Меню Рубрики

Анализ воды на ионы аммония

Фотометрический метод определения массовой концентрации ионов аммония основан на взаимодействии ионов аммония с тетрамеркуратом калия в щелочной среде (реактив Несслера) с образованием коричневой, нерастворимой в воде соли основания Милона), переходящей в коллоидную форму желтого цвета при малых содержаниях ионов аммония.

Оптическую плотность раствора измеряют при λ = 425 нм в кюветах с длиной поглощающего слоя 10 или 50 мм. Интенсивность окраски прямо пропорциональна концентрации ионов аммония.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1.

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Таблица 1 — Диапазон изм ерений, значения показателей точности, правильности, воспроизводимости и повторяемости

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости),

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости)

Показатель точности 1 (границы, в которых находится погрешность методики при Р = 0,95), ±δ, %

Поверхностные пресные и сточные воды

Поверхностные морские воды

1 Соответствует расширенной относительной неопределенности с коэффициентом охвата k = 2.

3. СРЕДСТВА ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ, МАТЕРИАЛЫ, РЕАКТИВЫ

Фотоэлектроколориметр или спектрофотометр любого типа, позволяющий измерять оптическую плотность при λ = 425 нм.

Кюветы с длиной поглощающего слоя 10 и 50 мм.

Весы лабораторные с наибольшим пределом взвешивания 200 г, по ГОСТ 24104-2001.

Весы технические лабораторные по ГОСТ 24104-2001.

Шкаф сушильный общелабораторного назначения.

ГСО с аттестованным содержанием ионов аммония 1 мг/см 3 с погрешностью не более 1 % при доверительной вероятности р = 0,95, № 7015-93.

Колбы мерные, наливные вместимостью 50, 100, 250, 500 см 3 по ГОСТ 1770-74.

Пипетки градуированные вместимостью 1; 2; 5; 10 см 3 2-го класса точности по ГОСТ 29227-91.

Цилиндры вместимостью 25; 100; 500; 1000 см 3 2-го класса точности по ГОСТ 1770-74.

Колбы конические типа Кн-2-100 ХС; Кн-2-250 ХС; Кн-2-500 ТС по ГОСТ 25336-82.

Стаканы химические Н-1-250 ТХС; В-1-500 ТХС по ГОСТ 25336-82.

Воронки лабораторные В-75-110 ХС по ГОСТ 25336-82.

Аппарат для перегонки с водяным паром.

Фильтры обеззоленные ТУ 6-09-1678.

Бумага индикаторная, универсальная ТУ-6-09-1181.

Бутыли из стекла или полиэтилена с притертыми или винтовыми пробками вместимостью 500 — 1000 см 3 для отбора и хранения проб и реактивов.

1 Допускается использование других средств измерений, вспомогательного оборудования, посуды и материалов с метрологическими и техническими характеристиками не хуже указанных.

2 Средства измерений должны быть поверены в установленные сроки.

Реактив Несслера по ТУ 6-09-2089.

Калий фосфорнокислый однозамещенный по ГОСТ 4198-75.

Калий фосфорнокислый двузамещенный по ГОСТ 2493-75.

Калия гидроокись по ТУ 6-09-50-2322.

Натрий мышьяковистокислый (метаарсенит) по ТУ 6-09-2791.

Натрий серноватистокислый (тиосульфат) по ГОСТ 27068-86.

Цинк сернокислый 7-водный по ГОСТ 4174.

Калий-натрий виннокислый 4-х водный (сегнетова соль) по ГОСТ 5845-79.

Этилендиамин-N,N, N ‘N'»-тетрауксусной кислоты динатриевая соль (Трилон Б) по ГОСТ 10652-73.

Калий марганцевокислый по ГОСТ 20490-75.

Натрий тетраборнокислый по ГОСТ 4199-76.

Калий двухромовокислый по ГОСТ 4220-75.

Фильтры обеззоленные по ТУ 6-09-1678.

Бумага индикаторная, универсальная по ТУ-6-09-1181.

Фильтры бумажные обеззоленные «белая лента» и «синяя лента» по ТУ 6-09-1678-86.

1 Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

2 Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

4.1 При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами ГОСТ 12.1.007-76 и ПОТ Р М-004-97.

4.2 Электробезопасность при работе с электроустановками по ГОСТ 12.1.019-79.

4.3 Организация обучения работающих безопасности труда по ГОСТ 12.0.004-90.

4.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.

4.5 Содержание вредных веществ в воздухе не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005-88.

Выполнение измерений может производить химик-аналитик, владеющий техникой фотометрического анализа, изучивший инструкцию по эксплуатации спектрофотометра или фотоколориметра и уложившегося в нормативы контроля при выполнении процедур контроля погрешности.

Измерения проводятся в следующих условиях:

Температура окружающего воздуха (20 ± 5) ° С.

Относительная влажность не более 80 % при температуре 25 °С.

Атмосферное давление (84 — 106) кПа.

Частота переменного тока (50 ± 1) Гц.

Напряжение в сети (220 ± 22) В.

7.1 Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб», ГОСТ Р 51593-2000 «Вода питьевая. Отбор проб», ПНД Ф 12.15.1-08 «Методические указания по отбору проб для анализа сточных вод».

7.2 Бутыли для отбора и хранения проб воды обезжиривают раствором CMC, промывают водопроводной водой, хромовой смесью, водопроводной водой, а затем 3 — 4 раза дистиллированной водой.

Пробы воды (объем не менее 500 см 3 ) отбирают в полиэтиленовые или стеклянные бутыли, предварительно ополоснутые отбираемой водой.

7.3 Пробы морской воды анализируют в день отбора. Если проба не будет проанализирована в день отбора, то её хранят при температуре 3 — 4 °С с не более 24 часов.

7.4 Если определение ионов аммония в питьевых, природных и сточных водах проводят в день отбора пробы, то консервирование не производится. Если проба не будет проанализирована в день отбора, то ее консервируют добавлением 1 см 3 концентрированной серной кислоты на 1 дм 3 . Консервированная проба может храниться не более 2 суток при температуре 3 — 4 °С.

Проба воды не должна подвергаться воздействию прямого солнечного света. Для доставки в лабораторию сосуды с пробами упаковываются в тару, обеспечивающую сохранение и предохраняющую от резких перепадов температуры.

7.5 При отборе проб составляют сопроводительный документ по форме, в котором указывают:

цель анализа, предполагаемые загрязнители;

должность, фамилия отбирающего пробу, дата.

Подготовку спектрофотометра и фотоэлектроколориметра к работе проводят в соответствии с рабочей инструкцией по эксплуатации прибора.

Бидистиллированную воду готовят одним из следующих способов:

— дважды перегнанную воду пропускают через колонку с катеонитом КУ-2 или СБС

— вторично перегоняют дистиллированную воду, предварительно подкислив серной кислотой и добавив марганцовокислый калий до четкой малиновой окраски.

Упаривают дистиллированную воду до 1/4 объема, после добавления двууглекислого натрия (0,1 — 0,5 г на 1 дм 3 ). Полученную воду проверяют на наличие аммиака реактивом Несслера и используют для приготовления реактивов и разбавления проб.

Безаммиачную воду хранят в бутыли с тубусом. В пробку бутыли вставляют хлоркальциевую трубку, заполненную кристаллами NaHSO 4 .

Морскую воду наливают в колбу, доливают равный объем дистиллята, слабо подщелачивают и кипятят до первоначального объема. После охлаждения воды и отстоя образовавшейся мути осторожно сливают прозрачную воду в другой сосуд. Безаммиачную морскую воду следует хранить в сосуде, соединенном со склянкой Тищенко.

Помещают в стакан 15 г калия натрия виннокислого четырехводного (KNaC 4 H 4 O 6 ∙ 4H 2 O), растворяют в 75 см 3 безаммиачной дистиллированной воды. Раствор можно применять после осветления. Необходимо проверить приготовленный раствор на содержание иона аммония. В случае его присутствия прибавляют немного гидроксида калия и гидроксида натрия (до щелочной реакции) и после этого раствор кипятят до начала образования корки солей на стенках стакана. Раствор разбавляют безаммиачной водой до прежнего объема и повторяют испытание на аммоний. Для связывания следов аммиака в раствор сегнетовой соли приливают 5 см 3 реактива Несслера. Хранят в склянке из темного стекла в защищенном от света месте. Реактив устойчив.

15 %-ный раствор сегнетовой соли упаривают до половины объема, остужают в сосуде, соединенном со склянкой Тищенко. Хранят в склянке из темного стекла в защищенном от света месте. Реактив устойчив.

Помещают в стакан 40,0 г гидроокиси натрия, растворяют в небольшом количестве безаммиачной воды, переносят в мерную колбу вместимостью 1 дм 3 и доводят до метки безаммиачной водой».

Хранят под защитой от контакта с воздухом в посуде из полиэтилена в течение 2-х месяцев.

Помещают в стакан 10 г гидроокиси натрия, растворяют в 90 см 3 безаммиачной воды. Раствор хранят в посуде из полиэтилена.

