Меню Рубрики

Оптический метод анализа сточных вод

Основной закон светопоглощения, назначение, правила работы, оптическая схема КФК-2.

Фотометрический анализоснован на измерении и пропускании, поглощении или рассеяния света определяемым веществом в области ультрафиолетовых, видимых и инфракрасных волн. Фотометрические методы подразделяются на визуальные, в которых наблюдения ведут глазом, и объективные, в которых наблюдение осуществляется физическими приборами, например, фотоэлементами, термоэлементами и болометрами. В зависимости от характера взаимодействия анализируемого вещества со световой энергией, способа ее измерения и типа ее используемого оптического измерительного прибора различают следующие методы.

— определение количества вещества по поглощению монохроматического света, измеряемого спектрофотометрами, например СФ — 4А.

— определение количества вещества по поглощению полихроматического света, пропущенного светофильтром и измеряемого фотоэлементом в достаточно узких интервалах спектра, например на ФЭК ‑ 57, ФЭК ‑ М.

— визуальное определение концентрации вещества по интенсивности окраски раствора на простейших оптических приборах ( колориметр Дюбокса, фотометр Пульфриха). В фотоколориметрии и колориметрии измеряют интенсивность света, прошедшего через окрашенный раствор, цвет которого дополняет цвет поглощенного света.

— определение концентрации по поглощению света взвешенными в жидкости частицами анализируемого вещества; степень мутности жидкости пропорционально концентрации.

— определение концентрации по интенсивности света, рассеянного (отраженного) взвешенными частицами мутной системы, например колоидного раствора, суспензии, эмульсии. Интенсивность светорассеяния пропорциональна концентрации взвешенных частиц. Турбидиметрические и нефелометрические измерения проводят на нефелометре НФМ со светофильтрами или на ФЭК — Н — 57.

— определение количества вещества по интенсивности флуоросценции, возникающей при облучении анализируемого вещества УФ лучами и пропорциональной его концентрации. Определяют на флуорометрах ФМ-1, ФМ-2 со ртутными кварцевыми лампами ДРС-50.

При фотометрических измерениях, по закону Ламберта, слои вещества равной толщины поглощают равные части света. Этот закон рассматривает постепенное ослабление параллельного монохроматического пучка света при его распространении в поглощающем веществе.

Закон Бугера — Ламберта — Бэра

определяет зависимость поглощения монохроматического пучка света от концентрации и толщины слоя светопоглощающего вещества в растворе. Если имеются два раствора одного и того же вещества в одном и том же растворителе, из которых один в два раза концентрированнее другого, то светопоглощение (абсорбция) в первом растворе будет равно светопоглощению во втором растворе при условии, что толщина слоя первого раствора в два раза меньше, чем толщина слоя второго раствора.

Закон Бугера — Ламберта — Бэра

,

I0 — интенсивность пучка монохроматического света, вошедшего в слой светопоглощающего раствора толщины h;

It — интенсивность света вышедшего из слоя раствора;

С — концентрация светопоглощающего растворенного вещества;

— молекулярный коэффициент поглощения света, зависящая от химической природы и физического состояния светопоглощающего вещества, от длины волны монохроматического света;

h — толщина колориметрируемого слоя.

Известно, что · С зависит от толщины слоя h вследствие резонансного взаимодействия между светящейся и светопоглощающей молекулами. Если концентрация раствора выражена в моль/л, а толщина слоя — в см, то коэффициент ? называется мольным коэффициентом погашения, или мольным коэффициентом экстинкции. Он характеризует оптическую плотность 1 мл раствора, налитого в кювету толщиной 1 см.

Оптическую плотность можно вычислить, пользуясь формулой закона Бугера – Ламберта — Бера :

Мольный коэффициент показывает, какая часть светового потока поглощается раствором при толщине слоя 1см . Если C = 1 моль/л и x = 1см , то ? = D . Величину D называют оптической плотностью поглощающего вещества .

Закон Бугера — Ламберта описывает светопоглощение при постоянной концентрации вещества в растворе и различной толщине слоя .

Планирование природоохранной деятельности на целлюлозно-бумажном предприятии
Задание на курсовое проектирование Наименование показателей Единицы измерения Значение показателя 1.Количество варочных котлов штук 10 2.Объем од .

Чернобыльская катастрофа
Сигнал тревоги, прозвучавший в мирной ночи на Чернобыльской атомной электростанции 26 апреля 1986 года в 1 час 23 минуты, всколыхнул весь мир. Он стал грозным предупреждением человечеству о том, что колоссальная энергия, заключенная .

источник

Фотометрический анализ основан на измерении и пропускании, поглощении или рассеяния света определяемым веществом в области ультрафиолетовых, видимых и инфракрасных волн. Фотометрические методы подразделяются на визуальные, в которых наблюдения ведут глазом, и объективные, в которых наблюдение осуществляется физическими приборами, например, фотоэлементами, термоэлементами и болометрами. В зависимости от характера взаимодействия анализируемого вещества со световой энергией, способа ее измерения и типа ее используемого оптического измерительного прибора различают следующие методы. Спектрофотометрия — определение количества вещества по поглощению монохроматического света, измеряемого спектрофотометрами, например СФ — 4А. Фотоэлектроколориметрия — определение количества вещества по поглощению полихроматического света, пропущенного светофильтром и измеряемого фотоэлементом в достаточно узких интервалах спектра, например на ФЭК _ 57, ФЭК _ М. Колориметрия — визуальное определение концентрации вещества по интенсивности окраски раствора на простейших оптических приборах (колориметр Дюбокса, фотометр Пульфриха). В фотоколориметрии и колориметрии измеряют интенсивность света, прошедшего через окрашенный раствор, цвет которого дополняет цвет поглощенного света. Tурбидиметрия — определение концентрации по поглощению света взвешенными в жидкости частицами анализируемого вещества; степень мутности жидкости пропорциональна концентрации. Нефелометрия — определение концентрации по интенсивности света, рассеянного (отраженного) взвешенными частицами мутной системы, например коллоидного раствора, суспензии, эмульсии. Интенсивность светорассеяния пропорциональна концентрации взвешенных частиц. Турбидиметрические и нефелометрические измерения проводят на нефелометре НФМ со светофильтрами или на ФЭК — Н — 57. Флуорометрия — определение количества вещества по интенсивности флуоресценции, возникающей при облучении анализируемого вещества УФ лучами и пропорциональной его концентрации. Определяют на флуорометрах ФМ-1, ФМ-2 со ртутными кварцевыми лампами ДРС-50.При фотометрических измерениях, по закону Ламберта, слои вещества равной толщины поглощают равные части света. Этот закон рассматривает постепенное ослабление параллельного монохроматического пучка света при его распространении в поглощающем веществе. Закон Бугера — Ламберта — Бера определяет зависимость поглощения монохроматического пучка света от концентрации и толщины слоя светопоглощающего вещества в растворе. Если имеются два раствора одного и того же вещества в одном и том же растворителе, из которых один в два раза концентрированнее другого, то светопоглощение (абсорбция) в первом растворе будет равно светопоглощению во втором растворе при условии, что толщина слоя первого раствора в два раза меньше, чем толщина слоя второго раствора.

Закон Бугера — Ламберта — Бера гласит, что интенсивность параллельного монохроматического пучка света при распространении его в поглощающей среде ослабляется.

Закон выражается следующей формулой:

I (l) — интенсивность параллельного монохроматического пучка света;

I0 — интенсивность входящего пучка,

l — толщина слоя вещества, через которое проходит свет,

— показатель поглощения.

Показатель поглощения — коэффициент, показывающий свойства вещества и зависящий от длины волны л поглощаемого света. Эта зависимость называется спектром поглощения вещества. [5]

источник

Физико-химические методы анализа

Основные вопросы:

  1. Классификация физико-химических методов анализа.
  2. Оптические методы анализа.
  3. Электрохимические методы анализа.
  4. Хроматографические методы анализа.

Физико-химические методы анализа (инструментальные методы) – отдельный раздел аналитической химии, заданием которого является определение количественного и качественного состава веществ при изменении их физико-химических свойств.

Преимущества физико-химических методов анализа:

ü высокая чувствительность; высокая избирательность;

ü возможность непрерывного выполнения анализов;

ü возможность широкого применения компьютерных баз данных и программного обеспечения.

Задачи, решаемые с помощью физико-химических методов анализа:

1. Определение качества сырья.

2. Контроль процессов производства.

3. Анализ отходов производства с целью их утилизации и охрана окружающей среды.

4. Контроль качества произведённой продукции.

5. Определение в сырье и в продовольственных и непродовольственных товарах предельно допустимых концентраций (ПДК) токсических веществ (Нg, Pb, Cd, канцерогенные соединения, ароматические углеводороды, N- нитрозоамины).

Физико-химические методы– это методы анализа, которые основываются на зависимости физической характеристики веществ (светопоглощения, светопреломления, электрической проводимости, теплопроводности) от их химического состава. Интенсивность физического сигнала зависит от концентрации исследуемого компонента. Измерения проводят с помощью соответствующей аппаратуры (инструментальные методы).

Аналитический сигнал – любое проявление химических и физических свойств объекта анализа, которое можно использовать для количественной и качественной оценки компонентов вещества.

Количественное определение физико-химическим методом состоит из следующих этапов:

1. приготовление стандартных растворов разных концентраций (серия растворов);

2. количественная оценка (при помощи специального прибора) какого-либо физического свойства для всех приготовленных растворов;

3. построение калибровочного графика в координатах состав – свойство. Обычно на оси абсцисс откладывают концентрацию вещества, а на оси ординат – значение измеряемого свойства;

4. определение количественных характеристик свойства при помощи прибора;

5. определение по калибровочному графику концентрации исследуемого вещества.

Оптические (спектральные) методы анализа

Суть метода основывается на взаимодействии вещества со средой, а в качестве среды имеют электромагнитные волны оптического диапазона. В результате взаимодействия происходит изменение свойств веществ, вступивших в реакцию.

Оптические (спектральные) методы анализа базируются на использовании разных явлений и эффектов, возникающих при взаимодействии вещества и электромагнитного излучения (изучении спектров поглощения, излучения и рассеивания).

Оптический спектрсодержит ультрафиолетовую (УФ), видимую и инфракрасную (ИК) области.

При взаимодействии вещества с электромагнитными волнами можно зафиксировать такие изменения.

1. Поглощение света веществом, поглощать свет могут молекулы и ионы (фотометрический анализ):

 колориметрия;

 фотоколориметрия;

 спектрофотометрия (используется весь диапазон) – получают спектр вещества.

Совокупность методов молекулярно-абсорбционного спектрального анализа, основанных на избирательном поглощении электромагнитного излучения в видимой, ИК и УФ областях молекулами определяемого компонента или его соединений с подходящим реагентом.

2. Поглощение света атомами вещества – атомно-абсорбционный метод:

3. Излучение веществ, находящихся в состоянии плазмы (высокая температура):

¯ эмиссионный метод;

¯ флюорометрия;

¯ люминесцентный метод.

4. Излучение отдельных атомов, когда вещество переходит в состояние плазмы (800 – 5000 0 С):

© эмиссионный спектральный анализ;

© плазменная фотометрия.

