Меню Рубрики

Норман анализ процесса решения задач

Что именно следует сделать, чтобы решить некоторую задачу? В этой главе мы рассмотрим стратегии и процедуры, обычно используемые людьми. Прежде всего задачи бывают двух основных типов: четко постав­ленные и нечетко поставленные. В четко поставленной задаче цель ясно сформулирована. Вот примеры таких задач:

1) как наилучшим образом проехать в другой конец города, если все главные улицы закрыты для транспорта по случаю парада;

2) как решить шахматную задачу, помещенную во вчерашней газе­те: белые начинают и делают мат в пять ходов;

3) что вы делали 16 месяцев назад?

В этих задачах имеются все признаки четкой постановки: ясная цель, определенный способ судить о том, идет ли процесс решения в надлежащем направлении. В жизни, пожалуй, чаще встречаются нечет­ко поставленные задачи:

1) руководить постановкой интереснейшего фильма столетия;

2) посвятить свою жизнь какой-нибудь высокой цели;

3) создать бессмертное произведение искусства.

У нас есть все основания сосредоточить наше исследование на чет­ко поставленных задачах. Наша цель — выяснить, какие процессы ис­пользует человек, добивающийся решения той или иной задачи. Мы хо­тим понять, как он строит внутреннюю модель задачи, какую стратегию избирает, каким правилам следует. Мы хотим узнать, какие средства позволяют ему успешно продвигаться к решению. Результаты этих ис­следований должны быть приложимы к решению любых задач, постав­лены ли они четко или нечетко.

1 Линдсей П., Норман Д. Переработка информации у человека / Под ред. А.Р.Лурия. М.: Мир, 1974. С. 473-487, 489-492.

Линдсей П.. Норман Д. Решение задач

Лучше всего, вероятно, начать с исследования конкретной задачи, поскольку анализ облегчится, если иметь некоторое предварительное представление о шагах и операциях, которые мы будем рассматривать. Попробуйте решить приведенную ниже задачу. Работа над ней даст вам представление о тактике поведения и о принимаемых при этом решени­ях, даже если вам не удастся решить саму задачу. Думайте вслух, когда будете работать, высказывайте все мысли, которые придут вам в голову. Потратьте на это не менее 5 минут, даже если вам покажется, что вы не можете подступиться к задаче. Помните: главное в этом анализе — вы­яснить, к какого рода умственным операциям прибегают люди в подоб­ных случаях. Решите вы данную задачу или нет — по существу, не име­ет значения.

DONALD D = 5

Данная задача относится к классу криптоарифметических задач. В приведенном выражении использовано всего десять букв, каждая из ко­торых соответствует определенной цифре. Задача состоит в том, чтобы найти для каждой буквы соответствующую ей цифру, так чтобы получив­шиеся цифры удовлетворяли сформулированному арифметическому ра­венству.

Пожалуйста, произносите вслух все, что вы думаете, когда пытае­тесь решить задачу. Если вам захочется записать что-либо, записывайте.

Первый шаг в изучении любого явления — наблюдать за поведени­ем, которое с ним связано. Очевидная трудность исследования того, как человек решает задачи,— невозможность непосредственного наблюдения большей части происходящих событий. Человек выполняет свои мыс­ленные операции молча, про себя. Один из способов преодоления этой трудности — заставить его обнаружить эти процессы, попросив его, на­пример, рассказывать вслух, что он делает в процессе решения. В резуль­тате получается дословная запись его мыслительных процессов, или сло­весный отчет. Несмотря на трудности истолкования таких словесных отчетов, они, очевидно, представляют собой чрезвычайно полезную пер­вичную информацию о процессах мышления, происходящих при реше­нии задач.

Мы разберем небольшую часть словесного отчета одного испытуе­мого, пытавшегося решить задачу «Donald + Gerald». Дав пояснения к задаче, годные с приведенными выше, его попросили думать вслух в

Тема 18. Экспериментальные исследования мышления

процессе поиска решения. Испытуемый впервые пытался решить такого рода задачу. Полная запись его высказываний в течение 20 минут, зат­раченных на решение, составляет протокол объемом около 2200 слов (за­дача, ее анализ и приводимые ниже цитаты из протокола заимствованы из работы Ньюэла 1 ).

Протокол решения задачи «Donald + Gerald».

Каждая буква имеет одно и только одно числовое значение? (Это был вопрос к экспериментатору, который ответил: «Одно числовое значение».)

Имеется десять различных букв, и каждая из них имеет одно числовое значение.

Букв D две, и каждая из них соответствует 5; значит, Г есть нуль. Так что, я думаю, можно для начала вписать это в текст за­дачи. Я вписываю: 5, 5 и 0.

Посмотрим, есть ли у нас еще Г. Нет. Зато есть еще одно D. Значит, я могут поставить 5 с другого края.

Дальше, у нас есть два А и два L — каждая пара в одном раз­ряде — и еще три R. Два L равны одному R. Разумеется, я пере­нес 1 во второй разряд, откуда следует, что R должно быть нечет­ным числом, поскольку сложение двух одинаковых чисел дает чет­ное число, а 1 — число нечетное. Так что R может быть равно 1 или 3, но не 5, не 7 и не 9.

(Здесь наступила долгая пауза, и экспериментатор спросил: «О чем вы сейчас думаете?»)

Теперь G. Раз R — нечетное число, a D равно 5, то G должно быть четным.

Я смотрю на левый край примера, где складывается D с G. Ах, нет, возможно, сюда надо прибавить еще 1, если мне пришлось бы перенести 1 из предыдущего разряда, где складываются О и Е. Пожалуй, мне нужно на минуту отвлечься от этого.

Вероятно, лучше всего решать эту задачу, перебирая различные возможные решения. Но я не уверен, что это окажется самым лег­ким путем.

Анализ. Итак, цитированный текст будет служить нам первичным материалом. Какие принципы из него можно извлечь? Первое впечатле­ние от такого протокола — что испытуемый не подходит к задаче прямо и непосредственно. Он накапливает информацию и проверяет различные гипотезы, выясняя, к чему они приводят. Он часто заходит в тупик и,

1 См.: Newell A. Studies in problem solving: Subject 3 on the crypt-arithmetic task, DONALD plus GERALD equals ROBERT. Pittsburgh: Carnegie-Mellon Institute, 1967.

Линдсей П., Норман Д. Решение задач

отступая, пробует другой путь. Взгляните на протокол. Испытуемый на­чинает энергично и сразу обнаруживает, что Т равно нулю.

Букв D две, и каждая из них соответствует 5; значит, Т есть нуль. Так что, я думаю, можно для начала вписать это в текст за­дачи. Я вписываю: 5, 5 и 0.

После этого он выясняет, можно ли использовать где-нибудь в тексте за­дачи свое знание, что Т равно нулю, a D равно 5. Он ищет Т.

Посмотрим, есть ли у нас еще Т? Нет.

Эта попытка не удалась. Ну, а как с D?

Зато есть еще одно D. Значит, я могу поставить 5 с другой сто­роны.

Отметив это обстоятельство, испытуемый обнаруживает другое место в тексте задачи, которое кажется перспективным.

Дальше, у нас есть два А и два L — каждая пара в одном раз­ряде — и еще три R. Два L равны одному R. Разумеется, я пере­нес 1 во второй разряд, откуда следует, что R должно быть нечет­ным числом.

Хотя испытуемый уже пришел к заключению, что R — нечетное число, он вновь возращается к этому вопросу, как бы проверяя свой вывод:

. поскольку сложение двух одинаковых чисел дает четное чис­ло, а 1 — число нечетное.

На этот раз он продолжает рассуждение несколько дальше и конк­ретно перечисляет возможные числа.

Так что R может быть равно 1 или 3, но не 5, не 7 и не 9.

После долгой паузы, испытуемый, однако, отказывается от этого пути по понятной причине: нет очевидного способа выбрать значение R из возможных вариантов. Он опять возвращается к идее о нечетности R. Дает ли это какую-либо информацию относительно G?

Теперь G. Раз R — нечетное число, a D равно 5, то G должно быть четным.

Этого краткого анализа отчета о первых пяти минутах эксперимен­та достаточно для того, чтобы обнаружить некоторые общие закономер­ности в поведении испытуемого при решении задачи. Ему известна ко­нечная цель, которой он пытается достичь. Однако он начинает с того, что разбивает процесс достижения этой цели на некоторое число отдель­ных шагов. Затем он приступает к поочередной проверке ряда простых стратегий, каждая из которых, как он надеется, даст ему определенную

490 Тема 18. Экспериментальные исследования мышления

информацию. Одни стратегии дают результат, и количество накопленных данных увеличивается. Другие стратегии явно не работают; в таких слу­чаях испытуемый от них отказывается и пробует иной способ.

Описание, подобное приведенному выше, применимо к широкому разнообразию теоретических и практических задач. Такие же принципы обнаруживаются при сенсомоторном решении практических задач. Одна­ко в этом описании пока много неясного. На какой основе происходит разложение процесса достижения конечной цели на отдельные простые шаги? Откуда испытуемый знает, какого рода стратегии будут полезны для решения данной задачи? Как он выбирает, какую конкретную стра­тегию применить в данный момент? Откуда он знает, приведет ли при­меняемая им в данный момент стратегия к цели или заведет в тупик? Для того чтобы ответить на эти вопросы, необходима более совершенная процедура анализа протокола.

Словесными протоколами пользоваться неудобно. Для подробного исследования процесса решения задачи нужно иметь какой-то метод представления происходящих событий. Полезно строить визуальные изоб­ражения последовательности операций, совершаемых во время решения задачи. Одним из методов, пригодных для этой цели, является граф ре­шения задачи, разработанный А.Ныоэлом 1 .

Состояния осведомленности. Мы отмечали, исследуя протокол, что испытуемый постепенно накапливает информацию о задаче, применяя определенные правила или стратегии. Он производит разного рода опе­рации над этой информацией и над текстом задачи; в результате его зна­ния возрастают. Вся информация о задаче, которой испытуемый распо­лагает в данный момент, называется его состоянием осведомленности.