10 %-ный раствор гидроокиси натрия упаривают до половины объема, остужают в сосуде, соединенном со склянкой Тищенко. Раствор хранят в посуде из полиэтилена. Срок хранения 2 месяца.

К 500 см 3 раствора 0,025 М тетрабората натрия приливают 88 см 3 0,1 М раствора гидроокиси натрия и разбавляют до 1 дм 3 безаммиачной водой. Хранят в течение 3 месяцев.

Помещают в стакан 9,5 г тетрабората натрия десятиводного (Na 2 B 4 O ∙ 10H 2 O ), растворяют в небольшом количестве безаммиачной воды, переносят в колбу на 1000 см 3 , а затем доводят до метки. Хранят в течение 3 месяцев.

Помещают в стакан 14,3 г безводного однозамещенного фосфорнокислого калия и 68,8 г безводного двузамещенного фосфорнокислого калия, растворяют в небольшом количестве безаммиачной воды, не содержащей аммиака и аммонийных солей, переносят в мерную колбу вместимостью 1 дм 3 , и доводят до метки этой же водой.

Срок хранения до внешних изменений, но более 2-х месяцев.

100 г сульфата цинка помещают в стакан, растворяют в небольшом количестве безаммиачной воды, переносят в мерную колбу вместимостью 1 дм 3 и доводят до метки безаммиачной водой. Реактив устойчив.

Помещают в стакан 10 г гидроксида натрия, растворяют в 60 см 3 безаммиачной воды. К полученному раствору добавляют 50 г трилона Б, переносят в мерную колбу на 100 см 3 и доводят до метки безаммиачной водой. Реактив устойчив.

Помещают в стакан 50 г KNaС4Н4O 6 ∙ 4Н 2 O, растворяют в небольшом количестве безаммиачной воды, переносят в мерную колбу на 100 см 3 , доводят до метки бидистиллированной водой, прибавляют 0,2 — 0,5 см 3 реактива Несслера. Раствор можно применять после осветления. Хранят в склянке из темного стекла в защищенном от света месте. Реактив устойчив.

Помещают в стакан 1 г мышьяковистокислого натрия, переносят в мерную колбу вместимостью 1 дм 3 и доводят до метки безаммиачной водой. Реактив устойчив.

Помещают в стакан 3,5 г серноватистокислого натрия, растворяют в небольшом количестве безаммиачной воды, переносят в мерную колбу вместимостью 1 дм 3 и доводят до метки безаммиачной водой. Раствор хранят в склянке из темного стекла не более 3-х месяцев.

Помещают в стакан 40 г борной кислоты, растворяют в небольшом количестве безаммиачной воды, переносят в мерную колбу вместимостью 1 дм 3 и доводят до метки безаммиачной водой. Раствор хранят в емкости из полиэтилена. Реактив устойчив.

125 г алюмокалиевых квасцов AIK(SO 4 )2 ∙ 12Н2O помещают в стакан, растворяют в небольшом количестве дистиллированной воды, переносят в мерную колбу вместимостью 1 дм 3 , доводят до метки дистиллированной водой, нагревают до 60 °С и постепенно прибавляют 55 см 3 концентрированного раствора аммиака при постоянном перемешивании. Дают смеси постоять около 1 часа, промывают осадок гидроокиси алюминия многократной декантацией дистиллированной водой до удаления хлоридов, нитритов, нитратов и аммиака. Реактив устойчив.

27,3 см 3 серной кислоты (ρ = 1,84 г/см 3 ) вносят небольшими порциями при перемешивании в 150 — 200 см 3 дистиллированной воды, переносят в мерную колбу вместимостью 1 дм 3 и доводят до метки дистиллированной водой. Срок хранения 6 месяцев.

Помещают в стакан 40 г гидроокиси натрия, растворяют в 60 см 3 безаммиачной воды. Хранят под защитой от контакта с воздухом в посуде из полиэтилена в течение 2-х месяцев.

Помещают в стакан 15 г гидроокиси натрия, растворяют в 85 см 3 безаммиачной воды. Хранят под защитой от контакта с воздухом в посуде из полиэтилена в течение 2-х месяцев.

Помещают в стакан 4,0 г гидроокиси натрия, растворяют в небольшом количестве безаммиачной воды, переносят в мерную колбу вместимостью 1 дм 3 и доводят до метки безаммиачной водой.

Хранят под защитой от контакта с воздухом в посуде из полиэтилена в течение 2-х месяцев.

Раствор готовят из ГСО в соответствии с прилагаемой к образцу инструкцией. В 1 см 3 раствора должно содержаться 0,1 мг ионов аммония.

2,9650 г аммония хлористого, подготовленного по ГОСТ 4212-76, помещают в стакан, растворяют в небольшом количестве дистиллированной воды, переносят в мерную колбу на 1000 см 3 , а затем доводят до метки 1 см 3 раствора содержит 0,1 мг ионов аммония.

Приготовленный раствор хранят в банке из темного стекла в течение 3-х месяцев.

Раствор готовят в день проведения анализа, разбавлением основного стандартного раствора безаммиачной дистиллированной водой. 1 см 3 раствора содержит 0,005 мг ионов аммония.

При наличии СO 2 раствор готовят в соответствии с прилагаемой к образцу инструкцией. 1 см 3 раствора должен содержать 0,005 мг ионов аммония.

Раствор используют свежеприготовленным.

Для построения градуировочного графика необходимо приготовить образцы для градуировки с массовой концентрацией ионов аммония от 0,05 до 4,0 мг/дм 3 (для морской воды от 0,05 до 1,0 мг/дм 3 ).

Условия анализа должны соответствовать п. 6.

Состав и количество образцов для градуировки приведены в таблице 2. Погрешность, обусловленная процедурой приготовления образцов для градуировки, не превышает 2,5 %.

Таблица 2 — Состав и количество образцов для градуировки

Массовая концентрация ионов аммония в градуировочных растворах, мг/дм 3

Аликвотная часть рабочего градуировочного раствора с концентрацией 0,005 мг/см 3 , помещаемая в емкость вместимостью 50 см 3 , см 3

Растворы для градуировки готовят в цилиндрах Несслера вместимостью 50 см 3 , для чего в каждый цилиндр вносят рабочий градуировочный раствор согласно таблице 2 и доводят до метки безаммиачной морской водой. Растворы в цилиндрах перемешивают и добавляют по 1,0 см 3 раствора сегнетовой соли. В другие цилиндры вместимостью 50 см 3 наливают по 1,5 см 3 30 % раствора сегнетовой соли, смачивают стенки цилиндра этим раствором, затем приливают 5 см 3 20 % раствора едкого натра и хорошо перемешивают. Растворы стандартов с сегнетовой солью быстро приливают к смеси сегнетовой соли и едкого натра, перемешивают, добавляют 2 см 3 реактива Несслера и аккуратно перемешивают. Через 15 мин измеряют оптическую плотность полученных растворов на фотоэлектроколориметре или спектрофотометре при длине волны λ = 425 нм, в кюветах с длиной поглощающего слоя 50 мм по отношению к безаммиачной морской воде, проведенной через процедуру анализа.

Растворы готовят в мерных колбах вместимостью 50 см 3 , для чего в каждую колбу вносят рабочий градуировочный раствор согласно таблице 2 и доводят до метки безаммиачной водой. Обрабатывают способом описанным в п. 10.2.2.

Анализ образцов для градуировки проводят в порядке возрастания их концентрации. Для построения градуировочного графика каждую искусственную смесь необходимо фотометрировать 3 раза с целью исключения случайных результатов и усреднения данных.

При построении градуировочного графика по оси ординат откладывают значения оптической плотности, а по оси абсцисс — содержание аммония в мг/дм 3 .

Для растворов с содержанием 0,0 — 0,6 мг/дм 3 ионов аммония строят график, используя кюветы толщиной слоя 50 мм; для растворов, содержащих 0,6 — 4,0 мг/дм 3 — график с использованием кюветы с толщиной слоя 10 мм.

Контроль стабильности градуировочной характеристики проводят не реже одного раза в квартал, а также после ремонта или поверки прибора, при использовании новой партии реактивов. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведенных в таблице 2).

Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия:

где X — результат контрольного измерения массовой концентрации ионов аммония в образце для градуировки, мг/дм 3 ;

С — аттестованное значение массовой концентрации ионов аммония в образце для градуировки, мг/дм 3 ;

σ Rл — среднеквадратическое отклонение внутрилабораторной прецизионности, установленное при реализации методики в лаборатории.

Примечание . Допустимо среднеквадратическое отклонение внутрилабораторной прецизионности при внедрении методики в лаборатории устанавливать на основе выражения: σRл = 0,84σR, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Читайте также:  В чем измеряют анализ воды

Значения σ R приведены в таблице 1.

Если условие стабильности градуировочной характеристики не выполняется только для одного образца для градуировки, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины нестабильности градуировочной характеристики и повторяют контроль ее стабильности с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график.