Важной характеристикой любого метода является предел чувствительности (предел обнаружения вещества в граммах).

ü При фотометрии ‑ 1·10 -6 г;

ü При флюорометрии (люминесцентные методы) ‑ 1·10 -10 г;

ü При полярографии ‑ 1·10 -8 г;

ü При эмиссионном спектральном анализе ‑ 1·10 -10 г;

Основой фотометрического метода анализа является избирательное поглощение света частицами (молекулами или ионами) вещества в растворе.

Фотометрический анализ включает визуальную колориметрию (колориметрию), спектрофотометрию и фотоколориметрию.

Характер поглощения зависит от природы вещества – на этом строится качественный анализ, а на зависимости светопоглощения от концентрации основывается количественный анализ веществ.

Колориметрические (фотометрические) методы анализа базируются на реакциях, сопровождающихся образованием растворимых соединений (иногда разрушением окрашенных соединений).

Количественная оценка поглощения света измеряется светопоглощением (А), светопропусканием (Т) и оптической плотностью (D).

Основные оптические характеристики окрашенного раствора:окраскаиинтенсивностьэтойокраски.

Окраска любого раствора характеризуется спектром поглощения. О количестве исследуемого компонента судят по интенсивности окрашивания раствора (чем интенсивнее окраска, тем больше концентрация элемента в растворе).

За меру интенсивности окраски принимают оптическую плотность D.

lg ‑ оптическая плотность – характеризует степень ослабления (поглощения) света при прохождении его через раствор.

Растворы одного и того же окрашенного вещества при одинаковой концентрации вещества и толщине слоя раствора поглощают равное количество световой энергии (светопоглощение таких растворов одинаковое).

Если исследуемый раствор подчиняется закону Бугера – Ламберта – Бера наблюдается прямая пропорциональная зависимость.

D=f(C) при постоянной толщине поглощающего слоя.

Интенсивность окраски связана с интенсивностью поглощения света.

Интенсивность поглощения света зависит от:

▪ концентрации окрашенного соединения в растворе;

▪ толщины поглощающего слоя.

lg =E L × C,где

І – интенсивность потока света, входящего в раствор;

Іt – интенсивность света, прошедшего через раствор;

L – толщина поглощающего света;

С – концентрация окрашенного соединения в растворе (моль/л);

Е – молярный коэффициент поглощения („Епсилон”).

Физическая суть Е: молярный коэффициент поглощения численно равен оптической плотности 1М раствора при толщине поглощающего слоя 1см. Характеризует внутренние свойства вещества и не зависит от объёма раствора, толщины слоя, интенсивности освещения; является наиболее важной характеристикой возможной чувствительности фотометрического определения.

закон Бугера – Ламберта – Бера (основный закон светопоглощения).

Выполняется при условии: L >> λ; С – не очень большая.

Формулировка закона Бугера – Ламберта ‑ Бера: Оптическая плотность растворов пропорциональна произведению концентрацию окрашенного вещества и толщине поглощающего слоя.

Количественное определение вещества по светопоглощению основывается на использовании закона Бугера – Ламберта – Бера. Оптическую плотность исследуемого раствора измеряют с помощью фотоэлектроколориметра или спектрофотометра, а потом расчётным или графическим способом находят концентрацию. Последние две операции на современных приборах выполняют компьютеры.

В фотоколориметрии поглощение света измеряют в видимой области спектра, реже – в ближних УФ и ИК областях (т.е. в интервале длин волн от 315 – 980 нм), для выделения нужного участка спектра (шириной 10…100нм) используют узкополосные светофильтры. Приборами служат фотоэлектроколориметры (ФЭК, КФК).

Измеряемый диапазон оптической плотности составляет от 0,05 до 3,0, что позволяет определять многие элементы и их соединения в широком интервале содержаний от 10 -6 до 50% по массе.

Спектрофотомерия базируется на основе измерения поглощения монохроматического излучения УФ, видимой и ИК области спектра. Такие измерения проводят с помощью спектрофотометров. Спектрофотометры имеют более сложную конструкцию и часто – электронные устройства (усилители фототока, дисплее).

Каждый спектральный прибор включает:

2. фокусирующее устройство;

3. устройство для выделения необходимого интервала длин волн (монохроматор или светофильтр);

Светофильтры – стёкла, способные пропускать свет лишь определённой длины волны. При этом другой свет ими поглощается.

Кюветы – посуда прямоугольной формы для спектрофотометрических исследований. Кюветы бывают: стеклянные – для исследований растворов в видимой области спектра (350 – 700нм), кварцевые – для диапазона ультрафиолетового и видимого спектров (200 – 700 нм).

При работе с инфракрасными лучами (700 нм и больше) используют кюветы со стенками из плавленого хлорида серебра или вместо растворов используют таблетки из этих веществ с бромидом калия. Кюветы бывают прямоугольные, термостатированные, проточные, цилиндрические.

Кювета с исследуемым раствором называется рабочая кювета, а кювета с раствором сравнения – кювета сравнения; обе кюветы должны быть идентичными.

Основное требование к кюветам – прозрачность в области спектра, в котором проводится измерение оптической плотности. Для работы в видимой области спектра кюветы изготавливают из стекла, а в ультрафиолетовой – из кремния.

5. детектор, преобразователь сигнала;

6. индикатор сигнала (шкала или компьютерный дисплей).

В фотоэлектроколориметрии степень поглощения света (интенсивность окраски раствора) определяют с помощью фотоэлемента.

Фотоэлемент ‑ металлическая пластинка, покрытая слоем полупроводника (селен, сульфид свинца).

Световой поток после попадания на фотоэлемент, возбуждает в нём электрический ток. Величина возникшего фототока прямо пропорциональна падающему световому потоку (закон Столетова). Возникший электрический ток регистрируется включением в цепь чувствительным микроамперметром, отклонение стрелки которого прямо пропорционально освещённости фотоэлемента.

В зависимости от количества фотоэлементов, используемых при измерении, различают:

1. фотоэлектроколориметры с одним фотоэлементом (однолучевые приборы);

2. фотоэлектроколориметры с двумя фотоэлементами (двулучевые приборы). Чаще всего используют ФЕК-М; ФЕК-56М; ФЕК-Н-57, МКФМ-02.

Этапы колориметрического (фотоэлектроколориметрического) определения

І этап. Исследуемый компонент с помощью химической реакции переводят в окрашенное соединение:

где Х – исследуемый компонент; R – реагент; П – продукт (окрашенное соединение).

ІІ этап. Измеряют интенсивность окрашивания раствора

Окрашивание исследуемого раствора сравнивают с окрашиванием стандартного раствора (с точно определённой концентрацией исследуемого компонента).

В зависимости от способа измерения интенсивности окраски методы:

Визуальные методы;

Инструментальные методы.

Визуальные методы

Визуальная колориметрия (стараются достичь одинаковой интенсивности окрашивания исследуемого и стандартного растворов, сравнение происходит визуально).

Преимущества: простота, быстрота выполнения.

ü относительная ошибка определений – от 2 до 10%;

ü точность определений зависит от индивидуальной способности улавливать разницу в интенсивностях окраски.

Условия сравнения интенсивности окраски:

³ реактивы добавляют в одинаковой последовательности и количествах;

³ если в исследуемом растворе содержатся посторонние ионы, влияющие на окраску, то к стандартному раствору добавляют эти ионы и в тех же количествах;

³ окраску растворов сравнивают в одинаковых посудах.

Методы визуальной колориметрии:

þ Метод стандартных серий(готовят колориметрическую шкалу ‑ ряд растворов с известной концентрацией исследуемого вещества).

Сравнивают окрашивание исследуемого раствора с окрашиванием серии стандартных растворов (концентрация исследуемого раствора равна концентрации стандартного раствора одинаковой интенсивности окраски).

Используют при массовых анализах растворов, если окраска растворов устойчивая во времени.

þ Метод колориметрического титрования(проводят в 2-х цилиндрах)

І цилиндр: Исследуемый раствор + реактивы → окрашенный раствор.

ІІ цилиндр: Н2О + реактивы + стандартный раствор из бюретки → окрашенный раствор.

m(вещества) =

Основное требование: мгновенное появление окраски.

þ Метод разбавления(готовят 1 стандартный раствор)

Сравнивают интенсивность окраски исследуемого и стандартного растворов способом разбавления водой раствора с более интенсивной окраской. Используют градуированные цилиндры.

,

где hх – та hстанд. ‑ высота жидкости в исследуемом и стандартном растворах после разбавления.

Применяют для растворов близких по интенсивностям окраски.

источник

К оптическим методам относятся рефрактометрия, поляриметрия, абсорбционные оптические методы.

Рефрактометрический анализ широко применяют при исследовании таких пищевых продуктов, как жиры, томатные продукты, варенье, джем, соки и др.

Рефрактометрический анализ основан на измерении показателя преломления (рефракции) веществ, по которому следует судить о природе вещества, чистоте и содержании в растворах.

Преломление луча света возникает на границе двух сред, если среды имеют различную плотность.

Отношение синуса угла падения (а) к синусу угла преломления (В) называют относительным показателем преломления (п) второго вещества по отношению к первому и является величиной постоянной:

Показатель преломления вещества зависит от его природы, а также от длины волны света и от температуры.

При падении угла света под углом 90° угол преломления называется предельным углом преломления, а его величина зависит только от показателей преломления этих сред, через которые проходит свет. Поэтому, если известен показатель преломления одной среды, то, измерив предельный угол преломления, можно определить показатель преломления исследуемой среды.

Поляриметрический метод основан на свойстве некоторых веществ изменять направление световых колебаний.

Вещества, обладающие свойством изменять направление колебаний при прохождении через них поляризованного света, называются оптически активными. Особенности строения молекул Сахаров обусловливают проявление оптической активности в растворах.

У поляризованного луча, пропущенного через слой раствора оптически активного вещества, меняется направление колебаний, а плоскость поляризации оказывается повернутой на некоторый угол, называемый углом поворота плоскости поляризации, который зависит от поворота плоскости поляризации, концентрации и толщины слоя раствора, длины волны поляризованного луча и температуры.

Оптическая активность вещества характеризуется удельным вращением (s), под которым понимают угол, на который повернется плоскость поляризации при прохождении поляризованного луча через раствор, в 1 мл которого содержится 1 г растворенного вещества при толщине слоя раствора (длине поляризационной трубки), равной 1 дм.

Угол вращения плоскости поляризации а определяют по формуле

С —концентрация вещества, г/100 мл.

Из этой формулы легко вычислить концентрацию С, если известен угол вращения:

Оптические абсорбционные методы — это методы анализа, основанные на поглощении электромагнитного излучения анализируемыми веществами. Именно оптические абсорбционные методы получили широкое распространение в научно-исследовательских и сертификационных лабораториях. При поглощении света атомы и молекулы поглощающих веществ переходят в новое возбужденное состояние. В зависимости от вида поглощающих веществ и способа трансформирования поглощенной энергии различают атомно-абсорбционный, молекулярно-абсорбционный анализ, нефелометрию и люминесцентный анализ.

