Меню Рубрики

Что такое пмо в анализе воды

Температура воды поверхностных источников зависит от температуры воздуха, его влажности, скорости и характера движения воды и ряда других факторов. Она может изменяться в весьма широких пределах по сезонам года (от 0,1 до 30* С). Температура воды подземных источников более стабильна (8-12 * С).

Оптимальной температурой воды для питьевых целей считается 7-11*С.

Для некоторых производств, в частности для систем охлаждения и конденсации пара, температура воды имеет большое значение.

Мутность (прозрачность, содержание взвешенных веществ) характеризует наличие в воде частиц песка, глины, илистых частиц, планктона, водорослей и других механических примесей, которые попадают в нее в результате размыва дна и берегов реки, с дождевыми и талами водами, со сточными водами и т.п. Мутность воды подземных источников, как правило, невелика и обуславливается взвесью гидрооксида железа. В поверхностных водах мутность чаще обусловлена присутствием фито- и зоопланктона, глинистых или илистых частиц, поэтому величина зависит от времени паводка (межени) и меняется в течении года.

По нормам СанПиН 2.1.4.1074-01 мутность питьевой воды должна быть не выше 1,5 мг/л.

На многих производствах можно использовать воду с гораздо большим содержанием взвешенных веществ, чем определено ГОСТом. В то же время для некоторых производств химической, пищевой, электронной, медицинской и других видов промышленности требуется вода такого же или даже более высокого качества.

Цветность воды (интенсивность окраски) выражается в градусах по платиново-кобальтовой шкале. Один градус шкалы соответствует цвету 1 литра воды, окрашенного добавлением 1 мг соли — хлорплатината кобальта. Цветность воды подземных вод вызывается соединениями железа, реже — гумусовыми веществами (грунтовка, торфяники, мерзлотные воды); цветность поверхностных — цветением водоемов.

По нормам СанПиН 2.1.4.1074-01 на питьевую воду, цветность воды не должна быть выше 20 град. (в особых случаях не выше 35 град.)

Многие виды промышленности предъявляют гораздо более жесткие требования в отношении цветности используемой воды.

Запахи и привкусы воды обусловливаются присутствием в ней органических соединений. Интенсивность и характер запахов и привкусов определяют органолептически, т.е. с помощью органов чувств по пятибалльной шкале или по «порогу разбавления» испытуемой воды дистиллированной водой. При этом устанавливают кратность разбавления, необходимую для исчезновения запаха или привкуса. Запах и вкус определяют непосредственным дегустированием при комнатной температуре, а также при 60″С, что вызывает их усиление. По ГОСТ 2874-82 привкус и запах, определяемые при 20″С, не должны превышать 2 баллов.

0 баллов — запах и привкус не обнаруживается
1 балл — очень слабые запах или привкус (обнаруживает только опытный исследователь)
2 балла — слабые запах или привкус, привлекающие внимание неспециалиста
3 балла — заметные запах или привкус, легко обнаруживаемые и являющиеся причиной жалоб
4 балла — отчётливые запах или привкус, которые могут заставить воздержаться от употребления воды
5 баллов — настолько сильные запах или привкус, что вода для питья совершенно непригодна.

Вкус вызывается наличием в воде растворенных веществ и может быть соленым, горьким, сладким и кислым. Природные воды обладают, как правило, только солоноватым и горьковатым привкусом. Солёный вкус вызывается содержанием хлорида натрия, горький — избытком сульфата магния. Кислый вкус воде придаёт большое количество растворённой углекислоты (минеральные воды). Вода может иметь также чернильный или железистый привкус, вызванный солями железа и марганца или вяжущий привкус, вызванный сульфатом кальция, перманганатом калия, щелочной привкус — вызван содержанием поташи, соды, щелочи.

Привкус может быть естественного происхождения (присутствие железа, марганца, сероводорода, метана и т.д.) и искусственного происхождения (сброс промышленных стоков)

По нормам СанПиН 2.1.4.1074-01 привкус должен быть не более 2 баллов.

Запахи воды определяются живущими и отмершими организмами, растительными остатками, специфическими веществами, выделяемыми некоторыми водорослями и микроорганизмами, а также присутствием в воде растворенных газов — хлора, аммиака, сероводорода, меркаптанов или органических и хлорорганических загрязнений. Различают природные (естественного происхождения) запахи: ароматический, болотный, гнилостный, древесный, землистый, плесневый, рыбный, травянистый, неопределённый и сероводородный, тинистый и др. Запахи искусственного происхождения называют по определяющим их веществам: хлорный, камфорный, аптечный, фенольный, хлор-фенольный, смолистый, запах нефтепродуктов и так далее.

По нормам СанПиН 2.1.4.1074-01 запах воды должен быть не более 2 баллов.

Содержание растворенных веществ (сухой остаток). Общее количество веществ (кроме газов), содержащихся в воде в растворенном состоянии, характеризуется сухим остатком, получаемых в результате выпаривания профильтрованной воды и высушивания задержанного остатка до постоянной массы. В воде, используемой для хозяйственно-питьевых целей, сухой остаток не должен превышать 1000 мг/л в особых случаях — 1500 мг/л. Общее солесодержание и сухой остаток характеризуют минерализацию (содержание растворенных солей в воде).

По СанПиН 2.1.4.1074-01 на питьевую воду, сухой остаток должен быть не более 1000 мг/л

Активная реакция воды — степень её кислотности или щёлочности — определяется концентрацией водородных ионов. Обычно выражается через рН — водородный и гидроксильный показатель. Концентрация ионов водорода определяет кислотность. Концентрация ионов гидроксила определяет щелочность жидкости. При рН = 7,0 — реакция воды нейтральная, при рН 7,0 — среда щелочная.

По нормам СанПиН 2.1.4.1074-01 рН питьевой воды должен быть в пределах 6,0. 9,0

Для вод большинства природных источников значение рН не отклоняется от указанных пределов. Однако после обработки вод реагентами значение рН может существенно измениться. Для правильной оценки качества воды и выбора способа очитски необходимо знать значение рН воды источника в различные периоды года. При низких значениях сильно возрастает ее коррозирующее действие на сталь и бетон.

Очень часто для описания качества воды используется термин — жесткость. Пожалуй, самое большое расхождение между российскими нормами и директивой Совета ЕС по качеству воды относится к жесткости: 7 мг-экв/л у нас и 1 мг-экв/л у них. Жесткость самая наиболее распространенная проблема качества воды.

Жесткость воды определяется содержанием в воде солей жесткости (кальция и магния). Она выражается в миллиграмм-эквивалентах на литр (мг-экв/л). Различают карбонатную (временную) жесткость, некарбонатную (постоянную) жесткость и общую жесткость воды.

Карбонатная жесткость (устранимая), определяется наличием в воле двууглекислых солей кальция и магния — характеризуется содержанием в воде гидрокарбоната кальция, который при нагревании или кипячении воды разлагается на практически нерастворимый карбонат и углекислый газ. Поэтому её еще называют временной жесткостью.

Некарбонатная или постоянная жесткость — содержание некарбонатных солей кальция и магния — сульфаты, хлориды, нитраты. При нагревании или кипячении воды они остаются в растворе.

Общая жесткость — определяется как суммарное содержание в воде солей кальция и магния, выражается как сумма карбонатной и некарбонатной жесткости.

Вода поверхностных источников, как правило, относительно мягкая (3. 6 мг-экв/л) и зависит от географического положения — чем южнее, тем жесткость воды выше. Жесткость подземных вод зависит от глубины и расположения горизонта водоносного слоя и годового объема осадков. Жесткость воды из слоёв известняка составляет обычно 6 мг-экв/л и выше.

По нормам СанПиН 2.1.4.1074-01 жесткость питьевой воды должна быть не выше 7 (10) мг-экв/л, ( или не более 350 мг/л).

