Меню Рубрики

Сточная вода анализ воды бпк

Для очистки сточных вод от загрязнений применяется большое количество различных методик. Но чтобы все очистные системы работали эффективно нужно знать показатели загрязнения стоков. От их характера зависит выбор методов очистки, её скорость и качество.

Показатели ХПК и БПК получаются в лабораторных условиях и говорят об уровне загрязненности сточных вод

Химическое потребление кислорода (ХПК) – величина, определяющая концентрацию органики в сточных водах

. Оно выражается в объёме кислорода, которое необходимо израсходовать на окислительные процессы органических частиц в литре воды. В англоязычных странах для обозначения показателя используется аббревиатура COD.

За теоретическую основу расчётов загрязнённости стоков принимается определение количественных параметров потребления кислорода или другого вещества, выступающего окислителем (переведённого в объём кислорода). Его должно быть достаточное количество для того, чтобы весь водород, углерод, сера, фосфор и др. (не учитывается азот), содержащийся в рассматриваемых пробах жидкости, окислился до состояния воды, диоксида углерода, оксида серы, пентаоксида фосфора.

ХПК является наглядным показателем степени, динамики и характера процессов самоочистки сточной воды.

Лабораторные методы определения:

  1. Перманганатный метод. Процесс определения проводится с использованием перманганата калия и серной кислоты. Полученные результаты носят название – перманганатная окисляемость.
  2. Биохромный метод. Он оптимален для сферы водоотведения и обследования стоков с сильными показателями загрязнений. В качестве «рабочего» материала применяется биохромат калия. Результат определяется как биохромная окисляемость.

Общие условия проведения биохромного метода:

Биохромный метод анализа сточных вод предполагает использование серной кислоты

  1. Жидкость обрабатывается серной кислотой и биохроматом калия в определённой температурной среде.
  2. Реакция проводится в присутствии катализатора (вещество, способствующее ускорению процессов, но не попадающее в состав их результатов) – сульфата серебра.
  3. Для нейтрализации хлоридов в раствор добавляют сульфат ртути.

Используемые лабораторные методы позволяют на практике получать данные близкие к теоретическим расчётам и выкладкам, но в ряде ситуаций могут существенно отклоняться. Так, при содержании в стоках определённых элементов неорганического происхождения, меняющих характер окислительных процессов, может корректироваться показатель потребления кислорода.

В таком случае проводятся отдельные расчёты определения количества потребления окислителя, израсходованного для переработки неорганики. Отдельно полученные показатели вычитаются из общего ХПК. Для получения показателей химического потребления кислорода в лабораторных условиях требуется около 24—36 часов.

Биологическое потребление кислорода (БПК) – величина, определяющая концентрацию органики в сточных водах. Оно выражается в количественных показателях кислорода, которое было израсходовано при окислительных анаэробных процессах, с обязательным «участием» кислорода, под действием микроорганизмов в исследуемой жидкости. БПК ключевой метод определения концентрации легкоокисляющейся органики в стоках.

В естественных условиях в воде содержится небольшое количество органики. Она «перерабатывается» за счёт бактерий, которые запускают анаэробные окислительные процессы с выделением двуокиси углерода. Во время процесса происходит потребление растворённого в жидкости кислорода. То есть, чем больше органики в воде, тем больше будут потреблять кислорода бактерии для её переработки.

Сточные воды содержат в своем составе множество органических соединений

  1. Продукты, полученные в результате переработки нефти.
  2. Масла.
  3. Лигнины (составное вещество растений).
  4. Белки.
  5. Жиры.
  6. Фекальные массы.

Для переработки большого количества такой органики потребуется большое количество кислорода, поэтому в стоках БПК имеет высокие показатели.

Количественные параметры определяются за конкретный промежуток времени, то есть устанавливается количество окислителя, потраченного за конкретный промежуток.

Так, БПК5 обозначает параметр потребления за 5 суток. Кроме временных параметров, лабораторные измерения проводятся в строго установленной среде: отсутствие света, температура 20 градусов выше нуля. Нарушение условий может существенно повлиять на окислительные процессы и показатели БПК.

БПК определяется как разница между показателями концентрации кислорода перед и после измерений.

За 5 суток в нормальных условиях и при средней концентрации загрязнений окисляется около 70% органики в жидкости. Полное преобразование органики достигается за три недели.

Стандартными промежутками измерения являются: 2, 5, 20, 120 суток. Но иногда применяются другие временные рамки, всё зависит от предполагаемого состава загрязнений и времени, необходимого для их полного окисления. Измерения, при которых производится полное окисление в жидкости, носят название БПК полное.

Порядок проведения измерений потребления кислорода включает выполнение следующие последовательных действий:

  1. Отбор проб стоков в кислородные склянки. Пробы берутся из одного места в несколько склянок (не менее 3 штук).
  2. Образец одной из склянок сразу же проходит процесс фиксации кислорода. На ней указываются параметры растворённого кислорода.
  3. Остальные инкубационные склянки помещаются в инкубатор, где созданы необходимые световые, температурные и другие условия.
  4. Через установленный заранее промежуток времени склянки изымаются из инкубатора, и проводится измерение показателей кислорода.
  5. Полученные данные сравниваются и рассчитываются показатели потребления кислорода.

В России установлена норма показателя ХПК в используемых водах. Она может равняться 15 или 30 мг О2/л в зависимости от функционального назначения водоёма.

В бассейнах концентрация БПК не должна превышать 6 мг О2/л

Измерения БПК и ХПК проводятся параллельно, так как их сравнение и соотношение позволяет получить дополнительные важные сведения о составе стоков. Так, если ХПК превышает БПК, ситуация свидетельствует о том, что жидкости содержится большое количество не окисляемой органики.

Показатели БПК и ХПК выше в стоках промышленного «происхождения». В хозяйственно-бытовых сточных водах параметры потребления кислорода значительно ниже.

Показатели БПК и ХПК в стоках снижаются путём прохождения через очистные сооружения. Эти сооружения могут иметь разнообразную конфигурацию и устройство, для очистки в них могут применяться различные методики.

Стандартной структурой очистных станций с эффективными показателями биохимической обработки стоков и удаления из них загрязнений является сооружения четырёхблочного типа. Они включают блоки:

  1. Механической очистки (фильтрация и отстаивание).
  2. Биологической очистки.
  3. Физико-химической очистки с применением реагентов.
  4. Обработки и утилизации осадков.

При качественной организации работы и оснащённости показатели ХПК и БПК приходят в норму после прохождения первых двух ступеней очистки.

источник

Вода незагрязненных водоемов в зависимости от температуры (от 30ºС до 0 ºС) содержит 8-14 мг/л кислорода в насыщенном состоянии при атмосферном давлении. Поступающие в водоем вместе со сточными водами бактерии и некоторые химические вещества потребляют для своего окисления растворенный в воде кислород, понижая тем самым содержание его в воде.

При очень низком содержании кислорода жизнедеятельность в водоеме затухает, интенсивность процессов самоочищения снижается, а иногда и почти прекращается. Процесс окисления поступающих в водоем вместе со сточными водами веществ может быть разделен на три стадии, характеризующиеся определенной последовательностью расходования кислорода.

Вначале идет процесс химического окисления легко и трудно окисляющихся соединений, затем биохимическое окисление органических веществ, и, наконец, нитрификация азотсодержащих веществ с образованием солей азотной кислоты.

Если первая стадия (чисто химическое потребление кислорода) не длительна, то вторая (биохимическое окисление), в зависимости от температуры сточной воды и концентрации органических веществ — длится несколько суток. Процесс нитрификации может происходить более продолжительное время (до 40 – 50 суток).