Атомно-абсорбционный анализ основан на поглощении световой энергии атомами анализируемых веществ.

Молекулярный абсорбционный анализ основан на поглощении света молекулами анализируемого вещества и сложными ионами в ультрафиолетовой, видимой и инфракрасной областях спектра (спектрофотометрия, фотоколориметрия, ИК-спектроскопия).

Фотоколориметрия и спектрофотометрия основаны на взаимодействии излучения с однородными системами, их обычно объединяют в одну группу фотометрических методов анализа.

Нефелометрия основана на поглощении и рассеянии световой энергии взвешенными частицами анализируемого ве-щества.

Читайте также:  Анализы питьевой воды на колифаги

Люминесцентный (флуорометрический) анализ основан на измерении излучения, возникающего в результате выделения энергии возбужденными молекулами анализируемого вещества.

Люминесценцией называют свечение атомов, ионов, молекул и других более сложных частиц вещества, которое возникает в результате перехода в них электронов при возвращении из возбужденного в нормальное состояния.

Чтобы вещество стало люминесцировать, к нему необходимо извне подвести определенное количество энергии. Частицы вещества поглощают энергию, переходят в возбужденное состояние, пребывая в нем некоторое время. Затем они возвращаются в состояние покоя, отдавая при этом часть энергии возбуждения в виде квантов люминесценции.

В зависимости от вида возбужденного уровня и времени пребывания в нем различают флуоресценцию и фосфоресценцию.

Флуоресценция — это вид собственного свечения вещества, которое продолжается только при облучении. Если источник возбуждения устранить, то свечение прекращается мгновенно или спустя не более 0,001 с.

Фосфоресценция — это вид собственного свечения вещества, которое продолжается после отключения возбуждающего света.

Для исследования продтоваров используют явление флуоресценции.

С помощью люминесцентного анализа можно обнаружить в исследуемом образце присутствие вещества в концентрации 10- 11 г/г. Этот метод используется для определения некоторых витаминов, содержания белков и жиров в молоке, исследования свежести мяса и рыбы, диагностики порчи овощей, плодов и обнаружения в продуктах консервантов, лекарственных препаратов, канцерогенных веществ, пестицидов.

Все оптические абсорбционные методы иногда объединяют в одну группу спектрохимических или спектроскопических методов анализа, хотя они имеют существенные различия по аппаратному оформлению, по виду поглощающих частиц и другим признакам. Методы разные, но в их основе лежат одинаковые законы светопоглощения.

источник

Биохимическое потребление кислорода

Способы и методы определения содержания загрязняющих веществ в сточных водах:

  1. Биохимическое потребление кислорода — измеряется прибором БПК — тестер.
  2. Взвешенные вещества — определяется фильтрованием через мембранный фильтр. Стеклянный, кварцевый или фарфоровый, бумажный не рекомендуются из-за гигроскопичности.
  3. Азот аммонийных солей — метод основан на взаимодействии иона аммония с реактивом Несслера, в результате образуются йодистый меркур — аммоний желтого цвета:

NH 3 +2 (HgI 2 + 2 K) + 3 OH=3 HgI 2 + 7 KI + 3 H 2 O.

  1. Сульфаты — метод основан на взаимодействии сульфат-оинов с хлоридом бария, в результате чего образуется нерастворимый осадок, который потом взвешивается.
  2. Нитраты — метод основан на взаимодействии нитратов с сульфасалициловой кислотой с образованием при рН = 9,5-10,5 комплексного соединения желтого цвета. Измерения проводят при 440 нм.
  3. Нефтепродукты определяются весовым методом, предварительно обрабатывая исследуемую воду хлороформом.
  4. Хром — метод основан на взаимодействии хромат-ионов с дифенилкарбазидом. В результате реакции образуется соединение фиолетового цвета. Измерения проводят при λ=540 нм.
  5. Медь — метод основан на взаимодействии ионов Cu 2+ с диэтилдитиокарбонатом натрия в слабоаммиачном растворе с образованием диэтилдитиокарбонатом меди, окрашенного в желто-коричневый цвет.
  6. Никель — метод основан на образовании комплексного соединения ионов никеля с диметилглиоксином, окрашенного в коричневато-красный цвет. Измерения проводят при λ=440 нм.
  7. Цинк — метод основан ( при рН = 7.0 — 7.3 ) на соединении цинка с сульфарсазеном, окрашенного в желто-оранжевый цвет. Измерения проводят при λ = 490 нм.
  8. Свинец — метод основан на соединении свинца с сульфарсазеном, окрашенного в желто-оранжевый цвет. Измерения проводят при λ=490 нм.
  9. Фосфор — метод основан на взаимодействии молибденовокислого аммония с фосфатами. В качестве индикатора применяется раствор двухлористого олова. Измерения проводят на КФК — 2 при λ=690-720 нм.
  10. Нитриты — метод основан на взаимодействии нитритов с реактивом Грисса с образованием комплексного соединения желтого цвета. Измерения проводят при λ=440 нм.
  11. Железо — метод основан сульфасалициловая кислота или ее соли (натриевая ) образуют комплексные соединения с солями железа, причем в слабокислой среде сульфасалициловая кислота реагирует только с солями Fe +3 (окрашивание красное), а слабощелочной — с солями Fe +3 и Fe +2 (желтое окрашивание).
  12. Хлориды. При взаимодействии хлоридов с нитратом ртути (II), хлорид-ионы связываются в виде практически не диссоциированного хлорида ртути (II).

Конец реакции определяют по появлению розового окрашивания в момент добавления избытка раствора Hg(NO 3 ) 2 к исследуемому раствору, содержащему индикатор бромнитрозол.

Оптические методы анализа.

Фотометрический анализ основан на измерении и пропускании, поглощении или рассеяния света определяемым веществом в области ультрафиолетовых, видимых и инфракрасных волн. Фотометрические методы подразделяются на визуальные, в которых наблюдения ведут глазом, и объективные, в которых наблюдение осуществляется физическими приборами, например, фотоэлементами, термоэлементами и болометрами. В зависимости от характера взаимодействия анализируемого вещества со световой энергией, способа ее измерения и типа ее используемого оптического измерительного прибора различают следующие методы. Спектрофотометрия — определение количества вещества по поглощению монохроматического света, измеряемого спектрофотометрами, например СФ — 4А. Фотоэлектроколориметрия — определение количества вещества по поглощению полихроматического света, пропущенного светофильтром и измеряемого фотоэлементом в достаточно узких интервалах спектра, например на ФЭК ‑ 57, ФЭК ‑ М. Колориметрия — визуальное определение концентрации вещества по интенсивности окраски раствора на простейших оптических приборах ( колориметр Дюбокса, фотометр Пульфриха). В фотоколориметрии и колориметрии измеряют интенсивность света, прошедшего через окрашенный раствор, цвет которого дополняет цвет поглощенного света. Tурбидиметрия — определение концентрации по поглощению света взвешенными в жидкости частицами анализируемого вещества; степень мутности жидкости пропорционально концентрации. Нефелометрия — определение концентрации по интенсивности света, рассеянного (отраженного) взвешенными частицами мутной системы, например колоидного раствора, суспензии, эмульсии. Интенсивность светорассеяния пропорциональна концентрации взвешенных частиц. Турбидиметрические и нефелометрические измерения проводят на нефелометре НФМ со светофильтрами или на ФЭК — Н — 57. Флуорометрия — определение количества вещества по интенсивности флуоросценции, возникающей при облучении анализируемого вещества УФ лучами и пропорциональной его концентрации. Определяют на флуорометрах ФМ-1, ФМ-2 со ртутными кварцевыми лампами ДРС-50.При фотометрических измерениях, по закону Ламберта, слои вещества равной толщины поглощают равные части света. Этот закон рассматривает постепенное ослабление параллельного монохроматического пучка света при его распространении в поглощающем веществе.Закон Бугера — Ламберта — Бэра определяет зависимость поглощения монохроматического пучка света от концентрации и толщины слоя светопоглощающего вещества в растворе. Если имеются два раствора одного и того же вещества в одном и том же растворителе, из которых один в два раза концентрированнее другого, то светопоглощение (абсорбция) в первом растворе будет равно светопоглощению во втором растворе при условии, что толщина слоя первого раствора в два раза меньше, чем толщина слоя второго раствора.Закон Бугера — Ламберта — Бэра выражается уравнением , где: I 0 — интенсивность пучка монохроматического света, вошедшего в слой светопоглощающего раствора толщины h;I t — интенсивность света вышедшего из слоя раствора;С — концентрация светопоглощающего растворенного вещества; — молекулярный коэффициент поглощения света, зависящая от химической природы и физического состояния светопоглощающего вещества, от длины волны монохроматического света;h — толщина колориметрируемого слоя. Известно, что · С зависит от толщины слоя h вследствие резонансного взаимодействия между светящейся и светопоглощающей молекулами. Если концентрация раствора выражена в моль/л, а толщина слоя — в см, то коэффициент называется мольным коэффициентом погашения, или мольным коэффициентом экстинкции. Он характеризует оптическую плотность 1 мл раствора, налитого в кювету толщиной 1 см.Оптическую плотность можно вычислить, пользуясь формулой закона Бугера – Ламберта — Бера : Мольный коэффициент показывает, какая часть светового потока поглощается раствором при толщине слоя 1см. Величину D называют оптической плотностью поглощающего вещества .Закон Бугера — Ламберта описывает светопоглощение при постоянной концентрации вещества в растворе и различной толщине слоя.Закон Бера описывает светопоглощение при постоянной толщине слоя и различной толщине слоя, и различной концентрации вещества.Растворы многих веществ обнаруживают отклонения от закона Бера. Важнейшие причины отклонений следующие:1. Присутствие посторонних электролитов в растворе вызывают деформацию молекул и ионов окрашенных веществ (особенно комплексных), вследствие чего светопоглощение дополнительно меняется при разбавлении.2. Гидратация (сольватация) растворенного вещества вызывает непропорционально разбавлению изменение светопоглощение раствора.3. Изменение взаимодействия светопоглощающих частиц с разбавлением раствора.4. Изменение рН раствора влияет на светопоглощение.При изменении рН может также изменяться состав комплексного соединения, поглощающего света. Изменение рН может разрушить комплексное соединение, поглощающее свет.5. Изменение степени диссоциации или ассоциации светопоглощающего вещества в растворе может изменить окраску (например, метилового оранжевого). Могут также происходить реакции таутомерного превращения или гидролиза.Чтобы уменьшить отклонения от закона Бера, необходимо работать в оптимальных условиях, выбрав подходящий реагент и способ приготовления испытуемого и стандартного растворов. На величину светопоглощения влияет температура, вызывающая изменение химического состава светопоглощающего вещества. Раствор должен содержать вещество, обладающее собственной характерной окраской, или образовывать окрашенные соединения с соответствующими реагентами. Окраска раствора должна быть достаточно интенсивной, и чем она интенсивнее, тем чувствительнее метод анализа.Окраска должна быть устойчивой во времени и не меняться с изменением рН- раствора и температуры.При изменении концентрации раствора должен соблюдаться закон Бера.