1 См.: Simon Н. Л., Newell A. Human problem solving // Englewood Cliffs. N. J.: Prentice Hall, 1971.

Линдсей П., Норман Д. Решение задач 491

Всякий раз, как он применяет некоторую операцию к некоторому ново­му факту, состояние осведомленности изменяется. Описание поведения человека при решении задачи должно, таким образом, отражать это пос­ледовательное продвижение от одного состояния осведомленности к дру­гому. Будем изображать графически состояние осведомленности прямоу­гольником, а операцию, переводящую испытуемого из одного состояния осведомленности в другое,— в виде стрелки (рис. 1).

Теперь протокол можно представить в виде прямоугольников, соединенных стрелками; последние показывают путь, проходимый испы­туемым через последовательные состояния осведомленности. В качестве иллюстрации возьмем снова протокол решения задачи «Donald + Gerald».

Несколько высказываний в начале словесного отчета отражают про­сто проверку испытуемым своего понимания условий задачи. Само рас­суждение начинается лишь с фразы:

Букв D две, и каждая из них соответствует 5; значит, Т есть нуль.

Испытуемый, несомненно, перерабатывает информацию, содержа­щуюся в том разряде, где показано, что D + D = Т. Назовем эту операцию обработкой 1-го разряда. Эта операция переводит испытуемого из началь­ного состояния осведомленности (в котором он знает, что D = 5) в новое состояние, в котором он знает, кроме того, что Т = 0. Известно ли испы­туемому также, что необходимо сделать перенос в следующий, 2-й раз­ряд? До этого места в тексте протокола об этом ничего не сказано. Забе­гая, однако, вперед, читаем: «Разумеется, я перенес 1». Таким образом, это испытуемому известно. К настоящему моменту наш граф решения задачи насчитывает два состояния осведомленности (рис. 2).

Следующие несколько фраз протокола по существу резюмируют сведения, известные испытуемому к данному моменту. Затем делается попытка найти другие разряды, содержащие Т или D, Первое примене­ние операции взять новый разрядТ) безуспешно; второе дает положи­тельный результат: находится другой разряд, содержащий D. Граф реше­ния задачи получил некоторое приращение (рис. 3; на этом рисунке пря-

Тема 18. Экспериментальные исследования мышления

моугольник, которого не было на предыдущей схеме, обведен жирной линией).

Теперь испытуемый решает еще раз взять новый разряд, пробуя сначала 3-й разряд, а затем 2-й.

Дальше, у нас есть два А и два L — каждая пара в одном раз­ряде — и еще три R.

Это приводит его к тому пункту рассуждения, в котором имеет смысл обработать 2-й разряд. В результате обработки он переходит из состояния 4 в состояние 5, где известно, что R — нечетное число (рис. 4).

Обратный ход. Теперь испытуемый возвращается к пройденному состоянию. Обратите внимание на последовательность действий. Снача­ла, в состоянии 5, он говорит:

Два L равны одному R. Разумеется, я перенес 1 во второй раз­ряд, откуда следует, что R должно быть нечетным числом.

Но затем испытуемый решает конкретно выяснить возможные чис­ловые значения буквы R; для этого он возвращается в состояние 4 и ис­пытывает новый подход.

. поскольку сложение двух одинаковых чисел дает четное чис­ло, а 1 — число нечетное. Так что R может быть равно 1 или 3, но не 5, не 7 и не 9.

На графе этот обратный ход отображается таким образом, что стрелка к следующему, б-му состоянию идет из состояния 4 (рис. 5). Состояние 6 — это, собственно, то же состояние 4, только в более поздний момент вре­мени. В состоянии 7 испытуемый вновь воспроизвел тот факт, что R не­четно, а в состоянии 8 он методически перечисляет все подходящие и неподходящие нечетные числа.

Заметьте, что, когда испытуемый находит возможные числовые значения для R, он действует методично и не исключает уже использо­ванные значения. Так, он упоминает в явном виде и потом уж только отбрасывает возможность, что R = 5 (а не просто игнорирует эту возмож­ность).

Последующая часть текста протокола дает пример того, какие труд­ности испытывает экспериментатор, «добывая» протокол. Испытуемый

Линдсей П., Норман Д. Решение задач

Тема 18. Экспериментальные исследования мышления

Линдсей П., Норман Д. Решение задач

молчит, так что экспериментатор вынужден вмешаться и просить его говорить. В результате мы не имеем явных свидетельств того, как исполь­зованы возможные числовые значения R. Вместо этого мы видим, что процесс решения снова идет вспять; на этот раз испытуемый обращается к 6-му разряду и, исходя из того, что R — число нечетное, a D равно 5, заключает, что G должно быть четным числом. Это приводит нас к со­стоянию 10.

Теперь G. Раз R — нечетное число, a D равно 5, то G должно быть четным.

Хотя этот вывод не верен, тем не менее в момент, представляемый состоянием 10, он отвечает действительному состоянию осведомленности испытуемого (рис. 6). В данном случае возможность того, что G не обя­зательно четно, приходит ему в голову довольно скоро.

Я смотрю на левый край примера, где складывается D с G. Ах, нет, возможно, сюда надо прибавить еще 1, если мне пришлось бы перенести 1 из предыдущего разряда, где складываются О и Е. Пожалуй, мне нужно на минуту отвлечься от этого.

Последняя фраза указывает, что испытуемый вновь хочет присту­пить к обработке б-го разряда и в результате оказывается в состоянии 12 (признает возможность переноса), а затем решает еще раз вернуться на­зад, отказавшись от полученной ранее численной оценки для G (четное число). На этом мы заканчиваем анализ фрагмента протокола. Соответ­ствующий фрагмент графа решения показан на рис. 6.

На этом фрагменте мы показали метод выделения и графического представления отдельных шагов, из которых состоит решение задачи. На рис. 7 в упрощенном виде показано, как выглядит граф всего прото­кола решения задачи (испытуемый потратил на это решение 20 минут) 1 .

При анализе протокола мы обнаруживаем все те же правила. Испытуемый, по-видимому, имеет лишь небольшой набор стратегий, ко­торые он использует многократно. Полный граф насчитывает свыше 200 переходов от одного состояния осведомленности к другому, однако для описания этих переходов оказалось достаточно всего четырех различных операций.

Граф решения — один из методов разложения процесса решения этой задачи на этапы, выделения в процессе его отдельных шагов. В нем

1 Пользование графом. Чтобы прочитать этот граф, необходимо начинать всегда о верхнего левого прямоугольника и идти по горизонтали вправо. Дойдя до конца линии, нужно вернуться назад до первой вертикальной линии и спуститься на один уровень (ярус), после чего вновь идти по горизонтали вправо. Продолжать дальше в том же порядке, избегая повторений, пока не будет пройден весь граф. Короче говоря, следует идти по графу насколько возможно вправо, затем назад до первой непройденной вертикали, по которой спуститься на один шаг; так поступать столько раз, сколько потребуется.

496 Тема 18. Экспериментальные исследования мышления

графически представлено чередование успехов и неудач, характерных для хода решения всякой задачи. Эта общая форма анализа и изображе­ния поведения представляется применимой к широкому разнообразию проблемных ситуаций. Понятно, что конкретные правила, используемые человеком, зависят от характера решаемой задачи, однако общая струк­тура его поведения в ходе решения задачи всегда одинакова. Человек разбивает задачу на множество более простых промежуточных задач, т.е. ставит перед собой промежуточные вопросы. В любой заданный мо­мент достигнутый им успех можно охарактеризовать с помощью поня­тия состояния осведомленности. Оно выражает информацию, накоплен­ную к этому моменту. Человек переходит от одного состояния осведом­ленности к другому через попытки применения одной из операций, выбираемых из имеющегося у него небольшого набора. В случае успеха он получает новую информацию, переходя тем самым в новое состояние осведомленности. Он движется ощупью, путем непрерывных проб и оши­бок, проверяя пригодность различных операторов, возвращаясь назад, когда данная последовательность операций заводит в тупик, и начиная снова. Для описания его поведения мы ввели понятия: цель, состояние осведомленности и оператор. Посмотрим, как эти понятия приложимы к решению задачи в общем случае.

Стратегия решения задачи Поиск решений

В большинстве случаев решение задачи включает момент пря­мого поиска. Другими словами, человек сначала испытывает какой-то метод подхода к задаче, а затем смотрит, продвинулся ли он вперед в результате его применения. Если да, то он продолжает идти в том же направлении от достигнутого пункта. Этот процесс напоминает меандри-рование реки на пологом склоне. Вода просто начинает течь вниз по ук­лону. Конкретный путь потока определяется особенностями рельефа. Здесь важно то, что поиск от начала до конца осуществляется простыми, прямыми шагами.

Второй подход представлен обратным поиском. Здесь человек рассматривает искомое решение, задаваясь вопросом: какой предвари­тельный шаг необходим для того, чтобы прийти к нему? После опреде­ления этого шага определяется шаг, непосредственно ему предшествую­щий, и т. д., в лучшем случае — вплоть до отправной точки, заданной в постановке исходной задачи. Обратный поиск чрезвычайно полезен в некоторых визуальных задачах, вроде нахождения по карте пути из од­ного пункта в другой.

Линдсей П., Норман Д. Решение задач

При обратном поиске продвижение к цели осуществляется неболь­шими шагами. Определяется некоторая промежуточная цель и делается попытка решить промежуточную задачу. Здесь вступает в действие одна, вероятно наиболее сильная, стратегия: так называемая стратегия сопо­ставления средств и целей. При этом сопоставлении цель (ближайшая промежуточная цель) сравнивается с наличным состоянием осведомлен­ности. Проблема состоит в нахождении оператора — средства, умень­шающего разрыв между этими двумя вещами. Эта стратегия часто применяется при решении многих задач, иногда с поразительным ус­пехом.