Практическое значение имеет вторая фаза окисления сточных вод, протекающая при участии микроорганизмов в присутствии растворенного в воде свободного кислорода, в результате которой сточная вода приобретает способность не загнивать.

Под влиянием микроорганизмов органическое вещество сточных вод постепенно минерализуется, требуя для своего окисления все меньше кислорода (происходит распад органического вещества).

БПК сточных вод при этом постепенно уменьшается до момента полной минерализации, когда кислород уже не расходуется.

Биохимическое потребление кислорода (БПК) определяется количеством кислорода в мг/л, которое требуется для окисления находящихся в воде органических веществ, что устанавливается по разности в содержании кислорода в момент взятия пробы и спустя определенное время, например 5 суток (БПК ).

При относительно сильном загрязнении воды открытых водоемов может оказаться, что спустя 5 суток в ней совсем не окажется кислорода. Поэтому анализ начинают с того, что исследуемую воду предварительно взбалтывают в продолжении 1 мин в присутствии воздуха для насыщения ее кислородом. Потом определяют растворенный кислород в одной части ее пробы сразу же после взбалтывания, а в другой – спустя 5 суток выстаивания в темном месте при t = 18 – 20ºС.

Полное окисление происходит где-то за 20 суток, но для практических целей обычно определяют БПК через 5 суток и только для более полной качественной характеристики сточной воды в ней определяют БПК и БПК .

Растворенный в воде кислород находят по методу Винклера. Принцип данного метода основан на том, что гидроокись двухвалентного марганца MnO (белый осадок) поглощает свободный кислород, образуя двуокись марганца MnO (бурый осадок).

Осадок растворяют в соляной кислоте. При этом выделяется йод в количестве, эквивалентном содержанию в воде растворенного кислорода. Выделившийся йод оттитровывается раствором гипосульфита (тиосульфата натрия) в присутствии крахмала:

2MnCl + O + 4NaOH = 2MnO + 4NaCl + 2H O;

MnO + 2KI + 4HCl = MnCl + I + 2KCl + 2H O;

I + 2Na S O = Na S O + 2NaI

Цель анализа – провести оценку качества сточной воды по результатам ее анализов на БПК.

Принцип метода анализа основан на определении убыли растворенного в воде кислорода за определенное время (5 или 20 суток).

— раствор хлористого марганца: 50 г MnCl растворяют в 100 см 3 дистиллированной воды;

— смесь едкого натрия и йодистого калия: 32 г х.ч. гидроокиси натрия растворяют в 100 см 3 воды и затем прибавляют 2 г йодистого калия.

Раствор, подкисленный соляной или серной кислотами, не должен давать синей окраски с крахмалом;

— 0,02 н. раствор тиосульфата натрия (титр устанавливают по бихромату калия);

— склянка с притертой пробкой вместимостью 250 см 3 ;

Ход определения

Две одинаковые склянки с притертыми пробками вместимостью 250 см 3 заполняют испытуемой водой и закрывают пробками так, чтобы под ними не было ни одного пузырька воздуха.

В одной пробе содержание кислорода определяют сразу, в другой — через 5 суток. Причем пробу хранят в темноте при комнатной температуре.

В склянку сразу после взятия анализируемой на содержание кислорода пробы, сразу после взятия пробы, вводят пипеткой 1 см 3 раствора хлористого марганца и 3 – 4 см 3 щелочного раствора йодистого калия.

При этом пипетку опускают до дна склянки и постепенно поднимают по мере вытекания из нее реактива. Затем склянку тут же осторожно закрывают пробкой. При этом часть жидкости, эквивалентная объему введенных растворов реактивов, вытесняется. Содержимое склянки перемешивают, переворачивая ее не менее 15 раз. После 10 – минутного отстаивания, когда жидкость над осадком просветлеет, образовавшийся осадок гидроокиси марганца растворяют добавлением 1 см 3 концентрированной серной кислоты. Для полного растворения осадка склянку встряхивают. Затем из нее отбирают в коническую колбу адекватную часть жидкости, равную точно 200 см 3 раствора, и титруют выделившийся йод 0,02 н. раствором тиосульфата натрия. К концу титрования, когда раствор приобретает бледно – желтый цвет, в него добавляют 0,5%-ный раствор крахмала и продолжают титрование до его обесцвечивания.

Формула для определения содержания кислорода в воде (в мг на 1л) имеет вид

,

где О — концентрация кислорода в воде, мг/ дм 3 ;

А — количество 0,02 н. раствора тиосульфата натрия, затраченного на титрование, см 3 ;

К – поправочный коэффициент тиосульфата натрия;

V — объем воды, взятый из склянки для титрования, см 3 .

Содержание кислорода в другой склянке, хранившейся в течение 5 суток (или другое время), устанавливают подобным же способом.

Формула для расчета БПК имеет вид

,

где Х – искомое БПК , мг/ дм 3 О ;

А — содержание растворенного кислорода в воде до инкубации, мг/ дм 3 ;

А — содержание растворенного кислорода в воде после инкубации, мг/ дм 3 .

источник

В контексте темы заботы об окружающей среде часто обсуждается вопрос поддержки рек и других водоемов чистыми. Сейчас это крайне сложно делать, ведь сточные воды, которые сбрасываются в водоемы, сильно загрязнены.

После активного участия в том или ином процессе промышленного толка сточная вода накапливает огромное количество вредных элементов, которые, при попадании в открытый водоем, приводят к гибели водных обитателей и растений, а также к другим неприятным последствиям.

Для измерения степени загрязненности стоков берут за основу некоторые показатели, один из которых – это ХПК. Что такое ХПК, и как снизить этот показатель, мы и расскажем в данном материале.

Объем загрязнения сточных вод можно выявить по ряду показателей, наиболее распространенные среди них – это:

  • ХПК либо химическое потребление кислорода;
  • БПК – это биохимическое его потребление.

Измерение такого показателя, как ХПК нужно затем, чтобы проанализировать качество сточной воды или жидкости в водоеме либо с целью исследования состояния вод в целом. ХПК – это количественный показатель, он относится к наиболее информативным и подробным.

В качестве загрязнителей сточных вод выступают такие вещества, как:

Метод исследования состояния жидкости с учетом ХПК заключается в том, что определяется количество кислорода, который был потрачен на окисление органики и минералов с содержанием углерода. ХПК также называют единицей химической окисляемости воды, поскольку органические вещества окисляются под действием кислорода. Ведь он, в свою очередь, относится к наиболее сильным окислителям.

Окисляемость в зависимости от происхождения окислителей, бывает таких видов:

Самые точные показатели определяются путем применения бихроматного или йодатного метода. Окисляемость выражается в соотношении объема кислорода, который был потрачен на окисление минеральных и органических веществ. Она выражается в миллиграммах из расчета на 1 кв. дм. жидкости.

Очищать сточные воды необходимо с целью сокращения концентрации вредных веществ до нормальных показателей, которые утверждены в нормативных документах.

Очистка проводится на специальных очистных сооружениях или станциях. Их компоновка зависит от количества и качества сточной воды, а также уровня ее загрязнения. Однако схема обработки стоков будет одинаковой и главная цель работы – сократить показатели ХПК и БПК.

Значение ХПК включает в себя суммарное содержание в жидкости органических веществ в объеме израсходованного связанного кислорода на их окисление. ХПК – это общий показатель загрязнений промышленных и природных вод.

А вот такой показатель, как БПК определяет количество растворенного кислорода, который потрачен на окисление бактериями органических веществ в нужном объеме жидкости.

Для одинаковых проб по величине ХПК будет выше показателя БПК, поскольку больше веществ подвергается химическому окислению.