9.1 Избавление от мешающих влияний при определении ионов аммония в поверхностных пресных и сточных водах

9 .1.1 Непосредственному применению метода без предварительной отгонки аммиака мешает такое большое количество веществ, что рекомендовать этот метод без отгонки можно для анализа лишь очень немногих вод.

Определению мешают амины, хлорамины, ацетон, альдегиды, спирты и некоторые другие органические соединения, реагирующие с реактивом Несслера. В их присутствии проводят определение аммиака с отгонкой.

Определению мешают также компоненты, обуславливающие жесткость воды, железо, сульфиды, хлор, а также мутность.

9 .1.2 Мешающее влияние жесткости воды устраняют прибавлением раствора сегнетовой соли или комплексона (III). Мутные растворы центрифугируют или фильтруют с помощью стеклянной ваты, стеклянного или бумажного фильтра «белая лента», предварительно промытого безаммиачной водой до отсутствия аммиака в фильтре.

Большое количество железа, сульфидов и мутность удаляют с помощью раствора сульфата цинка (см. п. 8.2.11). К 100 см 3 пробы прибавляют 1 см 3 раствора и смесь тщательно перемешивают. Затем рН смеси доводят до 10,5 добавлением 25 %-ного раствора едкого калия или натрия. Проверяют значение рН на рН-метре. После взбалтывания и образования хлопьев осадок отделяют центрифугированием или фильтрованием через стеклянный фильтр (допускается использование бумажного фильтра «белая лента»), предварительно освобожденного от аммиака. Увеличение объема жидкости необходимо учитывать при расчете.

9 .1.3 Мешающее влияние хлора устраняют добавлением раствора тиосульфата или арсенита натрия. Для удаления 0,5 мг хлора достаточно прибавить 1 см 3 одного из указанных растворов (по п.п. 8.2.15, 8.2.17).

9 .1.4 В присутствии нелетучих органических соединений, например, гуминовых веществ, определение ионов аммония проводят после дистилляции.

9 .1.5 Кальций в концентрациях, превышающих 250 мг/дм 3 , оказывает влияние на установление рН. В этом случае раствор подщелачивают буферным фосфатным раствором и смесь обрабатывают кислотой или щелочью до рН — 7,4 (см. п. 10 «Выполнение измерений»).

9 .1.6 Летучие органические соединения, которые мешают определению аммиака в дистилляте, устраняют кипячением слабо подкисленной пробы (см. п. 10 «Выполнение измерений»).

9 .1.7 Мутная или цветная вода (при цветности выше 20°) подвергается коагуляции гидроокисью алюминия: к 300 см 3 исследуемой воды прибавляют 2 — 5 см 3 суспензии или 0,5 г сухой окиси алюминия, встряхивают. После 2-часового отстаивания отбирают для анализа прозрачный бесцветный слой.

Если проба воды не осветляется с помощью гидроксида алюминия, ее анализируют после предварительной отгонки (см. п. 10.2.3 «Выполнение измерений. Определение с перегонкой»).

Морские воды определяют без отгонки.

Определению мешает тонкая взвесь, образующаяся при взаимодействии реактива Несслера с катионами кальция и магния, присутствующими в морской воде в большом количестве. Для удержания магния и кальция в воде применяют сегнетову соль. Ее избыток не влияет на ход анализа. В случае появления взвеси при внесении рекомендуемых количеств раствора сегнетовой соли в пробу следует увеличить ее концентрацию или добавить цитрат натрия (лимоннокислый натрий).

10.1.1 Качественное определение

К 10 см 3 пробы прибавляют несколько кристалликов сегнетовой соли и 0,5 см 3 реактива Несслера. Желтое окрашивание раствора, помутнение или выпадение желто-коричневого осадка указывает на присутствие ионов аммония. При повышенном содержании органических веществ, особенно гуминовых кислот, вызывающих усиление коричневой окраски после подщелачивания, проводят параллельный опыт, добавив к пробе сегнетову соль, а вместо реактива Несслера — 0,5 см 3 15 %-ного раствора гидроксида натрия.

К 50 см 3 первоначальной или осветленной пробы, или к меньшему ее объему, доведенному до 50 см 3 безаммиачной водой, прибавляют 1 — 2 капли раствора сегнетовой соли или комплексона III и смесь тщательно перемешивают. При анализе очень жестких вод количество добавляемого раствора Сегнетовой соли или комплексона III увеличивается до 0,5 — 1,0 см 3 . Затем добавляют 1 см 3 реактива Несслера и снова перемешивают. Через 10 мин измеряют оптическую плотность. Окраска смеси устойчива в течение 30 мин. Из величины оптической плотности вычитают оптическую плотность холостого опыта. Если необходимо, вычитают и оптическую плотность пробы, к которой вместо реактива Несслера добавляют 1 см 3 15 %-ого раствора едкого натра и по графику находят содержание ионов аммония.

10.1.3 Определение с перегонкой

При анализе окрашенных проб, а также в присутствии мешающих органических соединений производят предварительную отгонку аммиака из исследуемой воды.

Отгонку аммиака из проб природных и сточных вод, содержащих легко гидролизуемые органические соединения, проводят при рН ÷ 7,4, добавляя к пробе фосфатный буферный раствор; в присутствии цианидов и большинства азотсодержащих органических соединений следует использовать боратный буферный раствор (рН ÷ 9,5). При анализе сточных вод, содержащих большие количества фенолов (воды коксохимических, газогенераторных предприятий) к пробе воды, добавляют 40 %-ный раствор гидроксида натрия. Если наряду с фенолами присутствуют вещества, гидролизующиеся в щелочной среде, то отгонку надо провести дважды: сначала при рН ÷ 7,4, собирая отгон в разбавленный раствор серной кислоты, затем подщелочить этот отгон до сильнощелочной реакции.

Для поглощения аммиака применяют растворы борной или серной кислот или безаммиачную воду.

Перегонку исследуемых проб проводят в комнате, воздух которой не содержит аммиака.

В колбу для отгона помещают 400 см 3 анализируемой пробы воды (или меньший объем, доведенный до 400 см 3 безаммиачной водой). Если проба воды содержит большое количество взвешенных веществ или нефтепродуктов, ее предварительно фильтруют через фильтр «белая лента». При необходимости пробу воды дехлорируют одним из реагентов, рекомендованных в п. 9.2.2. Если надо, нейтрализуют пробу (до рН ÷ 7) 1 М раствором серной кислоты или гидроксида натрия. Затем приливают 25 см 3 буферного раствора (рН ÷ 7,4 или 9,5 в зависимости от предполагаемых загрязнений) или 20 см 3 40 %-ного раствора гидроокиси натрия при анализе фенольных вод. В приемник наливают 50 см 3 поглощающего раствора и устанавливают объем жидкости так, чтобы конец холодильника был погружен в нее, добавляя при необходимости безаммиачную воду. Отгоняют примерно 300 см 3 жидкости, отгон количественно переносят в мерную колбу вместимостью 500 см 3 , замеряют рН полученного отгона (по рН-метру) и при необходимости доводят рН раствора до 6,0, затем разбавляют до метки безаммиачной водой.

В 50 см 3 аликвотной части определяют содержание ионов аммония, как указано в п. 10.1.2. При измерении оптической плотности используют кюветы толщиной слоя 1 — 5 см в зависимости от содержания ионов аммония в растворе.

В цилиндр Несслера на 50 см 3 вливают 1,5 см 3 30 % раствора сегнетовой соли и тщательно смачивают стенки цилиндра. Затем к этому раствору приливают 5 см 3 20 % раствора едкого натра и оба раствора хорошо перемешивают. Отдельно в цилиндр Несслера наливают 50 см 3 испытуемой морской воды, добавляют 1,0 см 3 сегнетовой соли и тщательно перемешивают. Затем морскую воду с сегнетовой солью быстро приливают к содержимому первого цилиндра, т.е. к смеси сегнетовой соли с раствором едкого натра, и полученную смесь хорошо перемешивают.

Обязательно проводится «холостой опыт».

Внимание ! Изменение порядка при ливания реактивов ведет к появлению мутности. Необходимо строго соблюдать порядок работы.

В пробы добавляют 2 см 3 реактива Несслера, перемешивают и через 15 мин колориметрируют на спектрофотометре при длине волны 425 нм в кювете с толщиной поглощающего слоя 50 мм на фоне безаммиачной морской воды. Перед нахождением концентрации ионов аммония, из оптической плотности пробы вычитается оптическая плотность «холостого опыта».

11.1 Содержание ионов аммония в питьевой, поверхностной пресной и сточной воде (мг/дм 3 ) вычисляют по формуле:

(2)

где С — содержание ионов аммония, найденное по калибровочному графику, мг;

V — объем пробы, взятой для анализа, см 3 ;

n = 1 при прямом определении ионов аммония;

n = 10 при определении с предварительной отгонкой аммиака (т.к. для анализа используется 1/10 отгона).

