Меню Рубрики

Химический анализ воды для бетона

В современном строительстве трудно переоценить значение качества бетона, поскольку надежность и прочность монолитных зданий напрямую зависит от состава этого строительного материала.

Химический анализ бетона проводят с целью определения его состава и концентрации всех компонентов, что необходимо перед началом любых строительных работ. Это поможет многим строителям избежать использования некачественных стройматериалов и застраховать себя от убытков, связанных с применением сырья, несоответствующего стандартам.

Химический анализ бетона довольно трудоемкий процесс, который проводится с помощью специального оборудования. На качество бетона влияют многие факторы, главные из которых:

  • качество используемого цемента и различных заполнителей;
  • точное соблюдение технологического процесса;
  • контроль всего сырья, которое используется в процессе строительно-монтажных работ;
  • использование инновационных методов в процессе производства бетона.

Исследование качества бетона весьма важно для строительных предприятий, поскольку анализ продукта позволяется контролировать весь процесс производства. Если вам необходимо сделать химический анализ бетона, тогда квалифицированные специалисты АНО «Центр химических экспертиз» с помощью новейших методик и высокоточного оборудования проведут качественную экспертизу.

В лабораторных условиях здесь определят качество цемента и заполнителей и предоставят вам полную развернутую характеристику состава бетона. Результаты экспертизы позволят контролировать качество вашей продукции или помогут закупить бетон, полностью соответствующий технологическим требованиям.

Результат работ по созданию бетонных и железобетонных конструкций находится в большой зависимости как от качества компонентов, использованных для составления бетонной смеси, так и от соблюдения технологических условий на каждой стадии бетонных работ.

Тщательный контроль необходимо осуществлять на следующих этапах:

  • поступление и хранение материалов, применяемых в ходе бетонных работ – песка, цемента, гравия, щебня, арматуры и пр.;
  • создание и монтаж на месте элементов арматурной конструкции;
  • создание и сборка опалубочных элементов;
  • подготовка опалубки и основания под укладку бетона;
  • составление и транспортировка смеси бетона к месту укладки;
  • уход за бетонной конструкцией в течение срока набора ею критической или расчетной прочности (отверждения).

Все компоненты будущей бетонной конструкции проверяются на соответствие нормам ГОСТов. Их характеристики анализируются в соответствии с единой методикой, специально предназначенной для лабораторий на строительных предприятиях.

В ходе операций по армированию проверка качества работ и материалов ведется при получении арматуры – проверяется заводская маркировка (наличие бирок), соответствие марок заявленным требованиям проектировщиков. Процессы складирования и транспортировки сопровождаются проверкой правильности размещения арматурной стали по сортам, маркам и размерам, сохранения ее качественных характеристик после доставки на строительный объект.При построении арматурных конструкций и элементов проверяется соответствие геометрической форме и габаритам, правильности выполнения сварных швов и их качеству. Выставленные в блок бетонирования и объединенные в общую конструкцию арматурные элементы анализируются на соответствие заданным размерам и положению согласно допусками.

Работы по монтажу опалубочных элементов ведутся с проверкой верности их установки, построения креплений, плотность сопряжения щитов по стыкам, соответствие собранной опалубочной формы и арматурной конструкции (обеспечивает формирование защитного слоя заданной толщины). Пространственное положение опалубки анализируется путем нивелировки и привязки к осям в нескольких отдельных секторах, верность расчетным размерам определяется промерами с помощью измерительного инструмента. Допуски при построении опалубки указаны в ГОСТ Р 52085-2003, ГОСТ Р 52086-2003 и справочной литературе. Перед тем, как будет произведена укладка бетонной смеси, поверхности опалубки проверяются на чистоту и качество нанесения смазочных материалов.

Ввод компонентов смеси в миксер сопровождается тщательной проверкой дозированных порций, длительности перемешивания, плотности и степени подвижности бетона. Контроль подвижности смеси бетона проводится как минимум дважды за рабочую смену, ее показатели не должны быть на 10 мм меньше или больше расчетных, допуски по плотности – не выше 3%.

Процедура доставки бетона на стройплощадку выполняется с отслеживанием параметров смеси – на отсутствие схватывания, расслоения, потери подвижности по причине высыхания.

На месте бетонных работ важно следить за высотой сбрасывания смеси, длительности вибрирования с достижением равномерного уплотнения, препятствовать расслоению смеси, формированию в ее структуре пустот и раковин.

Виброуплотнение бетонной смеси производится под визуальным контролем, критериями служат степень ее осадки, образование цементного молочка, завершение выхода воздушных пузырей. Более точно результаты уплотнения анализируются с помощью радиоизотопных плотномеров, вычисляющих плотность бетонной смеси путем замеров степени поглощения гамма-излучения.

В процессе бетонирования конструкций значительной площади, уплотнение смеси бетона определяется с помощью нескольких датчиков цилиндрической формы, внешне напоминающих щупы, размещаемых в зависимости от толщины укладываемой смеси. Чем выше плотность бетона, тем меньше его сопротивление электрическому току, пропускаемому через бетонную смесь – работа датчиков базируется на этом принципе. Они устанавливаются вблизи вибрационных установок, сообщая оператору о достижении необходимой плотности звуковым и световым сигналом.

Выяснить полные качественные характеристики бетона возможно лишь одним способом – испытав его на прочность путем сжатия специально изготовленных бетонных кубиков до тех пор, пока не удаться их полностью разрушить.Кубики выполняются в тот же момент, когда выполняется укладка бетона, их выдерживают точно в таких же условиях, что и основные бетонные конструкции. Обычно испытание на сжатия проходят кубики длиной 160 мм.

В зависимости от класса бетона требуется изготовить по три тестовых кубика одинакового размера. Для оценки характеристик фундаментов, предназначенных под различные конструкции, кубики формируются из каждых 100 кубометров бетонной смеси. При создании массивных фундаментных конструкций, рассчитанных под установку оборудования технологического назначения, образцы для испытаний на прочность готовятся из каждых следующих 50 кубометров бетона, а для фундаментов под каркасные и тонкостенные (облегченные) конструкции кубики необходимо выполнить из каждой новой партии бетона объемом 20 кубометров.

Относительно полную оценку прочности бетонной конструкции позволяет получить бурение кернов в ее теле с последующим испытанием образцов на сопротивление сжатию.

Помимо лабораторных исследований прочностных характеристики образцов бетона из конкретных партий существуют способы косвенной оценки бетонных конструкций и сооружений без их какого-либо разрушения. Среди них наиболее популярны механический способ, базирующийся на зависимости между поверхностной твердостью бетона и его прочностью на сжатие, а также импульсно-ультразвуковой, применение которого основывается на замерах скорости продольных волн ультразвука, направленных в бетонную конструкцию и степени их полного затухания.

Испытания прочностных характеристик армированного бетона методом механического воздействия проводятся с помощью инструмента, называемого склерометр. Рассмотрим версии этого прибора, предназначенные для выяснения прочности бетона.