Факторов, способных повлиять на состав вредных веществ и на показатель кислотности жидкости, есть масса. Один из ключевых факторов – это совокупность биохимических процессов, происходящих в самом водоеме. Вследствие этих процессов вещества вступают в реакции друг с другом и образовывают новые, которые по структуре могут отличаться от предыдущих и иметь другой химический состав.

Эти вещества могут поступать в водоем следующим образом:

  • вместе с атмосферными осадками;
  • вместе с бытовыми или хозяйственными сточными водами;
  • с подземными и поверхностными сточными водами.

Их структура и состав могут быть очень разными, в частности, которые из них могут быть устойчивыми по отношению к окислителям. В зависимости от этого фактора нужно выбирать наиболее эффективный окислитель для тех или иных веществ.

В поверхностных водах органические вещества могут иметь взвешенный, растворенный или коллоидный вид. Окисляемость отличается для фильтрованных и нефильтрованных проб. Природные же воды менее подвержены загрязнению органикой естественного происхождения.

Поверхностные воды имеют более высокую степень окисляемости по сравнению с такими типами вод, как:

Например, горные реки и озера имеют окисление в районе 2–3 мг на кубический дециметр, реки с болотным питанием – 20 мг/куб. дм и равнинные водоемы – от 5 до 12 соответственно.

Существенный фактор, который влияет на окисляемость – это сезонные изменения, происходящие в гидробиологическом и гидрологическом режимах.

Также окисляемость водоема может меняться под воздействием человеческой деятельности, в зависимости от сферы деятельности людей в водоем поступают загрязнения того или иного вида.

По нормативу показатели ХПК должны колебаться в пределах от 15 до 30 мг/ куб. дм. Степени загрязнения сточных вод согласно показателям ХПК выглядят так:

  • очень чистые – до 2 мг/куб. дм;
  • относительно чистые – 3 мг/куб. дм;
  • средней загрязненности – 4 мг/куб. дм;
  • загрязненные – 15 мг/куб дм. и выше.

Очистка сточных вод включает в себя такие стадии:

  • первичная очистка – это удаление масляных пленок, крупных частей грязи и численных загрязнений, которые легко удаляются. Данная стадия предусматривает очистку физико-механическим способом;
  • вторичная очистка. На данном этапе отделяют взвешенные части и загрязнители, которые содержатся даже в растворенном виде. Некоторые загрязнители имеют органическое происхождение и их нужно удалять с помощью биологического окисления. Данная стадия подразумевает биологический метод очистки сточных вод;
  • третичная очистка – это удаление всех оставшихся мелких частиц и загрязнителей, включая соли металлов. Очистка осуществляется методом осмоса, электродиализа, фильтрования через адсорбент и т. д.;
  • четвертая стадия – на данном этапе идет обезвоживание шлама, что сводит его объем и вес к минимуму.

Уровень ХПК и БПК постепенно сокращается до тех или иных значений на каждой из стадии, объем их сокращения зависит от особенностей сточных вод.

Далеко не всегда сточные воды очищаются во все четыре стадии. Очень часто очистные сооружения сбрасывают сточные воды в коллектор уже после первой стадии очистки, и это приводит показатели ХПК в норму. В некоторых странах очистка осуществляется только в два этапа, третий этап применяется лишь в крайнем случае.

Сточные воды могут иметь промышленное или бытовое происхождение, природа загрязнений в них тоже отличается. Так, как правило, бытовые стоки загрязнены такими вещами, как:

  • мусор;
  • органические остатки;
  • моющие вещества.

А вот промышленные стоки наполняются отходами производства, если это пищевая промышленность, то там больше всего будет взвешенных веществ и жиров. Значения ХПК и БПК в промышленных стоках будут выше, чем в бытовых.

Иногда стоки объединяются, вследствие чего органика из бытовых сточных вод становится питательной средой для активного ила биоочистки.

Анализ такого показателя, как ХПК проводят, чтобы определить, сколько всего содержится эквивалентного бихромату кислорода, который пошел на окисление всех находящихся в пробе органических и неорганических веществ.

Как уже упоминалось ранее, такая величина, как ХПК, которая оценивает восстановительную активность химических веществ, будет больше БПК, значение которого зависит исключительно от количества органики, подверженной биохимическому разложению. Соотношение между этими двумя показателями отражает полноту биохимического окисления веществ, которые содержатся в сточных водах. Чем больше разница между этими показателями, тем больше прирост биологически активных масс. В частности, по этому соотношению можно определить, насколько пригодны сточные воды для биологической очистки.

Если веществ, подверженных биохимическому окислению будет мало, то лучше всего для исследований применять физико-химические методики, которые смогут привести соотношение показателей к требуемой цифре.

Оптимальный диапазон соотношения БПК и ХПК – это от 0,4 и до 0, 75 единиц. Оптимальное значение для соотношения между химической и биологической потребностью в кислороде – это 0,7, при нем процесс биологической очистке сможет проходить полноценно и в полном объеме.

После того, когда сточные воды разделены гравитационным способом, из них удаляют преимущественно те вещества, которые трудно окислить. После этой стадии соотношение показателей увеличивается.

Затем следует стадия биологической очистки, вследствие которой соотношение показателей снижается на 0,2, поскольку в сточных водах исчезают органические вещества, подвергающиеся биохимическому окислению.

Также с целью оценки наличия в водах биологически разлагаемых частиц можно применять и обратное соотношение показателей. Например, согласно санитарным требованиям, которые подразумевают, что ХПК для сточных вод, пригодных к биоочистке, этот показатель не должен превышать показатель БПК более чем в полтора раза.

Если говорить о сооружениях для биологической очистки, которые очищают смеси домашних и производственных сточных вод, то в них, как правило, соотношение обоих параметров в поступающей жидкости на очистку составляет где-то в районе от 1,5 до 2,5. Когда сточная вода смешивается с промышленными отходами, этот показатель увеличивается и до 3,5, а при стоке вод с некоторых производственных мощностей он может доходить и до 8.

Как видите, значение ХПК позволит проанализировать состояние жидкости в водоемах и даст возможность выяснить, насколько эта она пригодна к очистке и в какой степени. Подробные исследования этого и прочих значений позволят сделать окружающую нас среду гораздо чище.

источник

Важнейшими показателями степени загрязненности отработанных вод являются ХПК и БПК 5 (параметры химического и биохимического потребления О2). Их идентифицируют как при анализе бытовых сточных вод, так и в ходе исследований промышленных. Во втором случае показатели будут существенно выше. Если определение БПК 5 показало повышение уровня, это означает, что в отработанных (естественных) водах присутствует большой объем органических соединений. Зачем измерять биохимическое потребление кислорода БПК 5 и ХПК, на что указывают эти параметры, и какие нормы установлены — эти и другие вопросы имеет смысл рассмотреть.

Читайте также:  Анализ воды в реке ганг

Выше было определено, что увеличение БПК 5 в сточных водах — это показатель повышенного содержания органики. Попадая в почву, загрязненная субстанция заражает подземные воды, грунт, что негативно сказывается на окружающей среде. К повышению БПК 5 в воде определенного района могут привести и:

  • свалки ТБО;
  • несанкционированные места сброса токсичного и бытового мусора;
  • открытие транспортных организаций;
  • организация сельскохозяйственных угодий, ферм и пр.

При расчете БПК 5 единица измерения израсходованного кислорода — миллиграммы О2/л.

Даже в естественных источниках и водоемах содержится определенный процент органических соединений — останки животного происхождения, погибшие растения и т.д. Их разрушение (естественная очистка субстанции) осуществляется бактериями. Процесс носит название анаэробного биохимического окисления. Его результатом становится выделение двуокиси углерода. При этом окисление проходит с участием растворенного в жидкости О2. Чем больше органических включений, тем больше кислорода необходимо на их переработку. Поэтому превышение показателя БПК 5 в 40 раз, например, будет указывать на высокую загрязненность субстанции — уровень кислорода резко снижается, что приводит непригодности воды. Нормативы содержания О2 в питьевой воде —9-11 мг/л при температуре +220С.