11.2 Содержание ионов аммония в морской воде (мг/дм 3 ) рассчитывают по формуле:

(3)

X — содержание ионов аммония, мг/дм 3 ;

С — концентрация ионов аммония, найденная по градуировочному графику, мг/дм 3 ;

V — объем пробы, взятый для анализа, см 3 .

11.3 За результат анализа принимают среднее арифметическое значение (Хср) двух параллельных определений X 1 и Х 2

(4)

для которых выполняется следующее условие:

где r — предел повторяемости, значения которого приведены в таблице 3.

При невыполнении условия (5) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6.

11.4 Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 3.

Таблица 3 — Значения предела повторяемости и воспроизводимости при вероятности Р = 0,95

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r, %

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя единичными результатами измерений, полученными в разных лабораториях), R, %

источник

ПНД Ф 14.1:2:4.276-2013
Количественный химический анализ вод. Методика измерений массовой концентрации аммиака и аммоний-ионов в питьевых. природных и сточных водах фотометрическим методом с реактивом Несслера

Купить ПНД Ф 14.1:2:4.276-2013 — бумажный документ с голограммой и синими печатями. подробнее

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО «ЦНТИ Нормоконтроль».

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Нормативный документ устанавливает методику количественного химического анализа различных типов вод с целью определения суммарного содержания аммиака и аммоний-ионов фотометрическим методом с реактивом Несслера. Методика распространяется на следующие объекты анализа: воды питьевых, в том числе расфасованные в емкости; воды природные пресные подземных источников водоснабжения; воды сточные производственные, хозяйственно-бытовые, ливневые и очищенные. Методика может быть использована для анализа талых, технических вод и проб снежного покрова. Методику не рекомендуется использовать для анализа проб воды поверхностных водоемов, т.к. природные гуминовые вещества мешают определению аммония. Процедура осаждения гуминовых веществ в щелочной среде не позволяет устранить мешающее влияние полностью, что приводит к завышению результатов определения аммония в диапазоне массовых концентраций от 0,1 до 1 мг/дм3. Для анализа природных вод поверхностных водоемов рекомендуется использовать другой метод анализа. Диапазон измерений массовых концентраций аммония составляет от 0,1 до 100 мг/дм3.

1. Общие положения и область применения

3. Приписанные характеристики показателей точности измерений

5. Средства измерений, вспомогательные устройства, материалы, реактивы

5.1 Средства измерений, вспомогательное оборудование, лабораторная посуда

6. Условия безопасного проведения работ

7. Требования к квалификации операторов

8. Условия выполнения измерений

10. Подготовка к выполнению измерений

10.2 Приготовление растворов

10.3 Установление градуировочной характеристики

10.4 Контроль стабильности градуировочной характеристики

12. Обработка результатов измерений

13. Оформление результатов измерений

14. Оценка приемлемости результатов измерений

15. Контроль точности результатов измерений

Приложение 1. Блок-схема проведения анализа

Приложение 2 (рекомендуемое). Приготовление реактива Несслера из набора реактивов

Приложение 3 (рекомендуемое). Устранение мешающих влияний органических веществ перегонкой из щелочного раствора

Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку:

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ
В СФЕРЕ ПРИРОДОПОЛЬЗОВАНИЯ

И. о. директора ФБУ «Федеральный

центр анализа и оценки техногенного

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ИЗМЕРЕНИЙ
МАССОВОЙ КОНЦЕНТРАЦИИ АММИАКА И АММОНИЙ-ИОНОВ
В ПИТЬЕВЫХ, ПРИРОДНЫХ И СТОЧНЫХ ВОДАХ
ФОТОМЕТРИЧЕСКИМ МЕТОДОМ
С РЕАКТИВОМ НЕССЛЕРА

Методика допущена для целей государственного
экологического контроля

Методика рассмотрена и одобрена федеральным бюджетным учреждением «Федеральный центр анализа и оценки техногенного воздействия» (ФБУ «ФЦАО»).

Настоящее издание методики действует до выхода нового издания.

Аналитический центр ЗАО «РОСА»

Адрес: 119297, г. Москва, ул. Родниковая, д. 7

Электронный адрес: quality@rossalab.ru

Адрес сайта: www.rossalab.ru

Настоящий нормативный документ устанавливает методику количественного химического анализа различных типов вод с целью определения суммарного содержания аммиака и аммоний-ионов (далее — аммония) фотометрическим методом с реактивом Несслера. Методика распространяется на следующие объекты анализа: воды питьевые, в том числе расфасованные в емкости; воды природные пресные подземных источников водоснабжения; воды сточные производственные, хозяйственно-бытовые, ливневые и очищенные. Методика может быть использована для анализа талых, технических вод и проб снежного покрова.

Методику не рекомендуется использовать для анализа проб воды поверхностных водоемов, т.к. природные гуминовые вещества мешают определению аммония. Процедура осаждения гуминовых веществ в щелочной среде не позволяет устранить мешающее влияние полностью, что приводит к завышению результатов определения аммония в диапазоне массовых концентраций от 0,1 до 1 мг/дм 3 . Для анализа природных вод поверхностных водоемов рекомендуется использовать другой метод анализа.

Диапазон измерений массовых концентраций аммония составляет от 0,1 до 100 мг/дм 3 .

Примечание — Если массовая концентрация аммония в пробе превышает верхнюю границу указанного диапазона, то допускается разбавление пробы таким образом, чтобы массовая концентрация аммония в разбавленной пробе соответствовала диапазону.

При массовой концентрации аммония в анализируемой пробе свыше 3,0 мг/дм 3 анализ выполняют с разбавлением пробы.

Мешающее влияние мутности и цветности проб устраняют путем проведения процедуры осаждения раствором сульфата меди в щелочной среде.

Мешающее влияние фенолов, сероводорода и сульфидов и некоторых органических веществ, например, аминов, ацетона, альдегидов и спиртов, устраняется путем отгонки аммиака из щелочного раствора.

Мешающее влияние солей кальция и магния устраняют добавлением раствора калия-натрия виннокислого.

При взаимодействии активного остаточного хлора с аммоний-ионами образуются хлорамины, которые мешают определению аммония. Мешающее влияние активного хлора устраняют добавлением эквивалентного количества раствора серноватистокислого натрия.

При невозможности устранения мешающих влияний с помощью процедур пробоподготовки, предусмотренных настоящим нормативным документом, рекомендуется выполнять анализ с использованием другого метода анализа.

Блок-схема проведения анализа приведена в приложении 1.

ГОСТ 12.0.004-90 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения

ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 12.1.007-76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.4.009-83 Система стандартов безопасности труда. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков

ГОСТ 1770-74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 4165-78 Реактивы. Медь (II) сернокислая 5-водная. Технические условия

ГОСТ 4232-74 Реактивы. Калий йодистый. Технические условия

ГОСТ 4328-77 Реактивы. Натрия гидроокись. Технические условия

ГОСТ 5845-79 Реактивы. Калий-натрий виннокислый 4-водный. Технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 9656-75 Реактивы. Кислота борная. Технические условия

ГОСТ 14262-78 Кислота серная особой чистоты. Технические условия

ГОСТ 14919-83 Электроплиты, электроплитки и жарочные электрошкафы бытовые. Общие технические условия

ГОСТ 18190-72 Вода питьевая. Методы определения содержания остаточного активного хлора

ГОСТ 24363-80 Реактивы. Калия гидроокись. Технические условия

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 27384-2002 Вода. Нормы погрешностей измерений показателей состава и свойств

ГОСТ 28311-89 Дозаторы медицинские лабораторные. Общие технические требования и методы испытаний

Читайте также:  В крупин живая вода анализ

ГОСТ 29169-91 Посуда лабораторная стеклянная. Пипетки с одной отметкой

ГОСТ 29227-91 Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ Р 12.1.019-2009 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты

ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности

ГОСТ Р 51592-2000 Вода. Общие требования к отбору проб

ГОСТ Р 52501-2005 Вода для лабораторного анализа. Технические условия

ГОСТ Р 53228-2008 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

Примечание — Если ссылочный стандарт заменен (изменен), то следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

Настоящая методика обеспечивает получение результатов анализа с погрешностями, не превышающими значений, приведенных в таблице 1. Приписанные погрешности измерений не превышают нормы погрешностей, установленные ГОСТ 27384.