Молоток Кашкарова. Его необходимо установить стороной с шариком на поверхности конструкции из бетона, затем ударить по обратной стороне обычным слесарным молотком. После удара на бетонной поверхности и на эталонном стержне останутся выбоины, измерение которых позволит определить поверхностную прочность бетона на сжатие. Конструкция молотка Кашкарова должна соответствовать нормам ГОСТ 22690-88.

Молоток Шмидта. В его корпусе расположен ударный стержень – сняв блокировку необходимо полностью его выдвинуть, затем прижать к бетонной поверхности, вжимая ударный стержень в корпус до тех пор, пока он не полностью не погрузиться в него и не ударит по бетону. Удар стержневого молотка вызовет отскакивание прибора и перемещение измерительного механизма по шкале с разметкой – в процессе важно удерживать инструмент строго перпендикулярно к поверхности бетонной конструкции. Дистанция отскока молотка – зависит от поверхностной прочности бетона, т.е. чем она выше, тем на большее расстояние переместиться молоток. Принцип действия современных аналогов молотка Шмидта, снабженных электронной измерительной шкалой, не отличается от его механических аналогов.

Специальные приборы для ультразвуковых исследований бетона, к примеру, УКБ-1, также позволяют определить прочность бетонных конструкций. Они генерируют ультразвук, по скорости движения которого через толщу бетона определяются его прочностные характеристики. При соответствии технологических условий определенным требованиям – применение материалов со схожими характеристиками, соответствие технологии установленным нормативам и др. – точность данных по прочности бетона будет достаточно высока.

В условиях низких температур соблюдения процедур, описанных выше, будет недостаточно. Помимо мер качественного контроля необходимо предпринять дополнительные действия, которые будут рассмотрены далее.

Проверки состояние бетонной смеси в течение всего срока приготовления очередной партии ведутся не реже одного раза в 120 минут. При поступлении в бетоносмеситель непрогретый наполнитель (щебень, гравий и песок) не должен содержать снега и льда, смерзшихся зерен. В процессе получения смесей бетона с содержанием противоморозных добавок необходимо замерять температуру сухих компонентов и воды перед их вводом в смеситель, определять содержание солей и температуру готовой смеси на ее выходе.

Транспортировка бетона проводится с разовой проверкой за смену состояния укрывающих и утеплительных материалов, качества обогрева и теплоизоляции емкостей, в которых смесь перевозиться и в которые поступает после доставки.

Если перед укладкой бетонной смеси выполняется ее разогрев с помощью электрического оборудования, то требуется контролировать ее температуру в ходе разогрева каждой новой порции.

На стройплощадке, непосредственно перед началом работ по укладке смеси, проводится обследование внутренних стен опалубки, основания бетонируемой площадки и арматурной конструкции на отсутствие снега, льда. Внешние стенки опалубки должны быть теплоизолированы в соответствии с технологическими условиями, проведет отогрев основания бетонируемого участка и зон его сопряжения по стыкам с опалубкой.

В процессе укладки бетона ведется контроль над его температурой на стадии выгрузки из транспортного средства, затем температурные показатели снимаются еще раз, но уже по завершении работ по размещению бетона. Не закрытые опалубкой участки бетонирования следует также оценить на технологическое соответствие по гидроизоляционным и теплоизоляционным характеристикам.

Замеры температуры бетона, проходящего стадию выдерживания в условиях зимы, выполняются в следующем порядке:

  • при использовании технологий предварительного разогрева, «термоса» и обогрева в заданных температурно-влажностных условиях (тепляке) следует проводить замеры температур раз в два часа в течение первых суток, на менее двух раз в течение смены на протяжении следующих трех суток и однократно за 24 часа в течение дальнейшего срока выдерживания;
  • при укладке бетона, содержащего противоморозные добавки, его температуру необходимо измерять троекратно в течение каждого дня с момента завершения работ до тех пор, пока им не будет достигнута проектная прочность;
  • при проведении электропрогрева бетонной конструкции, в течение набора ею температуры с интервалом до 10оС в час, температуру следует мерять через каждые два часа, далее как минимум два раза за время каждой смены.

После того, как бетонная конструкция пройдет срок выдерживания и набора проектной прочности, а также будет выполнен демонтаж опалубки, проводятся замеры температуры воздуха как минимум раз в течение каждой рабочей смены. Температурные данные по бетонной конструкции получают путем высверливания узких скважин и погружения в них термометров, а также применения специальных технических термометров. Следить за изменениями температуры крайне важно в секторах, потенциально подверженных высокому охлаждению (выступы и углы), а равно и нагреву – участки, близкорасположенные к нагревательным электродам, зона прямого контакта с термоактивными элементами опалубки. Учет сведений по температурам ведется в специальной ведомости.

Если проводится обогрев бетона при помощи электродов, необходимо два раза за каждую смену замерять силу тока и напряжение в питающем трансформаторе с внесением этих данных в журнал.

Лабораторные испытания образцов бетона на прочность выполняются в соответствии со стандартной процедурой, приведенной выше. Кроме того на месте бетонных работ создаются дополнительные образцы-кубики, предназначенные для проверки на прочность:

  • при бетонировании с электронагревом и по методу «термоса» проводятся испытания трех кубиков после того, как температура конструкции снизится до расчетного уровня;
  • при работах с бетоном, содержащем противоморозные добавки, первые три образца исследуются после понижения температуры конструкции до расчетной для добавок, затем три кубика испытываются после выхода бетона на положительную температуру и выдерживания их в течение 28 суток при нормальных условиях. Последние три кубика-образца тестируются на прочность перед тем, как основная конструкция будет нагружена согласно проектным расчетам.

В ситуации, когда образцы для испытаний содержатся при низких температурах, необходимо прежде выдержать их при температуре от +15 до +20оС, а после проверять их прочностные характеристики.

Если набор прочностных характеристик бетонной конструкции обеспечивается при помощи электрических элементов, индукционном или инфракрасном нагреве, либо в термически активной опалубке, то получение образцов для испытаний такого бетона чаще всего невозможно. Единственный способ отслеживать прочность бетона в таких ситуациях – строгое обеспечение расчетных температурных режимов.

Помимо оценки прочности, проводимой путем разрушения кубиков-образцов и высверленных кернов, необходимо вести проверку неразрушающими методами – к примеру, с применением молотков Шмидта и Кашкарова. Важно тщательно регистрировать каждую операцию в рамках контроля качества, производимую в соответствии с технологиями бетонных работ, поскольку при приемке объекта этак документация будет предъявлена комиссии. Напоминаем – приемка бетонного основания, блока бетонирования, куда предстоит уложить смесь бетона, оформляется актом, далее ведутся журналы по контролю температур в заданном порядке и в соответствии с установленными формами.

Читайте также:  Анализ промывных вод на посев

Автор текста: Абдюжанов Рустам

Понравилась статья? Поделись с друзьями:

Данный текст статьи защищен авторскими правами! Любое копирование возможно, только после письменного согласия администрации.