Жесткая вода просто неприятна на вкус, в ней излишне много кальция. Постоянное употребление внутрь воды с повышенной жесткостью приводит к снижению моторики желудка, к накоплению солей в организме, и, в конечном итоге, к заболеванию суставов (артриты, полиартриты) и образованию камней в почках и желчных путях.

Хотя очень мягкая вода не менее опасная, чем излишне жесткая. Самая активная — это мягкая вода. Мягкая вода способна вымывать из костей кальций. У человека может развиться рахит, если пить такую воду с детства, у взрослого человека становятся ломкие кости. Есть еще одно отрицательное свойство мягкой воды. Она, проходя через пищеварительный тракт, не только вымывает минеральные вещества, но и полезные органические вещества, в том числе и полезные бактерии. Вода должна быть жесткостью не менее 1,5-2 мг-экв/л.

Использование воды с большой жесткостью для хозяйственных целей также нежелательно. Жесткая вода образует налет на сантехнических приборах и арматуре, образует накипные отложения в водонагревательных системах и приборах. В первом приближении это заметно на стенках, например, чайника.

При хозяйственно-бытовом использовании жесткой воды значительно увеличивается расход моющих средств и мыла вследствие образования осадка кальциевых и магниевых солей жирных кислот, замедляется процесс приготовления пищи (мяса, овощей и др.), что нежелательно в пищевой промышленности. Во многих случаях использование жесткой воды для производственных целей (для питания паровых котлов, в текстильной бумажной промышленности, на предприятиях искусственного волокна и др.) не допускается, так как это связано с рядом нежелательных последствий.

В системах водоснабжения — жесткая вода приводит к быстрому износу водонагревательной технике (бойлеров, батарей центрального водоснабжения и др.). Соли жесткости (гидрокарбонаты Ca и Mg), отлагаясь на внутренних стенках труб, и образуя накипные отложения в водонагревательных и охлаждающих системах, приводят к занижению проходного сечения, уменьшают теплоотдачу. Не допускается использовать воду с высокой карбонатной жесткостью в системах оборотного водоснабжения.

Щёлочность воды. Под общей щёлочностью воды подразумевается сумма содержащихся в ней гидратов и анионов слабых кислот (угольной, кремниевой, фосфорной и т.д.). В подавляющем большинстве случаев для подземных вод имеется в виду гидрокарбонатная щёлочность, то есть содержание в воде гидрокарбонатов. Различают бикарбонатную, карбонатную и гидратную щелочность. Определение щелочности (мг-экв/л) необходимо для контроля качества питьевой воды, полезно для определения воды как пригодной для полива, для расчета содержания карбонатов, для последующей очистки сточных вод.

ПДК по щелочности составляет 0,5 — 6,5 ммоль / дм3

Содержание сульфатов и хлоридов. Сульфаты и хлориды кальция и магния образуют соли некарбонатной жесткости.

Хлориды присутствуют практически во всех водах. В основном их присутствие в воде связано с вымыванием из горных пород наиболее распространённой на Земле соли — хлорида натрия (поваренной соли). Хлориды натрия содержатся в значительных количествах в воде морей, а также некоторых озер и подземных источников

ПДК хлоридов в воде питьевого качества — 300. 350 мг/л (в зависимости от стандарта).

Повышенное содержание хлоридов в совокупности с присутствием в воде аммиака, нитритов и нитратов может свидетельствовать о загрязнённости бытовыми сточными водами.

Сульфаты попадают в подземные воды в основном при растворении гипса, находящегося в пластах. Повышенное содержание сульфатов в воде приводит к расстройству желудочно-кишечного тракта (тривиальные названия сульфата магния и сульфата натрия (солей, обладающих слабящим эффектом) — «английская соль» и «глауберова соль» соответственно).

ПДК сульфатов в воде питьевого качества — 500 мг/л.

Содержание кремниевых кислот. Кремниевые кислоты встречаются в воде как подземных, так и поверхностных источников в различной форме (от коллоидной до ионодисперсной). Кремний отличается малой растворимостью и его в воде, как правило, не много. Попадает кремний в воду и с промышленными стоками предприятий, производящих керамику, цемент, стекольные изделия, силикатные краски.

Воды, содержащие кремниевые кислоты, не могут быть использованы для питания котлов высокого давления, так как образуют силикатную накипь на стенках.

Фосфаты обычно присутствуют в воде в небольшом количестве, поэтому их присутствие указывает на возможность загрязнения промышленными стоками или стоками с сельскохозяйственных полей. Повышенное содержание фосфатов оказывает сильное влияние на развитие сине-зелёных водорослей, выделяющих токсины в воду при отмирании.

ПДК в питьевой воде соединений фосфора составляет 3,5 мг/л.

Фториды и йодиды. Фториды и йодиды в чём-то похожи. Оба элемента при недостатке или избытке в организме приводят к серьёзным заболеваниям. Для йода это — заболевания щитовидной железы («зоб»), возникающие при суточном рационе менее 0,003 мг или более 0,01 мг. Для восполнения дефицита йода в организме возможно употребление йодированной соли, но лучший выход — это включение в рацион рыбы и морепродуктов. Особенно богата йодом морская капуста.

Фториды входят в состав минералов — солей фтора. Как недостаток, так и избыток фтора могут приводить к серьезным заболеваниям. Содержание фтора в питьевой должно поддерживаться в пределах 0,7 — 1,5 мг/л (в зависимости от климатических условий)

Воды поверхностных источников характеризуются преимущественно низким содержанием фтора (0,3-0,4 мг/л). Высокие содержания фтора в поверхностных водах являются следствием сброса промышленных фторсодержащих сточных вод или контакта вод с почвами, богатыми соединениями фтора. Максимальные концентрации фтора (5-27 мг/л и более) определяют в артезианских и минеральных водах, контактирующих с фторсодержащими водовмещающими породами.

При гигиенической оценке поступления фтора в организм важное значение имеет содержание микроэлемента в суточном рационе, а не в отдельных пищевых продуктах. В суточном рационе содержится от 0,54 до 1,6 мг фтора (в среднем 0,81 мг). Как правило, с пищевыми продуктами в организм человека поступает в 4-6 раз меньше фтора, чем при употреблении питьевой воды, содержащей оптимальные его количества (1 мг/л).

Повышенное содержание фтора в воде (более 1,5 мг/л) оказывает вредное влияние на людей и животных, у населения развивается эндемический флюороз («пятнистая эмаль зубов»), рахит и малокровие. Отмечается характерное поражение зубов, нарушение процессов окостенения скелета, истощение организма. Содержание фтора в питьевой воде лимитируется. Установлено, что систематическое использование населением фторированной воды снижает и уровень заболеваний, связанных с последствиями одонтогенной инфекции (ревматизм, сердечно-сосудистая патология, заболевания почек и др.). Недостаток фтора в воде (менее 0,5 мг/л) приводит к кариесу. При пониженном содержание фтора в питьевой воде рекомендуется пользоваться зубной пастой с добавлением фтора. Фтор — один из немногих элементов, которые лучше усваиваются организмом из воды. Оптимальная доза фтора в питьевой воде составляет 0,7. 1,2 мг/л.

ПДК фтора составляет 1,5 мг/л.

Окисляемость обусловлена содержанием в воде органических веществ и отчасти может служить индикатором загрязнённости источника сточными водами. Различают окисляемость перманганатную и окисляемость бихроматную (или ХПК — химическая потребность в кислороде). Перманганатная окисляемость характеризует содержание легкоокисляемой органики, бихроматная — общее содержание органических веществ в воде. По количественному значению показателей и их отношению можно косвенно судить о природе органических веществ, присутствующих в воде, о пути и эффективности технологии очистки.

По нормам СанПиН перманганатная окисляемость воды должна быть не выше 5,0 мг О2/л и предельно допустимая концентрация (ПДК) 2 мг-экв/л.