При анализе сточных вод различают БПК 5 и БПК полное — отличие этих двух параметров заключается в сроках. Показатель с коэффициентом 5 указывает на то, что в ходе исследования определяли объем растворенного кислорода, который был израсходован на анаэробную переработку органических соединений за 5 суток. В отличие от БПК 5 параметр с приставкой «полное» показывает, какой объем О2 ушел на переработку органики за 20 суток. Часто этот показатель записывают как БПК 20. Считается, что в течение 5 дней при температуре 200С выполняется окисление 70% органических включений. Полное же их окисление проходит за 20 суток. Отсюда и названия. При необходимости эксперты используют перевод БПК 5 в БПК полное по формуле: БПКпол.=БПК5*1.33.

Если исследованию подлежат производственные или промышленные (большое содержание трудно разлагаемых веществ) сточные води, то перевод БПК 5 в полный показатель не применяется. После взятия пробы проводится ее инкубация в течение 5 и 20 (для промышленных сточных вод 120 суток). Затем выполняет замер. Пробы берется ежедневно в течение установленного времени. Если в сточных водах (как правило, это хозяйственно-бытовые) находится легкоразлагаемая органические вещества, тогда задействуют коэффициент пересчета БПК 5 в БПК полное равный, как указано в формуле, 1.33.

Полученные результаты сверяют с нормой. Для БПК 5 норматив определен ГОСТ 2761-84. В нем оговорено, что для источников питьевой (централизованные) субстанции показатель должен быть равен не более 2 мгО2/л, рыбохозяйств и водоемов культурно-бытового значение — не более 3.5-4 мгО2/л. Чтобы поддерживать в допустимых рамках показатель БПК, поддерживают соотношение ХПК к БПК 5 в хозбытовых стоках в диапазоне 0.4-0.75. Оптимальным считается значение 0.7. При таком соотношении между показателями процесс анаэробной очистки проходят оптимально и в полном объеме.

источник

В природной воде водоемов всегда присутствуют органические вещества. Их концентрации могут быть иногда очень малы (например, в родниковых и талых водах). Природными источниками органических веществ являются разрушающиеся останки организмов растительного и животного происхождения, как живших в воде, так и попавших в водоем с листвы, по воздуху, с берегов и т.п. Кроме природных, существуют также техногенные источники органических веществ: транспортные предприятия (нефтепродукты), целлюлозно-бумажные и лесоперерабатывающие комбинаты (лигнины), мясокомбинаты (белковые соединения), сельскохозяйственные и фекальные стоки и т.д. Органические загрязнения попадают в водоем разными путями, главным образом со сточными водами и дождевыми поверхностными смывами с почвы. В естественных условиях находящиеся в воде органические вещества разрушаются бактериями, претерпевая аэробное биохимическое окисление с образованием двуокиси углерода. При этом на окисление потребляется растворенный в воде кислород. В водоемах с большим содержанием органических веществ большая часть РК потребляется на биохимическое окисление, лишая таким образом кислорода другие организмы. При этом увеличивается количество организмов, более устойчивых к низкому содержанию РК, исчезают кислородолюбивые виды и появляются виды, терпимые к дефициту кислорода. Таким образом, в процессе биохимического окисления органических веществ в воде происходит уменьшение концентрации РК, и эта убыль косвенно является мерой содержания в воде органических веществ. Соответствующий показатель качества воды, характеризующий суммарное содержание в воде органических веществ, называется биохимическим потреблением кислорода (БПК).

Определение БПК основано на измерении концентрации РК в пробе воды непосредственно после отбора, а также после инкубации пробы. Инкубацию пробы проводят без доступа воздуха в кислородной склянке (т.е. в той же посуде, где определяется значение РК) в течение времени, необходимого для протекания реакции биохимического окисления. Так как скорость биохимической реакции зависит от температуры, инкубацию проводят в режиме постоянной температуры (20±1)°С, причем от точности поддержания значения температуры зависит точность выполнения анализа на БПК. Обычно определяют БПК за 5 суток инкубации (БПК5), однако содержание некоторых соединений более информативно характеризуется величиной БПК за 10 суток или за период полного окисления (БПК10 или БПКполн соответственно). Погрешность в определении БПК может внести также освещение пробы, влияющее на жизнедеятельность микроорганизмов и способное в некоторых случаях вызывать фотохимическое окисление. Поэтому инкубацию пробы проводят без доступа света (в темном месте).

Таблица. Величины БПК5 в водоемах с различной степенью загрязненности

Степень загрязнения (классы водоемов)

Для водоемов, загрязненных преимущественно хозяйственно-бытовыми сточными водами, БПК5 составляет обычно около 70% БПКП.

Определение БПКп в поверхностных водах используется с целью оценки содержания биохимически окисляемых органических веществ, условий обитания гидробионтов и в качестве интегрального показателя загрязненности воды. Необходимо использовать величины БПК5 при контроле эффективности работы очистных сооружений.

В зависимости от категории водоема величина БПК5 регла­ментируется следующим образом: не более 3 мг О2/дм 3 для во­доемов хозяйственно-питьевого водопользования и не более 6 мг О2/дм 3 для водоемов хозяйственно-бытового и культур­ного водопользования. Для морей (I и II категории рыбохозяйственного водопользования) пятисуточная потребность в кислороде (БПК5) при 20°С не должна превышать 2 мг О2/дм 3 .

Полным биохимическим потреблением кислорода (БПКП) считается количество кислорода, требуемое для окисления органических приме­сей до начала процессов нитрификации. Количество кислорода, расхо­дуемое для окисления аммонийного азота до нитритов и нитратов, при определении БПК не учитывается. Для бытовых сточных вод (без су­щественной примеси производственных) определяют БПК20, считая, что эта величина близка к БПКП.

Полная биологическая потребность в кислороде БПКП для внутренних водоемов рыбохозяйственного назначения (I и II категории) при 20°С не должна превышать 3 мг О2/дм 3 .

Пробоотбор и подготовка воды к анализу

Для проведения физико-химического анализа воды необходимо правильно провести пробоотбор. В зависимости от цели исследования проба воды для анализа может быть получена несколькими способами:

путем однократного отбора всего количества воды, нужного для анализа;

смешением проб, отобранных через определенные промежутки времени в одном месте исследуемого водоема;

смешением проб, отобранных одновременно в раз­ных местах исследуемого водоема.

При отборе проб воды используют посуду из бес­цветного стекла или полиэтилена марок, разрешенных для контакта с питьевой водой. Посуда должна быть тщательно вымыта моющими средствами, многократ­но ополоснута водопроводной и дистиллированной водой, а непосредственно перед забором воды посуду несколько раз ополаскивают исследуемой водой. Проб­ки желательно использовать стеклянные или полиэти­леновые; корковые или резиновые пробки обертывают полиэтиленовой пленкой.

На практике удобно пользоваться банкой или бу­тылью. В местах с затрудненным доступом к воде бан­ку или бутыль можно прикрепить к шесту. Для взятия проб с определенной глубины используются батомет­ры (рисунок). При отсутствии данного прибора можно сделать самодельный батометр, состоящий из бутыли (1л), с прикрепленным к ней тонким прочным шнуром необходимой длины. Бутыль закрывают пробкой со шнуром и помещают в футляр, имеющий груз и петлю. К петле привязывают веревку с отметками, указываю­щими глубину погружения. На нужной глубине выдер­гивают пробку из бутыли и после наполнения емкости водой и поднимают ее.

Отбор проб воды на проточных водоемах произво­дится в 1 км выше ближайшего по течению пункта водо­пользования (водозабор для питьевого водоснабжения, места купания, организованно­го отдыха, территория населен­ного пункта), а на непроточных водоемах и водохранилищах — в 1 км в обе стороны от пункта водопользования.

Обычно пробы в створе отбирают в трех точках (у обо­их берегов и в фарватере); при ограниченных же техничес­ких возможностях или на не-

больших водоемах допускает­ся отбор проб в одной-двух точках (в местах наиболее сильного течения). Чаще все­го пробы отбирают в 5 — 10 м от берега на глубине 50 см. Объектом особого внимания должны стать загрязнен­ные струи.

Если на реке имеется сброс сточных вод от промыш­ленных предприятий, стоки животноводческих ферм и т. д., то отбор проб воды проводят ниже сброса на 500 м, что позволяет контролировать степень загрязне­ния воды в реке сточными водами (для сравнения сле­дует взять пробу на 500 м выше сброса сточных вод).

Если предполагается, что в результате сброса сточ­ных вод в придонных слоях накапливаются оседающие вредные вещества, которые могут стать источником вторичного загрязнения воды, отбирают придонные пробы на расстоянии 30 — 50 см от дна.

В водохранилищах, озерах, прудах, где течение воды резко замедленно, качество воды может быть неодно­родным на различных участках (здесь возможно возник­новение вторичных источников загрязнения), поэтому в этих водоемах обычно берут серию проб по глубине.

Сразу же после взятия пробы необходимо сделать запись об условиях сбора, направлении ветра, указать дату и час отбора воды.

Подготовка воды к анализу

Для получения достоверных результатов анализ следует проводить возможно быстрее. В воде происхо­дят процессы окисления-восстановления, физико-хи­мические, биохимические, вызванные деятельностью микроорганизмов, сорбции, десорбции, седиментации и т. д. Могут изменяться и органолептические свойства воды — запах, цвет и др. Некоторые вещества способ­ны адсорбироваться на стенках сосудов (железо, алю­миний, медь, кадмий, марганец и др.), а из стекла бу­тылей могут выщелачиваться микроэлементы. При невозможности исследовать воду в установленные для соответствующих показателей сроки (таблица) ее ох­лаждают или консервируют.

Биохимические процессы в воде можно замедлить, охладив ее до 4°С. В этих условиях медленнее разру­шаются и многие органические вещества.

Универсального консервирующего средства не су­ществует, поэтому пробы для анализа отбирают в не­сколько бутылей. В каждой из них на месте отбора пробу консервируют, добавляя различные реагенты (таблица). Подготовка воды непосредственно перед анализом заключается в следующем:

— консервированные пробы при необходимости ней­трализуют, а охлажденные нагревают до комнат­ной температуры (не на нагревательном приборе);

— если определению мешают мутность и цветность, то проводят специальную подготовку: пробы филь­труют, отстаивают или коагулируют. Коагуляция проводится добавлением 5 мл суспен­зии гидроксида алюминия на 1 л воды, после чего смесь хорошо взбалтывают и дают отстояться.

Находящиеся в природной и питьевой воде заг­рязняющие вещества имеют, как правило, очень ма­ленькие концентрации. Для того чтобы определить присутствие этих загрязнителей следует провести концентрирование этих примесей.

Если при анализе проводилось концентрирование пробы, то при последующих расчетах необходимо учи­тывать объем исходного образца воды.

Метод определения концентрации РК

Определение концентрации РК в воде проводится методом Винклера, который широко используется для санитарно-химического и экологического контроля.

3.2 Метод определения концентрации РК основан на способности гидроксида марганца (II) окисляться в щелочной среде до гидроксида марганца (IV), количественно связывая при этом кислород. В кислой среде гидроксид марганца (IV) снова переходит в двухвалентное состояние, окисляя при этом эквивалентное связанному кислороду количество йода. Выделившийся йод титруют раствором тиосульфата натрия в присутствии крахмала.

Определение РК проводится в несколько этапов. Сначала в анализируемую воду добавляют соль Мn (II), который в щелочной среде реагирует с растворенным кислородом с образованием нерастворимого гидроксида Мn (IV) по уравнению:

2Мn + О+4ОН= 2МnО(ОН).

Таким образом, кислород «фиксируется» в пробе (количественно связывается). Кислород — неустойчивый компонент химического состава воды, поэтому фиксация должна быть проведена сразу после отбора пробы.

Далее к пробе добавляют раствор кислоты для растворения осадка и раствор йодида калия, в результате чего протекает химическая реакция с образованием свободного йода по уравнению:

2МnО(ОН)+ 6J +6Н= Мn + 3J + ЗНО.

Затем свободный йод титруют раствором тиосульфата натрия в присутствии крахмала, который добавляют в качестве индикатора для определения точки эквивалентности. Реакции описываются уравнениями:

J+2SO=2J+SO

J + крахмал синий краситель.

В точке эквивалентности происходит обесцвечивание раствора.

3.3 По результатам титрования определяют абсолютное содержание РК в воде в мг О/л и степень насыщения воды кислородом, котораязависит от температуры воды в момент отбора пробы и атмосферного давления.

Метод определения биохимического потребления кислорода основан на способности микроорганизмов потреблять растворенный кислород при биохимическом окислении органических и неорганических веществ в воде.

Биохимическое потребление кислорода определяют количеством кислорода в мг/дм, которое требуется для окисления находящихся вводе углеродсодержащих органических веществ, в аэробных условиях в результате биохимических процессов.

3.5 По разности содержания РК в воде до и после инкубации пробы в кислородной склянке при стандартных условиях (продолжительность инкубации — 5 суток при температуре 20±1°С без доступа света и воздуха) определяют БПК. При этом пробу воды предварительноаэрируют для насыщения кислородом.

3.6 В поверхностных водах суши величина БПКколеблется впределах от 0,5 до 5 мг О/л, она подвержена природным и суточнымизменениям, которые в основном зависят от изменения температуры и от исходной концентрации растворенного кислорода, связанные с физиологической и биохимической активностью микроорганизмов. Значительные изменения БПК определяются степенью загрязненности.

3.7 Мешающее влияние на аналитическое определение РК могут оказывать вещества (взвешенные и окрашенные, биологически активные, восстановители, реагирующие с выделившимся йодом, окислители, выделяющие йод из йодида калия) в концентрациях, встречающихся только в сточных и загрязненных поверхностных водах.

3.8 Точность выполнения анализа определяется:

качеством растворов, которое может ухудшиться при их загрязнении, хранении в негерметично закрытых склянках, в теплом месте или на свету, а также при хранении растворов слишком продолжительное время (без проведения периодического контроля);

чистотой используемой посуды для отбора проб и выполнения нализов;

полнотой учета мешающих примесей, которые могут присутствовать в анализируемой воде;

При работе с комплектом в полевых и лабораторных условиях руководствуются основными правилами техники безопасности, предусмотренными для химико-аналитических работ.

4.2 Методика выполнения анализа предусматривает использование щелочного раствора йодида калия и раствора серной кислоты. Следует избегать попадания щелочного и сернокислотного растворов на слизистые оболочки, кожные покровы, одежду, обувь, оборудование и т.п. При попадании на кожу или слизистые оболочки следует быстро и обильно промыть водой, при необходимости обратиться к специалисту в медицинское учреждение.

4.3. Едкие вещества требуют особого обращения:

хранения в специальном месте, недоступном для неспециалистов:

использования их только оператором (преподавателем);

Подготовка к проведению анализа

Подготовка к проведению анализа включает: проверку целостности мерной и др. посуды; проверку наличия растворов в склянках; приготовление растворов.

Раствор крахмала неустойчив при хранении. Для приготовления свежего — растворите содержимое капсулы в 10-15 мл холодной дистиллированной воды, полученную суспензию постепенно прилейте к 35-40 мл кипящей дистиллированной воды и кипятите 2-3 минуты. Раствор охладите.

По мере использования рабочего раствора тиосульфата натрия (0,02 моль/л экв.) приготовьте новый. Отберите мерной пипеткой 20,0 мл раствора тиосульфата натрия (0,1 моль/л экв.), поместите в мерную колбу вместимостью 100 мл, доведите объем раствора до метки дистиллированной водой, перемешайте раствор.

Оборудование и реактивы: Барометр любого типа; груша резиновая или медицинский шприц; колба коническая вместимостью 250–300 мл; склянка кислородная калиброванная (100–200 мл) с пробкой; мешалка (стеклянные шарик, палочка и т.п.) известного объема; пипетки мерные на 1 мл и 10 мл; термометр; раствор соли марганца; раствор серной кислоты (1:2); раствор тиосульфата натрия (0,02 моль/л экв.); раствор крахмала (0,5%); раствор йодида калия щелочной.

1. Добавьте в склянку с пробой анализируемой воды разными пипетками 1 мл раствора соли марганца, 1 мл раствора йодида калия, погружая пипетку с раствором в кислородную склянку на глубину 2-3 см, как показано на рисунке и по мере выливания раствора поднимайте пипетку вверх.

Излишек жидкости из склянки стечет через край на подставленную чашку Петри.

Слегка наклоните склянку, закройте пробкой. Излишек жидкости стечет через край. Следите, чтобы в склянке не осталось пузырьков воздуха.

Склянка не должна оставаться открытой.

2. Перемешайте содержимое склянки имеющейся внутри мешалкой, удерживая склянку рукой. Поместите склянку с зафиксированной пробой в темное место для отстаивания (не менее 10 минут и не более 24 часов).

Добавьте пипеткой 2 мл раствора серной кислоты.

Закройте склянку пробкой и перемешайте содержимое до полного растворения осадка.

5. Перенесите содержимое склянки в кониче­скую колбу для титрования вместимостью 250 мл.

Примечание. Можно проводить титрование части пробы. Для этого из кислородной склянки в колбу для титрования перенесите цилиндром 50,0 мл обработанной пробы.

6. Заполните пипетку (бюретку), закреплен­ную в стойке-штативе раствором тиосульфата натрия (0,02 моль/л экв.) и титруйте пробу до слабо желтой окраски. Затем добавьте пипеткой 1 мл раствора крахмала (раствор в колбе синеет) и продолжайте титровать до полного обесцвечивания раствора.

7. Определите общий объем раствора тиосульфата натрия, израсходованного на титрование (как до, так и после добавления раствора крахмала).

источник

Заместитель Председателя
Государственного комитета РФ
по охране окружающей среды
________________ А.А. Соловьянов

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ БИОХИМИЧЕСКОЙ
ПОТРЕБНОСТИ В КИСЛОРОДЕ ПОСЛЕ n -ДНЕЙ ИНКУБАЦИИ
(БПКполн.) В ПОВЕРХНОСТНЫХ ПРЕСНЫХ, ПОДЗЕМНЫХ
(ГРУНТОВЫХ), ПИТЬЕВЫХ, СТОЧНЫХ И ОЧИЩЕННЫХ
СТОЧНЫХ ВОДАХ.

Методика допущена для целей государственного
экологического контроля.

Настоящий документ устанавливает методику количественного химического анализа проб природных поверхностных пресных, грунтовых, сточных и очищенных сточных вод для определения в них биохимического потребления кислорода после n-дней (БПКполн.) инкубации.

Для анализа с содержанием БПКполн. выше 300 мг/дм 3 проводят дополнительные разбавления.

Диапазон измеряемых концентраций биохимического потребления кислорода от 0,5 до 1000 мг О2/дм 3 .

1.1. Метод определения биохимического потребления кислорода основан на способности микроорганизмов потреблять растворенный кислород при биохимическом окислении органических и неорганических веществ в воде.

1.2. Биохимическое потребление кислорода определяют количеством кислорода в мг/дм 3 , которое требуется для окисления находящихся в воде углеродосодержащих органических веществ, в аэробных условиях в результате биохимических процессов.

За полное биохимическое потребление кислорода (БПКполн.) принимается окончательная минерализация биохимически окисляющихся органических веществ до начала процесса нитрификации (появление нитритов в исследуемой пробе в концентрации 0,1 мг/дм 3 ).

1.3. По разности содержания растворенного кислорода в обогащенной растворенным кислородом и зараженной аэробными микроорганизмами исследуемой воде до и после инкубации в стандартных условиях устанавливается значение БПК. Разбавлением исследуемой воды обеспечивается достаточное содержание кислорода для его потребления микроорганизмами.

1.4. Метод заключается в разбавлении исследуемой пробы различными объемами специально приготовленной разбавляющей воды с большим содержанием растворенного кислорода, зараженной аэробными микроорганизмами, с добавками, подавляющими нитрификацию.

Уменьшение содержания кислорода за определенный период инкубации в темном месте, при контрольной температуре, в полностью заполненной и герметически закрытой пробкой склянке, обусловлено, главным образом, протекающими в аэробных условиях бактериальными биохимическими процессами, которые приводят к минерализации органического вещества. Время, необходимое на полную минерализацию, зависит от природы органического вещества.

После измерения концентрации растворенного кислорода до и после инкубационного периода рассчитывается масса кислорода, поглощенного из одного дм 3 воды. Величина уменьшения кислорода в склянке, умноженная на степень разведения, дает численную величину БПК, выраженную в мг О2/дм 3 .

Настоящая методика обеспечивает получение результатов анализа с погрешностями, не превышающими значений, приведенных в таблицах 1 и 2.

Диапазон измерений, значения показателей точности, повторяемости и воспроизводимости
методики при определении растворенного кислорода йодометрическим методом

Показатель точности (границы относительной погрешности при вероятности Р = 0,95), ± d , %

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), s r, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), s R, %

Диапазон измерений, значения показателей точности, повторяемости и воспроизводимости
методики при определении растворенного кислорода амперометрическим методом

Показатель точности (границы относительной погрешности при вероятности Р = 0,95), ± d , %

Читайте также:  Анализ воды в ростове на дону

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), s r, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), s R, %

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Термостат с водяным охлаждением, обеспечивающий постоянную температуру 20 ± 1 °С марки ОН-1125;

*) термометр от 0 до 100 °С 2-го класса точности по ГОСТ 28498; *)

весы лабораторные 2 класса точности, ГОСТ 24104;

*) весы технические 4-го класса точности, ТУ 25-06-385-77 или аналоги; *)

*) Внесены дополнения и изменения согласно протокола № 14 заседания НТК ГУАК Госкомэкологии России от 03.12.98 г. и протокола № 23 заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

сушильный электрический шкаф;

холодильник для хранения проб, обеспечивающий температуру 2 ¸ 4 °С;

аппараты для встряхивания типа АВУ-1, АВУ-6п, АВУ-10р ТУ 64-1-1081;

БПК-тестер или оксиметр любой модификации, позволяющий воспроизводить метрологические характеристики, приведенные в таблице 2;

мешалка магнитная, ТУ 25-11-834-73;

насос вакуумный любого типа;

аквариумный микрокомпрессор АЭН, ТУ 16-064,011;

аппарат для дистилляции воды, ТУ 64-1-2-2718;

колбы плоскодонные узкогорлые (ГОСТ Р 50222) *) с пришлифованной стеклянной пробкой (конусы по ГОСТ Р 50222) *) вместимостью 250 см 3 , калиброванные с точностью до 0,1 см 3 ;

*) Внесены дополнения и изменения согласно протокола № 14 заседания НТК ГУАК Госкомэкологии России от 03.12.98 г. и протокола № 23 заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

эксикаторы диаметром 140, 190, 250 мм, ГОСТ 25336;

вставки для эксикаторов диаметром 128, 175, 230 мм, ГОСТ 9147;

мензурки или цилиндры мерные вместимостью 25;

пипетки 2 класса точности вместимостью 10,0;

бюретки 1 класса точности, ГОСТ 29251* ) ;

*) Внесены дополнения и изменения согласно протокола № 14 заседания НТК ГУАК Госкомэкологии России от 03.12.98 г. и протокола № 23 заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

колбы мерные 100; 250; 500; 1000 см 3 , 1-го класса точн., ГОСТ 1770;

колбы конические ТС, ТХС вместимостью 250;

воронки лабораторные В-75-110 ХС;

трубки хлоркальциевые ТХ-II-1-17(25), ГОСТ 25336;

стаканчики для взвешивания (бюксы), ГОСТ 25336;

склянки и банки стеклянные с винтовым горлом, с прокладкой и крышкой или с притертой пробкой для отбора и хранения проб и реактивов вместимостью 500; 1000; 1500 *) ; 2000 см 3 , ТУ 6-19-6-70;

*) Внесены дополнения и изменения согласно протокола № 14 заседания НТК ГУАК Госкомэкологии России от 03.12.98 г. и протокола № 23 заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

флаконы и банки цилиндрические полиэтиленовые с навинчивающимися крышками для отбора и хранения проб и реактивов вместимостью 100; 250; 500; 1000; 2000 см 3 , ТУ 6-19-45-74;

бумажные фильтры обеззоленные «синяя лента», ТУ 6-09-1678;

фильтры стеклянные класса ПОР-40, ГОСТ 23336;

ткани шелковые (мельничный газ) № 19 — 25, ГОСТ 4403;

крахмал растворимый картофельный, ГОСТ 10163;

калий фосфорнокислый двузамещенный 3-водный, ГОСТ 2493;

*) Внесены дополнения и изменения согласно протокола № 14 заседания НТК ГУАК Госкомэкологии России от 03.12.98 г. и протокола № 23 заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

натрий сернистокислый, ГОСТ 195, стандарт-титр, ТУ 6-09-2540;

железо (III) хлористое 6-водное, ГОСТ 4147;

натрий фосфорнокислый двузамещенный 12-водный, ГОСТ 4172;

калий фосфорнокислый однозамещенный, ГОСТ 4198;

калий гидроокись, ТУ 6-09-5-2322;

кальций хлористый, ГОСТ 4460;

сульфаминовая кислота, ТУ 6-09-2437;

магний сернокислый 7-водный, ГОСТ 4523;

глютаминовая кислота ч.д.а., ТУ 6-09-07-1091;

Реактивы для определения концентрации растворенного кислорода йодометрическим методом:

марганец хлористый 4-водный, ГОСТ 612 или

марганец сернокислый 5-водный или 7-водный, ГОСТ 435;

натрий серноватокислый 5-водный, ГОСТ 27068, или

стандарт-титр 0,1 моль/дм 3 эквивалента, ТУ 6-09-2540;

натрий хлорноватистый с содержанием активного хлора не менее 3 %, или известь медицинская;

Все реактивы должны быть квалификации ч.д.а. или х.ч.

Допускается использование реактивов изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

4.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

4.2. Электробезопасность при работе с электроустановками по ГОСТ 12.1.019.

4.3. Организация обучения работающих безопасности труда по ГОСТ 12.0.004.

4.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, освоивший данную методику.

Измерения проводятся в следующих условиях:

температура окружающего воздуха (20 ± 5) °С;

атмосферное давление (84,0 — 106,7) кПа (630 — 800 мм.рт.ст);

относительная влажность (80 ± 5) %;

напряжение сети (220 ± 10) В;

частота переменного тока (50 ± 1) Гц.

Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб» *) .

*) Внесены дополнения и изменения согласно протокола № 14 заседания НТК ГУАК Госкомэкологии России от 03.12.98 г. и протокола № 23 заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

Используется полиэтиленовая посуда, а при наличии в воде нефти, углеводородов, моющих средств и пестицидов используются банки из темного стекла.

Посуда для отбора проб и анализа должна быть химически чистой. Она промывается смесью бихромата калия и серной кислоты (хромовой смесью), тщательно водопроводной водой, затем 3 — 4 раза дистиллированной водой. Не разрешается пользоваться поверхностно-активными веществами и органическими растворителями.

Посуду для отбора проб сушат на воздухе, а используемую для анализа, за исключением мерной, сушат в сушильном шкафу при 160 °С в течение 1 часа. Запрещается сушить колбы на колышках. Сосуды для отбора проб должны быть четко промаркированы.

Колбы для инкубации на определение БПК объемом 250 см 3 должны быть откалиброваны с точностью до 0,1 см 3 . Колбу тщательно моют, высушивают (снаружи и изнутри) и взвешивают вместе с пробкой на технических весах с точностью до 0,01 г. Затем наполняют ее дистиллированной водой до краев и закрывают стеклянной пробкой так, чтобы под пробкой не оставалось пузырьков воздуха. Обтирают склянку досуха и снова взвешивают с точностью до 0,01 г.

Разность в весе даст массу воды в объеме склянки, которую для перевода на объем следует разделить при температуре воды 15 °С — на 0,998, при 20 °С — на 0,997 и при 25 °С — на 0,996.

Химически чистая посуда для определения БПК должна храниться с закрытыми стеклянными притертыми пробками или завинчивающимися крышками.

7.2.1. Для отбора глубинных проб воды из озер, водохранилищ, прудов и рек следует использовать батометры системы Молчанова, Рутнера или Скадовского-Зернова.

Для отбора проб поверхностных пресных вод с глубины не более 0,5 м используется бутыль с привязанной пробкой, которую помещают в футляр или пробоотборник с грузом. Футляр снабжен петлей, к которой привязывают веревку с размеченными отрезками, указывающими глубину погружения. На требуемой глубине, с помощью привязанной к пробке веревки выдергивают пробку из горла бутыли. После заполнения бутыли водой (на поверхности воды не появляются пузырьки воздуха) ее поднимают на поверхность.

7.2.2. Пробы сточной воды с глубины 0,5 м отбираются пробоотборником любого типа.

7.2.3. Отбор природных и сточных вод следует производить в местах наибольшего перемешивания.

7.2.4. На очистных сооружениях отбирать пробы для анализа на БПК следует до системы хлорирования, т.к. активный хлор является мешающим определению веществом. Если необходимо проанализировать пробу после хлорирования, следует удалить из исследуемой воды свободный хлор (см. раздел 7.8.3).

7.2.5. При взятии проб измеряют температуру воды. Для этого используют термометр от 0 до 100 °С, 2-го класса точности по ГОСТ 28498 *) . Для определения температуры на месте взятия пробы, 1 дм 3 воды наливают в склянку, нижнюю часть термометра погружают в воду и через 5 мин отсчитывают показания, держа его вместе со склянкой на уровне глаз. Точность определения ± 0,5 °С.

*) Внесены дополнения и изменения согласно протокола № 14 заседания НТК ГУАК Госкомэкологии России от 03.12.98 г. и протокола № 23 заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

7.2.6. Не допускается консервирование проб, предназначенных для определения в них БПК.

7.2.7. Отобранные пробы наливают, предварительно ополаскивая отбираемой водой, в банки или флаконы объемом 1,5 дм 3 , заполняя их до краев и закрыв без пузырей воздуха пришлифованными стеклянными пробками или полиэтиленовыми крышками. Под полиэтиленовые крышки подкладываются тефлоновые или из алюминиевой фольги прокладки. Пробы упаковываются в деревянные ящики для переноски проб и прокладываются бумагой или ветошью.