Теги: укладка бетона качество бетона

Я говорю своим ученикам: вы должны вкладывать в работу три вещи. Первая – это усердие, вторая – любовь, а третья – страдание. Гленн Мёркатт (р. 1936) / Никогда не отказывайтесь от работы, считая ее ниже своего достоинства. Джулия Морган (1872-1957) / Остерегайтесь чрезмерной самоуверенности, особенно в отношении строительных конструкций. Касс Гилберт (1859-1934) / Противоречия порождают жизненную силу. Кэндзо Танге (1913-2005) / Мы не выполняем работу. Я считаю, что, по сути, мы – первооткрыватели. Гленн Мёркатт (р. 1936) / Меньше значит больше. Людвиг Мис ван дер Роэ (1886-1969) / 1) Сексуальная жизнь 2) Сон 3) Домашние животные 4) Садоводство 5) Личная гигиена 6) Защита от непогоды 7) Домашняя гигиена 8) Обслуживание автомобиля 9) Приготовление пищи 10) Отопление 11) Солнечное освещение 12) Работа: Все эти требования необходимо учитывать при строительстве дома. Ханнес Мейер (1889-1954) / Очень часто приходится пренебрегать мнением клиентов в их же интересах. Джон Йохансен (1916-2012) / Строительство – это не наука. Наука изучает отдельные явления, чтобы вывести общие законы. Инженерное проектирование использует эти законы, чтобы решать конкретные практические задачи. В этом оно ближе к искусству или ремесленничеству. Ове Аруп (1895-1988) / Я не бог, но я гарантирую. Иван Баяндин (р.1956).

Сравнительный анализ прочности бетона.

Сравнительный анализ прочности бетона, определенной методами разрушающего и неразрушающего контроляПри обследовании несущих строительных конструкций зданий и сооружений, в соответствии с источником [5], определяется прочность бетона на одноосное сжатие.

Известно, что в бетонных и железобетонных конструкциях прочность бетона определяют механическими методами неразрушающего контроля по ГОСТ 22690-88, и разрушающего контроля образцов, отобранных из конструкций по ГОСТ 28570-90 и контрольных образцов по ГОСТ 10180 90.

Для определения прочности бетона в конструкциях методами неразрушающего контроля, в соответствии с требованиями гл. 3 ГОСТ 22690-88 «Бетоны. Определение прочности механическими методами неразрушающего контроля», предварительно устанавливают градуировочную зависимость между прочностью бетона и косвенной характеристикой прочности (в виде графика, таблицы или формулы). При обследовании конструкций ГОСТ допускает применять градуировочную зависимость, установленную для бетона отличающегося от испытываемого с уточнением ее в соответствии с методикой, приведенной в приложении 9 источника [1].

При построении градуировочной зависимости проводят испытания предварительно изготовленных кубов бетона, обжатых в прессе, известными методами неразрушающего контроля (пластической деформации, ударного импульса, упругого отскока), образцов, отобранных из конструкции на участке, на котором предварительно проводятся вышеназванные испытания с последующим их разрушением.

Предприятия – изготовители современных приборов неразрушающего контроля в процессе их конструирования и апробирования формируют базовые градуировочные зависимости на основании результатов параллельных испытаний образцов – кубов, изготовленных из бетонов основного ряда классов с различными видами заполнителей, неразрушающими методами по ГОСТ 22690-88 и затем в прессе (разрушением) по ГОСТ 10180-90 «Бетоны. Методы определения прочности по контрольным образцам».

Приборы оснащаются базовыми градуировочными зависимостями и закладываются в электронную программу прибора, либо, если прибор механического действия, поставляются с градуировочными зависимостями в виде графиков, таблиц, формул.

Практика показывает, что значения прочности бетона, определенные приборами неразрушающего контроля, в ряде случаев, существенно отличаются от значений прочности бетона, определенных разрушающим контролем образцов, отобранных из обследуемой конструкции.

В статье дается сравнительный анализ результатов определения прочности бетона методами разрушающего и неразрушающего контроля. Определены причины расхождений величин прочности бетона. Определен коэффициент Кс для корректировки базовых градуировочных зависимостей, в соответствии с методикой приложения 9 источника [1].

Исследовался тяжелый бетон сборных и монолитных железобетонных конструкций строительных объектов Перми и Пермского края.

При испытаниях бетона использованы следующие приборы неразрушающего контроля: гидропресс измерителя прочности бетона «Оникс – ОС» (предприятие – изготовитель — Научно-производственное предприятие «Интерприбор», г. Челябинск), реализующий метод отрыва со скалыванием – локального разрушения путем вырыва стандартного анкерного устройства №III или №II; склерометр «ОМШ-1 ВК 15.00.000 ПС» (предприятие – изготовитель — Научно-технический центр средств контроля качества «Контрос», г. Солнечногорск, Московской области, реализующий метод упругого отскока, измеритель прочности бетона ИПС-МГ4 (предприятие – изготовитель — Специальное конструкторское бюро «Стройприбор», г. Челябинск), реализующий метод ударного импульса.

Испытания образцов, отобранных из конструкций, разрушающим контролем, проведены следующими лабораториями:

1. Региональная испытательная лаборатория цементов Пермского Государственного технического университета (Кафедра строительных материалов и специальных технологий).

2. ООО «Испытательная лаборатория Оргтехстроя» (Аттестат аккредитации Ростехрегулирования № РОСС RU.0001.21 СЛ 55 от 04 марта 2009 г.).

3. Лаборатория ООО «Краснокамский завод ЖБИ», г. Краснокамск, Пермского края.

В нижеприведенных таблицах №№1 — 4 проведены сопоставления результатов, полученных при испытаниях бетона конструкций методами разрушающего и неразрушающего контроля, на конкретных объектах. Для подсчета погрешности между лабораторными испытаниями (прессом) и приборами неразрушающего контроля за основной (100%) принят метод лабораторных испытаний (пресс).

Определение прочности бетона конструкций фундамента насосной станции промышленных стоков ЦБК «Кама» в

г. Краснокамске Пермского края

Определение прочности бетона контрольных образцов (стандартных кубов), изготовленных на ООО «Краснокамский завод ЖБИ», г. Краснокамск Пермского края. (Испытания проведены лабораторией завода)

Определение прочности бетона диафрагм жесткости монолитного железобетонного здания жилого дома по ул. Вильямса, 37 «б» в Орджоникидзевском районе г. Перми

Определение прочности бетона конструкций монолитного железобетонного ростверка фундамента здания по ул. Крисанова, 12 «а» в Ленинском районе г. Перми

На основании анализа и синтеза результатов испытаний выявлены следующие причины расхождений величин прочности тяжелого бетона на одноосное сжатие методами разрушающего контроля в сравнении с неразрушающими методами контроля:

1. Разница в результатах исследований между испытаниями в прессе (методом разрушения – одноосного сжатия) и приборами неразрушающего контроля ОМШ – 1 (методом неразрушающего контроля – упругого отскока) и ИПС-МГ4 (методом неразрушающего контроля – ударного импульса) объясняется тем, что приборы неразрушающего контроля по условиям испытаний использовались для определения прочности поверхностного слоя. Поверхностный слой характеризуется по составу меньшим количеством крупного заполнителя и большим количеством цементного раствора. Вследствие этого поверхностный слой обладает меньшими прочностными характеристиками, чем основной массив, и класс бетона поверхностного слоя на одну – две ступени ниже класса бетона основного массива конструкции.