Для спуска производственных и хозяйственных вод предусматривают канализационные устройства. Канализация состоит из внутренних канализационных устройств, расположенных в здании, наружной канализационной сети (подземных труб, каналов, смотровых колодцев) ; насосных станций, напорных и самотечных коллекторов, сооружений для очистки, обезвреживания и утилизации сточных вод; устройства их выпуска в водоем. Канализование промышленных площадок осуществляют по полной раздельной системе.

Все сточные воды предприятия должны подвергаться очистке от вредных веществ перед сбросом в водоем. Для выполнения этих требований применяют механические, химические, биологические, а также комбинированные методы очистки. Состав очистных сооружений выбирают в зависимости от характеристики и количества поступающих на очистку сточных вод, требуемой степени их очистки, метода использования их осадка и от других местных условий в соответствии со СНиП.

В составе очистных сооружений должны предусматриваться решетки или решетки дробилки, песколовки и песковые площадки, усреднители, отстойники, нефтеловушки, гидроциклоны, флотационные установки, илоуплотнители, биологические фильтры, аэротенки, сооружения для насыщения очищенных сточных вод кислородом и другие.

Решетки должны иметь прозоры 16мм. Механизированная очистка решеток от отбросов предусматривается при количестве отбросов 0,1м 3 /сут.

Песколовки тангенциальные применяют для станций очистки производительностью до 50.000м 3 /сут. Горизонтальные производительностью свыше 10.000м 3 /сут и аэрируемые производительностью свыше 20.000м 3 /сут.

Отстойники выбирают с учетом производительности станций очистки сточных вод: до 20.000м 3 /сут вертикальные, свыше 15.000м 3 /сут горизонтальные, свыше 2.000м3/сут радиальные, до 10.000м 3 /сут двуярусные.

Осветлители проектируют в виде вертикальных отстойников с внутренней камерой флокуляции с естественной аэрацией за счет разницы уровней воды в распределительной чаше и осветлителе. Нефтеловушки применяют для задержания нефтяных частиц при концентрации их в сточной воде более 100мг/л.

Гидроциклоны (открытые и напорные) применяют для отделения из сточных вод оседающих и грубодисперсных примесей. Открытые гидроциклоны используют трех типов: гидроциклоны без внутренних устройств для выделения из сточных вод крупно и мелкодисперсных примесей гидравлической крупностью 5мм/с и более; гидроциклоны с диафрагмой и многоярусные (при расходе 200м 3 /сут на один аппарат) для выделения из сточных вод примесей крупностью 0,2мм/с и более, а также нефтепродуктов.

Флотационные установки (импеллерные и напорные) применяют для удаления из сточных вод нефтепродуктов, жиров, волокон минеральной ваты, асбеста, шерсти и других нерастворимых в воде веществ. Импеллерные флотационные установки используют для удаления из воды грубодисперсных примесей, напорные для удаления из воды тонкодисперсных примесей.

Илоуплотнители применяют двух типов: вертикальные и радиальные.

Биологические фильтры (капельные и высоконагружаемые) используют для очистки сточных вод производительностью не более 1.000м 3 /сут; высоконагружаемые биофильтры на станциях производительностью до 50.000 м 3 /сут.

Аэротенки (смесители, вытеснители, промежуточного типа и отстойники) применяют для полной и неполной биологической очистки сточных вод.

Очистка сточных вод процеживанием.

Процеживание первичная стадия очистки сточных вод предназначено для выделения из сточных вод крупных нерастворимых примесей размером до 25 мм, а также более мелких волокнистых загрязнений, которые в процессе дальнейшей обработки стоков препятствуют нормальной работе очистного оборудования. Процеживание сточных вод осуществляется пропусканием воды через решетки и волокноуловители.

Решетки, изготовленные из металлических стержней с зазором между ними 25 мм, устанавливают в коллекторах сточных вод вертикально или под углом 60 к горизонту. Размеры поперечного сечения решеток выбирают из условия минимальных потерь давления на решетке. Скорость сточной воды в зазоре между стержнями решетки не должна превышать значений 0.8-1.0 м/с при максимальном расходе сточных вод.

При эксплуатации решетки должны непрерывно очищаться, что осуществляется, как правило, механически, и лишь при задержании примесей в количествах менее 0.0042 м3/ч допускается ручная очистка. Промышленность выпускает вертикальные решетки марки РММВ-1000, применяемые при ширине и глубине коллектора, равных 1000 мм, а также наклонные решетки, используемые при ширине коллектора, равной 800 (1600) мм, и глубине 1200 (2000) мм. Эти решетки очищают от задерживаемых примесей механически с помощью вертикальных (РММВ-1000) и поворотных граблей. В зависимости от состава примеси, снятые с решеток, измельчают на специальных дробилках и сбрасывают в поток сточной воды за решеткой или направляют на переработку. Однако эта процедура усложняет технологическую схему очистки сточных вод и ухудшает качество воздушной среды в помещениях очистных станций. Для устранения этих недостатков применяют решетки-дробилки, измельчающие задержанные примеси, не извлекая их из воды. Промышленность выпускает решетки дробилки марок РД-200 и РД-600 с диаметром барабанов соответственно 200 и 600 мм. Средний размер измельченных ими примесей не превышает 10 мм.

Использование сточных вод.

Производственные сточные воды после соответствующей очистки могут быть повторно использованы в технологическом процессе, для чего на многих промышленных предприятиях создаются системы оборотного водоснабжения либо замкнутые (бессточные) системы водоснабжения и канализации, при которых исключается сброс каких-либо вод в водоёмы. Большое народно-хозяйственное значение имеет внедрение технологии комплексной безотходной переработки сырья (особенно на предприятиях химической, целлюлозно-бумажной и горно-обогатительной промышленности). Перспективны методы физико-химической очистки (коагулирование, отстаивание, фильтрация) в качестве самостоятельных способов очистки или в сочетании с биологической очисткой, а также методы т. н. дополнительной обработки (сорбция, ионообмен, гиперфильтрация, удаление азотистых веществ и фосфатов и др.), обеспечивающей весьма высокую степень очистки сточных вод перед спуском их в водоёмы или при использовании сточных вод в системах оборотного водоснабжения промышленных предприятий. Эффективны методы термического обезвреживания и переработки высоко концентрированных стоков во вторичное сырьё, а также способ закачки стоков в глубокие, надёжно изолированные подземные горизонты.

Имеющиеся в сточных водах (преимущественно бытовых) в значительном количестве вещества, содержащие азот, калий, фосфор, кальций и др. элементы, являются ценными удобрениями для сельскохозяйственных культур, в связи с чем сточные воды используются для орошения сельскохозяйственных земель. Целесообразно обезвреживание сточных вод на станциях биологической очистки производить с подачей очищенных сточных вод на поля. Осадки сточных вод после соответствующей обработки (сбраживание, сушка) обычно используют в качестве удобрений.

  1. Д.Н.Смирнов, В.Е.Генкин, “Очистка сточных вод в процессах обработки металлов”, М:Металлургия, 1989
  2. “Удаление металлов из сточных вод” под ред. Дж.К.Кушни, М:Металлургия, 1987г.
  3. Шемякин Ф.М., Карпов А.Н., Брусенцов А.Н. “Аналитическая химия”, М., Химия, 1976г.
  4. Соловьев Ф.С., Губанов И.Н., Беднова Л.М. /Отчеты по научно-исследовательской работе/ “Очистка сточных вод или рекуперация ценных технологических веществ в гальваническом производстве” ВНТИЦ, /копия отчета о НИР/, М., 1988г.
  5. Лурье Ю.Ю., Рыбникова А.И. Сборник методик химического анализа производственных сточных вод, “Министерство электронной промышленности СССР”, М., 1976 г.
  6. Хенце М., Армоэс П., Ля-Кур-Янсей Й. и др. “Очистка сточных вод: Биологические и химические процессы”. Пер. с англ. Учебное пособие.-МИР 2004
  7. Пугачев Е.А “Проектирование сооружений переработки и утилизации осадков сточных вод с использованием элементов комп. информациионных технологий”, -АСВ 2003г.
  8. Воронов Ю.В. «Водоотведение и очистка сточных вод Учебник для вузов», -АСВ 2004г.

источник

Особенности анализа сточных вод. Сущность атомно-абсорбционной и пламенно-эмиссионной спектрометрии. Наиболее выделяемые способы и методы определения содержания некоторых загрязняющих веществ в стоке. Неуглеродные сорбенты в процессах водоочистки.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Белорусский Государственный Университет

на тему: «Проблемы анализа и очистки промышленных сточных вод»

1. Классификация сточных вод

2. Характерные особенности анализа сточных вод

3. Физико-химические методы анализа сточных вод

4. Атомно-абсорбционная спектрометрия

5. Пламенно-эмиссионная спектрометрия

6. Оптические методы анализа

7. Наиболее выделяемые способы и методы определения содержания некоторых загрязняющих веществ в сточных водах

8. Применение сорбционных методов для очистки сточных вод

9. Активные угли в процессах водоподготовки

10. Неуглеродные сорбенты в процессах водоочистки

1. Классификация сточных вод

Загрязнение водных источников включает в себя любые изменения физических, химических, биологических свойств воды в водных объектах, обусловленных сбросом в них твердых, жидких и газообразных веществ, причиняющих или создающих проблемы, делающих воду опасной для потребления, нанося ущерб деятельности человека, здоровью человека и экологической безопасности населения. Загрязнения поверхностных водоемов и грунтовых вод можно классифицировать следующим образом:

· Механические — увеличение содержания механических примесей, относящееся в основном к поверхностным видам загрязнений,

· Химические — присутствие в воде неорганических и органических веществ токсичного и нетоксичного действия,

· Биологические и бактериологические — присутствие в воде разнообразных патогенных бактерий, грибов и водорослей,

· Тепловые — сброс в водоемы нагретых вод ТЭЦ и АЭС,

· Радиоактивные — наличие радиоактивных веществ в поверхностных или грунтовых водах.

Основными источниками загрязнений водных объектов являются недостаточно очищенные стоки производственных предприятий и коммунальных объектов, животно- и птицеводческих фабрик, твердые отходы, образующиеся при разработке полезных ископаемых, сточные воды горнодобывающих шахт, сточные воды, образующиеся при обработке и сплаве леса; сточные воды железнодорожного и водного видов транспорта, техногенные отходы металлургических предприятий.

Загрязняющие вещества, попадая в водные объекты, вызывают качественные изменения, которые проявляются в изменении физических и химических свойств воды (появление запаха, неприятного привкуса и пр.).

Промышленные сточные воды как правило загрязнены выбросами и отходами производства. Качественный и количественный состав данных сточных вод различен и зависит от отрасли промышленности и производственных процессов. По составу стоки подразделяют на три основных класса, содержащих:

· Неорганические загрязнения, включая токсичные,

· Неорганические и органические загрязнения.

К первому типу относятся сточные воды содовых, сульфатных, азотных предприятий, обогатительных заводов марганцевых, свинцовых, никелевых, цинковых, руд, в которых содержатся кислоты, щелочи, катионы тяжелых металлов и пр. Сточные воды этого типа как правило изменяют физические свойства воды.