Если меньше 5 мг-экв/л вода считается чистой, больше 5 грязной.

Содержание соединений железа. Железо может встречаться в природных водах в следующих видах:

— Истинно растворённом виде (двухвалентное железо, прозрачная бесцветная вода);
— Нерастворённом виде (трёхвалентное железо, прозрачная вода с коричневато-бурым осадком или ярко выраженными хлопьями);
— Коллоидном состоянии или тонкодисперсной взвеси (окрашенная желтовато-коричневая опалесцирующая вода, осадок не выпадает даже при длительном отстаивании);
— Железоорганика — соли железа и гуминовых и фульвокислот (прозрачная желтовато-коричневая вода);
— Железобактерии (коричневая слизь на водопроводных трубах);

Читайте также:  Реакции на анализ воды очищенной

В поверхностных водах средней полосы России содержится от 0,1 до 1 мг/дм3 железа, в подземных водах содержание железа часто превышает 15-20 мг/дм3.

Значительные количества железа поступают в водоемы со сточными водами предприятий металлургической, металлообрабатывающей, текстильной, лакокрасочной промышленности и с сельскохозяйственными стоками. Очень важен анализ на содержание железа для сточных вод. Концентрация железа в воде зависит от рН и содержания кислорода в воде. Железо в воде колодцев и скважин может находится как в окисленной, так и в востановленной форме, но при отстаивании воды всегда окисляется и может выпадать в осадок. Много железа растворено в кислых бескислородных подземных водах.

По нормам СанПиН 2.1.4.1074-01 содержание железа общего допускается не более 0,3 мг/л.

Длительное употребление человеком воды с повышенным содержанием железа может привести к заболеванию печени (гемосидерит), увеличивает риск инфарктов, негативно влияет на репродуктивную функцию организма. Такая вода неприятна на вкус, причиняет неудобства в быту.

На многих промышленных предприятиях, где вода употребляется для промывки продукта в процессе его изготовления, в частности в текстильной промышленности, даже невысокое содержание железа в воде приводит к браку продукции.

Марганец встречается в аналогичных модификациях. Марганец активизирует ряд ферментов, участвует в процессах дыхания, фотосинтеза, влияет на кроветворение и минеральный обмен. Недостаток марганца в почве вызывает у растений некрозы, хлорозы, пятнистости. При недостатке этого элемента в кормах животные отстают в росте и развитии, у них нарушается минеральный обмен, развивается анемия. На почвах, бедных марганцем (карбонатных и переизвесткованных), применяют марганцевые удобрения.

Для человека опасен как недостаток, так и переизбыток марганца.

По нормам СанПиН 2.1.4.1074-01 содержание марганца допускается не более 0,1 мг/л.

Избыток марганца вызывает окраску и вяжущий привкус, заболевание костной системы.

Присутствие в воде железа и марганца может способствовать развитию в трубах и теплообменных аппаратах железистых и марганцевых бактерии, продукты жизнедеятельности которых вызывают уменьшение сечения, а иногда их полную закупорку. Содержание железа и марганца строго ограничено в воде, используемой при производстве пластмасс, текстильной, пищевой промышленности и т.п.

Повышенное содержание обоих элементов в воде вызывает потёки на сантехнике, окрашивает бельё при стирке и придаёт воде железистый или чернильный привкус. Длительное употребление такой воды для питья вызывает отложение указанных элементов в печени и по вредности значительно обгоняет алкоголизм.

ПДК железа — 0,3 мг/л, марганца — 0,1 мг/л.

Натрий и калий попадают в подземные воды за счёт растворения коренных пород. Основным источником натрия в природных водах являются залежи поваренной соли NaCl, образовавшиеся на месте древних морей. Калий встречается в водах реже, так как он лучше поглощается почвой и извлекается растениями.

Биологическая роль натрия крайне важна для большинства форм жизни на Земле, включая человека. Организм человека содержит около 100 г натрия. Ионы натрия активируют ферментативный обмен в организме человека.

ПДК натрия составляет 200 мг/л. Избыточное содержание натрия в воде и пище приводит к гипертензии и гипертонии.

Отличительная особенность калия — его способность вызывать усиленное выведение воды из организма. Поэтому пищевые рационы с повышенным содержанием элемента облегчают функционирование сердечно-сосудистой системы при ее недостаточности, обусловливают исчезновение или существенное уменьшение отеков. Дефицит калия в организме ведет к нарушению функции нервно-мышечной (парезы и параличи) и сердечно-сосудистой систем и проявляется депрессией, дискоординацией движений, мышечной гипотонией, гипорефлек-сией, судорогами, артериальной гипотонией, брадикардией, изменениями на ЭКГ, нефритами, энтеритами и др.

ПДК калия составляет 20 мг/л

Медь, цинк, кадмий, свинец, мышьяк, никель, хром и ртуть преимущественно попадают в источники водоснабжения со стоками промышленных вод. Медь и цинк могут также попадать при коррозии соответственно оцинкованных и медных водопроводных труб из-за повышенного содержания агрессивной углекислоты.

ПДК в питьевой воде согласно СанПиН меди составляет 1,0 мг/л; цинка — 5,0 мг/л; кадмия — 0,001 мг/л; свинца — 0,03 мг/л; мышьяка — 0,05 мг/л; никеля — составляет 0,1 мг/л (в странах ЕС — 0,05 мг/л), хрома Cr3+ — 0,5 мг/л, хрома Cr4+ — 0,05 мг/л; ртути — 0,0005 мг/л.

Все вышеперечисленные соединения относятся к тяжёлым металлам и обладают кумулятивным действием, то есть свойством накапливаться в организме и срабатывать при превышении определённой концентрации в организме.

Кадмий — очень токсичный металл. Избыточное поступление кадмия в организм может приводить к анемии, поражению печени, кардиопатии, эмфиземе легких, остеопорозу, деформации скелета, развитию гипертонии. Наиболее важным в кадмиозе является поражение почек, выражающееся в дисфункции почечных канальцев и клубочков с замедлением канальцевой реабсорбции, протеинурией, глюкозурией, последующими аминоацидурией, фосфатурией. Избыток кадмия вызывает и усиливает дефицит Zn и Se. Воздействие на протяжении продолжительного времени может вызывать поражение почек и легких, ослабление костей.

Симптомы кадмиевого отравления: белок в моче, поражение центральной нервной системы, острые костные боли, дисфункция половых органов. Кадмий влияет на кровяное давление, может служить причиной образования камней в почках (в почках он накапливается особенно интенсивно). Опасность представляют все химические формы кадмия

Алюминий — легкий серебристо-белый металл. Попадает в воду в первую очередь в процессе водоподготовки — в составе коагулянтов и при сбросе сточных вод переработки бокситов.

ПДК в воде солей алюминия составляет — 0,5 мг/л

Избыток алюминия в воде приводит к повреждению центральной нервной системы.

Бор и селен присутствуют в некоторых природных водах в качестве микроэлементов в весьма незначительной концентрации, однако, при их превышении возможно серьёзное отравление.

Содержание газов. В воде природных источников чаще всего присутствуют следующие газы: кислород О2, диоксид углерода (углекислый газ) СО2 и сероводород Н2S

Кислород находится в воде в растворенном виде. Растворенный кислород в подземных водах отсутствует, содержание в поверхностных водах соответствует парциальному давлению, зависит от температуры воды и интенсивности процессов, обогащающих или обедняющих воду кислородом и может достигать 14 мг/л

Содержание кислорода и двуокиси углерода даже в значительных количествах не ухудшает качества питьевой воды, но способствует коррозии металла. Процесс коррозии усиливается с повышением температуры воды, а также при движении её. При значительном содержании в воде агрессивной двуокиси углерода коррозии подвергаются также стенки бетонных труб и резервуаров. В питательной воде паровых котлов среднего и высокого давления присутствие кислорода не допускается. Содержание сероводорода придает воде неприятный запах и, кроме того, вызывает коррозию металлических стенок труб, баков и котлов. В связи с этим присутствие Н2S не допускается в воде, употребляемой для хозяйственно-питьевых и для большинства производственных нужд.

Вещества, содержащиеся в воде и их свойства, ухудшающие качество питьевой воды и вредно влияющие на организм человека.

Соединения азота. Азотосодержащие вещества (нитраты NO3-, нитриты NO2- и аммонийные соли NH4+) почти всегда присутствуют во всех водах, включая подземные, и свидетельствуют о наличии в воде органического вещества животного происхождения. Являются продуктами распада органических примесей, образуются в воде преимущественно в результате разложения мочевины и белков, поступающих в неё с бытовыми сточными водами. Рассматриваемая группа ионов находится в тесной взаимосвязи.

Первым продуктом распада является аммиак (аммонийный азот) — является показателем свежего фекального загрязнения и является продуктом распада белков. В природной воде ионы аммония окисляются бактериями Nitrosomonas и Nitrobacter до нитритов и нитратов. Нитриты являются лучшим показателем свежего фекального загрязнения воды, особенно при одновременном повышенным содержании аммиака и нитритов. Нитраты служат показателем более давнего органического фекального загрязнения воды. Недопустимо содержание нитратов вместе с аммиаком и нитратами.

По наличию, количеству и соотношению в воде азотсодержащих соединений можно судить о степени и давности заражения воды продуктами жизнедеятельности человека.

Отсутствие в воде аммиака и в то же время наличие нитритов и особенно нитратов, т.е. соединений азотной кислоты, свидетельствуют о том, что загрязнение водоема произошло давно, и вода подверглась самоочищению. Наличие в воде аммиака и отсутствие нитратов указывают на недавнее загрязнение воды органическими веществами. Следовательно, в питьевой воде не должно быть аммиака, не допускаются соединения азотной кислоты (нитриты).

По нормам СанПиН ПДК в воде аммония составляет 2,0 мг/л; нитритов — 3,0 мг/л; нитратов — 45,0 мг/л.

Наличие иона аммония в концентрациях, превышающих фоновые значения, указывает на свежее загрязнение и близость источника загрязнения (коммунальные очистные сооружения, отстойники промышленных отходов, животноводческие фермы, скопления навоза, азотных удобрений, поселения и др.).

Употребление воды с повышенным содержанием нитритов и нитратов приводит к нарушению окислительной функции крови.

Хлор появляется в питьевой воде в результате её обеззараживания. Сущность обеззараживающего действия хлора заключается в окислении или хлорировании (замещении) молекул веществ, входящих в состав цитоплазмы клеток бактерий, отчего бактерии гибнут. Очень чувствительны к хлору возбудители брюшного тифа, паратифов, дизентерии, холеры. Даже сильно заражённая бактериями вода в значительной мере дезинфицируется сравнительно малыми дозами хлора. Однако отдельные хлоррезистентные особи сохраняют жизнеспособность, поэтому полной стерилизации воды не происходит.

Ввиду того, что свободный хлор относится к числу вредных для здоровья веществ, гигиенические номы СанПиН строго регламентирует содержание остаточного свободного хлора в питьевой воде централизованного водоснабжения. При этом СанПиН устанавливает не только верхнюю границу допустимого содержания свободного остаточного хлора, но и минимально-допустимую границу. Дело в том, что, что несмотря на обеззараживание на станции водоочистки, готовую «товарную» питьевую воду подстерегает немало опасностей по пути к крану потребителя. Например, свищ в стальной подземной магистрали, сквозь которые не только магистральная вода попадает наружу, но и загрязнения из почвы могут попасть в магистраль.

Остаточный хлор (оставшийся в воде после обеззараживания) необходим для предотвращения возможного вторичного заражения воды во время прохождения по сети.

По нормам СанПиН 2.1.4.559-96 содержание остаточного хлора в водопроводной воде должно быть не менее 0,3 мг/л и не более 0,5 мг/л.

Хлорированная вода неблагоприятно воздействует на кожу и слизистые оболочки, поскольку хлор является сильным аллергическим и токсическим веществом. Так, хлор вызывает покраснения различных участков кожи, а также становится причиной аллергического конъюктевита, первыми признаками которого являются жжение, слезотечение, отек век и другие болевые ощущения в области глаз. Дыхательная система также подвергается вредному воздействию: у 60% пловцов регистрируется проявление бронхоспазма после нескольких минут нахождения в бассейне с хлорированной водой.

Исследования показали, что около 10% хлора, используемого при хлорировании, участвует в образовании хлорсодержащих соединений. Приоритетными хлорсодержащими соединениями являются хлороформ, четырёххлористый углерод, дихлорэтан, трихлорэтан, тетрахлоэтилен. В сумме образующихся при водоподготовке ТГМ хлороформ составляет 70 — 90 %. Хлороформ вызывает профессиональные хронические отравления с преимущественным поражением печени и центральной нервной системы.

При хлорировании есть вероятность образования чрезвычайно токсичных соединений, тоже содержащих хлор, — диоксинов (диоксин в 68 тыс. раз ядовитее цианистого калия).

Хлорированная вода обладает высокой степенью токсичности и суммарной мутагенной активностью (СМА) химических загрязнений, что многократно увеличивает риск онкологических заболеваний.

По оценке американских экспертов, хлорсодержащие вещества в питьевой воде косвенно или непосредственно виновны в 20 онкозаболеваниях на 1 млн. жителей. Риск онкозаболеваний в России при максимальном хлорировании воды достигает 470 случаев на 1 млн. жителей. Предполагается, что 20-35% случаев заболевания раком (преимущественно толстой кишки и мочевого пузыря) обусловлены потреблением питьевой воды.

Сероводород, встречающийся в подземных водах, преимущественно неорганического происхождения. Он образуется в результате разложения сульфидов (пирит, серный колчедан) кислыми водами и восстановления сульфатов сульфатредуцирующими бактериями.

Сероводород обладает резким неприятным запахом, вызывает коррозию металлических стенок труб, баков и котлов и является общеклеточным и каталитическим ядом. Соединяясь с железом образует черный осадок сернистого железа FeS. По этим причинам, а также вследствие интенсификации процессов коррозии, сероводород следует полностью удалять из воды хозяйственно-питьевого назначения (по ГОСТ 2874-82 «Вода питьевая»).

СанПиН 2.1.4.559-96 (СанПиН2.1.4.1074-01) на питьевую воду мало того, что допускает присутствие сероводорода в воде до 0,03 мг/л, а сульфидов — до 3 мг/л, так эти цифры ещё никак не согласуется с элементарными знаниями химии: по данным диссоциации сероводорода и сульфидов в воде, при рН=9,0 (верхняя граница норматива на питьевую воду) доля сульфидов составляет примерно 98,5-99%, то есть в сто раз выше, чем сероводорода, и ПДК сульфидов соответственно должен быть не выше 0,3 мг/л .

Микробиологические показатели. Общая бактериальная загрязненность воды характеризуется количеством бактерий, содержащихся в 1 мл воды. Согласно ГОСТу, питьевая вода не должна содержать более 100 бактерий в 1 мл.

Особую важность для санитарной оценки воды имеет определение бактерий группы кишечной палочки. Присутствие кишечной палочки свидетельствует о загрязнении воды фекальными стоками и, следовательно, о возможности попадания в нее болезнетворных бактерий, в частности бактерий брюшного тифа.

В связи с тем, что при биологическом анализе воды определение патогенных бактерий затруднено, бактериологические определения сводятся к определению общего числа бактерий в 1 мл воды, растущих при 37″С, и кишечной палочки — бактерии коли. Наличие последней имеет индикаторные функции, т.е. свидетельствует о загрязнении воды выделениями людей и животных и т.п. Минимальный объем испытуемой воды, мл, приходящейся на одну кишечную палочку, называется колититром, а количество кишечных палочек в 1 л воды — коли-индексом. По ГОСТ 2874-82 допускается коли-индекс до 3, колититр — не менее 300, а общее число бактерий в 1 мл — до 100.