Читайте также:  2 скрининг результат анализа норма

Нет сомнения, что одна из важнейших проблем для человека — это отыскание конкретных операторов, способных работать в данной ситу­ации. Разбиение общей задачи на промежуточные полезно на этапе поста­новки задачи. Сопоставление целей и средств полезно для оценки способ­ности данного оператора продвинуть нас вперед в решении задачи. Но ни одна из этих тактик не сообщает нам, откуда, собственно, взять этот самый оператор.

Эвристика. Математик Пойа 1 считает, что для того, чтобы решить задачу,

мы, во-первых, должны понять задачу. Мы обязаны ясно по­нять, что требуется узнать и уяснить себе условия и исходные дан­ные. Во-вторых, мы должны составить план, который бы привел нас к решению.

Вся трудность, однако, в том и состоит, чтобы придумать надлежащий план, придумать операторы, которые в самом деле приведут к решению. В учении о решении задач рассматриваются два типа планов (или операторов): алгоритмы и эвристические приемы. Они отличаются друг от друга наличием или отсутствием гарантии получения правильного результата. Алгоритм — это совокупность правил, которая, если ей сле­довать, автоматически порождает верное решение. Правила умножения представляют собой алгоритм; пользуясь ими надлежащим образом, мы всегда получим правильный ответ. Эвристические приемы больше напо­минают эмпирические правила; это процедуры или описания, которыми относительно легко пользоваться и ценность которых оправдывается предшествующим опытом решения задач. Однако в отличие от алгорит­мов эвристические приемы не гарантируют успеха. Для многих из числа наиболее сложных и наиболее интересных задач алгоритмы решения не

1 См.: Polya G. How to solve it // Princeton. N. J.: Princeton University Press, 1945.

Тема 18. Экспериментальные исследования мышления

найдены, а в некоторых случаях даже известно, что они не существуют. В таких случаях приходится прибегать к эвристическим приемам.

Весьма важный эвристический прием заключается в нахождении аналогий между данной задачей и задачами, решение которых известно. Часто при этом необходим некоторый навык, чтобы обнаружить скрытое сходство, и вместе с тем известная широта взглядов, чтобы пренебречь явными различиями. Решение по аналогии представляет большую цен­ность, даже если аналогия оказывается весьма отдаленной. Существует, разумеется, опасность увидеть сходство там, где его вовсе нет, что при­водит к большой потере времени и сил, прежде чем человек обнаружит ошибку и предпримет новую попытку.

Эвристика вступает в действие во всякой сложной ситуации, свя­занной с решением задач. Фактически большинство исследований, посвя­щенных мышлению и решению задач, в значительной мере сводится к изучению типов эвристических приемов, применяемых человеком. Роль эвристической стратегии легче понять на конкретном примере.

Игра в шахматы. Учебники шахматной игры не содержат ре­цептов, гарантирующих выигрыш. Скорее они содержат эвристические правила.

Старайтесь контролировать четыре центральных поля. Обеспечи­вайте безопасность короля.

В сущности шахматные игроки отличаются друг от друга, по-види­мому, именно силой и эффективностью эвристических схем, применяе­мых ими в игре 1 .

Шахматист, естественно, не перебирает все возможные комбинации для того, чтобы принять решение. Он анализирует лишь небольшую долю ходов, возможных в данной позиции; скорее всего он ограничивается рассмотрением тех ходов, которые обещают привести к важным резуль­татам. Откуда же он знает, какие из миллионов возможных ходов следу­ет обдумать в деталях?

В исследованиях, написанных специалистами по шахматной игре, носящими звание международных гроссмейстеров, утверждается, что выдающиеся шахматисты пользуются для оценки и выбора ходов неко­торым количеством эвристических правил. Правила упорядочены по их важности, и этот порядок используется для выбора наилучшего хода из числа тех, которые обещают хорошие результаты. Приводимый ниже перечень подобных эвристических правил даст нам некоторое представ­ление о том, чем руководствуются шахматисты при выборе надлежащих операторов.

1 См.: Simon HA„ Simon PA. Trial and error search involving difficult problems: Evidence from the game of chess // Behavioral Science. 1962. 7. P. 425-429.

Линдсей П., Норман А. Решение задач

• Отдавай наивысший приоритет двойному шаху (ход, которым осуществляется одновременное нападение на короля двумя фи­гурами) и вскрытому шаху (ход, при котором нападение на короля осуществляют путем увода другой своей фигуры с линии атаки).

• При прочих равных условиях объявляй шах самой сильной фигурой (сила фигуры определяется разнообразием ходов, разрешенных ей правилами игры).

• Отдавай предпочтение ходам, на которые противник имеет воз­можность ответить минимальным количеством ходов.

• Отдавай предпочтение шаху, осуществляемому такой фигурой, которая до того не принадлежала к числу активно действующих.

• Отдавай предпочтение шаху, который заставляет короля против­ника удаляться от своей базы.

Недостатки метода протоколов

Начав с записи мыслей вслух человека, решающего задачу, мы смогли выяснить кое-что о характере связанных с этим процессов мыш­ления. Более того, сам метод протоколов вовсе не обязательно ограничен ситуациями чистого решения задач. Когда в клинике психолог пытается исследовать состояние психики пациента, он применяет несколько менее формальный анализ словесного отчета последнего, однако ход рассуж­дений совершенно тот же. Клиницист стремится выяснить сущность внут­ренних операций в структуре памяти, прослеживая избираемые субъек­том пути, отраженные в его словесных высказываниях.

Слишком сильно полагаться на протокол небезопасно.

Хотя испытуемый, работая над задачей, отражает в своем сло­весном описании различные стратегии и операции, через которые он проходит на пути к решению, он тем не менее не точно и не полностью отражает все те внутренние процессы, которые в нем происходят. То, что мы наблюдаем, является, таким образом, лишь частичным описанием этих внутренних процессов.

Следовательно, мы должны сделать вывод, что только часть ум­ственной деятельности испытуемого доступна внешнему наблюдению. Запись будет более полной, если поощрять испытуемого к подробному освещению хода своих мыслей и если вести протокол в процессе экспе­римента. Так или иначе, невзирая на свои недостатки, анализ про­токолов служит очень действенным методом реконструкции событий, происходящих в сознании человека при решении задач, и изучения стра­тегий мышления, используемых в этой трудной работе.

Тема 18. Экспериментальные исследования мышления

Линдсей П., Норман Д. Решение задач

Состояния внутренние и отраженные в протоколе

В качестве иллюстрации к проблеме рассмотрим, чем отличаются друг от друга три различных «пространства» задачи: внутреннее, отра­женное в протоколе и внешнее. Пусть испытуемый решает задачу про себя в соответствии с некоторыми общими стратегиями и посредством операций, которые, будем надеяться, сходны со стратегиями и операци­ями, представленными в графе решения задачи. Это решение представ­лено во внутреннем пространстве, прямое наблюдение которого для нас невозможно. Словесные высказывания, делаемые испытуемым в ходе ре­шения задачи, — протокол — это запись в протокольном пространстве. И кроме того, продвигаясь к решению, испытуемый записывает те или иные выражения и выполняет некоторые действия, порождая тем самым внешнее пространство.

источник

Это произведение, предположительно, находится в статусе ‘public domain’. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.

Текущая страница: 33 (всего у книги 35 страниц)

Так предметное действие, отразившись в разных формах внешней речи, в конце концов становится актом внутренней речи.

Таким образом, порядок формирования идеальных действий возвращает нас к формуле Маркса: «Идеальное есть не что иное, как материальное, пересаженное в человеческую голову и преобразованное в ней». Теперь, изучая процесс этого «пересаживания и преобразования», мы начинаем конкретно представлять себе его психологическое содержание. Каждый этап означает отдельную форму отражения – объекта действия и его самого, каждое обобщение, каждое сокращение, каждая новая степень освоения означают дальнейшие изменения внутри каждой из этих форм. Пройденные ступени не отпадают, но в снятом виде образуют восходящую систему, стоящую позади наличного действия и составляющую основную часть его психологического содержания.

Поэтапное формирование идеальных, в частности умственных, действий является ключом не только к пониманию психических явлений, но и к практическому овладению ими. Воспитание требуемой формы действия в заданных условиях составляет для нас, в сущности, единственное средство анализа и доказательства его природы. Но, очевидно, такое познание явления означает вместе с тем и овладение им.

Г. Линдсей, К. С. Халл, Р. Ф. Томсон
Творческое и критическое мышление[68] 68
Hall K, Lindsay G, Tompson R. F. Psychology. – N.Y., 1975.

Творческое мышление – это мышление, результатом которого является открытие принципиально нового или усовершенствованного решения той или иной задачи. Критическое мышление представляет собой проверку предложенных решений с целью определения области их возможного применения. Творческое мышление направлено на создание новых идей, а критическое – выявляет их недостатки и дефекты. Для эффективного решения задач необходимы оба вида мышления, хотя используются они раздельно: творческое мышление является помехой для критического, и наоборот.

Если вы хотите мыслить творчески, вы должны научиться предоставлять своим мыслям полную свободу и не пытаться направить их по определенному руслу. Это называется свободным ассоциированием. Человек говорит все, что приходит ему в голову, каким бы абсурдным это не казалось. Свободное ассоциирование первоначально использовалось в психотерапии, сейчас оно применяется также для группового решения задач, и это получило название «мозговой штурм».

Мозговой штурм широко используется для решения разного рода промышленных, административных и других задач. Процедура проста. Собирается группа людей для того, чтобы «свободно ассоциировать» на заданную тему: как ускорить сортировку корреспонденции, как достать деньги для строительства нового центра или как продать больше чернослива. Каждый участник предлагает все то, что приходит ему на ум и иногда не кажется относящимся к проблеме. Критика запрещена. Цель – получить как можно больше новых идей, так как чем больше идей будет предложено, тем больше шансов для появления по-настоящему хорошей идеи. Идеи тщательно записываются и по окончании мозгового штурма критически оцениваются, причем, как правило, другой группой людей.

Творческое мышление в группе основывается на следующих психологических принципах (Осборн, 1957).

1. Групповая ситуация стимулирует процессы выработки новых идей, что является примером своего рода социальной помощи. Было обнаружено, что человек средних способностей может придумать почти вдвое больше решений, когда он работает в группе, чем когда он работает один. В группе он находится под воздействием многих различных решений, мысль одного человека может стимулировать другого и т. д. Вместе с тем эксперименты показывают, что наилучшие результаты дает оптимальное чередование периодов индивидуального и группового мышления.

2. Кроме того, групповая ситуация вызывает соревнование между членами группы. До тех пор пока это соревнование не вызовет критических и враждебных установок, оно способствует интенсификации творческого процесса, так как каждый участник старается превзойти другого в выдвижении новых предложений.

3. По мере увеличения количества идей повышается их качество. Последние 50 идей являются, как правило, более полезными, чем первые 50. Очевидно, это связано с тем, что задание все больше увлекает участников группы.

4. Мозговой штурм будет эффективнее, если участники группы в течение нескольких дней будут оставаться вместе. Качество идей, предложенных ими на следующем собрании, будет выше, чем на первом. По-видимому, для появления некоторых идей требуется определенный период их «созревания».

5. Психологически правильно, что оценка предложенных идей выполняется другими людьми, так как обычно недостатки собственного творчества замечаются с большим трудом.

Препятствия творческого мышления

Конформизм – желание быть похожим на другого – основной барьер для творческого мышления. Человек опасается высказывать необычные идеи из-за боязни показаться смешным или не очень умным. Подобное чувство может возникнуть в детстве, если первые фантазии, продукты детского воображения, не находят понимания у взрослых, и закрепиться в юности, когда молодые люди не хотят слишком отличаться от своих сверстников.

Цензура — в особенности внутренняя цензура – второй серьезный барьер для творчества. Последствия внешней цензуры идей бывают достаточно драматичными, но внутренняя цензура гораздо сильнее внешней. Люди, которые боятся собственных идей, склонны к пассивному реагированию на окружающее и не пытаются творчески решать возникающие проблемы. Иногда нежелательные мысли подавляются ими в такой степени, что вообще перестают осознаваться. Superego – так назвал Фрейд этого интернализованного цензора.

Третий барьер творческого мышления – это ригидность, часто приобретаемая в процессе школьного обучения. Типичные школьные методы помогают закрепить знания, принятые на сегодняшний день, но не позволяют научить ставить и решать новые проблемы, улучшать уже существующие решения.

Четвертым препятствием для творчества может быть желание найти ответ немедленно. Чрезмерно высокая мотивация часто способствует принятию непродуманных, неадекватных решений. Люди достигают больших успехов в творческом мышлении, когда они не связаны повседневными заботами. Поэтому ценность ежегодных отпусков состоит не столько в том, что, отдохнув, человек будет работать лучше, сколько в том, что именно во время отпуска с большей вероятностью возникают новые идеи.

Конечно, эффективность результатов свободной творческой фантазии и воображения далеко не очевидна; может случиться так, что из тысячи предложенных идей только одна окажется применимой на практике. Разумеется, открытие такой идеи без затрат на создание тысячи бесполезных идей было бы большой экономией. Однако эта экономия маловероятна, тем более что творческое мышление часто приносит удовольствие независимо от использования его результатов.

Чтобы выделить по-настоящему полезные, эффективные решения, творческое мышление должно быть дополнено критическим. Цель критического мышления – тестирование предложенных идей: применимы ли они, как можно их усовершенствовать и т. п. Ваше творчество будет малопродуктивным, если вы не сможете критически проверить и отсортировать полученную продукцию. Чтобы провести соответствующий отбор надлежащим образом, необходимо, во-первых, соблюдать известную дистанцию, т. е. уметь оценивать свои идеи объективно, и, во-вторых, учитывать критерии или ограничения, определяющие практические возможности внедрения новых идей. Какие препятствия стоят на пути критического мышления? Одним из них является опасение быть слишком агрессивным. Мы часто учим наших детей, что критиковать – значит быть невежливым. Тесно связан с этим следующий барьер – боязнь возмездия: критикуя чужие идеи, мы можем вызвать ответную критику своих. А это, в свою очередь, может породить еще одно препятствие — переоценку собственных идей. Когда нам слишком нравится то, что мы создали, мы неохотно делимся с другими нашим решением. Добавим, что чем выше тревожность человека, тем более он склонен ограждать свои оригинальные идеи от постороннего влияния.

И наконец, необходимо отметить, что при чрезмерной стимуляции творческой фантазии критическая способность может остаться неразвитой. К сожалению, неумение думать критически – это один из возможных непредвиденных результатов стремления повысить творческую активность учащихся. Следует помнить, что для большинства людей в жизни требуется разумное сочетание творческого и критического мышления.

Критическое мышление нужно отличать от критической установки. Несмотря на то что в силу специфики своего подхода к решению задач критическое мышление запрещает некоторые идеи или отбрасывает их за негодностью, его конечная цель конструктивна. Напротив, критическая установка деструктивна по своей сути. Стремление человека критиковать единственно ради критики имеет скорее эмоциональный, чем когнитивный характер.

П. Линдсей, Д. Норман
Анализ процесса решения задач[69] 69
Lindsay P., Norman D. Human Information Processing. – N. Y. – L., 1972.

Что именно следует сделать, чтобы решить некоторую задачу? Мы рассмотрим стратегии и процедуры, обычно используемые людьми. Прежде всего, задачи бывают двух основных типов: четко поставленные и нечетко поставленные. В четко поставленной задаче цель ясно сформулирована. Вот примеры таких задач: 1) как наилучшим образом проехать в другой конец города, если все главные улицы закрыты для транспорта по случаю парада;

2) как решить шахматную задачу, помещенную во вчерашней газете: белые начинают и делают мат в пять ходов. В этих задачах, помимо ясной цели, имеется определенный способ судить о том, идет ли процесс решения в надлежащем направлении. И хотя в жизни, пожалуй, чаще встречаются задачи, поставленные нечетко, у нас есть все основания сосредоточить наше исследование на четко поставленных задачах. Наша цель – выяснить, какие процессы использует человек, добивающийся решения той или иной задачи. Мы хотим понять, как он строит внутреннюю модель задачи, какую стратегию избирает, каким правилам следует. Мы хотим узнать, какие средства позволяют ему успешно продвигаться к решению. Результаты этих исследовании должны быть приложимы к решению любых задач, поставлены ли четко или нечетко. Лучше всего, вероятно, начать с исследования конкретной задачи.

Данная задача относится к классу криптоарифметических задач. В приведенном выражении использовано десять букв, каждая из которых соответствует определенной цифре. Задача состоит в том, чтобы найти для каждой буквы соответствующую ей цифру, так чтобы получившиеся цифры удовлетворяли сформулированному арифметическому равенству.

Мы разберем небольшую часть словесного отчета одного испытуемого, пытавшегося решить эту задачу. Дав пояснения к задаче, сходные с приведенными выше, его просили думать вслух в процессе поиска решения. Испытуемый впервые пытался решить такого рода задачу. Полная запись его высказываний в течение 20 мин., затраченных на решение, составляет протокол объемом около 2200 слов (задача, ее анализ и приводимые ниже цитаты из протокола заимствованы из работы Ньюэлла, 1967).

Протокол решения задачи «DONALD + GERALD» Каждая буква имеет одно и только одно числовое значение? (Это был вопрос к экспериментатору, который ответил: «Одно числовое значение».)

Имеется десять различных букв, и каждая из них имеет одно числовое значение.

Букв две, и каждая из них соответствует 5; значит, Т есть нуль. Так что, я думаю, можно для начала вписать это в текст задачи. Я вписываю: 5, 5 и 0.

Посмотрим, есть ли у нас еще Т. Нет. Зато есть еще одно D. Значит, я могу поставить 5 с другого края.

Дальше, у нас есть два А и два L – каждая пара в одном разряде и еще три R. Два L равны одному Р. Разумеется, я перенес 1 во второй разряд, откуда следует, что Р должно быть нечетным числом, поскольку сложение двух одинаковых чисел дает четное число, а 1 – число нечетное. Так что Р может быть равно 1 или 3, но не 5, не 7 и не 9.

(Здесь наступила долгая пауза, и экспериментатор спросил: «О чем вы сейчас думаете?»)

Теперь G. Раз R — нечетное число, a D равно 5, то G должно быть четным. Я смотрю на левый край примера, где складывается D с G. Ах, нет, возможно, сюда надо прибавить еще 1, если мне пришлось бы перенести 1 из предыдущего разряда, где складываются О и Е. Пожалуй, мне нужно на минуту отвлечься от этого.

Вероятно, лучше всего решать эту задачу, перебирая различные возможные решения. Но я не уверен, что это окажется самым легким путем.

(Цитированный текст будет служить нам первичным материалом для анализа процесса решения. Первое впечатление от такого протокола – что испытуемый не подходит к задаче прямо и непосредственно. Он накапливает информацию и проверяет различные гипотезы, выясняя, к чему они приводят. Он часто заходит в тупик и, отступая, пробует другой путь. Взгляните на протокол. Испытуемый начинает энергично и сразу обнаруживает, что Травно нулю.) Букв D две, и каждая из них соответствует 5; значит, Т есть нуль. Так что, я думаю, можно для начала вписать это в текст задачи. Я вписываю: 5, 5 и 0.

Читайте также:  2 скрининг норма по анализу

(После этого он выясняет, можно ли использовать в тексте задачи свое знание, что Травно нулю, a D равно 5. Ищет Т.)

Посмотрим, есть ли у нас еще Т? Нет. Эта попытка не удалась. Ну, а как с D? Зато есть еще одно D. Значит, я могу поставить 5 с другой стороны.

(Отметив это обстоятельство, испытуемый обнаруживает другое место в тексте задачи, которое кажется перспективным.)

Дальше, у нас есть два А и два L – каждая пара в одном разряде – и еще три R. Два L равны одному R. Разумеется, я перенес 1 во второй разряд. Откуда следует, что R должно быть нечетным числом.

(Хотя испытуемый уже пришел к заключению, что R — нечетное число, он вновь возвращается к этому вопросу, как бы проверяя свой вывод:

«…поскольку сложение двух одинаковых чисел дает четное число, а 1 – число нечетное».

На этот раз он продолжает рассуждение несколько дальше и конкретно перечисляет возможные числа.)

Так что R может быть равно 1 или 3, но не 5, не 7 и не 9.

(После долгой паузы испытуемый, однако, отказывается от этого пути по понятной причине: нет очевидного способа выбрать значение R из возможных вариантов. Он опять возвращается к идее о нечетности R. Дает ли это какую-нибудь информацию относительно G?)

Теперь G. Раз R — нечетное число, a D равно 5, G должно быть четным.

Этого краткого анализа отчета о первых пяти минутах эксперимента достаточно для того, чтобы обнаружить некоторые общие закономерности в поведении испытуемого при решении задачи. Однако словесными протоколами пользоваться неудобно. Для подробного исследования процесса решения задачи нужно иметь какой-то метод представления происходящих событий. Полезно строить визуальные изображения последовательности операций, совершаемых во время решения задачи. Одним из методов, пригодных для этой цели, является граф решения задачи, разработанный А. Ньюэллом (Саймон и Ньюэлл, 1971).

Исследуя протокол, мы видели, что испытуемый постепенно накапливает информацию о задаче, применяя определенные правила или стратегии. Он производит разного рода операции над этой информацией и над текстом задачи; в результате его знания возрастают. Вся информация о задаче, которой испытуемый располагает в данный момент, называется его состоянием осведомленности. Всякий раз, как он применяет некоторую операцию к некоторому новому факту, состояние осведомленности изменяется.

Описание поведения человека при решении задачи должно, таким образом, отражать это последовательное продвижение от одного состояния осведомленности к другому. Будем изображать графически состояние осведомленности прямоугольником, а операцию, переводящую испытуемого из одного состояния осведомленности в другое, – в виде стрелки (рис. 3.2).

Теперь протокол можно представить в виде прямоугольников, соединенных стрелками: последние показывают путь, проходимый испытуемым через последовательные состояния осведомленности.

Граф задачи «Donald+Gerald». Несколько высказываний в начале словесного отчета отражают просто проверку испытуемым своего понимания условий задачи. Само рассуждение начинается лишь с фразы:

Букв D две и каждая соответствует 5; значит, Т есть нуль.

Испытуемый, несомненно, перерабатывает информацию, содержащуюся в этом разряде, где показано, что D + D = T. Назовем эту операцию обработкой 1-го разряда. Эта операция переводит испытуемого из начального состояния осведомленности (в котором он знает, что D = 5) в новое состояние, в котором он знает, кроме того, что Т = 0. Известно ли испытуемому также, что необходимо сделать перенос в следующий, 2-й разряд? Забегая вперед, читаем: «Разумеется, я перенес 1». Таким образом, это испытуемому известно. К настоящему моменту наш граф решения задачи насчитывает два состояния осведомленности (рис. 3.3).

Следующие несколько фраз протокола, по существу, резюмируют сведения, известные испытуемому к данному моменту. Затем делается попытка найти другие разряды, содержащие Т или D. Первое применение операции взять новый разрядТ) безуспешно; второе дает положительный результат: находится другой разряд, содержащий D. Граф решения задачи получил некоторое приращение (рис. 3.4), на этом рисунке прямоугольник, которого не было на предыдущей схеме, обведен жирной линией.

Теперь испытуемый решает еще раз взять новый разряд, пробуя сначала 3-й разряд, а затем 2-й.

Дальше, у нас есть два А и два L — каждая пара в одном разряде – и еще три R.

Это приводит его к тому пункту рассуждения, в котором имеет смысл обработать 2-й разряд. В результате обработки он переходит из состояния 4 в состояние 5, где известно, что R нечетное число (рис. 3.5).

Обратный ход. Теперь испытуемый возвращается к пройденному состоянию. Обратите внимание на последовательность действий. Сначала, в состоянии 5, он говорит:

Два L равны одному R. Разумеется, я перенес 1 во второй разряд, откуда следует, что R должно быть нечетным числом.

Но затем испытуемый решает конкретно выяснить возможные числовые значения буквы R: для этого он возвращается в состояние 4 и испытывает новый подход.

…Поскольку сложение двух одинаковых чисел дает четное число, а 1 – число нечетное. Так что R может быть равно 1 или 3, но не 5, не 7 и не 9.

На графе этот обратный ход отображается таким образом, что стрелка к следующему, 6-му состоянию идет из состояния 4 (рис. 3.6).

Состояние 6 – это, собственно, то же состояние 4, только в более поздний момент времени. В состоянии 7 испытуемый вновь воспроизвел тот факт, что R нечетно, а в состоянии 8 он методически перечисляет все подходящие и не подходящие нечетные числа.

Последующая часть текста протокола дает пример того, какие трудности испытывает экспериментатор, «добывая» протокол. Испытуемый молчит, так что экспериментатор вынужден вмешаться и просить его говорить. В результате мы не имеем явных свидетельств того, как использованы возможные числовые значения R. Вместо этого мы видим, что процесс решения снова идет вспять; на этот раз испытуемый обращается к 6-му разряду и, исходя из того, что R — число нечетное, a D равно 5, заключает, что G должно быть четным числом, это приводит нас к состоянию 10.

Теперь G. Раз R — нечетное число, a D равно 5, то G должно быть четным.

Хотя этот вывод неверен, тем не менее в момент, представляемый состоянием 10, он отвечает действительному состоянию осведомленности испытуемого (рис. 3.7).

В данном случае возможность того, что G не обязательно четно, приходит ему в голову довольно скоро.

Я смотрю на левый край примера, где складывается D с G. Ах, нет, возможно, сюда надо прибавить еще 1, если мне пришлось бы перенести 1 из предыдущего разряда, где складываются О и Е. Пожалуй, мне нужно на минуту отвлечься от этого.

Последняя фраза указывает, что испытуемый вновь хочет приступить к обработке 6-го разряда и в результате оказывается в состоянии 12 (признает возможность переноса), а затем решает еще раз вернуться назад, отказавшись от полученной ранее численной оценки для G (четное число). На этом мы заканчиваем анализ фрагмента протокола. Соответствующий фрагмент графа решения показан на рис. 3.7.

Рассмотрим теперь, чем отличаются друг от друга три различных «пространства» задачи: внутреннее, отраженное в протоколе и внешнее. Испытуемый решает задачу про себя в соответствии с некоторыми общими стратегиями и посредством операций, которые, будем надеяться, сходны со стратегиями и операциями, представленными в графе решения задачи. Это решение представлено во внутреннем пространстве, прямое наблюдение которого для нас невозможно. Словесные высказывания, делаемые испытуемым в ходе решения задачи, – протокол – это запись в протокольном пространстве. И, кроме того, продвигаясь к решению, испытуемый записывает те или иные выражения и выполняет некоторые действия, порождая тем самым внешнее пространство.

Граф решения – один из методов разложения процесса решения задачи на этапы, выделения в процессе его отдельных шагов. В нем графически представлено чередование успехов и неудач, характерных для хода решения всякой задачи. Эта общая форма анализа и изображения поведения представляется применимой к широкому разнообразию проблемных ситуаций. Понятно, что конкретные правила, используемые человеком, зависят от характера решаемой задачи, однако общая структура его поведения в ходе решения задачи всегда одинакова. Человек разбивает задачу на множество более простых промежуточных задач, т. е. ставит перед собой промежуточные вопросы. В любой заданный момент достигнутый им успех можно охарактеризовать с помощью понятия осведомленности. Человек переходит от одного состояния осведомленности к другому через попытки применения одной из операций, выбираемых из имеющегося у него небольшого выбора. Анализируя сам подход к решению задачи, можно выделить две различные стратегии.

В большинстве случаев решение задачи включает момент прямого поиска. Другими словами, человек сначала испытывает какой-то метод подхода к задаче, а затем смотрит, продвинулся ли он вперед в результате его применения. Если да, то он продолжает идти в том же направлении от достигнутого пункта. Здесь важно то, что поиск от начала до конца осуществляется простыми, прямыми шагами.

Второй подход представлен обратным поиском. Здесь человек рассматривает искомое решение, задаваясь вопросом: какой предварительный шаг необходим для того, чтобы прийти к нему? После определения этого шага определяется шаг, непосредственно ему предшествующий, и т. д., в лучшем случае – вплоть до отправной точки, заданной в постановке задачи. Обратный поиск чрезвычайно полезен в некоторых визуальных задачах вроде нахождения по карте пути из одного пункта в другой.

При обратном поиске продвижение к цели осуществляется небольшими шагами. Определяется некоторая промежуточная цель и делается попытка решить промежуточную задачу. Здесь вступает в действие одна, вероятно, наиболее сильная стратегия, так называемая стратегия сопоставления средств и целей. При этом сопоставлении цель (ближайшая промежуточная цель) сравнивается с наличным состоянием осведомленности. Проблема состоит в нахождении оператора – средства, уменьшающего разрыв между этими двумя вещами.

В учении о решении задач рассматриваются два типа планов (или операторов): алгоритмы и эвристические приемы. Они отличаются друг от друга наличием или отсутствием гарантии получения правильного результата. Алгоритм – это совокупность правил, которая, если ей следовать, автоматически порождает верное решение. Правила умножения представляют собой алгоритм; пользуясь ими надлежащим образом, мы всегда получаем правильный ответ. Эвристические приемы больше напоминают эмпирические правила: это процедуры или описания, которыми относительно легко пользоваться и ценность которых оправдывается предшествующим опытом решения задач. Однако в отличие от алгоритмов эвристические приемы не гарантируют устеха. Для многих из числа наиболее сложных и наиболее интересных задач алгоритмы решения не найдены, а в некоторых случаях даже известно, что они не существуют. В таких случаях приходится прибегать к эвристическим приемам.