Сточные воды второго типа сбрасываются НПЗ и нефтехимическими предприятиями, предприятиями органического синтеза и пр. В сточных водах присутствуют различные нефтепродукты, аммиак, альдегиды, смолы, фенолы и прочие вредные вещества. Токсикологическое воздействие стоков данного типа заключается, в основном, в процессах окисления, в результате которых снижается содержание кислорода в воде, возрастает биологическая (БПК) и химическая (ХПК) потребность в кислороде, происходит ухудшение органолептических свойств воды.

Сточные воды третьего типа образуются в процессах гальванической обработки поверхностей, производстве печатных плат приборостроительной и радиоэлектронной промышленности и прочих технологических процессах. В составе данных сточных вод присутствуют неорганические: щелочи, кислоты, катионы тяжелых и цветных металлов, и органические поверхностно-активные вещества, нефтепродукты, красители и другие вещества.

Нефть и нефтепродукты в настоящее время являются основными загрязняющими веществами внутренних вод и морей мирового океана. Попадая в водные объекты, они создают различные классы загрязнений: нефтяную пленку, плавающую на поверхности воды, растворенные или эмульгированные нефтепродукты, осевшие на дно водоема тяжелые нефтяные фракции. В результате происходит изменение вкуса, запаха, цвета, поверхностного натяжения и вязкости воды, снижается количество кислорода, образуются вредные органические вещества, вода приобретает токсические свойства и начинает представлять угрозу для животного мира и человека. При содержании нефти всего 0,01 г/л вода становится непригодной для употребления. Особо опасным загрязняющим веществом является фенол. Фенол присутствует в сточных водах большинства нефтеперерабатывающих и коксохимических предприятий. В присутствии фенолов значительно снижаются биологические процессы водных объектов, процесс самоочищения, вода приобретает довольно неприятный запах. [1,2]

Читайте также:  Анализы питьевой воды в юао

2. Характерные особенности анализа сточных вод

Сточные воды — стоки бытовые, производственные и атмосферные, содержащие обычно множество неорганических и органических компонентов, причем точный состав их, даже в качественном отношении, не всегда можно заранее предвидеть. Последнее особенно справедливо в отношении сточных вод, прошедших через химическую или биохимическую очистку. Даже при простом смешении стоков от разных цехов предприятия происходят химические реакции между компонентами этих стоков, приводящие к образованию новых веществ. При хлорировании стоков появляются продукты окисления неорганических и органических веществ и их хлоропроизводные. Биохимической очистке подвергают промышленные сточные воды, смешанные с хозяйственно-бытовыми водами, и тогда в очищенных водах можно нередко обнаружить самые неожиданные органические соединения. Поэтому при появлении нового вида сточных вод, возникающих не только при создании новых производств, но и при внедрении нового технологического процесса и даже при любом существенном изменении в технологическом процессе, требуется предварительное исследование. В ход определения того или иного компонента, казалось бы, хорошо разработанный и постоянно применяющийся, приходится вносить изменения, а иногда и совершенно менять метод химического анализа.

Каждый «общепринятый», «стандартный» метод определения того или иного иона или органического вещества обязательно должен быть проверен на той сточной воде, которую приходится анализировать на данном предприятии. Для этого прибегают к методу стандартных добавок, можно также приготовлять искусственные смеси, имитирующие состав анализируемой воды.

Из трех основных требований, предъявляемых к аналитическим методам (чувствительность, точность, селективность) важнейшее в анализе вод — селективность.

Чувствительность должна быть достаточной для достижения цели анализа, но при этом не чрезмерной. Чрезмерная чувствительность — ошибка, часто совершаемая при выборе подходящего метода анализа. Большая чувствительность необходима лишь тогда, когда аналитик вынужден брать для анализа очень малые навески (или объёмы) анализируемого вещества, как правило, исходный объем пробы при анализе сточных вод— 100—200 мл. Часто берут для анализа 1 л и даже несколько литров, применяя затем подходящий способ концентрирования. Нередко публикуются статьи, авторы которых в заглавии подчеркивают, что предлагаемый ими метод анализа предназначен «для анализа сточных вод», единственным преимуществом которого является большая чувствительность. Но приводимый ими далее ход работы показывает, что для анализа приходится брать очень малый объем пробы и предварительно разбавлять ее в 10—20 раз дистиллированной водой или таким же способом в дальнейшем ходе анализа разбавлять аликвотную часть раствора; в чем же тогда ценность такой чувствительности? Однако чем больше чувствительность метода (т. е. чем меньше объем анализируемой пробы), тем больше значение мешающего влияния загрязнений (от применяемых реактивов, дистиллированной воды, от солей, выщелачиваемых из стекла посуды, и др.). Поэтому, например, широко известными дитизоновыми методами определения тяжелых металлов следует пользоваться с большой осторожностью. При использовании этих чрезвычайно чувствительных методов требуется тщательная предварительная очистка всех реактивов, включая и сам дитизон, и хлороформ, и дистиллированную воду, а также умелая работа опытного аналитика. Без применения этого метода вполне можно обойтись при определении свинца, меди, серебра, лишь в очень редких случаях к нему приходится прибегать при определении цинка, и только для определения кадмия и ртути, если нет возможности использовать атомно-абсорбционную спектрометрию, рекомендуется пользоваться дитизоновыми методами.

При оценке необходимой точности определения следует учитывать непостоянство состава сточных вод. Так называемые «случайные» пробы, взятые в течение дня, могут очень сильно различаться по составу, но и «среднесуточные» и «среднепропорциональные» пробы настолько различаются изо дня в день по своему количественному составу, что добиваться большой точности в определении того или иного компонента не имеет никакого смысла. Вполне допустимы результаты анализа, выраженные числами, содержащими только две значащие цифры.

Что касается селективности выбираемого метода анализа, то на нее должно быть обращено особое внимание. Малая селективность метода анализа может привести к очень большим, и притом систематическим ошибкам в результатах, совершенно недопустимым.

В приводимых методах определения различных веществ, в каждом описании того или иного метода имеется подраздел «Мешающие влияния», в котором приводятся хорошо известные и часто встречающиеся подобные влияния, но следует иметь в виду, что приводимый там их перечень не может быть полным, так как часто появляются совершенно неожиданные источники помех. Поэтому так необходима предварительная проверка любого аналитического метода на каждой новой по составу сточной воде, как об этом было сказано выше.

Приведем здесь некоторые общие положения.

Все мешающие вещества можно разделить на три типа:

1. Мешающее вещество реагирует так же, как и определяемый компонент сточной воды. Так, медь мешает при определении цинка оксихинолиновым способом, бромиды мешают определению хлоридов и т. д. Результаты определения получаются завышенными. К этому типу надо отнести и мешающее влияние мути при любом фотометрическом определении: муть так же уменьшает светопропускание, как и определяемый компонент.

2. Мешающее вещество вступает в реакцию с определяемым компонентом, уменьшая его концентрацию в растворе. Так действуют, например, различные комплексообразователи, связывая в комплексы определяемые ионы. Результаты определения получаются соответственно пониженными.

3. Мешающее вещество вступает в реакцию с применяемым реактивом, препятствуя его реакции с определяемым веществом. Так действует, например, хлор на цветные индикаторы или на реактивы, образующие с определяемым компонентом окрашенные соединения.

Приведем несколько часто применяемых способов устранения мешающих влияний:

1. Можно определяемый компонент и мешающее вещество физически разделить; например, определяя аммиак, отделить его от мешающих веществ отгонкой из щелочной среды, или удалить железо(III), мешающее определению многих компонентов, осаждением его в виде гидроксида и фильтрованием.

2. Можно, не проводя отделений, восстановить или окислить мешающее вещество и этим устранить его мешающее действие.

3. Можно, также не проводя отделений, маскировать мешающее вещество, связывая его в комплексное соединение прибавлением подходящего реагента. Так устраняют мешающее влияние солей железа (III) прибавлением фторида или пирофосфата, мешающее влиянию фторидов — добавлением борной кислоты и т. п.

4. Иногда для устранения мешающего влияния достаточно изменить рН раствора.

5. При использовании фотометрических методов анализа мешающее влияние нередко устраняется или сильно уменьшается изменением длины волны проходящего через раствор света.

Нередко используют комбинации перечисленных методов, например, мешающее вещество связывают в комплекс, а затем определяемый компонент отгоняют.

В описанных методах определения компонентов сточных вод приведены примеры применения всех перечисленных способов устранения или ослабления мешающих влияний, Каждый раз, когда при анализе новой сточной воды обнаруживаются неожиданные помехи, рекомендуется последовательно продумать, какой из перечисленных приемов мог бы послужить для их устранения и провести экспериментальную проверку. [3,4]

3. Физико-химические методы анализа сточных вод

Основные методы определения неорганических компонентов сточных вод — фотометрия, атомно-абсорбционная спектрометрия и пламенно-эмиссионная спектрометрия.

В фотометрических методах анализа измеряют поглощение света анализируемым раствором обычно после введения в него реактива, реагирующего с определяемым компонентом сточной воды с образованием интенсивно поглощающего свет соединения.

Применяемые в фотометрии приборы состоят из четырех частей, последовательно расположенных одна за другой: источник света, светофильтр или монохроматор, кювета с раствором, детектор (фотоэлемент, превращающий энергию излучения в электрическую).

Конструкции приборов зависят от того, в какой области спектра (ультрафиолетовой, видимой или инфракрасной) проводят измерения. Источником видимого излучения служит обычная электрическая лампа, для получения УФ-излучения применяют водородную лампу.

Обычно для проведения анализа выбирают излучение в той области длин волн, в которой определяемое соединение имеет максимальное светопоглощение, а примеси — минимальное.

В спектрофотометрах с помощью монохроматора выделяют очень узкий пучок света (шириной 1—2 нм), и в них имеется специальное приспособление, с помощью которого вычерчивается кривая светопоглощения при непрерывном переходе от малых длин волн излучения к большим. В фотоколориметрах для той же цели (выделения излучения нужной длины) применяют светофильтры, пропускающие поток света значительно большей ширины (20—50 нм). Спектрофотометры, конечно, более пригодны для проведения точных исследований, но они значительно дороже и менее доступны, чем фотоколориметры.

В анализе сточных вод измерения проводят чаще всего в видимой области спектра (т. е. измеряют светопоглощение окрашенных или мутных растворов), значительно реже — в УФ-области. ИК-спектрометрию используют в основном для идентификации и установления структуры органических соединений.

В лабораториях химического анализа сточных вод измерения проводят на указанных приборах, однако не следует исключать из практики анализа и визуальную колориметрию. Для выполнения ежедневных рядовых анализов она вполне применима, а в опытных руках может давать очень точные результаты. Преимущества визуальной колориметрии: 1) возможность использования в слабо оборудованных лабораториях и в полевых условиях; 2) простота и дешевизна аппаратуры; 3) цилиндры Неcслера имеют относительно большую высоту (30 см и более), это дает возможность при рассматривании сверху вниз измерять интенсивность цвета очень слабо окрашенных растворов; 4) если в исследуемом растворе неожиданно появится слабое помутнение или чуть изменится оттенок окраски, это сразу отмечается при визуальном измерении, но может быть не замечено при пользовании приборами.