Таблица 1 — Диапазон измерения, значение показателей повторяемости, воспроизводимости и точности

Диапазон измерений, мг/дм 3

Показатель повторяемости (стандартное отклонение повторяемости), sr, %

Показатель воспроизводимости (стандартное отклонение воспроизводимости) sR, %

Показатель точности (границы относительной погрешности при Р = 0,95), ± δ, %

источник

Массовая концентрация аммиака и ионов аммония в водах. Методика выполнения измерений фотометрическим методом в виде индофенолового синего

Настоящий руководящий документ устанавливает методику выполнения измерений (далее — методика) массовой концентрации аммиака и ионов аммония в пробах поверхностных вод суши и очищенных сточных вод любой минерализации в диапазоне от 0,02 до 1,0 мг/дм3 в пересчете на азот фотометрическим методом. При анализе проб воды с массовой концентрацией аммонийного азота, превышающей 1,0 мг/дм3, допускается выполнение измерений после соответствующего разбавления пробы водой, не содержащей аммонийного азота

Федеральная служба по гидрометеорологии и мониторингу
окружающей среды

МАССОВАЯ КОНЦЕНТРАЦИЯ АММИАКА И ИОНОВ
АММОНИЯ В ВОДАХ. МЕТОДИКА ВЫПОЛНЕНИЯ
ИЗМЕРЕНИЙ ФОТОМЕТРИЧЕСКИМ МЕТОДОМ В ВИДЕ
ИНДОФЕНОЛОВОГО СИНЕГО

1. РАЗРАБОТАН ГУ «Гидрохимический институт»

2. РАЗРАБОТЧИКИ Л.В. Боева, канд. хим. наук (руководитель разработки), А.А. Назарова, канд. хим. наук, Ю.А. Андреев

3. УТВЕРЖДЕН Заместителем руководителя Росгидромета 15.06.2005 г.

4. СВИДЕТЕЛЬСТВО ОБ АТТЕСТАЦИИ МВИ Выдано ГУ «Гидрохимический институт» 30.12.2004 г. № 35.24-2004.

5. ЗАРЕГИСТРИРОВАН ГУ ЦКБ ГМП за номером РД 52.24.383-2005 от 30.06.2005 г.

6. ВЗАМЕН РД 52.24.383-95 «Методические указания. Методика выполнения измерений массовой концентрации аммиака и ионов аммония в поверхностных водах суши фотометрическим методом в виде индофенолового синего»

Аммонийный азот в водах находится, главным образом, в растворенном состоянии в виде ионов аммония и недиссоциированных молекул NH 4 OH , количественное соотношение которых имеет важное экологическое значение и определяется величиной pH и температурой воды. В то же время некоторая часть аммонийного азота может мигрировать в сорбированном состоянии на минеральных и органических взвесях, а также в виде различных комплексных соединений.

Присутствие в незагрязненных поверхностных водах ионов аммония связано, главным образом, с процессами биохимического разложения белковых веществ, мочевины, дезаминирования аминокислот. Естественными источниками аммиака служат прижизненные выделения гидробионтов. Кроме того, ионы аммония могут образовываться в результате анаэробных процессов восстановления нитратов и нитритов.

Источником антропогенного загрязнения водных объектов ионами аммония являются сточные воды многих отраслей промышленности, бытовые сточные воды, стоки с сельскохозяйственных угодий.

Сезонные колебания концентрации ионов аммония характеризуются обычно понижением весной и в начале лета, в период интенсивной фотосинтетической деятельности фитопланктона, и повышением в конце лета — начале осени при усилении процессов бактериального разложения органического вещества в периоды отмирания водных организмов, особенно в зонах их скопления: в придонном слое водоема, в слоях повышенной плотности фито- и бактериопланктона. В осенне-зимний период повышенное содержание ионов аммония связано с продолжающейся минерализацией органических веществ в условиях слабого потребления фитопланктоном и уменьшения скорости биохимического окисления из-за низких температур.

Аммонийные ионы в водной среде неустойчивы. В присутствии кислорода они легко подвергаются биохимическому и фотохимическому окислению до нитритов, затем до нитратов. По этой причине в малозагрязненных водных объектах обычно содержание аммонийного азота не превышает тысячных долей мг/дм 3 , иногда повышаясь до сотых долей в осенне-зимний период. В некоторых водных объектах, содержащих значительное количество органического вещества, в конце длительного подледного периода при дефиците кислорода содержание аммонийного азота может возрастать до десятых долей мг/дм 3 . Повышенное содержание ионов аммония указывает на ухудшение санитарного состояния водного объекта, причем, поскольку аммиак более токсичен, чем ионы аммония, опасность аммонийного азота для гидробионтов возрастает с повышением pH воды.

Увеличение концентрации аммонийного азота в весенне-летний период, как правило, является показателем свежего загрязнения.

Для водных объектов рыбохозяйственного назначения предельно допустимая концентрация (ПДК) ионов аммония 0,4 мг/дм 3 , аммиака — 0,04 мг/дм 3 по азоту; для объектов хозяйственно-питьевого и культурно-бытового назначения ПДК в пересчете на азот равна 1,5 мг/дм 3 .

МАССОВАЯ КОНЦЕНТРАЦИЯ АММИАКА И ИОНОВ АММОНИЯ В ВОДАХ. МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ ФОТОМЕТРИЧЕСКИМ МЕТОДОМ В ВИДЕ ИНДОФЕНОЛОВОГО СИНЕГО

Настоящий руководящий документ устанавливает методику выполнения измерений (далее — методика) массовой концентрации аммиака и ионов аммония в пробах поверхностных вод суши и очищенных сточных вод любой минерализации в диапазоне от 0,02 до 1,0 мг/дм 3 в пересчете на азот фотометрическим методом. При анализе проб воды с массовой концентрацией аммонийного азота, превышающей 1,0 мг/дм 3 , допускается выполнение измерений после соответствующего разбавления пробы водой, не содержащей аммонийного азота.

2.1. При соблюдении всех регламентируемых методикой условий проведения измерений характеристики погрешности результата измерений с вероятностью 0,95 не должны превышать значений, приведенных в таблице 1.

При выполнении измерений в пробах с массовой концентрацией аммонийного азота свыше 1,0 мг/дм 3 после соответствующего разбавления погрешность измерения не превышает величины D · η, где D — погрешность измерений концентрации аммонийного азота в разбавленной пробе; η — степень разбавления.

Предел обнаружения азота аммонийного 0,005 мг/дм 3 .

2.2. Значения показателя точности методики используют при:

— оформлении результатов измерений, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения измерений;

— оценке возможности использования результатов измерений при реализации методики в конкретной лаборатории.

Таблица 1 — Диапазон измерений, значения характеристик погрешности и ее составляющих

Показатель повторяемости (среднеквадратическое отклонение повторяемости) s r, мг/дм 3

Показатель воспроизводимости (среднеквадратическое отклонение воспроизводимости), s R, мг/дм 3

Показатель правильности (границы систематической погрешности при вероятности P = 0,95), ± D с, мг/дм 3

Показатель точности (границы погрешности при вероятности P = 0,95), ± D , мг/дм 3

3.1.1. Фотометр или спектрофотометр любого типа (КФК-3, КФК-2, СФ-46, СФ-56 и др.)

3.1.2. Весы аналитические 2 класса точности по ГОСТ 24104-2001 .

3.1.3. Весы технические лабораторные 4 класса точности по ГОСТ 24104-2001 с пределом взвешивания 200 г.

3.1.4. pH-метр или иономер любого типа ( pH -150, pH-155, Экотест-2000, Анион-410 и др.).

3.1.5. Государственный стандартный образец состава водных растворов ионов аммония ГСО 7259-96.

3.1.6. Колбы мерные не ниже 2 класса точности по ГОСТ 1770-74 вместимостью:

3.1.7. Пипетки градуированные не ниже 2 класса точности по ГОСТ 29227-91 вместимостью:

3.1.8. Пипетки с одной отметкой не ниже 2 класса точности по ГОСТ 29169-91 вместимостью:

3.1.9. Бюретка не ниже 2 класса точности по ГОСТ 29251-91 вместимостью:

3.1.10. Цилиндры мерные по ГОСТ 1770-74 вместимостью:

3.1.11. Колбы конические или плоскодонные по ГОСТ 25336-82 с притертыми пробками вместимостью:

3.1.12. Воронка лабораторная по ГОСТ 25336-82 диаметром 56 мм

3.1.13. Стаканы химические термостойкие по ГОСТ 25336-82 вместимостью:

3.1.14. Стаканчики для взвешивания (бюксы) по ГОСТ 25336-82 — 6 шт.

3.1.15. Колбы круглодонные с отводом (колбы Вюрца) по ГОСТ 25336-82 : на шлифах вместимостью:

без шлифов вместимостью: 100 см 3 — 1 шт.

3.1.16. Воронка капельная по ГОСТ 25336-82 вместимостью: 50 см 3 — 1 шт.

3.1.17. Склянки для промывания газов по ГОСТ 25336-82 вместимостью:

3.1.18. Колонка стеклянная с краном и пористой пластиной высотой 50 — 60 см, диаметром 2 — 4 см или бюретка с прямым краном вместимостью 50 см 3 с прокладкой из стеклоткани или стекловаты по ГОСТ 29251-91 — 1 шт.

3.1.19. Пробирки по ГОСТ 25336-82 вместимостью 5 — 6 см 3 — 10 шт.

3.1.20. Эксикатор по ГОСТ 25336-82 .

3.1.21. Устройство для фильтрования проб с использованием мембранных или бумажных фильтров.

3.1.23. Шкаф сушильный общелабораторного назначения.

3.1.24. Плитка электрическая с закрытой спиралью и регулируемой мощностью нагрева по ГОСТ 14919-83 .

Допускается использование других типов средств измерений, посуды и вспомогательного оборудования, в том числе импортных, с характеристиками не хуже, чем у приведенных в 3.1.

