Меню Рубрики

Флуориметрический анализ нефтепродуктов в воде

Необходимость осуществления контроля оборота нефтепродуктов и предотвращения их попадания в почву и водоёмы обусловлена высокой токсичностью этих веществ. В связи с этим, большое значение имеют мероприятия, направленные на определение нефтепродуктов в сточных водах, сброс которых производят промышленные предприятия.

Нефть является многокомпонентным энергоносителем, в состав которого входят вещества как органического, так и минерального происхождения. Полициклические ароматические углеводороды (ПАВ), входящие в состав нефтепродуктов, относятся к высокотоксичным веществам. Отдельные их представители, в частности антрацен, овален и бензпирен (называемый также бензапиреном) обладают канцерогенными свойствами, а также способствуют мутации генов.

Неблагоприятное воздействие на окружающую среду оказывают и другие соединения, входящие в состав продуктов нефти. Этим объясняется необходимость контроля фактической концентрации нефтепродуктов в воде, а также нормирования этой величины, осуществляемых на государственном уровне. Законодательными актами Российской Федерации установлены нормативы предельно допустимых концентраций (ПДК) содержания нефти и её производных в воде различного назначения.

В соответствии с федеральным законом №7 — ФЗ от 10.01.2002 г. «Об охране окружающей среды», субъекты, допустившие превышение предельно разрешённой нормы воздействия на окружающую среду, несут ответственность в зависимости от причинённого природе ущерба, которая может иметь следующие формы:

  • начисление платы за негативное воздействие на окружающую среду;
  • привлечение к административной ответственности, влекущей за собой наложение штрафов на физических и юридических лиц;
  • ограничение, приостановка или полный запрет деятельности хозяйствующих субъектов, наносящих урон экологии.

Обозначенные выше обстоятельства вынуждают хозяйствующие субъекты, вне зависимости от формы собственности, самостоятельно осуществлять наблюдение за промышленными стоками, используя при этом имеющиеся научно – технические достижения в этой области. Наиболее перспективными представляются появившиеся на рынке информационно – измерительные системы, предназначенные для организации непрерывного контроля вредных выбросов (в том числе продуктов нефтепереработки), содержащихся в сточных водах.

Технология контроля наличия в воде нефти и продуктов её переработки в настоящее время преимущественно заключается в периодическом отборе проб воды для последующего проведения лабораторного анализа. Анализ проводится по одному из следующих методов:

  • метод инфракрасной спектрофотометрии;
  • гравиметрический метод;
  • газовая хроматография;
  • флуориметрический метод.

При использовании любого из этих методов в лабораторных условиях, вначале производится извлечение (экстракция) нефтепродукта из пробы. Для этого используются специальные химические вещества – экстрагенты. Так, при анализе фотометрическим методом применяют четырёххлористый углерод, а также физико — химический способ с применением колонки, заполненной оксидом алюминия. Применяя гравиметрический метод, используют органический растворитель и колонку на оксиде алюминия. При проведении анализа флуориметрическим методом, экстрагентом служит гексан.

После выделения нефтепродуктов, исследование в рамках фотометрического способа, проба подвергается спектральному (спектрофотометрическому) анализу, основанному на поглощении нефтяными углеводородами отдельных частей инфракрасного спектра, которым облучается проба. Гравиметрический метод сводится к простому взвешиванию выделенного из пробы нефтепродукта. Газовая хроматография сопровождается использованием вспомогательного газа – носителя, с помощью которого исследуемая проба поступает в специальную газовую хроматографическую колонку.

Технология контроля, сводящаяся к периодическому, пусть даже достаточно частому отбору проб для анализа, страдает явным несовершенством. По сути, это всего лишь точечный контроль, не обеспечивающий объективной картины. Внедрение системы, обеспечивающей постоянный мониторинг сброса нефтепродуктов, позволяет предприятию следить за содержанием сбросов, а также осуществлять планирование и проведение различных мероприятий, направленных на выполнение требований законодательства Российской Федерации в области экологии.

Из всех методов, применяющихся ныне для определения массовой концентрации нефтепродуктов в воде, флуориметрический анализ более всего пригоден для осуществления постоянного контроля этой величины в режиме online. Используемая в нём методика заслуживает более широкого освещения ввиду появления приборов, функционирующих на её основе и поднимающих решение проблемы контроля на качественно новый уровень. Особенностью этой методики является использование излучения ультрафиолетового спектра, в отличие от фотометрического анализа, при котором применяется инфракрасное излучение.

Метод флуоресценции или флуориметрический метод определения массовой концентрации нефтепродуктов в воде основан на особых свойствах полициклических ароматических углеводородов (ПАУ). В природе данные соединения образуются в результате пиролиза целлюлозы, поэтому содержатся в месторождениях углеводородных ископаемых – угольных, газовых и нефтяных, что делает очень удобным использовать их в качестве маркера присутствия нефтепродуктов в воде. ПАУ относятся к классу органических соединений, молекулярное строение которых характеризуется наличием конденсированных бензольных колец.

Флуоресцентные свойства ПАУ заключаются в следующем. При воздействии на эти вещества излучения определённых длин волн ультрафиолетового спектра, атомы ПАУ, подвергшиеся фотонной бомбардировке УФ – излучения и получившие при этом избыточную энергию, начинают генерировать световое излучение более низкой частоты, то есть, обладающее большей длиной волны по сравнению с исходным излучением. Свечение облучаемого таким методом вещества называется флуоресценцией. Данный процесс обусловлен тем, что электроны облучаемого вещества, получая избыточную энергию, совершают переход на более высокий энергетический уровень с последующим возвратом на старую орбиту. Переход из одного состояния в другое сопровождается выбросом высвобождаемой энергии, выделяемой в форме светового излучения. Этот процесс не прекращается, пока вещество продолжает подвергаться облучению. Интенсивность флуоресцентного свечения пропорциональна массе облучаемого ультрафиолетом вещества, что и позволяет использовать этот метод для количественного анализа флуоресцирующих соединений.

Практическая реализация флуориметрической технологии анализа воды воплотилась в создании специального погружного флуоресцентного датчика концентрации нефтепродуктов в воде. Это устройство предназначено для стационарного размещения в контролируемом потоке. Датчик предназначен для работы в составе информационно – измерительной системы, контролирующей состояние объекта по различным параметрам, для чего используются датчики, измеряющие различные величины. Такие системы могут иметь самое широкое применение в различных областях.