Фотометрические методы анализа обязательно включают холостой опыт для устранения влияния посторонних веществ. Существуют два типа холостых опытов, друг друга не заменяющих: 1) холостой опыт с дистиллированной водой взамен анализируемого раствора при добавлении всех требуемых реактивов (так исключается влияние светопоглощения реактивами); 2) холостой опыт с анализируемым раствором без добавления реактивов (так исключается влияние посторонних веществ, присутствующих в самой анализируемой пробе). Иногда эти два типа холостого опыта совмещаются: к анализируемой пробе прибавляют все требуемые реактивы, кроме одного, без которого окрашенное соединение не создается. Это самый лучший способ, но и он часто не достигает цели, так как исключенный реактив может оказаться сильно поглощающим излучение. В этих случаях следует провести два холостых опыта (первого и второго типа), и результаты их вычесть из результата определения.

При анализе относительно концентрированных сточных вод (а иногда и разбавленных) используют титриметрические методы анализа с применением как цветных индикаторов для фиксирования конца титрования, так и специальных приборов — электрохимических (потенциометрическое титрование, амперометрическое, кондуктометрическое и т. п.) и оптических (турбидиметрическое титрование, нефелометрическое, колориметрическое). Титриметрические методы часто применяют для определения анионов, особенно тогда, когда одновременно присутствуют разные анионы, мешающие определению друг друга.

Гравиметрические методы применяют редко. Недостатки их общеизвестны, однако основное их достоинство — исключается построение калибровочных графиков. Гравиметрические методы применяют в качестве арбитражных при определении магния, натрия, кремнекислоты, сульфат-ионов, суммарного содержания нефтепродуктов, жиров.

Прямая потенциометрия находит применение при определении рН растворов, а также многих ионов с использованием ионоселективных электродов. В анализе природных вод и питьевой воды ионоселективные электроды применяют для определения кадмия, меди, свинца, серебра, щелочных металлов, бромид-, хлорид-, цианид-, фторид-, иодид- и сульфид-ионов. Применению этих электродов препятствует большое число мешающих влияний, поэтому в анализе сточных вод ими рекомендуется пользоваться с осторожностью, постоянно сверяя получаемые результаты с результатами других методов определения.

Полярографические методы анализа широко используют в химико-аналитических лабораториях предприятий цветной металлургии для определения меди, никеля, кобальта, цинка, висмута, кадмия, сурьмы, олова и других металлов в рудах, металлах, полупродуктах и отходах производств. В тех же лабораториях эти методы, естественно, используют и для анализа производственных сточных вод. Для анализа сточных вод других производственных процессов их применяют редко.

Для определения органических веществ в сточных водах применяют и фотометрические, и титриметрические методы, но особенно большую роль играют методы определения «суммарных показателей загрязнения вод» и все виды хроматографических методов. Хроматография стала основным методом раздельного определения органических веществ.

Чем больше органических соединений одновременно присутствует в растворе и подлежит хроматографическому разделению, чем меньше их концентрация и, наконец, чем меньше объем жидкости, имеющейся для анализа в распоряжении аналитика (например, при анализе биологических растворов), тем труднее задача аналитика и тем к более сложным (и дорогим) приборам приходится ему прибегать. И даже с помощью самых совершенных хроматографов полное разделение компонентов и их идентификация в трудных случаях не достигаются. Тогда применяют комбинированные приборы, в которых хроматография сочетается с другими физическими методами анализа — с масс-спектрометрией, ИК-спектрометрией и др.

Анализ сточных вод облегчен тем, что доступный объем анализируемой пробы сточной воды велик и, следовательно, возможности предварительного концентрирования практически безграничны. Используя способы, такие как сорбция, экстракция, выпаривание и др., можно повысить концентрацию в тысячи и десятки тысяч раз. Кроме того, и это особенно важно, в процессе концентрирования можно выделить отдельные группы органических соединений, определить суммарное содержание в пробе каждой группы, а затем проводить хроматографические разделения внутри групп, т. е. разделять уже сравнительно малое число индивидуальных веществ.

Такого рода разделения могут быть сделаны на простых и доступных хроматографах, которые должна иметь каждая современная лаборатория анализа вод. Органические соединения разделяют на группы, исходя из различных свойств этих соединений: по кислотно-основным свойствам, в соответствии с их температурами кипения; по размерам молекул (гель-хроматография, молекулярные сита); по отношению к разным групповым реактивам (например, хроматография продуктов, получаемых при проведении химических реакций на функциональные группы) и т. д. [3,4,5]

4. Атомно-абсорбционная спектрометрия

Метод основан па поглощении ультрафиолетового или видимого излучения атомами газа. Чтобы перевести пробу (хотя бы частично) в газообразное атомное состояние, ее впрыскивают в пламя. В качестве источника излучения применяют лампу с полым катодом из определяемого металла. Интервал длин волн спектральной линии, испускаемой источником света, и линии поглощения того же самого элемента в пламени очень узок, поэтому мешающее поглощение других элементов практически не сказывается на результатах анализа.

Существенным отличием атомной абсорбции от пламенно- эмиссионной спектрометрии является то, что в последнем методе измеряется излучение, испускаемое атомами в возбужденном состоянии в пламени, а атомная абсорбция основана на измерении излучения, поглощенного нейтральными, невозбужденными атомами, находящимися в пламени, которых в пламени во много раз больше, чем возбужденных. Этим объясняется высокая чувствительность метода при определении элементов, имеющих высокую энергию возбуждения, т. е. трудно возбуждающихся. С другой стороны, элементы, легко возбуждающиеся, будут очень эффективно испускать излучение, если их поместить в высокотемпературное пламя, и их с большей чувствительностью можно определять методом эмиссионной спектрометрии. Наибольшую чувствительность атомно-абсорбционная спектроскопия проявляет при определении As, Be, Bi, Cd, Hg, Mg, Pb, Те, Zn, Cs, In. Значительно большую чувствительность эмиссионный метод показывает при определении Li, К, Na, Ва, Sr, Т1. Чувствительность определения других элементов (не учитывая редких) примерно одинакова при определении их обоими методами.

В принципе атомно-абсорбционная спектрометрия подобна обычной спектрофотометрии, аналогична и используемая в обоих методах аппаратура. В обоих методах излучение пропускают через анализируемую пробу, которая частично его поглощает, а пропущенный свет проходит через монохроматор и попадает на фотодетектор — регистрирующее устройство, отмечающее количество пропущенного или поглощенного света. Различия этих методов — в источнике света и в кювете для пробы.

Источником света в ААС служит лампа с полым катодом, испускающая свет, имеющий очень узкий интервал длин волн, порядка 0,001 нм. Линия поглощения определяемого элемента несколько шире испускаемой полосы, что позволяет измерять линию поглощения в ее максимуме. Прибор содержит необходимый набор ламп, каждая лампа предназначается для определения только одного какого-либо элемента. Существуют лампы, предназначенные для определения нескольких элементов (например, Mg, Са, А1), но применение их не рекомендуется.

«Кюветой» в ААС служит само пламя. Поскольку в ААС соблюдается закон Бера, чувствительность метода зависит от длины поглощающего слоя пламени, которая должна быть постоянной и достаточно большой. Применяют специальные щелевые горелки с узкой щелью длиной от 5 до 10 см.

При атомизации элемента в пламени небольшая часть его атомов может возбудиться и испускать свет. Поскольку длины волн испускаемого и поглощаемого света совпадают, то свет, испускаемый в пламени, будет накладываться на излучение, прошедшее через пламя, что искажает получаемый результат. Для того чтобы этого затруднения избежать, в приборе имеется так называемый модулятор.

Источники пламени. Применяют пламя, для получения которого в качестве горючего используют ацетилен, пропан или водород, а в качестве окислителя — воздух, кислород или оксид азота (I). Выбранная газовая смесь определяет температуру пламени. Воздушно-ацетиленовое пламя и воздушно-пропановое имеют низкую температуру (2200—2400°С). Такое пламя используют для определения элементов, соединения которых легко разлагаются при этих температурах. Таких элементов большинство, и потому в дальнейшем тексте, если нет специальных указаний, предполагается использование воздушно-ацетиленового пламени. Воздушно-пропановое пламя используют тогда, когда имеются затруднения в получении ацетилена; такая замена осложняет работу, поскольку в техническом пропане имеются примеси, загрязняющие пламя. При определении элементов, образующих трудно диссоциирующие соединения, используют высокотемпературное пламя (3000—3200°С), создаваемое смесью оксид азота (I) —ацетилен. Такое пламя необходимо при определении алюминия, бериллия, кремния, ванадия и молибдена. Для определения мышьяка и селена, превращенных в их гидриды, требуется восстановительное пламя, образующееся сжиганием водорода в аргоно-воздушной смеси. Ртуть определяют «беспламенным методом», поскольку она может существовать в парообразном состоянии и при комнатной температуре.

Мешающие влияния. Мешающих влияний при использовании атомно-абсорбционной спектрометрии немного, проявляются они редко, что и является одним из главных преимуществ этого метода. Упомянем «химическое влияние», состоящее в том, что в пламени образуются термостойкие соединения, молекулы которых не поглощают излучения. Происходит так называемое «гашение», и результаты получаются заниженными. Это наблюдается, например, при определении магния, если присутствуют фосфаты, а также при определении марганца в присутствии кремнекислоты. В первом случае затруднение преодолевается введением соли лантана, во втором случае — добавлением соли кальция.

Другой причиной появления систематических ошибок является уменьшение концентрации свободных атомов вследствие их ионизации. Это явление наблюдается при определении малых содержаний элементов с низкими потенциалами ионизации, например щелочных металлов, и может быть устранено введением в пробу элемента, имеющего еще меньший потенциал ионизации, например при определении бария вводят натрий или калий. При определении ртути беспламенным методом мешающее влияние могут оказать некоторые летучие органические вещества, поглощающие свет при л = 253,7 нм. В таких случаях определение проводят дважды: сначала в обычных условиях, потом, второй раз, в окислительных условиях, т. е. без прибавления хлорида олова. Истинное содержание ртути определяют по разности между полученными результатами. [3,4]

5. Пламенно-эмиссионная спектрометрия

Методы анализа в атомно-эмиссионной спектрометрии различаются главным образом по способу возбуждения атомов. Из существующих методов возбуждения (дуговой, искровой, пламенный) последний в анализе вод применяют чаще других. Температура пламени относительно низка, и метод применяют преимущественно для определения легко возбуждаемых атомов — лития, натрия, калия и стронция.

Сущность метода. Исследуемый раствор вводят в виде аэрозоля в пламя горелки, работающей на смеси газов (воздушно-пропановой, воздушно-ацетиленовой). Давление воздуха и горючего газа поддерживается постоянным. В пламени атомы металлов возбуждаются и, переходя обратно из возбужденного в нормальное состояние, излучают свет определенных длин волн. Из спектра эмиссии монохроматором (в простых приборах светофильтрами) выделяются характерные для определяемых металлов линии. Для определения натрия л=589 нм, калия л =768 нм, лития л =671 нм, стронция л = 460,7 нм. По интенсивности этих линий судят о концентрации определяемых элементов в пробе, для чего строят калибровочные графики по стандартным растворам солей этих металлов. Чувствительность определения очень высока (менее 0,1 мг/л); относительная ошибка метода мала. Мешающие вещества. Определению мешает кальций, если отношение Са:Na или Са:К превышает 10. Кроме того, определению калия мешает натрий при отношении Na:К больше 5 и, наоборот, определению натрия мешает калий, если отношение К:Na больше 5. Для преодоления мешающих влияний имеется несколько способов: 1) содержание мешающего элемента (К при определении Na, Na при определении К, Са при определении щелочных металлов) находят раньше, чем содержание определяемого элемента, и соответствующие количества мешающих элементов вводят в стандартные растворы при построении калибровочных графиков; 2) в анализируемую пробу вводят спектроскопический буферный раствор [50 г CsCl и 250 г (A1(N03)3*3H20 в 1 л] в количестве 5 мл на 50 мл анализируемого или стандартного раствора; 3) для устранения мешающего влияния Са, Ва и Sr при определении щелочных металлов вводят по 5 мл смеси растворов Na2S04 (5 г/л) и Na2C03 (10 г/л) на 50 мл; 4) можно ввести в анализируемый раствор известное количество определяемого иона и определить эмиссию раствора с этой добавкой. Мешают также многие органические вещества, которые при высоких температурах закупоривают распылитель. При значительном содержании органических веществ в пробе проводят предварительную обработку. [3,4] сточный вода спектрометрия загрязняющий

Читайте также:  Анализы по очистке сточных вод от

6. Оптические методы анализа

Фотометрический анализ основан на измерении и пропускании, поглощении или рассеяния света определяемым веществом в области ультрафиолетовых, видимых и инфракрасных волн. Фотометрические методы подразделяются на визуальные, в которых наблюдения ведут глазом, и объективные, в которых наблюдение осуществляется физическими приборами, например, фотоэлементами, термоэлементами и болометрами. В зависимости от характера взаимодействия анализируемого вещества со световой энергией, способа ее измерения и типа ее используемого оптического измерительного прибора различают следующие методы. Спектрофотометрия — определение количества вещества по поглощению монохроматического света, измеряемого спектрофотометрами, например СФ — 4А. Фотоэлектроколориметрия — определение количества вещества по поглощению полихроматического света, пропущенного светофильтром и измеряемого фотоэлементом в достаточно узких интервалах спектра, например на ФЭК _ 57, ФЭК _ М. Колориметрия — визуальное определение концентрации вещества по интенсивности окраски раствора на простейших оптических приборах (колориметр Дюбокса, фотометр Пульфриха). В фотоколориметрии и колориметрии измеряют интенсивность света, прошедшего через окрашенный раствор, цвет которого дополняет цвет поглощенного света. Tурбидиметрия — определение концентрации по поглощению света взвешенными в жидкости частицами анализируемого вещества; степень мутности жидкости пропорциональна концентрации. Нефелометрия — определение концентрации по интенсивности света, рассеянного (отраженного) взвешенными частицами мутной системы, например коллоидного раствора, суспензии, эмульсии. Интенсивность светорассеяния пропорциональна концентрации взвешенных частиц. Турбидиметрические и нефелометрические измерения проводят на нефелометре НФМ со светофильтрами или на ФЭК — Н — 57. Флуорометрия — определение количества вещества по интенсивности флуоресценции, возникающей при облучении анализируемого вещества УФ лучами и пропорциональной его концентрации. Определяют на флуорометрах ФМ-1, ФМ-2 со ртутными кварцевыми лампами ДРС-50.При фотометрических измерениях, по закону Ламберта, слои вещества равной толщины поглощают равные части света. Этот закон рассматривает постепенное ослабление параллельного монохроматического пучка света при его распространении в поглощающем веществе. Закон Бугера — Ламберта — Бера определяет зависимость поглощения монохроматического пучка света от концентрации и толщины слоя светопоглощающего вещества в растворе. Если имеются два раствора одного и того же вещества в одном и том же растворителе, из которых один в два раза концентрированнее другого, то светопоглощение (абсорбция) в первом растворе будет равно светопоглощению во втором растворе при условии, что толщина слоя первого раствора в два раза меньше, чем толщина слоя второго раствора.

Закон Бугера — Ламберта — Бера гласит, что интенсивность параллельного монохроматического пучка света при распространении его в поглощающей среде ослабляется.

Закон выражается следующей формулой:

I (l) — интенсивность параллельного монохроматического пучка света;

I0 — интенсивность входящего пучка,

l — толщина слоя вещества, через которое проходит свет,

— показатель поглощения.

Показатель поглощения — коэффициент, показывающий свойства вещества и зависящий от длины волны л поглощаемого света. Эта зависимость называется спектром поглощения вещества. [5]

7. Наиболее выделяемые способы и методы определения содержания некоторых загрязняющих веществ в сточных водах

1. Биохимическое потребление кислорода — измеряется прибором БПК — тестер.

2. Взвешенные вещества — определяется фильтрованием через мембранный фильтр. Стеклянный фильтр, кварцевый или фарфоровый, бумажный не рекомендуется из-за гигроскопичности.

3. Азот аммонийных солей — метод основан на взаимодействии иона аммония с реактивом Несслера, в результате образуются йодистый меркур — аммоний желтого цвета

4. Сульфаты — метод основан на взаимодействии сульфат-ионов с хлоридом бария, в результате чего образуется нерастворимый осадок, который потом взвешивается.

5. Нитраты — метод основан на взаимодействии нитратов с сульфасалициловой кислотой с образованием при рН = 9,5-10,5 комплексного соединения желтого цвета. Измерения проводят при 440 нм.

6. Нефтепродукты определяются весовым методом, предварительно обрабатывая исследуемую воду хлороформом.

7. Хром — метод основан на взаимодействии хромат-ионов с дифенилкарбазидом. В результате реакции образуется соединение фиолетового цвета. Измерения проводят при л=540 нм.

8. Медь — метод основан на взаимодействии ионов Cu2+ с диэтилдитиокарбонатом натрия в слабоаммиачном растворе с образованием диэтилдитиокарбонатом меди, окрашенного в желто-коричневый цвет.

9. Никель — метод основан на образовании комплексного соединения ионов никеля с диметилглиоксином, окрашенного в коричневато-красный цвет. Измерения проводят при л=440 нм.

10. Цинк — метод основан ( при рН = 7.0 — 7.3 ) на соединении цинка с сульфарсазеном, окрашенного в желто-оранжевый цвет. Измерения проводят при л = 490 нм.

11. Свинец — метод основан на соединении свинца с сульфарсазеном, окрашенного в желто-оранжевый цвет. Измерения проводят при л=490 нм.

12. Фосфор — метод основан на взаимодействии молибденовокислого аммония с фосфатами. В качестве индикатора применяется раствор двухлористого олова. Измерения проводят на КФК — 2 при л=690-720 нм.

13. Нитриты — метод основан на взаимодействии нитритов с реактивом Грисса с образованием комплексного соединения желтого цвета. Измерения проводят при л=440 нм.

14. Железо — метод основан сульфасалициловая кислота или ее соли (натриевая ) образуют комплексные соединения с солями железа, причем в слабокислой среде сульфасалициловая кислота реагирует только с солями Fe+3 (окрашивание красное), а слабощелочной — с солями Fe+3 и Fe+2 (желтое окрашивание).

15. Хлориды. При взаимодействии хлоридов с нитратом ртути (II), хлорид-ионы связываются в виде практически не диссоциированного хлорида ртути (II).

Конец реакции определяют по появлению розового окрашивания в момент добавления избытка раствора Hg(NO3)2 к исследуемому раствору, содержащему индикатор бромнитрозол. [4,6,7]

8. Применение сорбционных методов для очистки сточных вод

Реальные сточные воды — это не чистые стабильные растворы, а гетерогенная смесь растворенных, коллоидных и взвешенных в воде примесей органического и неорганического характера, многие из которых нестабильны, окисляются. Практика работы систем очистки сточных вод показывает, что сорбционная обработка целесообразна как «финишная» операция, после механической и других более дешевых видов очистки от грубодисперсных, коллоидных и части растворенных примесей. Обычная оптимальная последовательность процессов физико-химической очистки: коагуляция — отстаивание (флотация) — фильтрование — сорбция.

Так, например, обессоливание природных и сточных вод целесообразно проводить на ионитах в случае исходного солесодержания до 1 г/л.

Создание комбинированных схем, включающих предварительную коагуляцию и осветление воды позволяет в несколько раз снизить расход активного угля на локальных станциях водоподготовки, тем самым решить технико-экономическую проблему обеспечения отдельных районов дополнительными водными ресурсами в обозримом будущем. [8,9]

9. Активные угли в процессах водоподготовки

Фильтрование воды через слой гранулированного угля или введение в воду порошкообразного активного угля являются наиболее универсальными методами удаления из воды растворенных органических веществ природного и неприродного происхождения.

Поскольку содержание в питьевой воде органических веществ природного происхождения нормировано только косвенно (по цветности, запахам и привкусам воды), а цветность воды обычно достаточно хорошо снижается коагулированием и хлорированием, активный уголь, являющийся дорогим материалом, применяется на коммунальных водопроводах главным образом для удаления веществ, обуславливающих запахи и привкусы воды, а также для удаления из воды органических загрязнений неприродного происхождения — различных детергентов, пестицидов, нефтепродуктов и других токсичных веществ, попадающих в открытые водоемы со сточными водами городов и промышленных предприятий.

При удалении из воды веществ, придающих ей запахи и привкусы, их концентрацию нужно снизить до очень малых величин, при которых запах и привкус уже не ощущаются.

Концентрации различных веществ, при которых ощущается их запахи или привкус в воде, неодинаковы. Сероводород ощущается при концентрации его в воде более 0.2-0.3 мг/л, хлор — при концентрации более 0.3 мг/л, хлорфенол — при концентрации более 0.02 мг/л, продукты жизнедеятельности актиномицетов, придающие воде землистый запах, ощущаются при концентрации более 110-8 мг/л.

Естественно, что при столь низких остаточных концентрациях удаляемого вещества степень использования сорбционной емкости активного угля в статических условиях при ввдении в воду угля в виде порошка будет мала. Так во время контакта порошкообразного угля (ПАУ) с очищаемой водой невелико, сорбируемое вещество обычно не успевает проникнуть в глубь частички угля, поэтому сорбционная способность ПАУ возрастает с увеличением степени его измельчения.

Косвенно сорбционная способность ПАУ характеризуется его фенольным числом — числом милиграммов активного порошкообразного угля, требуемого для снижения концентрации фенола в 1 л воды с 0.1 до 0.01 мг при перемешивании воды с активным углем в течение 1 ч. Чем выше фенольное число угля, тем меньше его сорбционная способность в отношении фенола, тем хуже, как правило, этот уголь будет сорбировать из воды вещества, обуславливающие привкусы и запахи воды. ПАУ, применяемые на фильтровальных станциях для удаления из воды привкусов и запахов, должны иметь фенольное число не более 30; хорошие образцы активных углей имеют фенольное число менее 15.

Практика обработки воды ПАУ на Тюменском водопроводе показала, что из числа порошкообразных углей наиболее эффективен уголь марки А-щелочной. В каждом конкретном случае марка ПАУ должна подбираться пробной обработкой воды в лабораторных условиях, при этом должны ставится опыты как с предварительным хлорированием воды, так и без него.

ПАУ, применяемый для удаления из воды веществ, которые придают ей привкусы и запахи, может вводится как перед отстойниками так и после них, непосредственно перед фильтрами. Однако введение в воду пред фильтрами возможно только в тех случаях, когда его доза не превосходит 5-7 мг/л при длительном применении угля и 10-12 мг/л при кратковременном, эпизодическом. При поступлении на фильтры большого количества активного угля потеря напора в них обычно быстро растет и резко возрастает расход промывной воды. Двухслойные фильтры лучше обычных приспособлены к осветлению воды, содержащей ПАУ. При малых дозах активный уголь целесообразно вводить в воду после отстойников; в этом случае сорбционная способность угля используется более полно, чем при введении его в воду перед отстойниками, в которых уголь быстро оседает, не успев сорбировать содержащиеся в воде органические вещества.

Реализация процесса углевания не требует значительных капитальных затрат, необходимо лишь строительство блока приготовления и дозирования ПАУ и склада ПАУ.

Вследствие сильного пыления и взрывоопасности ПАУ в сухом виде в воду вводят редко. Обычно предварительно готовят суспензию 2-10% ПАУ в воде, которую и направляют в основной поток обрабатываемой воды. Дозу ПАУ выбирают с учетом загрязненности воды и сорбционных свойств угля. В России (1982 г) как правило, Dу=1-5 мг/дм3, в Финляндии 5-15 мг/дм3, в ФРГ (водозаборы на Рейне) 25-40мг/дм3, во Франции 5-40 мг/дм3, в Англии и США 5-30 мг/дм3. Большие дозы ПАУ свидетельствуют о сильной загрязненности источников за рубежом.

Постоянное использование ПАУ для водоподготовки обычно не выгодно из-за нерентабельности и невозможности его регенерации и потерь при дозировании.

Для постоянной сорбционной обработки воды используют гранулированные активные угли (ГАУ), которые можно регенерировать, что снижает стоимость очистки воды, хотя ГАУ и дороже, а их применение требует больших капитальных затрат. Фильтрование через ГАУ дает воду лучшего и более постоянного качества по сравнению с углеванием (срок службы ГАУ при очистке природных вод — от 2 до 30 мес)

Одно из традиционных направлений использования активных углей в водоподготовке — дехлорирование питьевой воды, реализуемое на угольных фильтрах. Высоту фильтра назначают в зависимости от скорости фильтрования, начальной и конечной концентрации свободного хлора.

Дехлорирующие фильтры регенерируют один раз в месяц горячим раствором соды или едкого натра. До регенерации 1 кг ГАУ дехлорирует 50-100 м3 воды.

Механизм дехлорирования воды на ГАУ состоит из сорбции и последующего разложения хлорноватистой кислоты. Ион OCl- менее реакционноспособен и хуже сорбируется чем HOCl, поэтому сдвиг рН, приводящий к увеличению степени диссоциации HOClH++OCl-, снижает дехлорирующий эффект. [8,9,10]

10. Неуглеродные сорбенты в процессах водоочистки

Для очистки воды все большее применение находят неуглеродные сорбенты естественного и искусственного происхождения (глинистые породы, цеолиты и некоторые другие материалы).

Использование таких сорбентов обусловлено достаточно высокой емкостью их, избирательностью, катионообменными свойствами некоторых из них, сравнительно низкой стоимостью и доступностью (иногда как местного материала).

Глинистые породы — наиболее распространенные неорганические сорбенты для очистки воды. Они обладают развитой структурой с микропорами, имеющими различные размеры в зависимости от вида минерала. Большая часть из них обладает слоистой жесткой или расширяющейся структурой.

Механизм сорбции загрязнений на глинистых материалах достаточно сложен и включает Ван-дер-ваальсовые взаимодействия углеводородных цепочек с развитой поверхностью микрокристаллов силикатов и кулоновское взаимодействие заряженных и поляризованных молекул сорбата с положительно заряженными участками поверхности сорбента, содержащими ионы Н+ и Al3+.

Наибольшее распространение глинистые материалы получили для обесцвечивания воды, удаления неорганических примесей и особо токсичных хлорорганических соединений и гербицидов, различных ПАВ.

Природные сорбенты добывают в непосредственной близости от места потребления, что постоянно расширяет масштаб их применения для очистки воды.

Цеолиты — разновидности алюмосиликатных каркасных материалов. Эти материалы имеют отрицательный трехмерный алюмосиликатный каркас со строго регулярной тетраэдрической структурой. В промежутках каркаса находятся гидратированные положительные ионы щелочных и щелочно-земельных металлов, компенсирующих заряд каркаса, и молекулы воды. В адсорбционные полости цеолитов сорбируется лишь молекулы веществ, критический размер которых меньше эффективного размера входного окна, от этого и их второе название — молекулярные сита.

Известно более 30 видов природных цеолитов, но лишь часть из них образует крупные месторождения (80% концентратов) удобные для промышленной переработки. Наиболее распространенные природные цеолиты:

шабазит (Na2Ca)OAl2O34SiO26H2O с размером окон 0.37-0.50 нм;

морденит (Na2K2Ca)OAl2O310SiO26.7H2O с размером окон 0.67-0.70 нм;

Для получения прочных и водостойких фильтрующих материалов из природных цеолитов их, так же, как и глины, нагревают в печах с хлоридом карбонатом натрия при 10000С.

Обработка поверхности цеолитов кремнийорганическими соединениями делает ее гидрофобной, что улучшает сорбцию нефти из воды.

Природные цеолиты используются в виде порошков и фильтрующих материалов для очистки воды от ПАВ, ароматических и канцерогенных органических соединений, красителей, пестицидов, коллоидных и бактериальных загрязнений.

Кроме цеолитов и природных глин перспективными являются неорганические иониты. Среди них можно выделить следующие:

Гранулированные методом замораживания труднорастворимые фосфаты металлов (циркония, титана, хрома, железа, тория, сурьмы и др.), прежде всего, цирконилфосфат (ZrO)m(H2PO4)n с различным отношением m:n, отличающийся высокой емкостью обмена, термической и радиационной устойчивостью и высокой селективностью к ионам цезия, рубидия, калия и аммония, а также таллия. Цирконилфосфат устойчив в концентрированных кислотных и солевых растворах, сохраняя в них высокую ионообменную емкость и избирательность к вышеуказанным катионам.

Цирконилфосфат может быть использован для извлечения из сильнокислых и сильноминерализованных радиоактивных растворов долгоживущего изотопа 137Cs; для разделения продуктов радиоактивного распада урана в атомных реакторах: 89Sr-137Cs, 89Sr-144Cs, 90Sr-90U; для отделения 95Nb и 95Zr от 106Ru; для извлечения ионов таллия из растворов в производстве и при использовании солей таллия.

Синтетические титано- и цирканосиликаты, обладающие молекулярноситовыми свойствами цеолитового уровня, высокой обменной емкостью и селективностью к ряду катионов.

Труднорастворимый кристаллический оксалат циркония, селективный по отношению к катионам свинца и калия.

Труднорастворимые соли поли- и гетерополикислот: фосфомолибдаты, фосфорвольфраматы, вольфраматы, фосфорарсенаты, производные фосфорносурьмяной кислоты, кремнесурьмяной кислот и другие обладающие селективностью к редким щелочным, щелочноземельным и тяжелым металлам.

Ферроцианиды щелочных и тяжелых металлов (железа, меди, цинка, молибдена, никеля, титана, олова, ванадия, урана, вольфрама и т.п.), способные к избирательной сорбции ионов Pb+, используются для поглощения Rb, Cs из растворов и Tl+ из водных растворов. Например, с помощью ферроцианида щелочного металла и никеля эффективно извлекается рубидий из отработанного раствора при переработке карналлитовых руд.

Нерастворимые сульфиды и гидроксиды металлов. Например, известно о возможности успешной очистки никелевых электролитов от примесей ионов меди, свинца, кадмия, мышьяка, сурьмы, олова, висмута с помощью нерастворимого сульфида никеля, от примесей железа (II) и кобальта (II) с помощью гидроксидов никеля в сочетании с органическим сильноосновным анионитом АВ-17 на конечной стадии очистки.

Многие катиониты в том числе цеолиты (за исключением клиноптилолита, эрионита и морденита) и глинистые минералы, могут работать только в солевых формах (натриевой, кальциевой и т.д.). Они не могут быть переведены в водородную форму, так как при этом разрушается их структура, и, следовательно, не могут применяться в технологии обессоливания и опреснения сточных и природных вод. Кроме того, обессоливание воды невозможно без одновременного использования анионитов, которые среди неорганических минералов и соединений встречаются весьма редко.

Эти обстоятельства в немалой степени способствовали бурному развитию синтеза органических катионитов и анионитов на основе синтетических органических соединений, получивших широкое применение в технологии обессоливания воды, в гидрометаллургии драгоценных и цветных металлов, в технологии очистки сточных вод и в других отраслях. [8,9,10]

В данной работе были рассмотрены наиболее предпочтительные и часто используемые методы идентификации различных веществ в сточных водах, а также некоторые методы очистки этих вод. Однако немногие из методик, в том числе и основанных на использовании самых современных физических методов, дают возможность надёжно определять поллютанты на уровне ПДК.

Таким образом, анализ сточных вод относится к определению следовых количеств веществ в композиционно весьма сложной системе. Оптимальная методология таких работ до настоящего времени ещё не разработана и их проведение не обеспечено как надежной критериальной базой, так и методическими разработками. Эти обстоятельства и определяют основные проблемы и направления развития аналитической химии сточных вод (да и вод вообще).

1. Соловьев Ф.С., Губанов И.Н., Беднова Л.М. /Отчеты по научно-исследовательской работе/ “Очистка сточных вод или рекуперация ценных технологических веществ в гальваническом производстве” ВНТИЦ, /копия отчета о НИР/, М., 1988г.

2. Хенце М., Армоэс П., Ля-Кур-Янсей Й /“Очистка сточных вод: Биологические и химические процессы”./Пер. с англ. Учебное пособие.-МИР 2004.

3. Лурье Ю.Ю., Рыбникова А.И./ Сборник методик химического анализа производственных сточных вод, “Министерство электронной промышленности СССР”/ М., 1976 г.

4. Лурье Ю.Ю. /“Аналитическая химия промышленных сточных вод”/ М., 1984 г.

5. Соловьев Ф.С., Губанов И.Н., Беднова Л.М. /Отчеты по научно-исследовательской работе/ “Очистка сточных вод или рекуперация ценных технологических веществ в гальваническом производстве” ВНТИЦ, /копия отчета о НИР/, М., 1988г.

источник