3.2.1. Аммоний хлористый (хлорид аммония) по ГОСТ 3773-72 , х.ч.

3.2.2. Калий марганцовокислый (перманганат калия) по ГОСТ 20490-75 , ч.д.а.

3.2.3. Калий йодистый (иодид калия) по ГОСТ 4232-74 , ч.д.а.

3.2.4. Калий двухромовокислый (дихромат калия) по ГОСТ 4220-75 , х.ч. или калий двухромовокислый, стандарт-титр 0,1 моль/дм 3 эквивалента по ТУ 6-09-2540-72.

3.2.5. Натрий пентацианонитрозилферрат ( II ) 2-водный (нитропруссид натрия) Na 2 [Fe (CN)5NO] · 2H 2 O, ч.д.а. по ТУ 6-094224-76.

3.2.6. Натрий лимоннокислый 5,5-водный (цитрат натрия), по ГОСТ 22280-76 , ч.д.а.

3.2.7. Натрий серноватистокислый (тиосульфат натрия) 5-водный, по ГОСТ 27068-86 , ч.д.а. или натрий серноватистокислый, стандарт-титр 0,1 моль/дм 3 эквивалента по ТУ 6-09-2540-72.

3.2.8. Хлорид кальция безводный по ТУ 6-09-4711-81, ч. (для эксикатора).

3.2.9. Натрия гидроокись (гидроксид натрия) по ГОСТ 4328-77 , ч.д.а.

3.2.10. Натрий хлористый (хлорид натрия) по ГОСТ 4233-77 , х.ч.

3.2.11. Кислота соляная по ГОСТ 3118-77 , ч.д.а.

3.2.12. Кислота серная по ГОСТ 4204-77 , ч.д.а.

3.2.13. Кислота борная по ГОСТ 9656-75 , х.ч.

3.2.14. Кислота лимонная по ГОСТ 3652-69 , х.ч.

3.2.15. Кислота уксусная по ГОСТ 61-75 , ч.д.а.

3.2.16. Крахмал растворимый по ГОСТ 10163-76 , ч.д.а.

3.2.16. Фенол по ТУ 6-09-40-3245-90, ч.д.а.

3.2.17. Хлороформ по ГОСТ 20015-88 , очищенный.

3.2.18. Спирт этиловый по ГОСТ 18300-87

3.2.19. Катионит сильнокислотный КУ-2-8 или КРС-5п-Т40 по ТУ 6-09-10-829-79 или другой, равноценный по характеристикам.

3.2.20. Вода дистиллированная по ГОСТ 6709-72 .

3.2.21. Фильтры бумажные обеззоленные «синяя лента» по ТУ 6-09-1678-86.

3.2.22. Фильтры мембранные «Владипор МФАС-ОС-2», 0,45 мкм, по ТУ 6-55-221-1-29-89 или другого типа, равноценные по характеристикам.

3.2.22. Универсальная индикаторная бумага pH 1 — 10 по ТУ 6-09-1181-76.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже указанной в 3.2.

Метод измерения основан на образовании индофенолового синего при взаимодействии аммиака в щелочной среде с гипохлоритом и фенолом и фотометрическом измерении оптической плотности ярко-голубого соединения с максимумом в спектре поглощения при 630 нм.

5.1. При выполнении измерений массовой концентрации аммиака и ионов аммония в пробах природных и очищенных сточных вод соблюдают требования безопасности, установленные в государственных стандартах и соответствующих нормативных документах.

5.2. По степени воздействия на организм вредные вещества, используемые при выполнении измерений, относятся ко 2, 3 классам опасности по ГОСТ 12.1.007-76 .

5.3. Содержание используемых вредных веществ в воздухе рабочей зоны не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005-88 .

5.4. Работу с кристаллическим фенолом следует проводить в вытяжном шкафу с использованием средств индивидуальной защиты — очков, резиновых перчаток и фартука. При попадании фенола на кожу, его следует немедленно снять ватным тампоном, обильно смоченным этиловым спиртом, затем тщательно промыть водой с мылом.

5.5. Непригодный к использованию раствор фенола сливают в канализацию, разбавляя большим объемом воды.

5.6. Дополнительных требований по экологической безопасности не предъявляется.

К выполнению измерений и обработке их результатов допускаются лица со средним профессиональным образованием, имеющие стаж работы в лаборатории не менее 6 месяцев и освоившие методику.

7.1. При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

— температура воздуха (22 ± 5) °C;

— атмосферное давление от 84,0 до 106,7 кПа (от 630 до 800 мм рт. ст.);

— влажность воздуха не более 80 % при 25 °C;

— напряжение в сети (220 ± 10) В;

— частота переменного тока (50 ± 1) Гц.

7.2. В помещении, где выполняют измерения массовой концентрации аммонийного азота, запрещается проводить работы, связанные с применением аммиака и щелочных растворов солей аммония.

Отбор проб для определения аммиака и ионов аммония производят в соответствии с ГОСТ 17.1.5.05-85 и ГОСТ Р 51592-2000 . Оборудование для отбора проб должно соответствовать ГОСТ 17.1.5.04-81 и ГОСТ Р 51592-2000 . Пробы помещают в стеклянную или полиэтиленовую (полипропиленовую) посуду с плотно закрывающейся пробкой.

Если анализ не может быть произведен в день отбора пробы, ее консервируют прибавлением 1 см 3 раствора серной кислоты 1:1 на 1 дм 3 воды и хранят в холодильнике 3 — 4 дня. Для более длительного хранения необходимо замораживание пробы.

Перед определением (консервацией) пробы фильтруют через мембранный фильтр 0,45 мкм, очищенный двукратным кипячением в безаммиачной воде. Чистые фильтры хранят в плотно закрытом бюксе. Фильтрование проб следует проводить под давлением (продавливанием пробы через фильтр), поскольку при фильтровании под вакуумом возможны потери аммиака за счет улетучивания, особенно если pH пробы выше 7,5. При отсутствии мембранных фильтров или установок для фильтрования под давлением, допустимо использовать бумажные фильтры «синяя лента», промытые 1 %-ным раствором соляной кислоты, а затем безаммиачной водой. При фильтровании через любой фильтр первые порции фильтрата следует отбросить.

9.1. Приготовление растворов и реактивов

3,52 г фенола и 0,040 г нитропруссида натрия дигидрата (или 0,035 г безводного препарата) растворяют в 100 см 3 безаммиачной воды. Если используют другую навеску фенола, соответственно пересчитывают навеску нитропруссида и объем безаммиачной воды.

Для приготовления раствора фенола можно использовать препарат бесцветный или с едва заметным розоватым оттенком. Если фенол заметно окрашен, его следует очищать перегонкой. Схема установки для перегонки фенола и описание процедуры приведены в приложении А.

Хранят раствор фенола в темной склянке в холодильнике до появления зеленоватой или коричневатой окраски раствора (как правило, не более 10 дней).

9.1.2. Буферный раствор, pH 10,6 — 10,8

33,35 г цитрата натрия (Na 3 C 6 H 5 O 7 · 5H 2 O), 17,0 г борной кислоты, 15,0 г гидроксида натрия и 9,7 г лимонной кислоты растворяют в безаммиачной воде в мерной колбе вместимостью 500 см 3 , доводят объем до метки и перемешивают. Корректируют pH буферного раствора по pH-метру, добавляя при необходимости гидроксид натрия или лимонную кислоту. При хранении в плотно закрытой склянке раствор устойчив. Если при хранении раствора выпадает кристаллический осадок, перед использованием следует растворить его, слегка подогрев раствор в теплой воде. Один раз в месяц следует проверять pH раствора и, при необходимости, корректировать его.

В тех случаях, когда буферный раствор получается недостаточно чистым (чистоту оценивают по величине холостого опыта), его следует перенести в стакан и нагревать на водяной бане в течение часа для удаления аммиака из раствора.

Примечание — Не рекомендуется использовать лимонную кислоту, хранящуюся в лаборатории более 3 лет, поскольку при хранении возможно загрязнение ее аммиаком.

9.1.3. Гипохлорит натрия, концентрированный раствор

Получение концентрированного раствора гипохлорита натрия приведено в приложении Б.

9.1.4. Определение массовой доли активного хлора в концентрированном растворе гипохлорита

В коническую колбу вместимостью 250 см 3 добавляют 80 — 90 см 3 дистиллированной воды, приливают пипеткой 2 см 3 раствора гипохлорита, 5 см 3 раствора иодида калия и 10 см 3 раствора уксусной кислоты. Выделившийся йод титруют раствором тиосульфата натрия до бледно-желтой окраски, затем добавляют 1 см 3 раствора крахмала и продолжают титрование до обесцвечивания раствора. Одновременно выполняют титрование холостой пробы.