2. Разница в результатах исследований между испытаниями в прессе (методом разрушения – одноосного сжатия) и методом неразрушающего контроля – отрыва со скалыванием (прибор «ОНИКС – ОС» минимальна и находится в пределах допускаемой относительной погрешности прибора (2%). Тем самым полученные данные подтверждают возможность использования метода неразрушающего контроля – отрыва со скалыванием, без установления индивидуальных градуировочных зависимостей при использовании стандартного анкерного устройства, что согласуется с требованиями п.3.14 источника [1]. Анализ данных результатов предполагает также, что на глубине 30 – 40 мм от поверхности бетонных конструкций прочностные характеристики бетона стабилизируются и основной массив бетона приобретает устойчивую равнопрочность материала при достаточном качестве основных циклов производства работ (укладки, уплотнения, прогрева при отрицательных температурах, выдерживания бетона).

Анализом результатов испытаний установлено:

1. независимо от способа исследования железобетонных конструкций, прочность бетона имеет тенденцию нарастания с поверхности в глубину массива, и на некоторой глубине от поверхности прочностные характеристики бетона стабилизируются и основной массив бетона приобретает устойчивую равнопрочность материала. Следовательно, для достоверности получаемых значений прочности неразрушающими методами (пластической деформации, ударного импульса, упругого отскока) необходимо перед испытаниями снимать поверхностный слой бетона.

2. устойчивая закономерность: чем выше прогнозируемый (проектный) класс исследуемой конструкции, тем большая разница полученных величин прочности в сравнении разрушающего метода (пресс) с неразрушающими методами контроля. Выявленная закономерность предполагает следующее:

2.1. Для малых и средних классов бетона (В7,5 – В25) нарастание прочности с поверхности в глубинные слои плавное, то есть прочность поверхностных слоев соизмерима с прочностью основного массива;

2.2. Для высоких классов бетона (В25 – В40) нарастание прочности с поверхности в глубинные слои резкое, то есть прочность поверхностных слоев значительно ниже прочности основного массива;

2.3. Для малых и средних классов бетона (В7,5 – В25) корректно использование неразрушающих методов контроля с базовыми настройками приборов, полученными при сопоставительных испытаниях с разрушающим методом в процессе конструирования прибора на предприятии – изготовителе, согласующимися с требованиями источника [1];

2.4. Для высоких классов бетона (В25 – В40) использование неразрушающих методов контроля допустимо только в строгом соответствии табл. 1, п.3.14 и прил. 9 источника [1], то есть с корректировкой коэффициента Кс градуировочной зависимости для бетонов, отличающихся от испытываемых (по составу, возрасту, условиям твердения, влажности) в соответствии с предлагаемой методикой источника [1].

1. ГОСТ 22690 88. Бетоны. Определение прочности механическими методами неразрушающего контроля. М., 1989 г.-16 с.

2. ГОСТ 18105 86. Бетоны. Правила контроля прочности. М., 1987 г.- 15 с.

3. ГОСТ 28570 90. Бетоны. Методы определения прочности по образцам, отобранным из конструкций. М., 1991 г.- 15 с.

4. ГОСТ 10180 90. Бетоны. Методы определения прочности по контрольным образцам. М., 1991 г.- 27

5. Правила обследования несущих строительных конструкций зданий и сооружений. СП 13-102-2003/ Госкомитет РФ по строительству и жилищно-коммунальному комплексу (Госстрой России). М., 2004 г.-27 с.

  • Механические методы исследования показателей бетонной смеси
    • Методы проверки бетона при помощи молотков Физделя и Кашкарова
    • Исследования свойства бетона при помощи склерометра и пистолетов
  • Ультразвуковые способы исследования параметров бетона

На сегодняшний день свойства бетонного раствора полностью зависят от параметров его прочности в застывшем состоянии. Поэтому определение прочности бетона является необходимым мероприятием, на основании которого делается вывод о соответствии материала принятым стандартам. Так, к характеристикам прочности необходимо отнести показатели во время сжатия, изгиба, растяжения, а также уровень однородность смеси. Качественная бетонная смесь будет успешно противостоять механическим ударам и воздействию окружающей среды.

Ультразвуковой метод помогает быстро определить прочность бетонных стен и перекрытий.

Сегодня методы определения прочности бетона подразделяются на 2 вида: осуществляющиеся при помощи контроля, названного неразрушающим, и производимые при помощи разрушающего контроля. Методы первого вида, в свою очередь, бывают механическими и ультразвуковыми. При помощи данных способов могут определяться не только прочность, но и показатели морозоустойчивости, влагонепроницаемости, влажности и толщины защитного слоя материала, используемого при строительстве.

Самый старый и популярный способ определения прочности материала на сжатие называется методом стандартных образцов. Для проведения исследования из бетонной смеси изготавливаются контрольные образцы, представляющие собой кубы с длиной сторон в 20 см. Для проведения испытаний кубы должны иметь срок выдержки не менее 28 дней. Затем готовые образцы устанавливаются под пресс и сжимаются до полного разрушения. Показатели нагрузки, при которых произошло разрушение, фиксируются, а затем с их помощью осуществляется расчет прочности монолита.

Неразрушающий контроль бетона производится специальными механическими приспособлениями. При этом используются методы, определяющие свойства монолита при воздействии на него определенными инструментами. Учитываются показания приборов при таких манипуляциях, как скалывание, отрыв, пластическая деформация и некоторые другие.

Принцип действия испытательных механизмов основан на показателях глубины попадания прибора в толщу поверхностного слоя бетонного монолита. В качестве примера можно рассмотреть молоток Физделя, при ударах которым на поверхности материала остаются лунки. Диаметры лунок и определяют прочностные характеристики бетона.

Если существует необходимость произвести испытания прочности перекрытий уже построенных объектов, все поверхности следует очистить от краски, шпаклевки или штукатурки.

Устройство молотка Кашкарова.

Затем осуществляются 10-12 средних по силе ударов по поверхности участка, выбранного для испытания. Отпечатки от молотка должны находиться на расстоянии не менее 3 см друг от друга.

После этого при помощи штангенциркуля и специальной линейки производятся измерения диаметров лунок. Каждое измерение производится с точностью до десятых долей миллиметра сначала в одном направлении лунки, затем в строго перпендикулярном. На основании полученных сведений и данных о диаметре отпечатков лабораторных образцов, взятых за стандарт, составляется тарировочная кривая, позволяющая произвести определение прочности бетона на сжатие.

Кроме того, определить прочностные характеристики монолита можно и при помощи молотка Кашкарова. Принцип действия данного инструмента так же, как и молотка Физделя, основан на свойствах пластической деформации. Конструкционно молоток Кашкарова представляет собой прибор, в который, кроме рабочего органа, введен и контрольный стержень. За счет этого прибор оставляет не одинарный, а двойной отпечаток. Один располагается на поверхности исследуемого объекта, а другой — на контрольном стержне. Анализ отпечатков и оставленных диаметров лунок позволяет произвести расчеты прочности бетона на сжатие.

Таблица соотношения прочности бетона.

Инструменты, которые применяются для определения прочностных характеристик бетонного монолита на основании свойств упругого отскока, оснащены стержневым ударником, или бойком. Примером таким инструментов могут служить пистолеты Борового и ЦНИИСКа, склерометр КМ и молоток Шмидта.

Читайте также:  Анализ пролактин можно пить воду перед

Исследования определяют величину силы отскока ударника, которая при испытаниях отражается на шкале механизма. Как правило, сила энергии пружины при опыте должна иметь постоянное значение.

Спуск стержневого ударника производится самостоятельно при соприкосновении инструмента с поверхностью. В склерометр КМ встроен боек, имеющий определенное значение массы. При помощи пружины, которой задана жесткость, производится удар по ударнику из металла, прижатому к испытываемой поверхности.

Методы контроля прочности бетона, основанные на показателях отрыва со скалыванием, позволяют определить характеристики монолита не на поверхности, а в теле элемента. Для исследований используются участки, лишенные металлической арматуры.

Методы установления прочности бетона.

В толщу бетона устанавливаются специальные анкеры, при помощи которых затем производится исследование прочностных характеристик бетона неразрушающим способом.

На сегодняшний день описанные методы неразрушающего контроля прочности бетона считаются самыми точными, так как используют для расчетов зависимость, в которой могут изменяться всего лишь 2 параметра: величину фракций наполнителя бетонного раствора и его тип. При этом недостатками неразрушающего контроля прочности бетона является высокая трудоемкость в комплексе с невозможностью использования данных методов при высокой армированности материала. Кроме того, при испытаниях происходит частичное повреждение поверхности исследуемого монолита.

При исследовании прочностных характеристик бетонных перекрытий ультразвуковым неразрушающим методом используются специальные приборы, осуществляющие сквозное УЗ прозвучивание. За счет этого можно определить характеристики не только поверхностных слоев, но и толщи бетонного монолита. Принцип работы такого оборудования основан на связи, существующей между скоростью или временем распространения ультразвука и прочностью материала.

При этом метод прозвучивания может осуществляться в прямом или поперченном направлении. Как правило, использование поперечного направления применяется при исследовании линейных сборных конструкций, коими являются колонны, ригели или балки. Приборы, преобразующие ультразвук, устанавливаются с двух сторон конструкции противоположно друг другу.

Приборы отправляют волны, а затем принимают их и преобразуют в визуальные сигналы, которые указывают на состояние конструкции.

Как правило, инструменты, осуществляющие неразрушающий контроль бетона, в наши дни применяются для определения соответствия реальной марки бетона, заявленной покупателям. Кроме того, ультразвуковой метод позволяет контролировать прочность бетона, при которой можно осуществлять распалубку и следить за дальнейшим состоянием конструкции. Учитывая это, все приборы должны обладать точностью и легкостью в использовании, чтобы их мог применять как специалист, так и неквалифицированный сотрудник.

Грунтовые воды залегают на первом от земной поверхности водоупорном слое. Они представляют собой разновидность подземных вод.

В регионах, где наблюдается климат с повышенной влажностью, процессы инфильтрации (впитывания) протекают более оживленно, вследствие чего уменьшается содержание минералов и солей в почвах и горных породах. Иногда присутствует обратный процесс: чрезмерное испарение влаги, содержащейся в грунтах, это приводит к повышению в них концентрации солей.

Стандартное исследование грунтовой воды – обязательная процедура при совершении инженерно-геологических исследований участка, который планируется под застройку. Выполнение стандартного анализа вод этого типа совершается в лабораторных условиях, так как для определения степени жесткости образца, его минерализации, способности оказывать разрушающее действие на стройматериалы необходимо специальное оборудование.

Минерализация воды – количественный показатель, указывающий концентрацию солей в жидкости. Для определения этого параметра вода выпаривается, затем проводится анализ образовавшихся в результате твердых веществ.

    Пресная – соли отсутствуют; Слабоминерализованная: на литр воды приходится 1-2 г солей; Малая: содержание солей колеблется в пределах 2-5 г/л; Среднеминерализованная, концентрация минеральных веществ составляет 5-15 г/л; Высокоминерализованная (15-30 мг/л); Рассол (30-150 мг солей на литр воды); Крепкий рассол (в литре жидкости содержится 150 г солей и больше).

Жесткость грунтовых вод – важный показатель, если речь идет о создании скважины для добычи питьевой воды. Определяется параметр содержанием ионов магния и кальция. Степень чистоты грунтовой воды, отсутствие в ней вредных веществ – эти свойства свидетельствуют и об отсутствии загрязнений грунта, что особенно важно при строительстве жилых объектов.

Показатель агрессивности, способности разрушать стройматериалы, также важен, он обязательно исследуется при совершении инженерных изысканий на стройплощадке. Под действием химических веществ, содержащихся в грунтовых водах, бетон и другие строительные материалы могут утратить свою прочность. Поэтому стандартный анализ грунтовой воды обязательно включает в себя определение агрессивности среды. Она бывает следующих видов:

    Углекислотная; Общекислотная; Магнезиальная; Сульфатная; Выщелачивающая.

При исследовании грунтовой воды определяют показатель кислотно-щелочного баланса. Он измеряется в единицах, нейтральное значение равно 7. Если параметр рН меньше этой цифры, значит вода кислотная: она оказывает разрушающее действие на бетон. При этом не важно, какой именно портландцемент входит в бетонную смесь.

Насколько сильным будет разрушающее действие такой воды, зависит от содержания в ней кислоты, ее способности к регенерации, скорости восстановительных процессов и давления, оказываемого грунтовой водой на бетон. Имеет значение и состав бетона: содержание в нем цемента, используемый наполнитель.

Показатель рН указывает на присутствие кислоты и ее концентрацию. Этот параметр становится известным после проведения предварительного исследования грунтовых вод. Для установления, какое именно вещество входит в состав жидкости, и с целью узнать его концентрацию проводится химический анализ.

При низком показателе рН можно утверждать, что в воде присутствуют органические кислоты и растворенная углекислота. Иногда в грунтовые воды попадают соединения серной и сернистой кислот, содержащихся в торфяных почвах. При наличии значительного агрессивного влияния грунтовых вод следует позаботиться об улучшении качества бетона: повысить содержание цемента, снизить количество воды в смеси.

Приступать к выбору строительных материалов и проектированию фундамента следует после определения качественных и количественных показателей грунтовых вод. Имея результаты этих исследований, можно избежать многих неприятностей:

    Усадки и разрушения фундамента; Появления в здании трещин; Сезонных затоплений грунтовыми водами; Иных негативных факторов.

Знание о возможных проблемах позволяет еще на начальном этапе работы над проектом объекта создать систему защиты (дренаж), подобрать оптимально подходящий для имеющихся условий фундамент. Если не планируется строительство подвального этажа, можно обойтись оборудованием качественной изоляции от влаги, которая будет препятствовать увлажнению стен. Иногда необходима гидроизоляция фундамента.

источник

Бетон считается тем типом строительного материала, который можно встретить практически повсеместно. Любое возведение объектов в наши дни подразумевает, что необходимости использовать данный состав для решения тех или иных задач. При проектировании следует определиться не только с маркой смеси, но и некоторыми другими её характеристиками. Только когда данный фактор урегулирован, следует начинать дальнейшие работы в данном направлении. Бетон включает в свой состав значительное количество компонентов самого разного типа. При этом, к числу обязательных составляющих относятся только три вида: заполнитель, вяжущий материал и вода. Следует подробнее рассмотреть последний представленный вариант. Распространено мнение, что вода для бетона может быть взята из любого источника, что не является верным предположением. Требования к жидкости не являются строгими, но если их не соблюдать, ожидаемым исходом подобных действий станет увеличенная вероятность возникновения проблем. Таким образом, вода для бетона должна быть взята из проверенных источников, либо пройти простой химический анализ, который готова провести любая специализированная лаборатория.

Основным растворителем, который применяется для создания цементных и бетонных смесей является вода. Её качество должно находиться на высоком уровне, поскольку оно влияет на сложные процессы формирования твердых структур и гидратных новообразований, которые зарождаются в их окружении. Кроме того, для большинства минеральных вяжущих компонентов, вода не только растворитель, но и химический компонент, активно вступающий в реакции. Если рассматривать процесс взаимодействия внутри состава, то вода для бетона необходима для того, чтобы обеспечить составу реакцию с цементом и превращение его в монолитную массу. Соответственно, её количество строго рассчитывается для каждой марки. Данный параметр должен быть таковым, чтобы произошла реакция с вяжущим материалом и в процессе этого взаимодействия не осталось лишней воды, поскольку это приведёт к образованию в материале пустот после того, как состав станет монолитным.

Вода затворения необходима для создания рабочей смеси и должна содержать минимальное количество твердых частиц. В этом качестве часто используют воду из природных источников, если в ней не содержатся вредные примеси, негативно сказывающиеся на характеристиках застывшего состава. Например, гумусовая кислота, которая встречается в болотных водах, при попадании в смесь снижает прочность материала и сказывается на уменьшении его срока службы. К примеру, смесь гуминовых и фульвокислот даже попавшая на поверхность обычного бетона впитается в поры и начнет постепенно разрушать конструкцию. Вяжущий компонент станет более хрупким, появятся трещины, а количество повреждений будет расти. Вода для бетона данного типа является недопустимой, а её применение не должно осуществляться. В ином случае, полученный материал не будет удовлетворять требованиям, что вызовет проблемы в ходе эксплуатации. Даже такие привычные материалы, как глина, гипс или частички почвы не должны попасть в смесь, т.к. они могут повлиять на уровень рН раствора.

Солевой состав жидкости, используемой для затворения, играет не менее важную роль, чем отсутствие микрочастиц. Для получения высоких характеристик вода для бетона должна быть близка по своим параметрам к питьевой. К опасным для бетона составляющим относят органические вещества и растворы солей. Сахара, фенолы и некоторые другие компоненты замедляют процесс гидратации цемента, что сказывается на прочности готового материала. Нефтепродукты, масла или жиры, которые покрывают поверхность жидкости в виде радужной пленки, также скажутся на скорости схватывания, так как они окружат и существенный процент частиц вяжущего. Более сложная ситуация может возникнуть при адсорбции этих веществ в зерна заполнителя, приводящая к уменьшению их сцепления с цементом. Попытка увеличить прочность добавлением большего количества цемента приведет к существенному удорожанию состава. Примесей солей хлора и сульфат ионов следует особо опасаться, потому, что они, во-первых, неконтролируемо изменяют сроки твердения бетона, во-вторых, могут стать причиной коррозии металлической арматуры, что приведет к закономерному обрушению постройки. Вода для бетона с солью подразумевает, что рано или поздно, жидкость прореагирует с цементом и хлориды освободятся. В таком состоянии они наиболее опасны, поскольку легко вступают в химические взаимодействия. Возникают процессы коррозии, а также другие негативные эффекты. Для изготовления конструкций фасадов, которые не будут покрываться каким-либо материалом, используют воду для бетона, в которой не содержатся красящие примеси. Это способствует увеличению общего показателя качества смеси при затворении и эксплуатации.

Многие из нас слышали о том, что затворенную смесь нельзя разбавлять для повышения её подвижности, но мало кто знает, почему возникло это правило. Густой бетон сложнее укладывается, чем жидкий, но избыточная вода не будет реагировать с цементом, который уже забрал необходимо её количество для процесса гидратации. В процессе набора прочности потребуется периодическое увлажнение, однако оно не идет ни в какое сравнение с удвоением объема жидкости, часто встречающимся у горе-прорабов. Если требуется увеличить подвижность смеси, вода для бетона должна вводиться в обычном количестве. Для достижения поставленной цели следует использовать пластификаторы. Они вводятся на этапе смешивания и способствуют увеличению текучести и удобоукладываемости состава.

источник

Тел: +7 (495) 728-94-19
Тел: +7 (963) 659-59-00
Москва, Олонецкий пр. д. 4/2

выполняем работы по г. Москве
и всей Московской области

Геология

Грунтовая лаборатория

Грунтовая лаборатория
Оснащенность лаборатории
Область аккредитации
Типы исследуемых грунтов
песчаные грунты
глины, суглинки, супеси
заторфованные грунты
техногенные грунты
Механические свойства грунтов
испытания грунтов на срез
компрессионные испытания
трехосное сжатие
свободное набухание
Физические свойства грунтов
гранулометрический состав
природная влажность
показатель текучести
предел пластичности
пористость, коэфф. пористости
определение плотности грунта
Химический анализ
химанализ водной вытяжки
коррозийная агрессивность

Библиотека

ООО «Буровики»:

Контакты
Рекомендательные письма
Допуски и Лицензии
Цены и сроки, прайс лист
Написать письмо


1 400 рублей за метр. Подробнее
Почему стоит заказать именно у нас

Грунтовые воды относятся к разновидностям подземных вод, которые залегают на водоупоре, расположенном ближе к поверхности. На территориях с влажным климатом происходит развитие интенсивных процессов инфильтрации, а также подземного стока, что приводит к выщелачиванию грунтов и горных пород. В некоторых случаях происходит излишнее их испарение, что приводит к засолению почвы. Поэтому стандартный анализ грунтовой воды, когда выполняются инженерно-геологические изыскания для проектирования зданий (сооружений), считается обязательным.

Стандартный анализ грунтовой воды выполняется в условиях лаборатории для получения показателей минерализации образца, его жесткости, агрессивности по отношению к различным материалам строительства (в первую очередь к стали, бетону и алюминиевым оболочкам кабелей), электропроводность и т.д. Минерализацией следует считать сумму всех минеральных веществ, которые растворены в грунтовой воде. Данный показатель получается методом выпаривания исследуемого образца. Следует различать такие степени минерализации грунтовых вод:

Жёсткость грунтовой воды определяется исходя из наличия ионов кальция и магния. Эти химические показатели важны при бурении скважин для поиска пресной воды населению. Также под застройку домов (коттеджей, сооружений) геология участка исследуется на показатель чистоты и безопасности для проживания в данной местности. А, как известно грунтовые воды являются главными показателями чистоты грунта.

Читайте также:  Анализ рассказа вешние воды тургенев

Проводя инженерные изыскания на отводимом участке (площадке) важно учитывать фактор агрессивности грунтовых вод. Грунтовые воды могут оказывать разрушающий эффект для бетона и других строительных материалов. Для этого в условиях лаборатории стандартный анализ грунтовой воды выполняется также для получения показателя агрессивности. Агрессивность грунтовых вод бывает таких типов:

  • выщелачивающая;
  • общекислотная;
  • сульфатная;
  • магнезиальная;
  • углекислотная

СП 11-105-97 Часть I. Общие правила производства работ Приложение Н (обязательное)

Показатели химического состава подземных и поверхностных вод
и методы их лабораторных определений при инженерно-геологических изысканиях

Показатели химического состава воды

Коррозионная активность воды к оболочкам кабелей

Метод испытания или обозначение государственного

стандарта на методы определения

температура в момент взятия пробы, °С

вкус и привкус при температуре 20 °С

Примечание — При проведении комплексных изысканий состав определяемых компонентов следует устанавливать с учетом требований СП 11-102-97

Результаты анализа грунтовой воды позволяет определить уровень ее рН. Если он пребывает ниже уровня нейтрального значения, которое составляет 7 единиц, то вода является кислотной. В таком случае она может разрушать бетон, вне зависимости от того, какого типа портландцемент использован в нем. Степень разрушения также зависит от вида и концентрации кислоты, возможности непрерывного обновления кислоты, скорости течения и давление грунтовой воды на бетон, расхода цемента, непроницаемости бетона и типа заполнителя.

Сама по себе величина рН является определяющим фактором вида или концентрации присутствующей кислоты, ведь это всего лишь мера степени кислотности. В качестве предварительных данных измерения рН очень полезны и позволяют получить представление о наличии или отсутствии кислот. Однако в большинстве случаев необходимым является проведение химического анализа, при котором определяется характер и концентрация кислоты. Как правило, кислотность естественных грунтовых вод, которые имеют низкий рН, вызвана органическими кислотами и растворенной углекислотой, а также, в отдельных случаях, сернистой и серной кислотой, которая поступает из соединений серы в торфяных грунтах. По мере увеличения интенсивности агрессивного воздействия можно повышать качество бетона, например, увеличивать расход цемента с более низким водоцементным отношением.

В зависимости от типа агрессивности грунтовых вод проектировщик принимает решения по выбору материала для строительства строения, а также глубины фундамента.

Анализ грунтовой воды необходим для получения детальной информации об участке исследований. Зная особенности данной жидкости можно своевременно предотвратить неприятные последствия: разрушение, усадка фундамента, трещины на здании, сезонное подтопление и т.д. Для этого проектировщики на первоначальных стадиях проектирования объекта планируют защитные мероприятия (дренажную систему), а также по возможности выбирают более подходящий для данной среды тип фундамента. Для зданий, не имеющих подвальных помещений и при высоком уровне грунтовых вод достаточно просто изолировать стены строения от влаги (не дать возможности поднятию уровня грунтовых вод по стенам). В некоторых случаях выполняют гидроизоляцию фундамента. В любом случае, необходимо учитывать тот факт, что грунтовые воды неблагоприятно влияют на строение в разные времена года (особенно зимой и во время таяния) и заранее принимать меры по их устранению.

источник

Коррозия железобетонных конструкций. Исследование химического состава высолов на бетоне. Исследование образцов затвердевшего бетона.

Прочность и долговечность бетона и железобетона зависит от многих факторов. Если при проектировании и получении бетона учтены все эти факторы, то изделие со временем только набирает прочность.

В данной статье рассматривается факт прямо противоположный: уже в ходе строительных работ на железобетонных плитах перекрытия между подвалом и первым этажом строящегося здания наблюдается появление высолов, продольных трещин, затем отшелушивается поверхностный слой бетона и куски бетона отпадают(отстреливают), открывая железную арматуру, частично покрытую ржавчиной, т. е. наблюдается разрушение плиты. Первый этап разрушения — появление высолов; обнаружено на 90 % плит перекрытия.

По внешним проявлениям было сделано предположение, что разрушение бетонной плиты, которое сопровождается коррозией арматуры, может быть вызвано хлоридной коррозией бетона ІІ вида. Если в бетон попадают хлориды, то усиливаются процессы растворения других составляющих. Гидроксид кальция выносится по капиллярным порам на поверхность бетона. На поверхности бетона образуется налет карбоната кальция. Щелочность поровой жидкости бетона падает, начинается коррозия железной арматуры. Присутствующие хлориды ускоряют этот процесс. Для установления присутствия хлоридов в бетоне была выявлена их концентрация в высолах и водной вытяжке трех образцов бетона.

Другой причиной появления высолов и трещин на бетоне может быть коррозия III вида, т. е. образование в бетоне кристаллогидратов, имеющих больший объем, чем исходные соединения. В бетоне создается напряжение, которое приводит к появлению трещин. Типичным примером коррозии III вида является сульфатная коррозия. Но не только сульфатная коррозия относится к III виду. Многие соли cпособны давать кристаллогидраты большего объема, чем исходные соединения. Для определения вероятности коррозии III вида были проанализированы высолы и водные вытяжки трех образцов бетона на присутствие сульфатов и карбонатов.

В литературе описаны подобные случаи раз рушения плит перекрытия строящихся зданий г. Москвы. Авторы считают, что разрушение можетбыть связано с загрязнением сырья при перевозке или с нарушением технологии получения бетона.

Это связано с тремя факторами: во-первых, бетон получали c использованием цемента или заполнителей, загрязненных инородными примесями. Например, чистые продукты перевозили в вагонах из-под удобрений, угля, извести, доломита и других веществ. Наличие мнородных веществ нарушает процесс структурообразования. Размер «отстрелянных», вырванных кусков бетона в описанных случаях, так же как и в нашем, составлял от 10 до 500 мм, число «отстрелов» достигало 50–60 единиц на площадь перекрытия. От количества и характера попавших примесей, по мнению авторов, зависит длительность процесса. Он может продолжаться от месяца до нескольких лет.

Во-вторых, бетон получали с использованием заполнителей, содержащих активный кремнезем. Щелочи реагируют на SiO2, и это приводит к образованию вначале мелких трещин, потом более крупных, а затем сколов.