В качестве примера рассмотрим сенсор для определения массовой доли нефтепродуктов в воде Art. no. 461 6750 по каталогу GO Systemelektronik. Датчик представляет собой тонкий цилиндр, корпус которого изготовлен из нержавеющей стали марки AISI 316. Добавки молибдена, присутствующие в этом материале повышают его коррозионную стойкость, позволяя изделию работать в особо агрессивных средах. Рабочей стороной датчика, предназначенного для измерения массовой концентрации нефтепродуктов сточных вод, является его торцевая поверхность, на которой расположено прозрачное измерительное окно.

Источником ультрафиолетового излучения с длиной волны 285 нанометров служит установленная внутри датчика специальная ксеноновая лампа. Приёмный фотодиод фиксирует люминесцентное излучение, которое генерируют атомы ПАУ, имеющее длину волны 325 – 375 нанометров. Прибор обладает высокой чувствительностью, нижняя граница определения массовой доли нефтепродукта данным методом равна 3 ppm, что составляет 3 миллионные доли (!) искомого вещества в общей массе. При этом, прибор является очень точным, погрешность измерения в процессе анализа составляет 2%. Длина датчика равна 109 мм, диаметр – 22,2 мм, его вес – 160 г. Опционально датчик комплектуется системой очистки измерительного окна сжатым воздухом.

Монтаж датчика в напорном трубопроводе

Оборудование немецкой компании GO Systemelektronik позволяет создавать системы измерения и контроля различной архитектуры и функционального назначения. Кроме сенсора массовой доли нефти в воде, компанией производится линейка датчиков, служащих для измерения pH контролируемой среды, её температуры, электрической проводимости, содержания кислорода, различных органических компонентов и других параметров.

Отдельные датчики, осуществляющие функции определения содержания нефтепродуктов в воде, а также сенсоры другого назначения, либо их группы, могут иметь следующие варианты подключения:

  • к блоку BlueSense Module;
  • к блоку BlueSense Transducer;
  • к автономному радиомодулю.

Модуль BlueSense Module выполняет следующие функции:

  • осуществляет приём сигналов присоединённых к нему датчиков;
  • преобразует значение измеренной сенсором величины в аналоговый токовый сигнал в диапазоне от 4 до 20 мА;
  • передаёт данные измерений по мультиплексной высокоскоростной линии связи CAN-bus в блок BlueBox;
  • производит включение сигнальных реле при снижении неких контролируемых величин ниже установленного предела, либо достижении ими значений более величины верхнего предела (в зависимости от настройки).

Схожими функциями обладает BlueSense Transducer (преобразователь):

  • получает данные от подключенных измерительных датчиков;
  • отображает значения измеренных в процессе анализа величин;
  • осуществляет преобразование данных в аналоговую величину;
  • передачу информации блоку BlueBox.

Кроме этого, BlueSense Transducer имеет ряд функций, недоступных BlueSense Module:

  • возможность передачи данных в удалённую сеть посредством имеющихся интерфейсов RS-232, RS-485 или Profibus ® ;
  • запись и сохранение результатов измерений на карте памяти формата SD;
  • конвертация данных датчика проводимости, определяющего содержание соли в воде;
  • управление двумя встроенными реле контроля уровня;
  • также имеется возможность выполнения специфических задач, задаваемых пользователем системы.

Для подключения датчиков определения нефтепродуктов, либо других, расположенных в местах, куда трудно или нецелесообразно проводить кабельные линии, предусмотрено наличие специального радиомодуля, представляющего собой передатчик, работающий с использованием стандарта связи IEEE 802.15.4 на частоте 2,4 гигагерц. Радиомодуль обеспечивает передачу измеренных датчиками величин базовой радиостанции на расстояние до 4 километров, в зависимости от характера местности.

Передатчик размещён в корпусе из термостойкого пластика размерами (ДxШxВ): 160 мм x 60 мм x 90 мм, оснащён наружной антенной. Степень защиты корпуса — IP66. Срок службы аккумуляторных батарей, обеспечивающих автономное питание устройства, зависит от выбранного режима работы передатчика. При установке интервала связи 2 минуты (то есть, пересылка данных осуществляется каждые 2 минуты), ёмкости батареи хватает на 3 месяца работы. При выборе максимального интервала, равного 60 минут, работоспособность батареи сохраняется более 1 года. Установка режима связи осуществляется методом конфигурирования программного обеспечения, установленного в блоке BlueBox, куда и передаются данные измерений. Базовая радиостанция способна поддерживать связь с 16 сенсорными радиомодулями.

источник

К наиболее распространенным и токсически опасным веществам, которые служат источниками загрязнения природной водной среды, специалисты относят нефтепродукты (НП).

Нефть и её производные являются непостоянными смесями углеводородов предельной и непредельной группы, а также их производных разного вида. Гидрохимия условно трактует понятие «нефтепродукты», ограничиваясь только их углеводородными алифатическими, ароматическими и ациклическими фракциями, которые составляют основную и наиболее распространенную часть нефти и её компонентов, выделяемых в процессе нефтепереработки. Для обозначения содержания нефтепродуктов в воде, в международной практике существует термин Нydrocarbon Оil Index («углеводородный нефтяной индекс»).

Предельная допустимая концентрация (ПДК) в воде нефти и нефтепродуктов для культурно-бытовых и хозяйственно-питьевых объектов водопользования находится на отметке 0,3 миллиграмма на кубический дециметр, а для объектов рыбохозяйственного водопользования – 0,05 миллиграмма на кубический дециметр.

Определение нефтепродуктов, содержащихся в воде, возможно с помощью различных приборов и методов, о которых мы кратко расскажем в этой статье.

На сегодняшний момент существуют четыре основных методики определения концентрации нефти и её производных в воде, которые основаны на разных физических свойствах определяемых нефтепродуктов:

  • метод гравиметрии;
  • ИК-спектрофотометрия;
  • флуориметрический метод;
  • методика газовой хроматографии.

Методика применения того или иного способа измерения содержания нефтей и нефтепродуктов в воде, а также нормы ПДК для различных видов нефтепродуктов, регламентируется природоохранными нормативными документами федерального значения (сокращенно – ПНД Ф).

Его применение регулируется ПНД Ф за номером 14.1:2.116-97.

Суть его – извлечение (обезвоживание) нефтепродуктов из предоставленных для анализа проб с помощью органического растворителя, с последующим отделением от полярных соединений с помощью колоночной хроматографии на оксиде алюминия других классов соединений, после чего производится количественное определение содержания вещества в воде.

В исследованиях сточных вод этот способ применяется при концентрациях, диапазон которых составляет от 0,30 до 50,0 миллиграмм на кубический дециметр, что не позволяет определить соответствие воды нормам ПДК на объектах рыбохозяйственного водопользования.

Читайте также:  Анализ на фосфаты в воде

Еще одним существенным недостатком этого способа является длительный период времени, который требуется для проведения измерений. Поэтому его не применяют при текущем технологическом контроле на производстве, а также в других случаях, когда скорость получения результатов имеет первостепенное значение.

К достоинствам этой методики специалисты относят отсутствие стандартных градуировок по образцам, которые характерны для прочих методов анализа.

Погрешность при использовании этого способа при показателе Р равном 0,95 (±δ, %) при анализе природных вод варьируется от 25-ти до 28-ми процентов, а при анализе сточных вод – от 10-ти до 35-ти.

Применение этой методики регламентируется ПНД Ф за номером 14.1:2:4.168, а также методическими указаниями МУК 4.1.1013-01.

Суть этой методики определения содержания нефтепродуктов в воде – выделение растворенных и эмульгированных нефтяных загрязнений путем экстракции их с помощью четыреххлористого углерода, с последующим хроматографическим отделением нефтепродукта от прочих соединений органической группы, на заполненной оксидом алюминия колонке. После этого определение количества НП в воде производится по показателям интенсивности поглощения в инфракрасной области спектра C-H связей.

Инфракрасная спектроскопия на сегодняшний момент является одной из наиболее мощных аналитических методик, и широко применяется в исследованиях как прикладного, так и фундаментального характера. Её применение также возможно для нужд текущего контроля производственного процесса.

Ароматическим углеводородам для возбуждения и последующей регистрации флуоресцентного излучения необходимы различные условия. Специалисты отмечают зависимость спектральных изменений флуоресценции от длины волны, которой обладает возбуждающий свет. Если возбуждение происходит ближней части ультрафиолетового спектра, и уж тем более – в его видимой области, то флуоресценция проявляется только у полиядерных углеводородов.

Так как их доля – достаточно мала, и напрямую зависит от природы исследуемого нефтепродукта, возникает высокая степень зависимости получаемого аналитического сигнала от конкретного вида НП. При воздействии ультрафиолетового излучения люминесцируют только некоторые углеводороды, в основном – высокомолекулярные ароматические из группы полициклических. Причем интенсивность их излучение сильно разнится.

В связи с этим, чтобы получить достоверные результаты, нужно обязательно иметь в наличие стандартный раствор, который содержит те же люминесцирующие компоненты (причем – в таких же относительных пропорциях), что наличествуют в анализируемой пробе. Это чаще всего труднодостижимо, поэтому флуориметрический способ определения содержания в воде нефтепродуктов, который основан на регистрации интенсивности флуоресцентного излучения в видимой части спектра, для массовых анализов является непригодным.

Этот метод можно применять при концентрациях нефтепродуктов в пределах от 0,005 до 50,0 миллиграммов на кубический дециметр.

Погрешность получаемых результатов (при Р равном 0,95, ( ±δ, %)) составляет от 25-ти до 50-ти процентов.

Применение этой методики регулируется ГОСТ-ом за номером 31953-2012.

Эту методику применяют для определения массовой концентрации различных нефтепродуктов как в питьевой (включая расфасованную в емкости), так и в природной (как поверхностной, так и подземной) воде, а также в воде, содержащейся в источниках хозяйственно-питьевого назначения. Эффективен этот способ и при анализе сточной воды. Главное, чтобы массовая концентрация нефтепродуктов была не меньше, чем 0,02 миллиграмма на кубический дециметр.

Суть метода газовой хроматографии заключается в экстракционном извлечении НП из анализируемой пробы воды с помощью экстрагента, последующей его очистке от полярных соединений при помощи сорбента, и заключительном анализе полученного вещества на газовом хроматографе.

Результат получается после суммирования площадей хроматографических пиков выделяемых углеводородов и путем последующего расчета содержания НП в анализируемой пробе воды с помощью заранее установленной градуировочной зависимости.

С помощью газовой хроматографии не только определяют общую концентрацию нефтепродуктов в воде, но и проводят идентификацию их конкретного состава.

Газовая хроматография вообще представляет собой методику, основанную на разделении термостабильных летучих соединений. Таким требованиям соответствует примерно пять процентов от общего числа известных науке органических соединений. Однако именно они занимают 70-80 процентов от общего числа используемых человеком в производстве и быту соединений.

Роль подвижной фазы в этой методике исполняет газ-носитель (обычно инертной группы), который протекает через неподвижную фазу с гораздо большей площадью поверхности. В качестве газа-носителя подвижной фазы применяют:

Чаще всего используется наиболее доступный и недорогой азот.

Именно с помощью газа-носителя обеспечивается перенос по хроматографической колонке разделяемых компонентов. При этом этот газ не вступает во взаимодействие ни с самими разделяемыми компонентами, ни с ни с веществом неподвижной фазы.

Основные достоинства газовой хроматографии:

  • относительная простота используемого оборудования;
  • достаточно широкое поле применения;
  • возможность высокоточного определения достаточно малых концентраций газов в органических соединениях;
  • быстрота получения результатов анализа;
  • широкая палитра как используемых сорбентов, так и веществ для неподвижных фаз;
  • высокий уровень гибкости, позволяющий менять условия разделения;
  • возможность проведения химических реакций в хроматографическом детекторе или в хроматографической колонке, что значительно увеличивает охват химических соединений, подвергаемых анализу;
  • повышенная информативность в случае применения с другими инструментальными методами анализа (например, с масс-спектрометрией и Фурье-ИК-спектрометрией).

Погрешность результатов этой методики (Р равно 0,95 ( ±δ, %)) составляет от 25-ти до 50-ти процентов.

Стоит отметить, что только способ измерения содержания нефтепродуктов в воде с помощью газовой хроматографии стандартизован в международной организации по стандартизации, которую все мы знаем под аббревиатурой ИСО, поскольку только он дает возможность идентифицировать виды нефтяных и нефтепродуктовых загрязнений.

Вне зависимости от применяемой методики, постоянный контроль за водами, применяемыми на производстве и в бытовой сфере, жизненно необходим. По данным специалистов-экологов, в некоторых российских регионах более половины всех заболеваний так или иначе связано с качеством питьевой воды.

Большая концентрация нефтепродуктов в воде

Более того, по оценкам тех же ученых, одно только повышение качества воды для питья способно продлить жизнь на срок от пяти до семи лет. Все эти факторы говорят о значимости постоянного мониторинга состояния воды вблизи предприятий нефтяной промышленности, которые являются основными источниками загрязнений окружающей среды нефтью и её производными.

Своевременное обнаружение превышения ПДК нефтепродуктов в воде позволит избежать масштабных нарушений экосистемы, и своевременно принять необходимые меры по устранению сложившейся ситуации.

Однако, для эффективной работы ученым-экологам необходима государственная поддержка. Причем не столько в виде денежных дотаций, сколько в создании нормативной базы, регулирующей ответственность предприятий народного хозяйства за нарушение экологических норм, а также в жестком контроле за исполнением принятых нормативов.

Вид работы: статья Язык: русский Дата добавления: 2.06.2009 Размер файла: 96 Kb Просмотров: 5318 Загрузок: 32

Все приложения, графические материалы, формулы, таблицы и рисунки работы на тему: Флуориметрический метод контроля содержания нефтепродуктов в водах (предмет: Химия) находятся в архиве, который можно скачать с нашего сайта. Приступая к прочтению данного произведения (перемещая полосу прокрутки браузера вниз), Вы соглашаетесь с условиями открытой лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (CC BY 4.0) .

Флуориметрический метод контроля содержания нефтепродуктов в водах

Д.Б. Гладилович — главный метролог ООО «Люмэкс», канд. хим. наук, доцент

Флуориметрический метод определения нефтепродуктов в пробах вод характеризуется высокой чувствительностью, простотой аппаратурного оформления и экспрессностью.

В практике аналитического контроля качества вод под нефтепродуктами понимают неполярные и малополярные углеводороды (алифатические, ароматические, алициклические), составляющие основную и наиболее характерную часть нефти и продуктов ее переработки [1]. Содержание нефтепродуктов является одним из обобщенных показателей, характеризующих качество вод. Для питьевых вод предельно допустимая концентрация (ПДК) составляет 0,1 мг/дм 3 [2]. Загрязнение нефтепродуктами является наиболее типичным и весьма опасным фактором воздействия хозяйственной деятельности человека на окружающую среду.

Основными методами количественного химического анализа, применяемыми сегодня при определении нефтепродуктов в водах, являются гравиметрический, ИК-спектроскопический, газохроматографический и флуориметрический.

Гравиметрический метод основан на экстракции нефтепродуктов из пробы, очистке экстракта от полярных веществ, удалении экстрагента путем выпаривания и взвешивании остатка. Он используется, как правило, при анализе сильно загрязненных проб и не может использоваться при анализе проб, содержащих нефтепродукты на уровне ПДК, поскольку нижняя граница диапазона измерений составляет 0,3 мг/дм 3 при объеме анализируемой пробы 3-5 дм 3 . Несомненным достоинством метода является то, что не требуется предварительная градуировка средства измерений В силу этого метод принят в качестве арбитражного.

Метод ИК-спектроскопии основан на экстракции нефтепродуктов из пробы четыреххлористым углеродом или хладоном 113, очистке экстракта от полярных соединений методом колоночной хроматографии на оксиде алюминия и последующей регистрации поглощения излучения в области спектра 2700-3200 см -1 , обусловленного валентными колебаниями СН3 и СН2 групп алифатических и алициклических соединений и боковых цепей ароматических углеводородов, а также связей СН ароматических соединений.

Метод может быть реализован как в варианте регистрации спектра поглощения в указанной области с помощью традиционного или Фурье-спектрометра, так и более простом варианте, при котором используется анализатор, измеряющий интегральное поглощение излучения в области 2900-3000 см -1 , в которой наблюдаются наиболее интенсивные полосы поглощения, соответствующие асимметричным валентным колебаниям групп СН3 и СН2.

Метод требует обязательной градуировки средства измерений с использованием стандартных образцов состава раствора нефтепродуктов в четыреххлористом углероде. В России используются стандартные образцы, приготовленные на основе так называемой трехкомпонентной смеси (37,5% гексадекана, 37,5% 2,2,4-триметилпентана и 25% бензола по массе). Нижняя граница диапазона измерения — 0,05 мг/дм 3 . Основное достоинство метода — слабая зависимость аналитического сигнала от типа нефтепродукта, составляющего основу загрязнения пробы.

Трудности, возникающие при использовании метода, связаны с мешающими влияниями липидов и других полярных соединений при их высоком содержании, при котором оказывается исчерпанной емкость хроматографической колонки, используемой для очистки экстракта. Основной недостаток метода — его неэкологичность, обусловленная применяемыми высокотоксичными растворителями. В силу указанных причин мы полагаем, что уже в ближайшие годы неизбежна замена метода ИК-спектроскопии другими методами и в первую очередь методом газовой хроматографии.

В России ИК-спектроскопический метод стандартизован для анализа питьевых вод [3], а также изложен в ряде нормативных документов на методики выполнения измерений [4-6] и рассматривается в качестве основного, а в ряде случаев и единственного метода определения нефтепродуктов (например, [7]). Международный стандарт несмотря на многолетние разработки, не утвержден и не введен в действие.

Метод газовой хроматографии основан на разделении углеводородов нефти на неполярной фазе в режиме программирования температуры. Нефтепродукты экстрагируют из пробы органическим растворителем (четыреххлористый углерод или гексан), полученный экстракт очищают методом колоночной хроматографии на оксиде алюминия и очищенный экстракт анализируют. Аналитическим сигналом является суммарная площадь пиков на хроматограмме, начиная с пика н-декана (С10Н22) и кончая пиком н-тетраконтана (С40Н82). Градуировка проводится с использованием смеси дизельного топлива и смазочного масла [8].

Нижняя граница диапазона измерений согласно стандарту ИСО 9377-2:2000 составляет 0,1 мг/дм 3 , хотя известны конкретные реализации методики (например, методика разработанная ГУП ЦИКВ, С.-Петербург), в которых эта граница составляет всего 0,02 мг/дм 3 . Таким образом, метод газовой хроматографии пригоден для анализа проб, содержащих нефтепродукты на уровне ПДК. Продолжительность регистрации хроматограммы составляет 20-30 мин.

Читайте также:  Анализ на бактерии в воде

Флуориметрический метод основан на экстракции нефтепродуктов гексаном, очистке при необходимости экстракта с последующим измерением интенсивности флуоресценции экстракта, возникающей в результате оптического возбуждения. Метод отличается высокой чувствительностью (нижняя граница диапазона измерений 0,005 мг/дм 3 ), экспрессностью, малыми объемами анализируемой пробы (табл. 1) и отсутствием значимых мешающих влияний липидов. Методика определения нефтепродуктов флуориметрическим методом изложена в нормативных документах [9, 10].

Некоторые характеристики методов определения нефтепродуктов в водах

источник

Нефтепродукты (НП) относятся к числу наиболее распространенных и опасных веществ, загрязняющих природные воды. Нефть и продукты ее переработки представляют собой сложную, непостоянную смесь предельных и непредельных углеводородов и их различных производных. Понятие «нефтепродукты» в гидрохимии условно ограничивается только углеводородной фракцией (алифатические, ароматические и ациклические), составляющей главную и наиболее характерную часть нефти и продуктов ее переработки. В международной практике содержание в воде нефтепродуктов определяется термином «углеводородный нефтяной индекс» (hydrocarbon oil index).

В связи с неблагоприятным воздействием нефтепродуктов на организм человека и животных, на биоценозы водоемов, контроль за содержанием нефтепродуктов в водах обязателен и регламентируется требованиями ГН 2.1.5.1315-03, ГН 2.1.5.2280-07, СанПиН 2.1.5.980-00, Приказом Росрыболовства от 18.01.2010 №20.

Предельно допустимые концентрации (ПДК) нефтепродуктов в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования 0,3 мг/дм3, в водах водных объектов рыбохозяйственного значения — 0,05 мг/дм3.

В настоящее время применяют методы определения содержания нефтепродуктов в воде, основанные на различных физических свойствах нефтепродуктов:

  1. Метод ИК-спектрофотометрии
  2. Гравиметрический метод
  3. Флуориметрический метод
  4. Метод газовой хроматографии.

Метод ИК-спектрофотометрии (ПНД Ф 14.1:2:4.168; МУК 4.1.1013-01, НДП 20.1:2:3.40-08) заключается в выделении эмульгированных и растворенных нефтяных компонентов из воды экстракцией четыреххлористым углеродом, хроматографическом отделении НП от сопутствующих органических соединений других классов на колонке, заполненной оксидом алюминия, и количественном их определении по интенсивности поглощения C-H связей в инфракрасной области спектра. Диапазон измеряемых концентраций: 0,02 – 2,00 мг/дм3. Погрешность методики при Р=0,95 ( ±δ, %): 25 – 50%.

Гравиметрический метод ( ПНД Ф 14.1:2.116-97) основан на извлечении нефтепродуктов из анализируемых вод органическим растворителем, отделении от полярных соединений других классов колоночной хроматографией на оксиде алюминия и количественном определении гравиметрическим методом. Диапазон измеряемых концентраций: 0,30 – 50,0 мг/дм3. Погрешность методики при Р=0,95 ( ±δ, %): 25 – 28% (для природных вод), 10 – 35% (для сточных вод).

Преимуществами этого метода определения НП являются высокая чувствительность и экспрессность анализа.

Методом газовой хроматографии (ГОСТ 31953-2012 ) определяют массовую концентрацию нефтепродуктов в питьевой воде, в том числе расфасованной в емкости, природной (поверхностной и подземной) воде, в том числе воде источников питьевого водоснабжения, а также в сточной воде с массовой концентрацией нефтепродуктов не менее 0,02 мг/дм3.

Метод основан на экстракционном извлечении нефтепродуктов из пробы воды экстрагентом, очистке экстракта от полярных соединений сорбентом, анализе полученного элюата на газовом хроматографе, суммировании площадей хроматографических пиков углеводородов в диапазоне времен удерживания равным и (или) более н-октана ( ) и расчете содержания нефтепродуктов в воде по установленной градуировочной зависимости. Этот метод позволяет определить не только общее содержание нефтепродуктов, но и проводить идентификацию состава нефтепродуктов. Погрешность методики при Р=0,95 ( ±δ, %): 25 – 50%.

В лаборатории АНО «Испытательный Центр «Нортест» измерение массовой концентрации нефтепродуктов в пробах природных, питьевых, сточных вод выполняется флуориметрическим и гравиметрическим методами анализа.

Загрязнение почв и грунтов тяжелыми металлами

Методы определения фенолов в воде

Проведение анализов почвы, лабораторные исследования

источник

Флуориметрический метод контроля содержания нефтепродуктов в водах

Д.Б. Гладилович — главный метролог ООО «Люмэкс», канд. хим. наук, доцент

Флуориметрический метод определения нефтепродуктов в пробах вод характеризуется высокой чувствительностью, простотой аппаратурного оформления и экспрессностью.

В практике аналитического контроля качества вод под нефтепродуктами понимают неполярные и малополярные углеводороды (алифатические, ароматические, алициклические), составляющие основную и наиболее характерную часть нефти и продуктов ее переработки [1]. Содержание нефтепродуктов является одним из обобщенных показателей, характеризующих качество вод. Для питьевых вод предельно допустимая концентрация (ПДК) составляет 0,1 мг/дм 3 [2]. Загрязнение нефтепродуктами является наиболее типичным и весьма опасным фактором воздействия хозяйственной деятельности человека на окружающую среду.

Основными методами количественного химического анализа, применяемыми в настоящее время при определении нефтепродуктов в водах, являются гравиметрический, ИК-спектроскопический, газохроматографический и флуориметрический.

Гравиметрический метод основан на экстракции нефтепродуктов из пробы, очистке экстракта от полярных веществ, удалении экстрагента путем выпаривания и взвешивании остатка. Он используется, как правило, при анализе сильно загрязненных проб и не может использоваться при анализе проб, содержащих нефтепродукты на уровне ПДК, поскольку нижняя граница диапазона измерений составляет 0,3 мг/дм 3 при объеме анализируемой пробы 3-5 дм 3 . Несомненным достоинством метода является то, что не требуется предварительная градуировка средства измерений В силу этого метод принят в качестве арбитражного.

Метод ИК-спектроскопии основан на экстракции нефтепродуктов из пробы четыреххлористым углеродом или хладоном 113, очистке экстракта от полярных соединений методом колоночной хроматографии на оксиде алюминия и последующей регистрации поглощения излучения в области спектра 2700-3200 см -1 , обусловленного валентными колебаниями СН3 и СН2 групп алифатических и алициклических соединений и боковых цепей ароматических углеводородов, а также связей СН ароматических соединений.

Метод может быть реализован как в варианте регистрации спектра поглощения в указанной области с помощью традиционного или Фурье-спектрометра, так и более простом варианте, при котором используется анализатор, измеряющий интегральное поглощение излучения в области 2900-3000 см -1 , в которой наблюдаются наиболее интенсивные полосы поглощения, соответствующие асимметричным валентным колебаниям групп СН3 и СН2 .

Метод требует обязательной градуировки средства измерений с использованием стандартных образцов состава раствора нефтепродуктов в четыреххлористом углероде. В России используются стандартные образцы, приготовленные на основе так называемой трехкомпонентной смеси (37,5% гексадекана, 37,5% 2,2,4-триметилпентана и 25% бензола по массе). Нижняя граница диапазона измерения — 0,05 мг/дм 3 . Основное достоинство метода — слабая зависимость аналитического сигнала от типа нефтепродукта, составляющего основу загрязнения пробы.

Трудности, возникающие при использовании метода, связаны с мешающими влияниями липидов и других полярных соединений при их высоком содержании, при котором оказывается исчерпанной емкость хроматографической колонки, используемой для очистки экстракта. Основной недостаток метода — его неэкологичность, обусловленная применяемыми высокотоксичными растворителями. В силу указанных причин мы полагаем, что уже в ближайшие годы неизбежна замена метода ИК-спектроскопии другими методами и в первую очередь методом газовой хроматографии.

В России ИК-спектроскопический метод стандартизован для анализа питьевых вод [3], а также изложен в ряде нормативных документов на методики выполнения измерений [4-6] и рассматривается в качестве основного, а в ряде случаев и единственного метода определения нефтепродуктов (например, [7]). Международный стандарт несмотря на многолетние разработки, не утвержден и не введен в действие.

Метод газовой хроматографии основан на разделении углеводородов нефти на неполярной фазе в режиме программирования температуры. Нефтепродукты экстрагируют из пробы органическим растворителем (четыреххлористый углерод или гексан), полученный экстракт очищают методом колоночной хроматографии на оксиде алюминия и очищенный экстракт анализируют. Аналитическим сигналом является суммарная площадь пиков на хроматограмме, начиная с пика н-декана (С10 Н22 ) и кончая пиком н-тетраконтана (С40 Н82 ). Градуировка проводится с использованием смеси дизельного топлива и смазочного масла [8].

Нижняя граница диапазона измерений согласно стандарту ИСО 9377-2:2000 составляет 0,1 мг/дм 3 , хотя известны конкретные реализации методики (например, методика разработанная ГУП ЦИКВ, С.-Петербург), в которых эта граница составляет всего 0,02 мг/дм 3 . Таким образом, метод газовой хроматографии пригоден для анализа проб, содержащих нефтепродукты на уровне ПДК. Продолжительность регистрации хроматограммы составляет 20-30 мин.

Флуориметрический метод основан на экстракции нефтепродуктов гексаном, очистке при необходимости экстракта с последующим измерением интенсивности флуоресценции экстракта, возникающей в результате оптического возбуждения. Метод отличается высокой чувствительностью (нижняя граница диапазона измерений 0,005 мг/дм 3 ), экспрессностью, малыми объемами анализируемой пробы (табл. 1) и отсутствием значимых мешающих влияний липидов. Методика определения нефтепродуктов флуориметрическим методом изложена в нормативных документах [9, 10].

Некоторые характеристики методов определения нефтепродуктов в водах

Наименование характеристики Метод
Флуориметрический ИK-спектроскопический Газохроматографический
Источник информации [9] [3] [8]
Диапазон измерения, мг/дм 3 0,005-50 0,05-50 0,1-150
Объем пробы, см 3 100 до 2000 1000
Экстрагент Гексан Четыреххлористый углерод Гексан
Состав образца для градуировки Масло Т-22 Трехкомпонентная смесь 50% дизельного топлива + 50% смазочного масла

В формировании аналитического сигнала участвуют только ароматические углеводороды. Поскольку они обладают различными условиями возбуждения и регистрации флуоресценции, наблюдается изменение спектра флуоресценции экстракта в зависимости от длины волны возбуждающего света.

При возбуждении в ближней УФ, а тем более в видимой области спектра, флуоресцируют только полиядерные углеводороды. Поскольку их доля мала и зависит от природы нефтепродукта, наблюдается очень сильная зависимость аналитического сигнала от типа нефтепродукта (рис. 1). Приведем цитату из монографии Ю.Ю. Лурье [11] по этому поводу: «Способностью люминесцировать под действием УФ-излучения обладает лишь часть углеводородов (ароматические высокомолекулярные, особенно полициклические) и притом в разной мере. Для получения достоверных результатов необходимо иметь стандартный раствор, содержащий те же люминесцирующие вещества и в тех же относительных количествах, как и в исследуемой пробе. Это труднодостижимо. Проще устанавливать «цену деления» применяемого прибора сравнением с результатом, полученным одним из арбитражных методов». Аналогичные по существу выводы сделаны и в книге В. Лейте [12]. Таким образом, флуориметрический метод определения нефтепродуктов, основанный на регистрации флуоресценции в видимой области спектра, не пригоден для массовых аналитических измерений.

Рис. 1. Спектры флуоресценции нефтепродуктов (длина волны возбуждения 350 нм). Концентрация растворов 50 мг/дм 3 .

Сдвиг возбуждающего излучения в коротковолновую область (270-290 нм) и регистрация флуоресценции в области 300-330 нм позволяет уменьшить зависимость аналитического сигнала от типа нефтепродукта (рис. 2). В этой спектральной области аналитический сигнал формируют ароматические углеводороды других классов — моно-, би- и некоторые трициклические соединения.

Рис. 2. Спектры флуоресценции нефтепродуктов (длина волны возбуждения 270 нм). Концентрация растворов 50 мг/дм 3

В табл. 2 приведены значения относительной интенсивности флуоресценции растворов различных нефтепродуктов в гексане, полученные в указанных выше условиях возбуждения и регистрации. Из приведенных данных следует, что для нефтепродуктов, относящихся к средним фракциям (дизельное топливо, масла) наблюдаются небольшие различия в относительной величине аналитического сигнала. Более сильной флуоресценцией обладает мазут, однако, гексановые экстракты образцов, полученных внесением мазута в дистиллированную воду, флуоресцируют всего на 15-20% интенсивнее по сравнению с градуировочным раствором масла Т-22 в гексане той же концентрации. Существенного занижения результатов анализа следует ожидать при анализе проб, загрязненных легкими фракциями (керосин, бензин).

Относительная интенсивность флуоресценции различных нефтепродуктов (длина волны возбуждения 270 нм, регистрации — 310 нм)

Наименование нефтепродукта Относительная интенсивность флуоресценции
Мазут Ф-5 1,98
Масло турбинное ТП-22 1,00
Масло моторное ММ-8 0,96
Масло индустриальное И-20 0,93
Масло моторное МС-20 0,77
Дизельное топливо летнее 0,92
Дизельное топливо зимнее 0,68
Kеросин 0,24
Бензин АИ-92 0,09

Для градуировки анализатора нами рекомендован стандартный образец, представляющий собой раствор масла турбинного Т-22 в гексане, который в текущем году получил статус государственного (ГСО 7950-2001). Применение такого стандартного образца позволяет учесть корреляционную связь между содержанием фракции, отвечающей за формирование аналитического сигнала, и общим содержанием нефтепродуктов.

Читайте также:  Анализ на фосфаты в котловой воде

источник

Нефть и нефтепродукты – типичные загрязнители окружающей среды. В системах контроля качества природных вод, почв, воздуха их относят к обязательно нормируемым компонентам. Для определения в объектах окружающей среды содержания нефтепродуктов используют разнообразные методы анализа, приборы и стандартные образцы состава для их градуировки. Из всех методов изучения строения органических и неорганических соединений, в том числе и для нефтепродуктов, важным методом можно назвать метод инфракрасной спектроскопии, который основан на поглощении, отражении и рассеивании энергии инфракрасного излучения при прохождении через вещество.

Проблема загрязнения вод для города является актуальной, т.к. Дубну омывают воды Московского моря, канала имени Москвы, Волги, Дубны и Сестры. Для питья используется вода из реки Волга.

Повышение содержания нефтепродуктов в водах города Дубна вероятно обусловлено повышением антропогенной нагрузки: активнее стала использоваться территория, прилегающая к водным объектам, увеличилось количество водного транспорта и мойки автомобилей.

Нужно всегда контролировать концентрацию нефтепродуктов, т.к. загрязнение почв, грунтов, подземных вод нефтепродуктами становится особенно частым.

Цель: Определение содержания нефтепродуктов в водных пробах

Ознакомиться с методами и методиками определения содержания нефтепродуктов в водных пробах;

Ознакомиться с методами пробоподготовки для определения методом ИК-спектроскопии;

Провести пробные определения на модельных растворах.

Провести определение содержания нефтепродуктов в пробах, отобранных с открытых водоемов.

Сравнение методов определения содержания нефтепродуктов в воде [1-6]

Таблица 1. Сравнительные характеристики методов анализа нефтепродуктов.

Диапазон определения, мг/дм 3

мешающие влияния липидов и др.полярных соед-ний при их высоком содержании

Органические вещества других классов

Отсутствие значимых мешающих влияний липидов

От нескольких мин до нескольких часов

От нескольких мин до нескольких часов

Необходимость пробоподготовки и концентрирования

Экстракция четыреххлористым углеродом

Экстракция четыреххлористым углеродом или гексаном

Экстракция хлороформом или четыреххлористым углеродом

слабая зависимость аналитического сигнала от типа нефтепродукта, составляющего основу загрязнения пробы.

не требуется предварительная градуировка средства измерений

применение высокотоксич-ных растворителей

Вывод: Метод ИК-спектроскопии является:

Наиболее экспрессным методом;

Позволяющим использовать пробы большого объема;

Аналитический сигнал слабо зависит от типа нефтепродуктов.

Достоинства метода ИК-Фурье-спектроскопии

К достоинствам метода ИК-Фурье-спектроскопии можно отнести следующее [7]:

Высокая чувствительность. Рекордное в сравнении с обычными ИК спектрометрами отношение сигнал/шум позволяет на порядок снизить порог обнаружения контролируемых примесей и повысить точность определения концентрации.

Высокая производительность. Время получения спектра при разрешениях и фотометрической точности, соответствующих требованиям стандартов, не превышает 20 с. Это делает возможным тотальный контроль в процессе производства.

Достоверность анализа. Анализ и идентификация спектров осуществляются автоматически с использованием библиотек стандартных спектров, включаемых в базу данных спектрометра. Снижается вероятность ошибок оператора.

Бесконтактность измерений. В процессе измерений отсутствуют механические воздействия на поверхность пластины – метод является не разрушающим.

Автоматизация измерений. Процесс получения спектров, их обработка и контроль за перемещением пластины полностью автоматизированы.

Недостатки: Низкая точность определения – пробы часто требуют дополнительного концентрирования, невозможность определять содержания веществ в водных растворах.

Определение нефтепродуктов

Нефть и разнообразные нефтепродукты представляют собой сложные смеси различных по природе компонентов, концентрации которых различаются на несколько порядков. В объектах окружающей среды под действием физических, химических и биологических процессов происходит быстрая трансформация нефтепродуктов. Поэтому задачи определения нефтепродуктов в водах, почвах, воздухе, растительном материале исключительно сложные. Для их решения привлекают самые разнообразные методы предварительного выделения, разделения, концентрирования и конечного определения нефтепродуктов.

В аналитической практике принято считать “нефтепродуктами” сумму неполярных и малополярных углеводородов (алифатических, алициклических, ароматических), растворимых в гексане и не сорбирующихся на оксиде алюминия. Определение нефтепродуктов включает стадии их концентрирования и отделения мешающих веществ. В литературе описан ряд методов концентрирования нефтепродуктов: жидкофазная, твердофазная и газовая экстракция, а также различные хроматографические методы (адсорбционная, распределительная, осадочная и газовая хроматография). Мешающие определению нефтепродуктов вещества чаще всего отделяют методом колоночной хроматографии на оксиде алюминия или силикагеле.[8]

Пробоподготовка

К методам пробоподготовки относятся физические (удаление влаги, измельчение, фильтрование, плавление), химические (растворение, разложение, сжигание) и физико-химические методы (методы концентрирования и разделения). В данной работе мы использовали метод концентрирования и разделения, к которому относится экстракция.

Экстракция – это метод выделения, разделения и концентрирования веществ, основанный на распределении растворенного вещества между двумя несмешивающимися жидкими фазами с условием преобладания его в одной из фаз. Наиболее часто используют системы, где одна фаза – водный растворитель, а другая – не смешивающийся с водой органический растворитель, природа которого в ряде случаев оказывает существенное влияние на экстракцию; из органических растворителей чаще всего используют бензол, толуол, циклогексан, хлороформ, четыреххлористый углерод, изоамиловый и бутиловый спирты, диэтиловый эфир, этилацетат, кетоны, карбоновые кислоты и др. Достоинством экстракции является универсальность, поскольку этот метод приложим практически ко всем элементам. Метод экстракции экспрессен и прост в техническом исполнении, легко поддается автоматизации. В сочетании с инструментальными методами анализа он позволяет решать многие сложные проблемы анализа руд, сплавов, чистых веществ, продуктов ядерных реакций и других объектов. Все это предопределило широкое распространение и прочное утверждение экстракции как метода выделения, разделения и концентрирования элементов не только в аналитическом контроле, но и в ряде отраслей промышленности (химической, металлургической, полупроводниковых материалов, атомной технологии и др.) [9]

Экспериментальная часть

В экспериментальной части были выполнены следующие виды работ:

— приготовлена серия градуировочных растворов и с помощью программного обеспечения ИК-Фурье спектрометра построен градуировочный график

— проведена экстракция нефтепродуктов из модельной смеси и определена их концентрация

— проанализированы пробы воды на предмет содержания нефтепродуктов, отобранные из открытых водоемов.

1) Построение градуировочных зависимостей:

Для приготовления калибровочных растворов в 3 мерные колбы внесли последовательно 0,4; 0,6; 0,8 мл бензина и добавили по 10 мл четыреххлористого углерода. Растворы тщательно перемешали. Спектры снимались с помощью жидкостной кюветы приставки НПВО на ИК-Фурье спектрометре IRAffinity-1s, Shimadzu. На основании площади выбранных для калибровки пиков (валентные колебания С-Н группы в области 2800 см -1 ) был построен калибровочный график. На основании графика были определены концентрации нефтепродуктов в экстракте и проведен пересчет на содержание в исходном водном растворе.

Рис.1 Градуировочный график

2) Приготовление модельного раствора и определение концентрации нефтепродуктов в нем

В 2 л водопроводной воды растворили 2 мл бензина, затем добавили в эту колбу 25 мл CCl4. Экстракция выполнялась в течение 30 минут, после тщательного перемешивания раствора. Четыреххлористый углерод с экстрагированным в него бензином перелили в делительную воронку для окончательного удаления воды. Колбу, в которой находился раствор, промыли 5 мл CCl4, который затем добавили к определяемой пробе [10].

По расчетам в 30 мл CCl4 должно находиться 2 мл бензина. Следовательно, в 10 мл будет 0,66 мл бензина.

Определенное методом ИК-Фурье спектроскопии содержание бензина в модельной пробе составила 0,641 мл, что приблизительно соответствует расчетам. Погрешность определения составила 2,3 %.

3) Определение содержания нефтепродуктов в пробах, отобранных с открытых водоемов.

В ноябре 2016 г были отобраны пробы с открытых водоемов, где наблюдается наиболее интенсивное воздействие автомобильного и водного транспорта в окрестностях г. Дубны — Шлюз на канале им. Москвы и паромная переправа на канале им. Москвы в направлении г. Конаково. С каждого места в соответствии со стандартами ГОСТ было отобрано по 3 л воды. Пробоподготовка проводилась в соответствии с ГОСТ по вышеприведенной методике.

Определенное содержание нефтепродуктов в экстракте составило 0,680 мл и 0,666 мл соответственно. Пересчет для сравнения с ПДК показал, что в наших пробах концентрация нефтепродуктов составила 0,170 и 0,167 мг/л, что показывает превышение допустимой концентрации. ПДК нефтепродуктов в воде — не более 0,1 мг/дм 3 . [11]

В период с февраля по май, когда навигация судов была закрыта, были отобраны пробы с трех различных мест: река Волга, пристань и паром. Пробы отбирались с интервалом в месяц. С каждого места мы брали по 3 л воды, отбор проб проводился в соответствии с ГОСТ. В каждые 1,5 л пробы мы добавляли по 12,5 мл четыреххлористого углерода, 60 г NaCl и разбавленную 1:9 H2SO4 до pH=2. [10]. Экстракция раствора проводилась 20 минут. После расслоения фаз органический слой сливали в делительную воронку для удаления оставшейся воды. Нефтепродуктов в пробах методом ИК-Фурье спектроскопии обнаружено не было.

Данный факт не противоречит общему положению дел – после закрытия навигации на канале им. Москвы и на р. Волга и закрытия паромной переправы количество загрязнений нефтепродуктами сильно уменьшается, а водная экосистема успевает очиститься от загрязнений и восстановиться.

1. Нефтепродукты содержат в основном алканы, циклоалканы и ароматические соединения (алканы в нефти составляет 25-30 %; циклоалканы колеблются от 25 до 75%; содержание аренов в нефти изменяется от 15 до 50 %), поэтому хорошо определяются методом ИК-спектроскопии;

2. Существует много методов определения нефтепродуктов в различных природных объектах, ИК-спектроскопия — один из самых распространенных и удобных;

3. Для концентрирования нефтепродуктов требуются большие объемы проб;

4. Для определения нефтепродуктов из экстракта в ССl4 методом ИК-Фурье спектроскопии осушение является незначимым фактором, поскольку для определения содержания нефтепродуктов можно использовать часть спектра, где не наблюдаются колебания ковалентных связей воды;

5. Сразу после окончания сезона навигации в некоторых местах канала им. Москвы в окрестностях г. Дубна содержание нефтепродуктов превышает ПДК;

6. В период весеннего паводка и перед началом навигации нефтепродукты в водных пробах методом ИК-Фурье спектроскопии не обнаруживаются.

ПНД Ф 14.1:2:4.128-98. Методика выполнения измерений массовой концентрации нефтепродуктов в пробах природной, питьевой и сточной воды флуориметрическим методом на анализаторе жидкости “Флюорат-02”. 2002. 2 с.

ГОСТ Р 51797-2001 Вода питьевая. Метод определения содержания нефтепродуктов. 2001. 15 с.

ПНД Ф 14.1:2.116-97. Методика выполнения измерений массовой концентрации нефтепродуктов в пробах природных и сточных вод методом колоночной хроматографии с гравиметрическим окончанием. 2004. 18 с.

Гладилович Д.Б. Флуориметрический метод контроля содержания нефтепродуктов в водах // Партнеры и конкуренты. 2001. №12. С. 11-15

Анализ нефтепродуктов методом ИК-спектроскопии [Электронный ресурс] // сайт «VIII Международная студенческая электронная научная конференция «СТУДЕНЧЕСКИЙ НАУЧНЫЙ ФОРУМ 2016″». URL: http://www.scienceforum.ru/2016/1654/21941 (дата обращения: 10.11.16)

Анализаторы нефтепродуктов в воде и почве [Электронный ресурс] // сайт «ТехОборудование. Лабораторное оборудование». URL: http://techob.ru/katalog/katalog-priborov/parametryi-okruzhayushhej-sredyi/11.4.-priboryi-ekologicheskogo-kontrolya/analizatoryi-nefteproduktov-v-vode-i-pochve.html (дата обращения: 18.11.16)

Конспект лекций по дисциплине: «Методы исследования параметров неупорядоченных полупроводниковых структур» [Электронный ресурс] // сайт «Gigabaza.ru». URL: http://gigabaza.ru/doc/195667-pall.html (дата обращения: 15.11.16)

Леоненко И.И., Антонович В.П., Андрианов А.М. Методы определения нефтепродуктов в водах и других объектах окружающей среды (обзор) // Методы и объекты химического анализа. 2010. Т. 5. № 2. С. 58 – 72.

Карпов Ю.А., Савостин А.П. Методы пробоотбора и пробоподготовка // Методы в химии. М: БИНОМ. Лаборатория знаний. 2015. 243с.

ПНД Ф 14.1.272-2012. Количественный химический анализ вод. Методика измерений массовой концентрации нефтепродуктов в сточных водах методом ИК-спектрофотометрии с применением концентратомеров серии КН. 2012. 24 с.

СанПиН 2.1.4.1074-01. Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Гигиенические требования к обеспечению безопасности систем горячего водоснабжения. 2001. 67с.

источник