Определение повторяют и при отсутствии расхождения в объемах титранта более 0,1 см 3 за результат принимают среднее арифметическое. В противном случае повторяют титрование до получения результатов, расхождение между которыми не превышает 0,1 см 3 . Массовую долю активного хлора в растворе вычисляют по формуле

где C ах — массовая доля активного хлора, %;

C т — молярная концентрация раствора тиосульфата натрия, моль/дм 3 ;

V т — объем раствора тиосульфата натрия, пошедший на титрование гипохлорита натрия, см 3 ;

V — объем раствора тиосульфата натрия, пошедший на титрование холостой пробы, см 3 .

9.1.5. Раствор гипохлорита натрия, 0,14 % активного хлора

1,4 см 3 концентрированного раствора гипохлорита смешивают с раствором гидроксида натрия, 0,45 моль/дм 3 , объем которого равен 10 · ( C ах — 0,14) см 3 . При хранении в темной плотно закрытой склянке в холодильнике раствор устойчив 3 дня.

9.1.6. Раствор тиосульфата натрия с молярной концентрацией 0,1 моль/дм 3

25 г Na 2 S 2 O 3 · 5H 2 O растворяют в 1 дм 3 дистиллированной воды, которую предварительно кипятят в течение 1 — 1,5 ч и охлаждают до комнатной температуры. Для консервации добавляют 2 — 3 см 3 хлороформа. Раствор используют не ранее, чем через 5 дней после приготовления. Хранят раствор в склянке из темного стекла. Точную концентрацию раствора тиосульфата натрия устанавливают в соответствии с 9.1.7 не реже одного раза в месяц.

В коническую колбу вместимостью 250 см 3 приливают 70 — 80 см 3 дистиллированной воды, добавляют с помощью пипетки с одной отметкой 10 см 3 раствора дихромата калия, приливают мерным цилиндром 10 см 3 раствора иодида калия и 10 см 3 раствора соляной кислоты (2:1). Закрывают колбу пробкой и выдерживают в течение 5 мин в темном месте. Затем титруют пробу раствором тиосульфата натрия до слабо-желтой окраски, добавляют 1 см 3 раствора крахмала и вновь титруют до исчезновения окраски. Одновременно выполняют титрование холостой пробы.

Определение повторяют и при отсутствии расхождения в объемах титранта более 0,1 см 3 , за результат принимают среднее арифметическое. Рассчитывают молярную концентрацию тиосульфата натрия в растворе по формуле

где Cm — молярная концентрация раствора тиосульфата натрия, моль/дм 3 ;

Vm — объем раствора тиосульфата, пошедший на титрование раствора дихромата калия, см 3 ;

V — объем раствора тиосульфата, пошедший на титрование холостой пробы, см 3 .

9.1.8. Раствор дихромата калия с молярной концентрацией количества вещества эквивалента (КВЭ) 0,1000 моль/дм 3

При использовании стандарт-титра последний растворяют в дистиллированной воде в мерной колбе вместимостью 1000 см 3 , доводят объем дистиллированной водой до метки и перемешивают.

Для приготовления раствора из навески 4,904 г дихромата калия ( K 2 Cr 2 O 7 ), предварительно высушенного в сушильном шкафу при 105 °C в течение 1 — 2 ч, переносят количественно в мерную колбу вместимостью 1000 см 3 , растворяют в дистиллированной воде, доводят объем раствора до метки и перемешивают.

Хранят раствор дихромата калия в склянке с притертой пробкой в темном месте не более 6 мес.

9.1.9. Раствор иодида калия, 10 %

9.1.10. Раствор уксусной кислоты, 2 моль/дм 3

60 см 3 уксусной кислоты растворяют в 440 см 3 дистиллированной воды. Раствор устойчив.

9.1.11. Раствор соляной кислоты, 2:1

2 части (по объему) концентрированной соляной кислоты смешивают с 1 частью дистиллированной воды. Раствор устойчив.

9.1.12. Раствор соляной кислоты, 1 моль/дм 3

84 см 3 концентрированной соляной кислоты растворяют в 920 см 3 дистиллированной воды. Раствор устойчив.

9.1.13. Раствор гидроксида натрия, 0,45 моль/дм 3

3,6 г гидроксида натрия растворяют в 200 см 3 безаммиачной воды. Раствор устойчив при хранении в полиэтиленовой посуде.

9.1.14. Раствор гидроксида натрия, 1 моль/дм 3

40 г гидроксида натрия растворяют в 1 дм 3 дистиллированной воды. Раствор устойчив при хранении в полиэтиленовой посуде.

9.1.15. Раствор гидроксида натрия, 6 моль/дм 3

48 г гидроксида натрия растворяют в 200 см 3 дистиллированной воды. Раствор устойчив при хранении в полиэтиленовой посуде.

0,25 г растворимого (рисового, пшеничного) крахмала перемешивают с 50 см 3 дистиллированной воды и нагревают до кипения. Раствор хранят до помутнения.

9.1.17. Подготовка колонки с катионитом в H-форме

Подготовка и регенерация колонки с катионитом приведены в приложении В.

9.1.18. Получение безаммиачной воды

Дистиллированную воду пропускают через колонку, заполненную сильнокислым катионитом в Н-форме, со скоростью 1 — 2 капли в секунду. Первые 100 — 150 см 3 воды, прошедшей через колонку, отбрасывают. Хранят безаммиачную воду в плотно закрытой стеклянной посуде не более 3 дней.

Посуда, используемая при приготовлении растворов и выполнении измерений, должна перед использованием тщательно ополаскиваться безаммиачной водой или прогреваться в течение 1,5 — 2 ч в сушильном шкафу при 110 °C. Прогревание является более эффективным способом удаления следов аммиака с поверхности посуды. Мытье посуды осуществляют разбавленной соляной кислотой и водой. Для очень загрязненной посуды возможно использование концентрированной серной кислоты, либо хромовой смеси с последующим многократным промыванием водопроводной и дистиллированной водой.

9.3. Приготовление градуировочных растворов

9.3.1. Градуировочные растворы готовят из стандартного образца (ГСО) с содержанием ионов аммония 1,00 мг/см 3 (0,7765 мг/см 3 аммонийного азота).

Для приготовления градуировочного раствора № 1 вскрывают ампулу, и ее содержимое переносят в сухую чистую пробирку. Отбирают 3,20 см 3 образца с помощью чистой сухой градуированной пипетки вместимостью 5 см 3 и переносят в мерную колбу вместимостью 250 см 3 . Доводят объем в колбе до метки безаммиачной водой и перемешивают. Массовая концентрация аммонийного азота в градуировочном растворе № 1 составляет 9,94 мг/дм 3 (если концентрация ионов аммония в ГСО не равна точно 1,00 мг/см 3 , рассчитывают массовую концентрацию аммонийного азота в градуировочном растворе № 1 соответственно концентрации конкретного образца). Раствор хранят не более 5 дней.

Для приготовления градуировочного раствора № 2 пипеткой с одной отметкой отбирают 10 см 3 градуировочного раствора № 1, помещают его в мерную колбу вместимостью 100 см 3 и доводят до метки безаммиачной водой. Массовая концентрация аммонийного азота в градуировочном растворе № 2 составляет 0,994 мг/дм 3 Раствор хранению не подлежит.

9.3.2. При отсутствии ГСО допускается в качестве градуировочных растворов использовать аттестованные растворы аммонийного азота, приготовленные из хлорида аммония. Методика приготовления аттестованных растворов приведена в приложении Г.

9.4.1. Установление градуировочной зависимости в диапазоне массовых концентраций аммонийного азота 0 (до 0,10 мг/дм 3 )

Для приготовления образцов для градуировки в мерные колбы вместимостью 50 см 3 приливают градуированной пипеткой 0; 1,0; 2,0; 3,0; 4,0; 5,0 см 3 градуировочного раствора № 2 доводят растворы до метки безаммиачной водой и перемешивают. Массовая концентрация аммонийного азота в полученных образцах составит соответственно 0; 0,020; 0,040; 0,060; 0,080; 0,099 мг/дм 3 . Отбирают пипеткой по 25 см 3 каждого из полученных образцов, помещают их в конические или плоскодонные колбы вместимостью 50 см 3 с притертой стеклянной или пластиковой пробкой и проводят определение аммонийного азота в соответствии с разделом 10. Оптическую плотность измеряют в кюветах длиной 5 см относительно дистиллированной воды. Оптическую плотность холостого опыта (раствор с нулевой концентрацией аммонийного азота) вычитают из оптической плотности проб.

9.4.2. Установление градуировочной зависимости в диапазоне массовых концентраций аммонийного азота 0,10 — 1,0 мг/дм 3

В мерные колбы вместимостью 50 см 3 приливают градуированной пипеткой 0; 0,5; 1,0; 2,0; 3,0; 4,0; 5,0 см 3 градуировочного раствора № 1, доводят растворы до метки безаммиачной водой и перемешивают. Массовая концентрация аммонийного азота в полученных образцах составят соответственно 0; 0,099; 0,99; 0,398; 0,596; 0,795; 0,994 мг/дм 3 . Отбирают пипеткой 25 см 3 каждого из полученных образцов, помещают их в конические или плоскодонные колбы вместимостью 50 см 3 с притертой стеклянной или пластиковой пробкой и проводят определение аммонийного азота в соответствии с разделом «Выполнение измерений». Оптическую плотность измеряют в кюветах длиной 1 см относительно дистиллированной воды. Оптическую плотность холостого опыта вычитают из оптической плотности проб.