В-третьих, бетон — это неоднородное гетерогенное тело. Наличие пор и трещин в бетоне — неотъемлемая особенность строения материала. Формулы для расчета прочности бетона учитывают неоднородность и дефекты структуры материала. Заданная прочность достигается только при определенном соотношении однородности и неоднородности. Авторы считают, если смешивать цементы разных производителей, разных марок, то неоднородность и дефектность структуры достигают критического уровня. Например, нельзя смешивать цементы марки ПЦ400-Д0, ПЦ400-Д20, ПЦ400-Д5. Схватывание различных цементов проходит с разной скоростью, темп набора прочности различается, поэтому структура бетона будет иметь дефекты. Это приведет к высолам и «отстрелам». То же самое наблюдается, если использовать смесь цемента ПЦ400-Д0 разных производителей.

Кроме перечисленных факторов на появление микротрещин оказывают влияние объемные деформации, различие температурных и влажностных деформаций отдельных компонентов, температурные и влажностные градиенты, коррозионные воздействия среды эксплуатации и т. п. Процесс разрушения бетона можно рассматривать как развитие трещин, возникающих обычно по месту контакта цементного камня и заполнителя. Авторы отмечают, что развитие микротрещин в бетоне со временем прекращается (эффект «самозалечивания»). В рассматриваемом случае процессы образования и развития трещин почти прекратились примерно через полгода.

В ходе настоящего исследования был определен химический состав высолов и сделан анализ водных вытяжек трех образцов бетона.

Методика и результаты исследования

Исследование химического состава высолов на бетоне

Высолы для анализа взяты в двух удаленных друг от друга точках на разных плитах перекрытия (образец № 1 — сухие высолы, образец № 2 — мокрые высолы). Были исследованы водные вытяжки высолов и определено содержание в фильтрате хлоридов, сульфатов, карбонатов, гидрокарбонатов, кальция, магния.

Таблица №1: Результаты анализа водной вытяжки высолов.

Расчеты показали, что растворимая в воде часть высола в обоих образцах представлена в основном гидрокарбонатами кальция и магния и гидроксидом кальция.

Затем исследовали солянокислую вытяжку высолов. Для этого часть высола, нерастворимого в воде, растворяли в НCl; наблюдалось активное выделение углекислого газа.

Часть высолов ни в воде, ни в HCl не растворяется. Разница нерастворившейся части для образцов связана с различными условиями отбора проб. В первом случае сухие высолы снимали скальпелем с бетона, была вероятность попадания в образец песка из бетона, который в НCl не растворяется. В соляно-кислой вытяжке определяли сульфаты, силикаты, полуторные окислы, кальций, магний.

Таблица №2: Результаты анализа солянокислой вытяжки высолов.

Таблица №3: Результаты анализа п.п.п. и водной вытяжки трех образцов бетона.

Таким образом, если не учитывать песок, попавший в образцы при отборе проб, то 98,19 и 99,07 % высолов образцов 1 и 2 растворимы только в НCl с выделением СО2 — это карбонат кальция. Для проверки выводов, сделанных о составе высола, определяли потери при прокаливании образца № 2 при 950 °С.

Показатель п.п.п. равен 46,2 %. Расчет показывает, что химически чистый гидроксид кальция должен давать п.п.п. 24 %, карбонат кальция — 44 %, а гидрокарбонат кальция — 65,4 %. Таким образом, полученный результат свидетельствует о том, что высол представлен карбонатом кальция с незначительной примесью гидрокарбоната (растворимая часть 1,48 и 0,83 %), хлориды и сульфаты в составе высола отсутствуют.

Исследование образцов затвердевшего бетона.

Определены потери при прокаливании и получены водные вытяжки трех образцов бетона:

проба № 1 — новая партия плит перекрытия, без повреждений;

проба № 2 — куски бетона, отвалившиеся от дефектных плит перекрытия;

проба № 3 — отшелушившийся верхний слой бетона дефектных плит перекрытия.

Образцы бетона были предварительно разрушены, отобрана через сито мелкая цементно-песчаная фракция. Определены п.п.п. по общепринятой методике при 950 °С.

Для получения водной вытяжки образцы были залиты водой и периодически перемешивались в течение суток. Взвесь отфильтровали. Анализ водной вытяжки приведен в таблице №3.

Следует отметить, что чем больше разрушение бетона, тем ниже рН среды, меньше щелочность.

Снижение рН среды приводит к образованию ржавчины на арматуре, что и наблюдается в действительности. Увеличение показателя «потери при прокаливании» можно объяснить карбонизацией гидроксида кальция: чем больше гидроксида кальция в бетоне, тем меньше п.п.п. В разрушенных образцах гидроксид кальция карбонизован. Хлориды в водных вытяжках всех образцов отсутствуют, сульфаты присутствуют в незначительном количестве.

Высолы на бетонных плитах перекрытия почти на 99 % состоят из карбоната кальция, что установлено двумя независимыми методами анализа.

Хлориды отсутствуют как в составе высолов, так и в водной вытяжке бетона, что свидетельствует о том, что разрушение бетона не связано с хлоридной коррозией.

Сульфаты отсутствуют в высолах, а в водной вытяжке образцов бетона присутствуютв количестве 0,2–0,35 % от массы взятого цементно-песчаного раствора. Такое количество сульфатов не может вызвать сульфатную коррозию.

Повышение потерь при прокаливании в разрушающемся бетоне по сравнению с обычным образцом и понижение рН водной вытяжки бетона и его щелочности свидетельствуют о карбонизации гидроксида кальция. О снижении концентрации гидроксида кальция в бетоне свидетельствует так-же появление ржавчины на арматуре.

Карбонизация гидроксида кальция в разрушающемся бетоне, образование высолов на поверхности плит, появление трещин на бетоне и сколов — последствия дефектов структуры бетона.

Причиной нарушения структуры бетона может быть как нарушение технологии получения железобетонных плит, так и температурно-влажностные условия эксплуатации.

Учитывая, что разрушению подвергались только плиты перекрытия между подвалом и первым этажом здания, необходимо обратить внимание на следующую причину образования микротрещин — температурные и влажностные градиенты. Температура в подвальном помещении летом на несколько градусов ниже, а влажность воздуха выше, чем на открытом пространстве. При относительной влажности воздуха 70 % и выше резко повышается агрессивность внешней среды, наблюдается увеличение скорости гидратации C3S и продвижение образующегося гидроксида кальция к поверхности. Высолы наблюдались на плитах только со стороны подвала, что подтверждает возможность описанного процесса.

Если уменьшается концентрация гидроксида кальция в бетоне, то снижается прочность цементного камня и бетона. Присутствие гидроксида кальция положительно влияет на прочностные свойства бетона, а также является регулятором стабильности других продуктов гидратации. Например, 3CaO · SiO2 · nH2O устойчив в водном растворе, содержащем не менее 1,1 г CaO/л. При потере 10 % CaO снижение прочности цементного камня достигает 10 %, при 20 %-ной потере CaO прочность уменьшается на 25 %, а при потере 33 % CaO наступает разрушение цементного камня. Поэтому выход на поверхность гидроксида кальция на значительной части плит может способствовать потере прочности, появлению трещин и сколов.

В будущем следует осуществлять проветривание подвальных помещений, чтобы избежать значительного повышения влажности воздуха в подвале.

источник