По нормам СанПиН2.1.4.1074-01 допустимо общее микробное число 50 КОЕ/мл, общие колиформные бактерии КОЕ/100мл и термотолетарные колиформные бактерии КОЕ/100мл — не допускаются.

Бактерии и вирусы из числа патогенных, т.е. паразитов, живущих на живом субстрате, развивающиеся в воде, могут вызвать заболевания брюшным тифом, амебиазом, парафитом, дизенте­рией, бруцеллезом, инфекционным гепатитом, острым гастроэнтеритом, сибирской язвой, холерой, полиомиелитом, туляремией, туберкулезом, диареей и др.

Экспертами всемирной организации здравоохранения (ВОЗ) установлено, что 80% всех заболеваний в мире связано в той или иной степени связаны с неудовлетворительным качеством питьевой воды и нарушением санитарно-гигиенических и экологических норм водообеспечения. В связи с чем, проблема обеспечения высококачественной водой является актуальной.

источник

Содержание органики в воде отражает показатель перманганатная окисляемость . Если концентрация ПМО в воде превышает 5 мг/л, то это означает, что необходима очистка воды от органики.

Органические вещества по своей сути посторонние в составе воды. Они имеют различное происхождение и пути поступления. Чаще всего в воде они представлены растворёнными кислотами из торфяных почв. Об этом можно судить по интенсивности цвета воды от желтоватого до бурого. Появление органики в воде возможно и в результате жизнедеятельности живых организмов и растений, а так же процессов их разложения.

Читайте также:  Результат анализа воды из скважины

Чтобы получить бесплатный расчет водоочистной системы (с ценами)
(3-4 варианта, которые гарантированно очистят вашу воду ) :

  • Пришлите результаты анализа воды на электронную почту [email protected] с пояснением, в каких объёмах нужна очищенная вода;
  • Или позвоните по телефону 8 (800) 222 80 97
  • ЛибоЗакажите анализ воды в нашей аккредитованной лаборатории.

Органические вещества могут быть не только вредными или неприятными, но и опасными для здоровья. Они нарушают работу эндокринной системы. К тому же эти примеси могут содержать различные болезнетворные бактерии и вирусы, а так же токсичные вещества — диоксины. Отравление диоксинами приводит к тому, что подавляется иммунитет и нарушается нормальный процесс деления клеток. А значит органические загрязнения могут значительно способствовать возникновению онкологических заболеваний.

Однако негативное влияние высокого уровня перманганатной окисляемости обуславливается не только этим. Зачастую органика мешает протеканию процессов очистки воды от других примесей. Например, она связывает на молекулярном уровне растворённые вещества, такие как железо и марганец. К тому же для окисления органические продукты первыми потребляют кислород из воды, тем самым для окисления железа или марганца его уже практически не остаётся. Повышенное значение показателя перманганатной окисляемости воде из скважины указывает на присутствие органики.

Вещества органического происхождения не дают долгое время окисляться двухвалентному железу и марганцу. Это опасно тем, что из растворённых форм они переходят в нерастворённую, уже пройдя систему очистки воды . Таким образом тяжёлые металлы могут выпадать в осадок как в бытовой технике, так и в организме человека.

Способы очистки воды от органики зависят от её концентрации в воде. Норматив содержания таких примесей – 5 мг/л.

В колодце присутствие органических загрязнений часто бывает превышено. Особенно в жаркое летнее время. Их накоплению способствует наличие кислот в почве.

Другой способ попадания органических веществ в колодец – стоки поверхностных вод или окружающие грунты. Наиболее благоприятной средой для размножения микроводорослей и бактерий обычно становятся верхние слои воды в колодце. Попадание мелкого мусора, насекомых, листьев и пыльцы растений – всё это так же служит источником органических веществ в воде. Разлагаясь, они увеличивают потребление кислорода и значение перманганатной окисляемости.

Выведение органики из воды способствует более активному удалению из неё других примесей. В этом случае для колодезной воды используют фильтры комплексной очистки. Специально подобранная фильтрующая среда удаляет растворённые и взвешенные органические вещества при значениях ПМО до 20 мг-О2/л. Регенерация фильтров производится солевым раствором.

При значениях окисляемости более 20 мг-О2/л в исходную воду необходимо дозировать раствор коагулянта. Этот процесс способствует выведению органических загрязнений из воды тем, что связывает их молекулы между собой и они слипаются в крупные хлопья. Концентрация и объём коагулирующего раствора подбирается индивидуально по значениям ПМО.

Если по каким-то причинам обслуживание фильтра комплексной очистки затруднительно, компания «Комплексные решения» предлагает вариант очистки воды с использованием накопительных баков. Ручная или автоматическая дозация коагулянта способствует быстрому слипанию органики в хлопья и выпадению их в осадок. Вместе с этим из воды устраняются излишки связанного с органикой железа и марганца. Далее из накопительного бака вода подаётся насосной станцией на промывную Титановую мембрану. Органические вещества в виде хлопьев задерживаются на её поверхности и сбрасываются в канализацию при обратной промывке.

Наличие органики в скважинах – редкое явление, так как там слишком мало кислорода. В то же время, в скважинах, глубина которых не превышает 10 метров – это вполне возможно. Особенность этих источников такова, что поступление органических веществ в воду перекрывается водоупорными пластами глин. Однако состав залегающих грунтовых слоёв может быть разнообразным. Для неглубоких скважин характерно поступление органики с водой из гумусовых почв. С осадками и стоками органические вещества также могут попадать в неё с поверхности земли. Глубокие скважины в этом отношении наиболее защищены. Единственной проблемой здесь может быть нарушение структуры залегания грунтов вследствие вмешательства человека или природного фактора. В этом случае следы органических соединений могут означать поступление из вышележащих слоёв, либо соседних, где производится сброс хозяйственно-бытовых отходов.

Очистить воду от органики можно с помощью фильтров комплексной очистки, а так же дозацией коагулянта.

источник

Экология потребления. Наука и техника: Рассказ пойдёт о том, что загрязняет воду, как её чистят и почему я спокойно пью из родника, содержащего много нитратов.

Последние пять лет я занимаюсь химическим анализом воды и нахожусь в контакте с инженерами по водоподготовке. К нам приходят самые разные люди: для одних система очистки воды — очень дорогое, но жизненно необходимое приобретение, другие просто начитались страшилок в Интернете и хотят «живую воду». Но для нас, как и для врачей, все наши заказчики одинаковы. У них есть вода — скважинная, поступающая из городского или поселкового водопровода, колодезная, речная — и её необходимо очистить до установленных норм. О том, что загрязняет воду, как её чистят и почему я спокойно пью из родника, содержащего много нитратов, пойдёт этот рассказ. Но никакие названия фирм, географические привязки и другая индивидуализирующая информация указываться не будут — я просто хочу поделиться пятью годами своих наблюдений за процессом, потому что много владельцев коттеджей могли бы меньше нервничать, если бы озаботились водоочисткой ещё на этапе заливки фундамента.

Но для начала давайте определимся со структурой процесса и терминологией, чтобы общаться на одном языке. Строго говоря, без анализа воды ни одна нормальная организация, занимающаяся водоочисткой, даже на порог вас не пустит. Всё начинается с анализа воды.

Как правильно отобрать воду на анализ?

Тщательность, с которой вы выполните отбор пробы воды, в конечном счёте может существенно повлиять на цену установки. Вот общие рекомендации.

  1. Возьмите чистую пластиковую бутылку объёмом 1.5 л. Ни в коем случае не используйте бутылки, в которых ранее находились содержащие органические вещества жидкости (квас, пиво, кефирчик, уайт-спирит) или высокоминерализованные воды. Подойдут бутылки из-под питьевой воды. Идеальный вариант — купить новую бутылку там, где торгуют напитками на розлив.
  2. Если у вас скважина — пролейте её до постоянного состава. Рекомендации, как это сделать, должны предоставить ваши скваженщики. Некоторые наши заказчики рассказывали, что их скважина работала на излив по две-три недели.
  3. Откройте ближайший к скважине кран до любых существующих фильтров, баков и других устройств, могущих оказывать влияние на состав воды, и пролейте несколько минут, чтобы обновить воду в трубах.
  4. На два раза ополосните бутылку отбираемой водой, после чего налейте воду под самое горлышко, навинтите крышку, слегка сожмите бутылку с боков, чтобы вода потекла через край, и завинтите крышку до конца. Цель: набрать воду без воздушного пузыря.
  5. Доставьте воду в лабораторию в тот же день. Если нет такой возможности — храните воду в холодильнике не более двух суток.

Далее по анализу инженерами подбирается и рассчитывается система водоочистки, и если вас устраивает коммерческое предложение и вы его оплачиваете — к вам выезжают монтажники с оборудованием. Монтажникам от вас потребуются вход, выход и дренаж — откуда брать воду, куда её подавать и куда сливать. Особое внимание следует уделить именно канализации. Если у вас яма и вы её откачиваете — позаботьтесь о том, чтобы она могла одномоментно принять на себя 2-3 кубометра воды без последствий. Почему? Фильтры пропускают через себя грязную воду, грязь оседает на фильтрующем материале. Со временем ёмкость фильтрующего материала исчерпывается и он нуждается в обратной промывке — током воды снизу вверх вся грязь с него смывается в канализацию. На одну промывку может уходить от ста литров до полутора кубометров воды, в зависимости от типа фильтра и уровня загрязнения. И всё это количество сольётся в дренаж минут за 20 для кабинетных фильтров и где-то за час для засыпных колонного типа.

Примечание. Здесь и далее я буду приводить значения в масштабах частного домовладения.

Между прочим, если в Вашем септике применяется биологическая очистка, дренажная вода может убить её. Также монтажники потребуют с вас электрическую розетку поблизости (фильтры оснащены контроллерами — электронными управляющими мозгами, которые сами знают, когда пора начинать промывку). И ещё учтите, что эксплуатироваться любые фильтры должны при температуре не ниже +5 °C, а места занимают — в зависимости от модели — до двух квадратных метров по площади и до двух метров в высоту (хотя самый маленький фильтр со всей обвязкой может поместиться в кубический метр). Да, не забудьте про давление воды на входе! Если оно меньше 2-3 атмосфер — без повысительного насоса не обойтись. Для сравнения, системы горводоканалов обычно подают в квартиры воду под давлением около 4 атмосфер.

На входе перед фильтрами ставят грубую очистку — сетчатые фильтры, механику до 20 мкм — чтобы защитить более дорогое оборудование от проскоков песка, ржавчины и других крупных частиц. На выходе после установки рекомендуется монтировать финишную доочистку (обычно уголь — удаляет запахи, хлор и мелкие частицы). В самой дорогой комплектации ещё могут присутствовать ультрафиолетовая лампа для обеззараживания на выходе и защита от протечек на полу, но всё это опции. А вот если Ваша вода содержит много железа, то инженер может спроектировать водоочистку с применением баков, которые занимают значительное пространство.

А много железа — это сколько?

Вот теперь можно поговорить о вещах, более близких к моей профессии. И начнём мы с единиц измерения. В России и за рубежом, как ни парадоксально, применяются совершенно разные единицы измерения, хотя химия одна и та же. У нас приняты мг/л и мг-экв/л, у них — ppm.

мг/л (читается: миллиграмм на литр) — это масса исследуемых частиц, содержащаяся в одном литре раствора (а не растворителя!). Если мы исследуем ионный состав воды, то под массой частиц будет подразумеваться масса атомов одного вида. Например, 10 мг/л железа означает, что в 1 литре раствора у вас содержится 10 мг атомарного железа — того самого, у которого молярная масса, согласно таблице Менделеева, 56 г/моль. И не важно, в какой форме это железо — двухвалентный ион или трёхвалентный. Просто некая абстракция — железо, как оно есть в таблице Менделеева. А если мы измеряем содержание какой-то соли, то под массой частиц будет подразумеваться масса молекулы этой соли. Например, 10 мг хлорида натрия NaCl в 1 литре раствора.

мг-экв/л (читается: миллиграмм-эквивалент на литр) — с этого момента начинается особая чёрная магия. Иеремия Рихтер, немецкий химик, открыл закон эквивалентов (и попутно портал в ад) в 1792 году. Закон гласит: вещества реагируют в количествах, пропорциональных их эквивалентам, или m1Э2 = m2Э1. Попробуйте найти химика, который приходит в восторг, считая эквиваленты! Мне такие маньяки пока не встречались, хотя я занимаюсь химией уже 14 лет. Начнём издалека. Возьмём обычную реакцию между мелом и соляной кислотой:

Улетевший углекислый газ и воду отбросим, как несущественное, и выделим в этой реакции самое важное:

Ca 2+ + 2Cl — = CaCl2 (в ионной форме)

Теперь возьмём каждый из ионов и заставим его вступить в гипотетическую реакцию гидрирования с катионом водорода, невзирая на знак заряда (да, мы, химики, любим всякие извращения; а на самом деле — масса катиона водорода принята за единицу, и теперь нам нужно найти количество других ионов, эквивалентное этой единице).

1/2Ca 2+ + H + = CaH (фактор эквивалентности = 0.5, а эквивалент водорода — частица 1/2Ca 2+ )

Cl — + H + = ClH (фактор эквивалентности = 1, а эквивалент водорода — частица Cl — )

Итак, с одним катионом водорода может (условно) прореагировать либо один анион хлора, либо половинка катиона кальция. Численное выражение доли вещества, эквивалентной одному катиону водорода, называется фактором эквивалентности. Теперь мы можем сделать простой вывод:

1/2Ca 2+ = Cl — (1 эквивалент кальция = 1 эквиваленту хлора)

Представим, что мы титруем щёлочность соляной кислотой (об этих страшных словах — позже). С соляной кислотой могут реагировать самые разные соли (гидрокарбонаты, карбонаты, гидроксиды. ) самых разных ионов (кальция, магния, натрия. ). Как нам всё это выразить в одной единице измерения? Мы не имеем права использовать здесь уже знакомую нам единицу измерения мг/л, потому что просто непонятно — миллиграмм чего? Кальция? Магния? Их смеси? В каком соотношении? Зато с эквивалентами эта проблема снимается сама собой:

Cl — = 1/2Ca 2+ = 1/2Mg 2+ = Na + = 1/3Al 3+ и т.д.