9.4.3. Среднее значение оптической плотности холостого опыта вычитают из усредненной оптической плотности растворов, содержащих добавки аммонийного азота.

Градуировочные характеристики рассчитывают в виде линейной зависимости методом наименьших квадратов. Градуировочные зависимости устанавливают заново при приготовлении нового буферного раствора, а также при замене измерительного прибора.

9.5. Контроль стабильности градуировочной характеристики

9.5.1. Контроль стабильности градуировочной характеристики проводят при приготовлении нового раствора фенола или 0,14 %-ного раствора гипохлорита. Средствами контроля являются образцы, используемые для установления градуировочной зависимости по 9.4 (не мене 3 для каждой градуировочной зависимости).

Допускается проводить контроль стабильности одной градуировочной зависимости, если вторая зависимость не будет использована для расчета результатов анализа в анализируемых пробах. Градуировочная характеристика считается стабильной при выполнении условий:

где X — результат контрольного измерения массовой концентрации аммонийного азота в образце, мг/дм 3 ;

С — приписанное значение массовой концентрации аммонийного азота в образце, мг/дм 3 ;

s R — показатель воспроизводимости для массовой концентрации аммонийного азота, равной С, мг/дм 3 (таблица 1).

Если условие стабильности не выполняется для одного образца для градуировки, необходимо выполнить повторное измерение этого образца для исключения результата, содержащего грубую погрешность. При повторном невыполнении условия, выясняют причины нестабильности, устраняют их и повторяют измерение с использованием других образцов, предусмотренных методикой. Если градуировочная характеристика вновь не будет удовлетворять условию (3), устанавливают новую градуировочную зависимость.

9.5.2. При выполнении условия (3) учитывают знак разности между измеренными и приписанными значениями массовой концентрации аммонийного азота в образцах. Эта разность должна иметь как положительное, так и отрицательное значение, если же все значения имеют один знак, это говорит о наличии систематического отклонения. В таком случае требуется установить новую градуировочную зависимость.

10.1. Дважды отбирают пипеткой 25 см 3 отфильтрованной анализируемой воды и помещают ее в колбы с притертой стеклянной или пластиковой пробкой вместимостью 50 см 3 . В вытяжном шкафу к каждой аликвоте последовательно прибавляют 1,5 см 3 буферного раствора, 0,7 см 3 раствора фенола и 0,7 см 3 раствора гипохлорита с массовой долей активного хлора 0,14 %. Прибавление растворов следует производить быстро, закрывая колбу пробкой после добавления очередного раствора. После прибавления растворов фенола и гипохлорита пробу следует перемешивать круговыми движениями. Закрытую пробкой колбу оставляют в темноте на 10 — 12 ч (как правило, до следующего дня). В зависимости от интенсивности окраски оптическую плотность раствора измеряют в кюветах длиной 1 или 5 см на фотометре (спектрофотометре) при длине волны 630 нм. Если используется прибор, снабженный светофильтрами, но не имеющий светофильтра с максимумом пропускания 630 нм, следует использовать ближайший светофильтр со стороны более коротких волн, например, светофильтр с максимумом пропускания при 590 нм. Оптическая плотность раствора (относительно одновременно приготовленного холостого опыта) устойчива, по меньшей мере, в течение недели.

Если проба была законсервирована серной кислотой, перед анализом ее следует нейтрализовать по универсальной индикаторной бумаге, добавляя по каплям раствор гидроксида натрия 6 моль/дм 3 .

10.2. Одновременно с серией проб воды выполняют анализ холостой пробы, в качестве которой берут дважды по 25 см 3 свежей безаммиачной воды. Оптическая плотность холостой пробы в кюветах длиной 5 см при длине волны 630 нм не должна превышать 0,1 (при использовании чистых реактивов и безаммиачной воды хорошего качества значение холостого опыта обычно находится в пределах 0,03 — 0,05). Большее значение указывает на загрязнение безаммиачной воды или буферного раствора ионами аммония. Если получить достаточно чистую безаммиачную воду не удается, допускается выполнять холостой опыт с использованием 5 см 3 безаммиачной воды без изменения объема добавляемых реактивов, но перед измерением оптической плотности в колбу следует добавить еще 20 см 3 безаммиачной воды и перемешать.

10.3. Если исследуемая вода заметно окрашена или слегка опалесцирует, то дополнительно проводят измерение собственной оптической плотности пробы. Для этого к 25 см 3 анализируемой воды добавляют 1,5 см 3 буферного раствора и 0,7 см 3 раствора гипохлорита, хорошо перемешивают и измеряют оптическую плотность полученного раствора.

10.4. В том случае, когда интенсивная голубая окраска появляется в течение 40 — 60 мин, проводят повторное определение, разбавляя анализируемую пробу безаммиачной водой в 5 — 10 раз (или более, в зависимости от интенсивности окраски).

Примечание — При необходимости получить результат анализа пробы в тот же день, допускается проводить измерение оптической плотности через 3 — 5 ч в зависимости от температуры окружающей среды (чем выше температура, тем быстрее развивается окраска), однако в этом случае одновременно с пробами следует в тех же условиях устанавливать градуировочную зависимость.

11.1. Вычисляют значение оптической плотности A х , соответствующее концентрации аммонийного азота в пробе воды, по формуле

где A — значение оптической плотности анализируемой пробы, в которую добавлены все реактивы;

A 1 — значение собственной оптической плотности пробы;

A 2 — среднее арифметическое значение оптической плотности холостой пробы.

11.2. По соответствующей градуировочной зависимости находят массовую концентрацию аммонийного азота в анализируемой пробе воды X , согласно полученному значению оптической плотности A х . Если измерение проводилось после разбавления, массовую концентрацию аммонийного азота в исходной пробе воды рассчитывают по формуле

где X — массовая концентрация аммонийного азота в пробе анализируемой воды, мг/дм 3 ;

X массовая концентрация аммонийного азота, найденная по градуировочной зависимости, мг/ дм 3 ;

η — степень разбавления исходной пробы воды.

11.2. При содержании в анализируемой воде нитритного азота более 0,2 мг/дм 3 в результат измерения вводят поправку. В этом случае концентрацию аммонийного азота находят по формуле

где Хн — массовая концентрация нитритного азота, мг/дм 3 (в том случае, если проба воды была разбавлена, за величину Хн принимают концентрацию нитритного азота в разбавленной пробе);

X , X ‘, η — значения символов те же, что и в формуле (5).

11.3. Результат измерений в документах, предусматривающих его использование, представляют в виде:

где ` X — среднее арифметическое значение двух результатов, разность между которыми не превышает предела повторяемости r (2,77 s r ). Значения s r приведены в таблице 1. При превышении предела повторяемости следует поступать в соответствии с 12.2;

± D — границы характеристик погрешности результатов измерений для данной массовой концентрации аммонийного азота (таблица 1).

Численное значение результатов измерений должно оканчиваться цифрой того же разряда, что и значение характеристики погрешности.

11.4. Допустимо представлять результат в виде:

` X ± D л (P = 0,95) при условии D л D , (8)

где ± D л — границы характеристик погрешности результатов измерений, установленные при реализации методики в лаборатории и обеспечиваемые контролем стабильности результатов измерений.

Примечание — Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения D л = 0,84 · D с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов измерений.

11.5. Массовую концентрацию свободного аммиака (в пересчете на азот) рассчитывают, исходя из суммарного содержания аммонийного азота, температуры и pH воды с помощью таблицы 2. Для промежуточных значений pH и температуры мольную долю азота аммиака Д находят методом линейной интерполяции. Приведенные в таблице 2 значения используют для расчета концентрации азота аммиака в диапазоне минерализации от 0 до 1,0 г/дм 3 . Если минерализация анализируемой пробы воды превышает 1 г/дм 3 , полученное значение массовой концентрации азота аммиака следует умножить на коэффициент 0,9.

Таблица 2 — Мольная доля азота аммиака в общем содержании аммонийного азота в воде в зависимости от pH и температуры при минерализации 0,5 г/дм 3

Мольная доля азота аммиака при температуре, °C

источник

Обозначение: РД 52.24.383-2005
Название рус.: Массовая концентрация аммиака и ионов аммония в водах. Методика выполнения измерений фотометрическим методом в виде индофенолового синего
Статус: действует
Заменяет собой: РД 52.24.383-95 «Методические указания. Методика выполнения измерений массовой концентрации аммиака и ионов аммония в поверхностных водах суши фотометрическим методом в виде индофенолового синего»
Дата актуализации текста: 05.05.2017
Дата добавления в базу: 01.09.2013
Дата введения в действие: 01.07.2005
Утвержден: 15.06.2005 Росгидромет (Rosgidromet )
Ссылки для скачивания: