и т.д. За таким трансформатором необходимо проследить. Если причина роста концентраций относится к вышеупомянутым случаям, то через 1-2 мес. концентрации вернутся к исходным; если же они будут увеличиваться или тем более появятся углеводородные газы, то причиной этого может быть развивающееся повреждение, интерпретация которого будет зависеть от состава газов и их соотношений.

2. В случае отказа системы охлаждения происходит активное газовыделение с превалированием этана над всеми остальными газами и резким ростом содержания СО2.

3. При сгорании двигателя маслонасоса может появиться весь состав газов, включая ацетилен. Одним из косвенных подтверждений этого дефекта может быть резкий рост их концентраций с последующим быстрым убыванием в случае трансформатора со свободным дыханием и стабилизация этих концентраций у трансформаторов с азотной и пленочной защитами масла.

4. Одной из причин появления газов в масле может быть предшествующее повреждение. Если при этом масло после аварии долго находилось в трансформаторе, то целлюлозная изоляция могла абсорбировать значительное количество газов разложения. После устранения повреждения и смены масла при включении трансформатора в работу из пор целлюлозной изоляции в масло будут выделяться ранее поглощенные газы, состав которых будет соответствовать предшествующему повреждению (кроме водорода, которого, как правило, при этом не бывает, так как он просто улетучивается). Этот процесс зависит от нагрузки трансформатора. Если нагрузка значительна, то газы активно выделяются в масло, а затем либо сравнительно быстро исчезают у трансформаторов со свободным дыханием, либо стабилизируются у трансформаторов с азотной и пленочной защитой.

При незначительной нагрузке выделение газов может начаться не сразу после включения, а примерно через месяц, и нарастание концентраций может продолжаться до 2-3 мес. и лишь после этого начнет убывать. В этом случае требуется особое внимание, чтобы не вывести в ремонт трансформатор без фактических показателей к этому.

5. Появление газов разложения масла и твердой изоляции, наблюдаемое после доливки масла, также должно нацелить на тщательную проверку масла, которое доливалось в трансформатор, так как доливка масла из поврежденного трансформатора может создать иллюзию возникновения повреждения.

Если подтвердится, что в доливаемом масле были растворены газы, характерные для того или иного дефекта, трансформатор должен быть все равно взят под учащенный контроль, чтобы убедиться, что концентрации газов убывают или хотя бы не растут, так как возможно случайное наложение двух факторов: доливка плохим маслом и возникновение дефекта. Только отсутствие роста концентраций газов позволяет считать причиной их появления доливку маслом из аварийного трансформатора.

6. Как правило, заливаемое в трансформатор масло проходит обработку через маслоочистительную установку, снабженную электроподогревателем. При сгорании одного из элементов электроподогревателя или нарушении режима подогрева масло, находящееся в этот момент в контакте с ним, перегревается с выделением газов, характерных для температуры, при которой произошел перегрев. Этот дефект легко устанавливается проверкой масла из трансформатора на газосодержание непосредственно перед включением его в работу. Поэтому это измерение должно быть проведено обязательно.

Если есть основание подозревать, что причина появления в масле газов разложения вызвана эксплуатационными факторами, самым эффективным способом уточнения этой причины является дегазация масла с помощью передвижной установки.

Если причина была установлена правильно, то выделение газов после дегазации не будет. В противном случае в трансформаторе имеется очаг повреждения.

В трансформаторе ТДЦГ-400000/330 при очередном анализе по графику были зарегистрированы следующие концентрации газов (%об):

1-ый анализ СО2 = 0,17; СО = 0,02; СН4 = 0,0045; С2Н4 = 0,005; С2Н2 — отсутствует; С2Н6 = 0,002; Н2 = 0,008. Так как концентрации каждого из газов не превышают граничные значения ( Ai A г pi ), следующий анализ был проведен через 6 мес. и дал следующие результаты:

Для подтверждения результатов АРГ следующий анализ проведен через 6 дней. Получили следующие результаты:

Анализ условий эксплуатации за предшествующий период показал, что отсутствуют факторы, которые могли бы вызвать рост концентраций углеводородных газов (п. 3.2).

По полученным концентрациям углеводородных газов определим характер развивающегося в трансформаторе дефекта по таблице 3 текста РД:

На основании полученных данных прогнозируется дефект термического характера — «термический дефект высокой температуры, > 700 °С».

Так как СО2/СО = 0,16/0,02 = 8, то делаем вывод, что дефект не затрагивает твердую изоляцию и относится к группе 1 (п. 2.1).

Определим минимальную периодичность следующего отбора проб масла по формуле 6:

— рассчитаем величины абсолютных скоростей нарастания концентраций каждого газа:

Так как максимальная абсолютная скорость нарастания у водорода, то Т1d определяем по ней:

T 1d = 5 ´ 5 ´ 10 4 /0,0125 = 0,2 мес., т.е. 6 дней

Фактически следующий отбор пробы масла и АРГ были проведены через 7 дней и получены следующие концентрации газов:

По данным этого анализа в трансформаторе подтвердилось наличие быстроразвивающегося дефекта термического характера, не затрагивающего твердую изоляцию — «термический дефект высокой температуры, > 700 °С» и относящегося к 1 группе дефектов «Перегревы токоведущих соединений и элементов конструкции остова».

Трансформатор был выведен в ремонт. Во время ремонта в нем было обнаружено выгорание меди отвода обмотки 330 кВ, что подтвердило правильность поставленного диагноза.

В трансформаторе ТДТГ — 10000/110 после срабатывания газовой защиты на отключение (отбор пробы масла был проведен из бака трансформатора) определен следующий состав растворенных в масле газов (концентрации в %об.):

Из результатов анализа следует, что концентрации метана и этилена более, чем в 2 раза превышают соответствующие граничные значения (табл. 2 РД), концентрация водорода в 20 раз превышает граничное значение, а ацетилена — более, чем в 100 раз.

Анализ условий эксплуатации за предшествующий период показал, что отсутствуют факторы, которые могли бы вызвать рост концентраций углеводородных газов (п. 3.2).

По полученным концентрациям углеводородных газов определим характер развивающегося в трансформаторе дефекта по таблице 3 текста РД:

На основании полученных данных прогнозируется дефект электрического характера — «разряды большой мощности».

Трансформатор был выведен в ремонт, в нем был обнаружен обрыв токопровода переключателя.

В трансформаторе ТДТН-31500/110 газовая защита сработала на сигнал.

Отобрали пробу газа из газового реле и пробу масла из бака трансформатора. Определили концентрации растворенных в масле газов и газа из газового реле; результаты анализов приведены в таблице:

источник