Эвристика вступает в действие во всякой сложной ситуации, связанной с решением задач. Большинство исследований, посвященных решению задач, в значительной мере сводится к изучению типов эвристических приемов, применяемых человеком.

Особенности рассмотренных стратегий решения задачи коренятся в общем характере процессов, протекающих в мозгу человека, и в их организации. Более того, эти общие организационные принципы, несомненно применимы к любым системам, которые хранят, отыскивают и используют информацию, будь то системы электронные или биологические. Ввиду этой общности при всякой попытке найти принципы устройства человеческого мозга целесообразно рассмотреть принципы организации самых разнообразных информационных систем. Подчеркиваем, речь идет именно о принципах, детали выполнения различных функций и механизмы их осуществления нас здесь не интересуют. Если мы умеем определить, что данная система использует эвристический прием сопоставления целей и средств, то не имеет значения, построена ли система из нейронов, интегральных схем или рычагов и шестеренок, – эвристика во всех случаях одна.

источник

Реше́ние зада́ч — процесс выполнения действий или мыслительных операций, направленный на достижение цели, заданной в рамках проблемной ситуации — задачи; является составной частью мышления. С точки зрения когнитивного подхода процесс решения задач является наиболее сложной из всех функций интеллекта и определяется как когнитивный процесс более высокого порядка, требующий согласования и управления более элементарными или фундаментальными навыками. [1]

Процесс решения задачи состоит из таких основных подпроцессов, как:

  • Обнаружение проблемной ситуации;
  • Постановка задачи: выявление и более или менее строгое определение исходного (данного) — его элементов и отношений между ними — и требуемого (цели);
  • Нахождение решения задачи.

Эти этапы можно обнаружить во многих теориях решения задач. Так, стадии постановки задачи и нахождения решения задачи отчётливо видны в теориях последователя Вюрцбургской школы Отто Зельца, гештальтпсихолога К. Дункера и когнитивиста Грино, несмотря на все их различия. При этом под постановкой задачи может пониматься как сознательная работа, так и некие постулируемые неосознаваемые процессы переработки информации.

Стадии решения задачи в теориях О. Зельца, К. Дункера, Грино

О. Зельц [2] К. Дункер [3] Грино [4]
1. Образование комплекса, в который входят: а) характеристики известного и б) отношения известное-неизвестное, определяющие в) место неизвестного в комплексе. Незавершённость этого комплекса — суть проблемности. 1. Проникновение в проблемную ситуацию — понимание её внутренних связей, восприятие её как целого, заключающего в себе некий конфликт. 1. Построение когнитивной сети, состоящей из элементов известного (данного) и неизвестного (отношения между элементами известного и неизвестного пока не установлены).
2. Запуск интеллектуальных операций: припоминание или создание решения. 2. Нахождение функционального значения решения.
3. Реализация (воплощение) функционального значения в конкретное решение.
2. Построение связей (отношений) между элементами , модификация сети при помощи дополнительной информации из памяти.

См. также: А. де Гроотстадии мышления шахматиста

На ход решения задачи и успешность её решения влияют следующие факторы. [5]

  • Установка:
  • «Решение определённого числа задач одним способом побуждает испытуемого использовать тот же способ для решения последующих задач, даже если этот способ становится неэффективным». Как показал Найт [6] , установка тем сильнее, чем труднее были задачи, её сформировавшие.
  • Функциональная закреплённость: используемый определенным образом предмет трудно потом использовать иначе при решении задачи.
  • Характеристики субъекта:
  • Эмоциональное (мотивационное) состояние:
  • Предшествующая неудача снижает эффективность решения;
  • Наилучшие результаты имеют место при средней интенсивности мотивации; чрезмерная или недостаточная мотивация приводит к ухудшению результатов (закон Йеркса — Додсона).
  • Знания: могут как повышать, так и снижать эффективность решения (из-за стереотипизации, привычки).
  • Интеллект: люди с низким интеллектом более восприимчивы к установке.
  • Личность: показано, что успешность решения задач связана с 1) гибкостью, 2) инициативой, 3) уверенностью, 4) нонконформизмом, 5) способностью сдерживать движения (очень медленно чертить линии и т. п.).

С точки зрения информационного подхода задача — это различие между двумя состояниями; задача считается решённой, когда признаки имеющегося и требуемого состояния идентичны. Таким образом, процесс решения задачи имеет место, когда организм или система искусственного интеллекта осуществляет переход из данного состояния в желаемое целевое состояние.

Представители информационного подхода исходили из того, что человек, так же как компьютер, оперирует символами (знаками), следовательно, вычислительные машины можно «использовать как устройства для имитации процесса человеческого мышления» [7] . Модели решения задач, которые они создавали, зачастую одновременно представляли собой компьютерные программы (наиболее известный пример — «Универсальный решатель задач» (англ.) Ньюэлла и Саймона, созданный в 1957 году).

Линдсей и Норман описывают решение задач следующим образом. [8]

Вся имеющаяся на данный момент информация, относящаяся к задаче, называется состоянием осведомлённости. Решение задачи представляет собой последовательный переход от одного состояния осведомлённости к другому, а затем — к следующему и т. д., пока не будет достигнуто требуемое окончательное состояние осведомлённости, т. е. решение. Такие переходы осуществляются с помощью операторов — средств, уменьшающих разрыв между наличным состоянием осведомлённости и тем состоянием, которое последует за ним. Нахождение операторов и составляет главную сложность при решении задачи.

Возможны две стратегии решения: прямой и обратный поиск. 1. При прямом поиске «человек сначала испытывает какой-то метод подхода к задаче, а затем смотрит, продвинулся ли он вперёд в результате его применения». 2. При обратном поиске «человек рассматривает искомое решение, задаваясь вопросом: какой предварительный шаг необходим для того, чтобы прийти к нему? После определения этого шага определяется шаг, непосредственно ему предшествующий, и т. д., в лучшем случае — вплоть до отправной точки, заданной в постановке исходной задачи». Обратный поиск осуществляется с помощью анализа средство-результат (сопоставления средств и целей): на каждом шаге данная промежуточная цель сравнивается с наличным состоянием осведомлённости и находится оператор — средство, уменьшающее разрыв.

Имеются два вида операторов: 1) алгоритмы (совокупность правил, гарантирующих результат) и 2) эвристические приёмы (для сложных задач, где не найдены алгоритмы).

Появлению в сознании решения задачи предшествует эмоциональная активация и чувство близости решения.

Это установил О. К. Тихомиров, изучая процесс решения шахматных задач. [9] Он предлагал испытуемым рассуждать во время решения задачи вслух и параллельно регистрировал их кожно-гальваническую реакцию (КГР), которая служила признаком эмоциональной активации.

Эксперименты показали, что сначала возникает эмоциональная активация. За ней — обычно через 0—0.5 секунд — следуют эмоциональные восклицания («Ага!», «Ой!» и т. п.). За эмоциональными восклицаниями обычно следуют слова, обозначающие чувство близости решения: приближение к неосознанной ещё идее («так-так-так-так», «вот-вот-вот-вот», «наверное…») или ещё неясные результаты поиска («что-то мелькнуло», «что-то есть», «кажется, нашёл», «кажется, решено»); реже это выражение необходимости попробовать («попробуем-попробуем», «интересно-интересно»), сомнения («„а“… „а“… или не „а“?») или сигналы самоостановки («стоп-стоп-стоп-стоп»); ещё реже сразу называется решение. За этим следует решение — называние конкретного принципиального для решения задачи хода, — через 1.5—13.5 секунд после появления эмоциональной активации, в среднем — через 5.5 секунд.

Дискуссии относительно механизмов решения задач животными разворачиваются вокруг метода проб и ошибок и инсайта.

Торндайк (1898) полагал (и экспериментально демонстрировал), что механизмом решения задач животными является не понимание и рассуждение, а метод проб и ошибок.

Торндайк помещал животных (кошек) в специальные проблемные ящики — клетки «с секретом», выход из которых открывался нажатием на кнопку или рычаг, потягиванием за шнур, петлю и т. п., которые находились в клетке или около самой решётки снаружи. Торндайк обнаружил, что сначала кошки мечутся по клетке и цепляются за всё, что могут достать; в результате этого они рано или поздно случайно задевают механизм, открывающий клетку, и освобождаются. Когда кошку вновь сажают в клетку, её хаотическая активность приводит к успеху немного быстрее, в следующий раз ещё быстрее и т. д. Кривые научения демонстрируют постепенное овладение решением.

Согласно теории Торндайка, животные действуют случайным образом, причём вероятность повторения подкреплённой реакции возрастает.