Нам не важно, какой именно вид катиона или аниона мы оттитровали, но мы знаем, что одному эквиваленту потраченной соляной кислоты всегда будет соответствовать один эквивалент неведомой штуки, которая с этой кислотой способна прореагировать. Хорошо, с эквивалентом более-менее разобрались. А что же такое миллиграмм-эквивалент? Это масса одного эквивалента в миллиграммах. Грубо — считается по таблице Менделеева как молярная масса, умноженная на фактор эквивалентности. Для приведённого выше отношения это будет выглядеть так:

35.45 мг Cl — = 20.04 мг Ca 2+ = 12.15 мг Mg 2+ = 22.99 мг Na + = 8.99 мг Al 3+

Заметьте, молярная масса, например, кальция равна 40.08 г/моль, но с 1 граммом водорода может прореагировать только половинка кальция — 20.04 грамма. Вот эта цифра — 20.04 — и будет грамм-эквивалентом кальция. Или миллиграмм-эквивалентом. Или микрограмм-эквивалентом. Эта единица удобна тем, что если мы когда-нибудь выясним, какое именно соединение прореагировало в той реакции с соляной кислотой, мы всегда сможем умножить количество миллиграмм-эквивалентов на массу одного эквивалента — и перевести таким образом миллиграмм-эквиваленты в обычные миллиграммы для конкретного соединения. Итак, мг-экв/л — это количество миллиграмм-эквивалентов вещества в одном литре раствора.

ppm (читается: пи-пи-эм, parts per million) — число частиц на миллион. Показывает, сколько исследуемых растворённых частиц находится в одном миллионе частиц раствора (не растворителя!). Единица измерения применяется на Западе почти повсеместно. Соответствует нашему мг/л (потому что миллиграмм — это, вроде как, тоже миллионная часть от литра, при условии, что плотность раствора равна 1.00, но при таком разбавлении изменением плотности всё равно можно пренебречь).

Читайте также:  Резников методы анализа природных вод 1970

мкСм/см (читается: микросименс на сантиметр) — единица измерения удельной электропроводности воды. Берут два электрода, погружают в воду. На один подают известное количество тока, на втором измеряют, сколько дошло. Поскольку в водном растворе носителями заряда являются ионы, то по количеству перенесённых с одного электрода на другой электрончиков можно сделать вывод об общей доле ионов в растворе. Сименс — единица, обратная сопротивлению (1 См = 1 Ом -1 ). Измерение удельной электропроводности иногда может дать достаточно точное представление об общем солесодержании воды. Если вода относительно чистая, то условно можно считать, что 1 мкСм/см ≈ 0.5 мг/л солей. И вот мы вплотную подошли к сущности анализа воды.

Тут надо отвлечься и уточнить, что видов анализов воды — масса. Навскидку, есть химический и микробиологический. А ещё органолептический, радиометрический, несть им числа. Я занимаюсь непосредственно химическим анализом воды, о нём и поговорим. В России документ, регламентирующий качество воды для хозяйственно-бытовых нужд, называется «СанПиН 2.1.4.1074-01». И контролируемых параметров там — тьма тьмущая. Здесь уместно отметить, что такого понятия, как «техническая вода», ни в одном официальном документе не существует. Более того, то, что обычно в простонародье подразумевают под технической водой — это как раз вода, которую можно пить, но нельзя использовать в той самой технике. Подчас на производство или в паровой котёл нужно подавать полностью обессоленную (деионизованную) воду.

Смотреть в лаборатории все параметры, подразумеваемые СанПиНом — сумасшествие. Во-первых, на анализ одной пробы уйдёт тогда неделя (тогда как анализ по 12 показателям делается за 2 часа). А во-вторых, существующие фильтрующие материалы всё равно очищают воду только от конечного числа загрязнителей. И, конечно, большая часть указанных в СанПиНе загрязнителей практически не встречается в обычных природных водах или встречается в таком количестве, что заведомо проходит по нормам. Пойдём по порядку со всеми комментариями (по какому именно порядку — я ещё не решил).

Железо. Есть практически во всех подземных водах, а вот в поверхностных — реках, озёрах — обнаружить его можно нечасто. Бывает в двух формах: растворимое, или двухвалентное Fe 2+ и окисленное, или трёхвалентное Fe 3+ . Соли двухвалентного железа прекрасно растворяются в воде (железный купорос FeSO4 ∙ 7H2O многие садоводы найдут в профильных магазинах), однако кислородом воздуха очень быстро окисляются и переходят в соединения трёхвалентного железа. А вот соединения трёхвалентного железа в воде не растворимы — ржавчину все видели, а ржавчина это смесь Fe2O3 ∙ nH2O и Fe(OH)3.

FeCl3 прекрасно в воде растворяется, после чего гидролизуется до оксихлорида и выпадает в осадок. То же самое касается других растворимых соединений трёхвалентного железа — они подвержены гидролизу в водном растворе с образованием нерастворимых продуктов.

Поэтому в поверхностных источниках железа мало: оно если и было изначально, то быстро окислилось при контакте с атмосферой и ушло в ил. Помимо атмосферы, естественным врагом двухвалентного железа являются железобактерии, которые живут за счёт энергии, выделяемой при окислении ими двухвалентного железа. Зато у него есть верный союзник в виде сероводорода. В подземных водах часто содержится сероводород в большом количестве, а он является сильным восстановителем и не даёт железу окисляться даже при контакте с атмосферой. Вообще, зависимость формы железа в растворе от окислительно-восстановительного потенциала и водородного показателя наглядно отображена в диаграммах Пурбе. Железо является одним из микроэлементов и необходимо организму человека (суточная потребность — 10 мг ), и усваивается, в том числе, из воды. Конечно, содержание железа сказывается на органолептических свойствах воды (если его больше 1-2 мг/л), а избыточное его поступление в организм может спровоцировать разные отклонения в здоровье. Ну, это всегда так. Всё есть лекарство и всё есть яд, всё дело в дозе, сказал Парацельс.

ПДК железа общего в воде хозяйственно-бытового назначения составляет 0.3 мг/л. В городском водопроводе с труб при ржавлении летит примерно 0.10. 0.15 мг/л (там, где я живу). Удаляют железо просто: сначала окисляют, чтобы наверняка (напомню, окисленное железо в воде не растворимо), затем полученные частички коагулируют (укрупняют), и всю эту конструкцию ловят механическим способом — на слое загрузки. Существуют разные каталитические загрузки, на поверхности которых все указанные процессы и происходят. Представляют они собой песок, покрытый слоем оксида марганца — того самого катализатора окисления железа — и нуждаются в периодической реагентной промывке раствором перманганата калия (нет, соединения марганца не смываются с загрузки и не попадают в очищенную воду — ну, если, конечно, вы не захотите смешать каталитический материал с лимонной кислотой). Есть и безреагентные загрузки, но перед ними требуется предварительное окисление железа, а уж каким способом — атмосферным воздухом, озоном или хлором — решит инженер. Если в Вашей воде железа до 5 мг/л — считайте, что Вам крупно повезло: установка будет подешевле. Если железа 10 мг/л — уже дорого. А вот 30 мг/л и выше — можете распрощаться с планируемой поездкой в тёплые страны. Такая установка может стоить несколько сотен тысяч рублей. Вообще, основная стоимость большинства полупромышленных систем фильтрации как раз зависит от концентрации железа. Чем его больше — тем дороже. Поэтому так важно тщательно пролить воду перед отбором пробы — застоявшаяся в металлических трубах вода может набрать железа, и инженер предложит вам по анализу такую установку, на которую у Илона Маска денег не хватит. Но и это ещё не всё. Отдельно стоит упомянуть про так называемое органическое железо — комплексные органические соединения, содержащие в составе молекулы атом железа (как правило, гуматы — комплексы гуминовых кислот). Выбить железо из таких комплексов нелегко, и оно не окисляется на воздухе. Удаление из воды органического железа может быть затруднительным.

Марганец. От марганца на сантехнике появляется серый налёт, поэтому нормируют его жёстко. Организму человека этот микроэлемент тоже необходим (суточная потребность 2 мг [1] ). Из воды легко усваивается. Ещё содержится в свёкле и половине овощей вообще. Валентностей у марганца целых семь, подробно рассматривать не имеет смысла. Двухвалентный марганец хорошо растворим, трёх- и четырёхвалентный обычно подвергается гидролизу и выпадает в виде нерастворимых гидроксидов. В отличие от железа, марганец в поверхностных водах встречается чаще. Особенно если это колодцы, и в подземной воде, питающей их, содержится какой-нибудь двухвалентный ион марганца. Дело в том, что марганец так вот запросто атмосферным воздухом не окисляется. Может захватываться осаждающимся железом и удаляться совместно с ним. Загрузки все те же самые, ибо принцип тот же: окисление, укрупнение и механическая фильтрация. ПДК 0.1 мг/л.