Однако некоторые данные самого Торндайка говорят против его теории. Так, в случаях с некоторыми «ленивыми» кошками Торндайка «внимание, которое нередко сочетается с недостатком энергии, позволяло кошке быстрее образовать ассоциацию после первой удачи» [10] . А заменив впоследствии (1901) кошек обезьянами, Торндайк обнаружил, что почти все задачи решались «путём быстрого, нередко казавшегося мгновенным, оставления безуспешных движений и выбора правильного. Естественно заключить, что обезьяны, внезапно переходящие от множества беспорядочных движений к одному определенному действию с крючком или задвижкой, имеют понятие о крючке, о задвижке или о том движении, которое они производят»…

Читайте также:  Абсцесс но анализы в норме

Р. Вудвортс отмечает, что «не было обнаружено ни одного случая такого поведения в проблемной ситуации, когда животное бросалось бы на все окружающее без всякого учета объективной ситуации. Животное всегда реагирует на те или иные предметы, и почти всем его реакциям присуща известная степень правомерности. Метод проб и ошибок состоит не в слепых, рассчитанных на случайную удачу движениях, а в испробовании определенных путей к цели. Насколько мы можем судить по поведению животного, у него всегда имеется некоторое схватывание объективной ситуации. Другое дело, что в любой ситуации, которую можно назвать проблемной, это схватывание никогда не бывает с самого начала полным. Ситуация должна быть исследована, а это редко может быть сделано без передвижений и манипулирования. Но даже при первом взгляде на ситуацию общие очертания проблемы вскрываются в достаточной мере, чтобы до известной степени ограничить область исследования и манипулирования». [11]

Решение задач путём внезапного озарения (инсайта), понимания ситуации, проникновения в её суть описано В. Кёлером. Эксперименты Кёлера демонстрируют следующие примеры того, как это происходит. [12]

  • Курица, видя перед собой цель, отделённую от неё некоторым препятствием (забором), «совсем беспомощна, постоянно налетает, если видит цель перед собою сквозь решётку, на препятствие, беспокойно бегая туда и сюда», и не способна добраться к этой цели иначе как с помощью таких метаний, лишь постепенно приближающих её к цели (что напоминает описания Торндайка). Напротив, собака или ребёнок (например, девочка 1 года 3 мес., едва научившаяся ходить), оценив пространственные характеристики ситуации, могут сразу найти кратчайший обходной путь.
  • Обезьяна способна схватить палку и достать ею еду, находящуюся вне клетки (без всяких проб и ошибок).
  • Случайно соединив две короткие палки, которые по отдельности недостаточно длинны, чтобы дотянуться до еды, шимпанзе тут же достаёт еду получившейся длинной палкой.
  • Шимпанзе влезает на ящик или даже ставит ящики друг на друга, чтобы достать высоко висящий плод.

Известно, что животные в некоторых случаях способны использовать орудия при решении задач, однако дискуссионным остаётся вопрос о том, в какой мере такое использование является врождённым (инстинктивным), а в какой — проявлением интеллекта.

Примеры использования орудий животными:

  • Грифы бросают камни на яйца страусов, чтобы разбить их. [13] (Это не новое наблюдение; легенда гласит, что Эсхил погиб, когда орёл сбросил ему на голову не то черепаху, приняв лысину Эсхила за камень, не то камень, приняв его лысину за яйцо.) [14]
  • Дятловый вьюрок достаёт насекомых из щелей коры колючкой кактуса. [13]
  • Шимпанзе пользуются палками, прутьями, стеблями травы для добывания термитов, мёда, выкапывания растений; используют листья как губку для добывания воды из дупла и для чистки тела. Павианы прутьями добывают насекомых, камнями давят скорпионов. [13]
  • некоторые виды шимпанзе добывают внутренности ореха положив его на камень и ударяя сверху другим камнем. Виды с менее развитым мозгом даже если видят это не могут понять что нужно 3 предмета (камень, орех и еще один камень), и пытаются ударить камнем орех лежащий на земле, или бьют рукой по ореху что лежит на камне.
  1. ↑ McCarthy & Worthington (1990).
  2. ↑ Зельц О. Законы продуктивной и репродуктивной духовной деятельности // Хрестоматия по общей психологии. Психология мышления / Под ред. Ю. Б. Гиппенрейтер, В. В. Петухова. М., 1981.
  3. ↑ Психология мышления. М., 1965. С. 36, 48, 80—81.
  4. ↑ Greeno (1973). — См. Солсо Р. Когнитивная психология. 1996.
  5. ↑ Основной источник: Креч Д., Крачфилд Р., Ливсон Н. Факторы, определяющие решение задач // Хрестоматия по общей психологии. Психология мышления / Под ред. Ю. Б. Гиппенрейтер, В. В. Петухова. М., 1981.
  6. ↑ Knight K. E. (1963).
  7. ↑ Ньюэлл А., Шоу Дж. С., Саймон Г. А. Моделирование мышления человека с помощью электронно-вычислительной машины // Хрестоматия по общей психологии. Психология мышления / Под ред. Ю. Б. Гиппенрейтер, В. В. Петухова. М., 1981.
  8. ↑ Линдсей П., Норман Д. Анализ процесса решения задач // Хрестоматия по общей психологии. Психология мышления / Под ред. Ю. Б. Гиппенрейтер, В. В. Петухова. М., 1981.
  9. ↑ Тихомиров О. К. Структура мыслительной деятельности человека. М., 1969. С. 201—209.
  10. ↑ Вудвортс Р. Решение проблем животными // Хрестоматия по общей психологии. Психология мышления. М., 1981. С. 230.
  11. ↑ Вудвортс Р. Решение проблем животными // Хрестоматия по общей психологии. Психология мышления. М., 1981.
  12. ↑ Кёлер В. Исследование интеллекта человекоподобных обезьян // Хрестоматия по общей психологии. Психология мышления / Под ред. Ю. Б. Гиппенрейтер, В. В. Петухова. М., 1981.
  13. 123 МакФарленд Д. Поведение животных. М., 1988.
  14. ↑«Британника» (англ.) .
  • Габышев Д. Н. Искусство составлять задачи и немного об их решении: учебное пособие. — Тюмень: Издательство ТюмГУ, 2012. — 68 с. — ISBN 978-5-400-00606-7.
  • Тихомиров О. К. Психология мышления. М., 1984.
  • Хрестоматия по общей психологии. Психология мышления / Под ред. Ю. Б. Гиппенрейтер, В. В. Петухова. М., 1981.

Информационный подход

  • Солсо Р. Когнитивная психология. 1996.
  • Ньюэлл А., Шоу Дж. С., Саймон Г. А. Моделирование мышления человека с помощью электронно-вычислительной машины // Хрестоматия по общей психологии. Психология мышления / Под ред. Ю. Б. Гиппенрейтер, В. В. Петухова. М., 1981.
  • Линдсей П., Норман Д. Анализ процесса решения задач // Там же.

Решение задач животными

  • МакФарленд Д. Поведение животных: Психобиопогия, этология и эволюция. М., 1988.
  • Вудвортс Р. Решение проблем животными (недоступная ссылка) // Хрестоматия по общей психологии. Психология мышления / Под ред. Ю. Б. Гиппенрейтер, В. В. Петухова. М., 1981.
  • Кёлер В. Исследование интеллекта человекоподобных обезьян. М., 1930; См. также: Кёлер В. Исследование интеллекта человекоподобных обезьян // Хрестоматия по общей психологии. Психология мышления / Под ред. Ю. Б. Гиппенрейтер, В. В. Петухова. М., 1981.

CAM

CAM (англ. Computer-aided manufacturing) — автоматизированная система, либо модуль автоматизированной системы, предназначенный для подготовки управляющих программ для станков с ЧПУ. Под термином понимаются как сам процесс компьютеризированной подготовки производства, так и программно-вычислительные комплексы, используемые инженерами-технологами.

Для подготовки технологической документации, в том числе и согласно с требованиями ЕСТД, используются системы автоматизированной технологической подготовки производства.

Как правило, большинство программно-вычислительных комплексов совмещают в себе решение задач CAD/CAM, CAE/САМ, CAD/CAE/CAM.

SCI (англ. Scalable Coherent Interface, англ. Scalable Coherent Interconnect в русском переводе часто используется название расширяемый связный интерфейс, РСИ) — специализированный стандарт вычислительной сети 1990-х годов, использовавшаяся для построения кластеров. Стандарт SCI по сравнению с традиционными компьютерными сетями был ориентирован на решение задач, требующих большого количества пересылок коротких сообщений между узлами, так как в таких задачах время задержки (латентность сети) играет решающую роль. Он характеризуется низкими показателями латентности и содержит встроенные средства для обеспечения когерентности памяти вычислительных узлов.

Абарка-де-Кампос (исп. Abarca de Campos) — населённый пункт и муниципалитет в Испании, входит в провинцию Паленсия в составе автономного сообщества Кастилия и Леон. Муниципалитет находится в составе района (комарки) Тьерра-де-Кампос. Занимает площадь 11,39 км². Население — 38 человек (2010). Расстояние до административного центра провинции — 30 км.

Достопримечательности — центр современного искусства, приходская церковь, дворец де лос Осорио (XVI—XVII в.).

В 1996 году город получил премию «Европа Ностра» за решение задач по его благоустройству и реставрации.

Покровителем города считается святой Себастьян.

Алгори́тм (лат. al­go­rithmi — от арабского имени математика Аль-Хорезми) — конечная совокупность точно заданных правил решения произвольного класса задач или набор инструкций, описывающих порядок действий исполнителя для решения некоторой задачи. В старой трактовке вместо слова «порядок» использовалось слово «последовательность», но по мере развития параллельности в работе компьютеров слово «последовательность» стали заменять более общим словом «порядок». Независимые инструкции могут выполняться в произвольном порядке, параллельно, если это позволяют используемые исполнители.

Ранее в русском языке писали «алгорифм», сейчас такое написание используется редко, но, тем не менее, имеет место исключение (нормальный алгорифм Маркова).

Часто в качестве исполнителя выступает компьютер, но понятие алгоритма необязательно относится к компьютерным программам, так, например, чётко описанный рецепт приготовления блюда также является алгоритмом, в таком случае исполнителем является человек (а может быть и некоторый механизм, ткацкий станок, и пр.).

Можно выделить алгоритмы вычислительные (о них в основном идет далее речь), и управляющие. Вычислительные по сути преобразуют некоторые начальные данные в выходные, реализуя вычисление некоторой функции. Семантика управляющих алгоритмов существенным образом может отличаться и сводиться к выдаче необходимых управляющих воздействий либо в заданные моменты времени, либо в качестве реакции на внешние события (в этом случае, в отличие от вычислительного алгоритма, управляющий может оставаться корректным при бесконечном выполнении).

Понятие алгоритма относится к первоначальным, основным, базисным понятиям математики. Вычислительные процессы алгоритмического характера (арифметические действия над целыми числами, нахождение наибольшего общего делителя двух чисел и т. д.) известны человечеству с глубокой древности. Однако в явном виде понятие алгоритма сформировалось лишь в начале XX века.

Частичная формализация понятия алгоритма началась с попыток решения проблемы разрешения (нем. Entscheidungsproblem), которую сформулировал Давид Гильберт в 1928 году. Следующие этапы формализации были необходимы для определения эффективных вычислений или «эффективного метода»; среди таких формализаций — рекурсивные функции Геделя — Эрбрана — Клини 1930, 1934 и 1935 гг., λ-исчисление Алонзо Чёрча 1936 г., «Формулировка 1» Эмиля Поста 1936 года и машина Тьюринга.

Алгоритм Левенберга — Марквардта — метод оптимизации, направленный на решение задач о наименьших квадратах. Является альтернативой методу Ньютона. Может рассматриваться как комбинация последнего с методом градиентного спуска или как метод доверительных областей. Алгоритм был сформулирован независимо Левенбергом (1944) и Марквардтом (1963).

Военнослу́жащий — лицо (человек), исполняющее должностные обязанности, связанные с прохождением военной службы, которая призвана решать задачи в сфере безопасности и обороны государства, и в связи с этим, обладающее специальным правовым статусом (при определенных условиях: см. ниже).

Декомпозиция — разделение целого на части. Также декомпозиция — это научный метод, использующий структуру задачи и позволяющий заменить решение одной большой задачи решением серии меньших задач, пусть и взаимосвязанных, но более простых.

Декомпозиция, как процесс расчленения, позволяет рассматривать любую исследуемую систему как сложную, состоящую из отдельных взаимосвязанных подсистем, которые, в свою очередь, также могут быть расчленены на части. В качестве систем могут выступать не только материальные объекты, но и процессы, явления и понятия.

Зада́ча — проблемная ситуация с явно заданной целью, которую необходимо достичь; в более узком смысле задачей также называют саму эту цель, данную в рамках проблемной ситуации, то есть то, что требуется сделать. В первом значении задачей можно назвать, например, ситуацию, когда нужно достать предмет, находящийся очень высоко; второе значение слышно в указании: «Ваша задача — достать этот предмет». Несколько более жёсткое понимание «задачи» предполагает явными и определёнными не только цель, но и условия задачи, которая в этом случае определяется как осознанная проблемная ситуация с выделенными условиями (данным) и требованием (целью). Ещё более узкое определение называет задачей ситуацию с известным начальным состоянием системы и конечным состоянием системы, причём алгоритм достижения конечного состояния от начального известен (в отличие от проблемы, в случае которой алгоритм достижения конечного состояния системы не известен).

В более широком смысле под задачей также понимается то, что нужно выполнить — всякое задание, поручение, дело, — даже при отсутствии каких бы то ни было затруднений или препятствий в выполнении. В учебной и т. п. практике «задача», напротив, принимает более узкий смысл и обозначает упражнение, требующее нахождения решения по известным данным с помощью определённых действий (умозаключения, вычисления, перемещения элементов и т. п.) при соблюдении определённых правил совершения этих действий (логическая задача, математическая задача, шахматная задача).

В отличие от функции, которая может осуществляться постоянно, задача предполагает при заданных её условиях выход на достижение конечного результата (достижение решения задачи).

Решение задачи обычно требует определённых знаний и размышления, выбора правильного подхода (алгоритма действий).

Разговорное выражение «озадачить» означает либо «заставить задуматься», либо «поручить выполнение задачи».

Зенитный ракетный комплекс морского базирования — комплекс функционально связанных боевых и технических средств, установленный на кораблях, обеспечивающих решение задач по борьбе со средствами воздушно-космического нападения противника.

Инса́йт (от англ. insight — проницательность, проникновение в суть, понимание, озарение, внезапная догадка, прозрение) или озарение — многозначный термин из области зоопсихологии, психологии, психоанализа и психиатрии, описывающий сложное умственное явление, суть которого состоит в неожиданном, отчасти интуитивном прорыве к пониманию поставленной проблемы и «внезапном» нахождении её решения.

Кривая обучаемости (англ. learning curve) — графическое представление изменения скорости обучения определённому знанию или виду деятельности. Как правило, способность сохранять в памяти новую информацию максимальна после первых попыток освоения данной деятельности, затем скорость обучения постепенно снижается, что означает необходимость большего числа повторений для усвоения материала.

Кривая обучаемости также иллюстрирует изначальную сложность изучения чего-либо, а также то, насколько много предстоит освоить после начального ознакомления.

Локомо́ция (фр. locomotion «передвижение» от лат. locō mōtiō «движение с места») — перемещение животных (в том числе человека) в пространстве (в водной среде, воздушной среде, по твёрдой поверхности, в плотной среде), обусловленное их активными действиями. Локомоция играет важную роль в жизни животных: в отличие от большинства растений, они могут передвигаться для поиска пищи или для спасения от хищников.

В физиологии человека локомоция — вид двигательной деятельности, связанный с активным перемещением в пространстве. Её результаты — двигательные акты.

Наряду с манипулированием, локомоция — одна из двух категорий поведения. Локомоция относится к инстинктивным движениям (является функцией ригидной опорно-двигательной системы организма, допускающей лишь минимальную индивидуальную изменчивость движений). Локомоторное решение задач (выбор верного пути в лабиринте при проведении эксперимента и т. д.) может привести к формированию сложных навыков, стать элементом интеллектуальных действий животных.

Метод мозгового штурма (мозговой штурм, мозговая атака, англ. brainstorming) — оперативный метод решения проблемы на основе стимулирования творческой активности, при котором участникам обсуждения предлагают высказывать как можно большее количество вариантов решения, в том числе самых фантастичных. Затем из общего числа высказанных идей отбирают наиболее удачные, которые могут быть использованы на практике. Включает этап экспертной оценки. В развитом виде предполагает синхронизацию действий участников в соответствии с распознаваемой ими схемой (образом) оцениваемого процесса (process pattern recognition).

Ме́тод проб и оши́бок (в просторечии также: метод (научного) тыка) — является врождённым эмпирическим методом мышления человека. Также этот метод называют методом перебора вариантов.

В 1898 году описан Э. Торндайком как форма научения, основанная на закреплении случайно совершённых двигательных и мыслительных актов, за счёт которых была решена значимая для животного задача. В следующих пробах время, которое затрачивается животным на решение аналогичных задач в аналогичных условиях, постепенно, хотя и не линейно, уменьшается, до тех пор, пока не приобретает форму мгновенного решения. Последующий анализ метода проб и ошибок показал, что он не является полностью хаотическим и нецелесообразным, а интегрирует в себе прошлый опыт и новые условия для решения задачи.

Научно-исследовательский институт охраны окружающей среды (ВНИИ Природы), совр. ФГБУ «ВНИИ Экология» — старейший институт, занимающийся природоохранными вопросами и заповедным делом. Научно-исследовательская деятельность Института направлена на решение задач в области охраны природы. Находится на юге Москвы в Усадьбе Знаменское-Садки.

Входит в Министерство природных ресурсов и экологии Российской Федерации.

Системный анализ — научный метод познания, представляющий собой последовательность действий по установлению структурных связей между переменными или постоянными элементами исследуемой системы. Опирается на комплекс общенаучных, экспериментальных, естественнонаучных, статистических, математических методов.

Творчество — процесс деятельности, создающий качественно новые материалы и духовные ценности или итог создания объективно нового. Основной критерий, отличающий творчество от изготовления (производства), — уникальность его результата. Результат творчества невозможно прямо вывести из начальных условий. Никто, кроме, возможно, автора, не может получить в точности такой же результат, если создать для него ту же исходную ситуацию. Таким образом в процессе творчества автор вкладывает в материал, кроме труда, некие несводимые к трудовым операциям или логическому выводу возможности, выражает в конечном результате какие-то аспекты своей личности. Именно этот факт придаёт продуктам творчества дополнительную ценность в сравнении с продуктами производства. В творчестве имеет ценность не только результат, но и сам процесс.

Иллюстрацией несводимости процесса и результата творчества к логическому выводу из известных положений могут служить слова Нильса Бора: «Эта теория недостаточно безумна, чтобы быть верной».

Творчество — мыслительный процесс свободной реализации во внешнем мире, в том числе с помощью инструментов, внутренних ощущений человека представляющих для него и для окружающих интерес и имеющий эстетическую ценность.

Необходимым элементом творческой деятельности человека, выражающимся в построение образа продуктов труда, а также обеспечивающим создание программы поведения в тех случаях, когда проблемная ситуация характеризуется неопределенностью, является воображение.

Отраслью знания, изучающей творчество, является эвристика.

Федера́льная слу́жба безопа́сности Росси́йской Федера́ции (ФСБ России) — федеральный орган исполнительной власти Российской Федерации, спецслужба, осуществляющая в пределах своих полномочий решение задач по обеспечению безопасности Российской Федерации.

Наделена правом ведения предварительного следствия и дознания, оперативно-розыскной и разведывательной деятельности. В ФСБ России предусмотрена военная, правоохранительная и федеральная гражданская государственная служба. Относится к государственным военизированным организациям, которые имеют право приобретать боевое, ручное, стрелковое и иное оружие.

Руководство деятельностью ФСБ России осуществляется Президентом Российской Федерации.

Эври́стика (от др.-греч. εὑρίσκω — «отыскиваю», «открываю») — отрасль знания, научная область, изучающая специфику творческой деятельности.

Под эвристикой понимают совокупность приёмов и методов, облегчающих и упрощающих решение познавательных, конструктивных, практических задач.

Эвристика связана с психологией, физиологией высшей нервной деятельности, кибернетикой. Как наука эвристика развивается на стыке философии, психологии, теории искусственного интеллекта, структурной лингвистики, теории информации, математики и физики.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.

источник