Жёсткость. Жёсткость замыкает тройку параметров, на которые нацелены почти все полупромышленные системы очистки воды. Да-да, есть фильтры-обезжелезиватели (удаляют железо, марганец и некоторые другие тяжёлые металлы) и фильтры-умягчители (удаляют жёсткость). Безусловно, есть другие типы фильтров, которые работают, например, по окисляемости, но в конечном итоге для промышленных нужд вам предложат обратный осмос с предочисткой, тогда вода на выходе будет как по ГОСТу для лабораторий: 3. 5 мкСм/см. Но мы отвлеклись. В школе вам рассказывали, что жёсткость — это совокупность ионов кальция и магния. Именно они выпадают в виде накипи при кипячении воды. На самом деле, такое определение не совсем корректно. Да, значительную долю жёсткости составляют ионы кальция и магния, но вообще жёсткость — это сумма всех щелочноземельных ионов, а также некоторых двухвалентных ионов тяжёлых металлов. Цинк, барий, кадмий, даже двухвалентное железо — это всё жёсткость. Другое дело, что химик в лаборатории будет маскировать ионы двухвалентного железа при измерении жёсткости. Зато кадмий вполне себе на величине жёсткости отразится. Но поспешу вас успокоить: ионов кальция в составе жёсткости большинство — как правило, процентов 80, и ещё процентов 15 магния. Нормируют жёсткость исключительно для снижения количества накипи в чайниках, а особо рьяно — в отраслевых стандартах для всяких котельных, где жёсткости в воде быть не должно вообще. Иногда вы можете услышать, что использовать в хозяйстве нужно исключительно мягкую воду, а жёсткая, якобы, вредна. Жёсткая вода увеличивает затраты на мыло, уменьшает срок жизни стиральной машинки… Вас могут начать убеждать, аргументируя тем, что кальций из воды всё равно не усваивается, и организм получает его из молока и сыра. Это некорректно.

Давайте отвлечёмся и кратко поговорим о процессе скисания молока. В молоке содержится казеинат кальция и молочный сахар лактоза. Микроорганизмы, попавшие в молоко, начинают сбраживать лактозу, постепенно превращая её в молочную кислоту. Молочная кислота выбивает из казеината кальция кальций и замещает его на ион водорода. Казеинат кальция при этом превращается в казеин — белок молока, из которого целиком состоит творог. А кальций остаётся в сыворотке в виде лактата кальция. Так что творог и сыр кальцием бедны. А в натуральном свежем молоке — да, кальций есть. Но, чтобы усвоиться, он сначала должен быть выбит из казеината соляной кислотой желудка. В воде же кальций уже готовый — сразу в ионной форме, и усваивается мгновенно. Поэтому, вода — один из важнейших источников кальция в организме, а нужно нам его немало — суточная потребность составляет не менее 1000 мг. ПДК по жёсткости — 7 мг-экв/л. Если переводить это в кальций, то в воде может содержаться (7 ∙ 20.04) 140 мг/л кальция. Так что вам потребуется выпить 7-8 литров воды, чтобы получить суточную норму. Однако накипь начинает заметно образовываться уже при содержании жёсткости порядка 4 мг-экв/л. Ручное кусковое мыло — смесь натриевых солей высших жирных кислот — при контакте с жёсткой водой превращается в смесь кальциевых солей высших жирных кислот, а кальциевые соли мыла в воде растворяются плохо. Но сейчас производители добавляют в мыло умягчающие агенты — например, трилон Б, которые нивелируют этот процесс. Синтетические же моющие средства — порошки, гели и прочие лаурилсульфаты — вообще жёсткости не боятся и никак ею не осаждаются. Вывод? Пить полезно жёсткую воду (7 мг-экв/л согласно СанПиН), руки с мылом мыть в воде с содержанием жёсткости 2. 4 мг-экв/л, на стиральную и посудомоечную машины подавать мягкую воду (

Осмотическое давление, благодаря которому растения всасывают воду из почвы, действует по следующему принципу: если два раствора разделены полупроницаемой перегородкой, через которую могут проникнуть молекулы воды, но не пройдут ионы, то растворитель перетекает из области с меньшей концентрацией в область с большей, уравнивая концентрации. Обратный осмос использует точно такую же полупроницаемую мембрану, но искусственно создаётся давление как раз в области с большей концентрацией, в результате чего растворитель перетекает в область с меньшей концентрацией, а раствор концентрируется. При этом входной поток воды разделяется на два: пермеат (чистая вода) и концентрат, который сливается в дренаж. В бытовых осмосах соотношение пермеат: концентрат составляет примерно 1: 3 (3 части входной воды сливаются в дренаж). В дорогих промышленных этот процесс компенсируют, иначе потери будут страшными.

Водородный показатель. Он же pH. На нём и будем закругляться. Представляет собой отрицательный десятичный логарифм из концентрации ионов водорода, индицирует кислотность среды. Нормируется в диапазоне 6-9 ед. pH. Более кислый раствор растворит вам зубы, более щелочной начнёт раздражать слизистую желудка. Очень важный параметр для подбора оборудования — многие загрузки работают в определённом диапазоне pH. В природных водах почти всегда находится вблизи отметки 7 ед. pH, в каких-то экстраординарных случаях инженер может предложить дозировать в воду щёлочь или кислоту для достижения заданного значения кислотности.

В конце хочу добавить пару слов о типах фильтров. Я упоминал в тексте кабинетные системы и фильтры колонного типа. В сущности, это одно и то же. Есть некий баллон, внутри которого располагаются дренажно-распределительная система и фильтрующий материал. Только в кабинетных системах это всё зажато в небольшой объём и помещено в корпус размером со стиральную машинку. Из плюсов — меньший расход воды и реагентов на промывку, из минусов — один фильтрующий материал на все параметры. Фильтры колонного типа более гибкие в настройке — например, если кабинетник сразу удалит вам железо, марганец и жёсткость в ноль, и вы ничего с этим не сделаете, то, поставив последовательно две колонны — одну по железу, вторую по жёсткости — вы сможете регулировать выходную жёсткость воды так, чтобы вам было комфортно принимать душ (чтобы не было ощущения, будто мыло не смывается), при этом железа и марганца в очищенной воде не будет. Помните, что типоразмер баллона зависит от вашего водопотребления, и нельзя ставить самый маленький баллончик на расход воды в два кубометра в час. Просто начнутся проскоки загрязнений, и в конце концов вы убьёте фильтрующий материал. Фильтрующие материалы, к слову, обычно служат 5-7 лет, после чего их необходимо заменять. Но прежде рекомендую провести анализ воды на выходе, потому что я лично щупал фильтр, который исправно работает 11 лет на одной загрузке.

Материал получился большой, можно почитать на ночь, чтобы быстрее заснуть и крепче спать. Я попытался объять необъятное, рассказал самую суть и сейчас дополню, разве что, про бактериологическую очистку. Есть всего один метод убить живность в воде — окислить её. Для этого в простейшем случае в воду будут дозировать хлор в виде гипохлорита или на выходе поставят ультрафиолетовую лампу. Ультрафиолет ионизирует растворённый в воде кислород, а активный кислород как раз и убьёт бактерии. Оптимальный вариант — озонатор. УФ-лампа или озонатор ставятся на выходе после всей очистки, непосредственно перед подачей воды потребителю, а хлор — наоборот, в начале. Потому что хлор более медленный окислитель и ему нужно дать время, а потом излишки хлора нейтрализовать на угольном фильтре.

В водоочистке ещё очень много нюансов и подводных камней. Но… «Это неописуемо!» — сказала Моська, глядя на баобаб. опубликовано econet.ru

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.

Понравилась статья? Тогда поддержи нас, жми:

источник