При транспортировке не держать пробы на свету.

7.2.8. При отборе пробы составляется протокол по утвержденной форме, в котором указывается цель пробоотбора, число, время, место отбора пробы, температура воды, предполагаемые загрязняющие вещества, номер пробы, ФИО отбиравшего. На бутыль наклеивается этикетка с указанием номера пробы, места и даты отбора.

Необходимо анализировать пробы тотчас же после отбора. В том случае, если обработать пробу сразу после отбора невозможно, ее следует хранить не более 24 часов при температуре 4 °С.

БПК определяют в натуральной (взболтанной) пробе при осуществлении экоаналитического контроля за соблюдением нормативов качества.

БПК определяют в отстоянной и фильтрованной пробе при осуществлении производственного контроля за эффективностью технологического процесса очистки сточных вод на разных стадиях.

7.4.1. Определение в натуральной (взболтанной) пробе. В лаборатории перед началом определения проба тщательно перемешивается (с помощью встряхивающего аппарата или вручную).

7.4.2. Определение после отстаивания. Проба отстаивается в цилиндрах в течение 2 часов. Сифоном отбирают в бутыль для анализа верхние 3/4 прозрачного слоя жидкости над осадком, не захватывая взмученный осадок.

7.4.3. Определение в фильтрованной пробе. Проба тщательно перемешивается и фильтруется через обеззоленный фильтр «синяя лента».

Дистиллированная вода, применяемая для приготовления всех растворов и разбавляющей воды, не должна содержать веществ, влияющих на определение БПК (меди более 0,01 мг/дм 3 , цинка более 1 мг/дм 3 , свободного хлора, хлорамина, органических веществ и кислот). Дистиллированную воду для приготовления разбавляющей воды хранят тщательно защищенной от какого бы то ни было загрязнения при температуре 20 °С. Сосуды для этой воды нельзя использовать для других целей.

7.5.1. Разбавляющую воду готовят из дистиллированной воды, полученной накануне анализа, выдержанной при температуре 20 °С; ее насыщают кислородом воздуха, аэрируя до концентрации растворенного кислорода не менее 8 мг/дм 3 и не более 9 мг/дм 3 . Можно обогащать кислородом воду длительным встряхиванием бутыли, наполненной на 2/3 дистиллированной водой.

В день применения в разбавляющей воде измеряют содержание растворенного O 2 , затем добавляют 0,3 г/дм 3 бикарбоната натрия для доведения рН до оптимальных значений.

рН разбавляющей воды должна быть в диапазоне 7,0 — 8,0.

В разбавляющую воду добавляют фосфорные и аммонийные соли, гексагидрат хлорида железа, хлорид кальция и сульфат магния для создания устойчивой буферной системы, которая позволяет поддерживать постоянное значение рН в течение любого времени инкубации, не изменяющееся при выделении CO 2 (продукт метаболизма бактерий).

7.5.1.1. Растворы солей для приготовления разбавляющей воды.

Фосфатный буферный раствор рН = 7,2.

8,5 г однозамещенного фосфорнокислого калия (KH 2 PO 4 ), 21,75 г двузамещенного фосфорнокислого калия (K 2 HPO 4 ), 33,4 г двузамещенного фосфорнокислого натрия 12-водного (Na 2 HPO 4 × 12Н2O) и 1,7 г хлорида аммония (NH 4 Cl) растворяют в дистиллированной воде и доводят объем до 1 дм 3 .

22,5 г MgSO 4 × 7Н2O ч.д.а. растворяют в дистиллированной воде, доводят объем до 1 дм 3 .

0,25 г FeCl 3 × 6Н2O ч.д.а. растворяют в дистиллированной воде, доводят объем до 1 дм 3 .

27,5 г СаСl 2 ч.д.а. безводного растворяют в дистиллированной воде, доводят объем до 1 дм 3 .

Растворы хранят в темноте, при комнатной температуре не более месяца. Не используют при появлении осадка.

В день анализа к 1 дм 3 разбавляющей воды прибавляют 1 см 3 фосфатного буферного раствора, 1 см 3 раствора сульфата магния, 1 см 3 раствора хлорида кальция, 1 см 3 раствора хлорида железа.

7.5.1.2. Заражение микрофлорой.

В разбавляющую воду в день анализа добавляют бактериальную затравку. (При анализе сточных вод сооружений биологической очистки такой затравки не требуется). Бактериальную затравку добавляют при исследовании искусственно приготовленных растворов, производственных сточных, олиготрофных поверхностных пресных, грунтовых, глубоко очищенных и обеззараженных сточных вод.

Бактериальная затравка может отбираться из разных источников, при приготовлении разбавляющей воды используется один из предлагаемых вариантов:

а) Сточные воды с городских сооружений биологической очистки, отобранные после песколовок. Добавляют 0,3 — 1,0 см 3 на 1 дм 3 разбавляющей воды.

б) Аквариумная вода. Добавляют 5,0 — 10,0 см 3 на 1 дм 3 разбавляющей воды.

в) Речная вода. Добавляют 10,0 — 20,0 см 3 на 1 дм 3 разбавляющей воды.

7.5.1.3. Подавление нитрифицирующих бактерий.

Наличие нитрификации в поверхностных пресных, биологически очищенных и слабо загрязненных сточных водах может существенно исказить результат определения БПК. Для подавления нитрификации в день анализа в разбавляющую воду добавляют ингибитор — раствор тиомочевины или аллилтиомочевины — так, чтобы концентрация его в разбавляющей воде составляла 0,5 мг/дм 3 , для чего 1 см 3 раствора тиомочевины добавляют на каждый 1 дм 3 разбавляющей воды.

7.5.1.4. Проверка степени чистоты разбавляющей воды холостым опытом.

При определении БПК5 или БПКполн. четыре кислородные колбы заполняют разбавляющей водой, в двух определяют кислород сразу в день исследования («нулевой» день), время между разбавлением пробы и определением кислорода в «нулевой» день не должно превышать 15 мин. В остальных двух колбах, которые помешают в термостат вместе с анализируемыми пробами, — через 5 суток. Разница средней концентрации кислорода в пробе холостого опыта нулевого дня и через 5-суточный срок инкубации не должна превышать 0,5 мг/дм 3 кислорода.

7.5.2.1. Йодистый калий, 10 %-ный водный раствор.

Навеску 10 г KI помещают в коническую колбу, растворяют в 90 см 3 дистиллированной воды.

7.5.2.2. Серная кислота, водный раствор 1:50.

1 часть концентрированной серной кислоты осторожно добавляют к 50 частям дистиллированной воды, перемешивают.

7.5.2.3. Сульфит натрия, водный раствор 0,025 н.

Раствор сульфита натрия готовят из стандарт-титра разбавлением в четыре раза дистиллированной водой.

7.5.2.4. Тиомочевина, водный раствор.

Навеску 500 мг тиомочевины растворяют в 1 дм 3 дистиллированной воды.

7.5.2.5. Крахмал, 0,5 %-ный водный раствор.

Растирают в ступке 5 г крахмала с небольшим количеством холодной дистиллированной воды. В кипящую дистиллированную воду объемом 1 дм 3 вливают растертый крахмал, постоянно перемешивают при кипячении 3 — 5 минут, затем охлаждают. В охлажденный раствор для консервации прибавляют салициловую кислоту — 1,25 г на 1 дм 3 раствора крахмала или 2 — 3 капли хлороформа. Срок хранения не более 2 недель.

7.5.2.6. Щелочной раствор йодида калия с азидом натрия.

В 700 см 3 дистиллированной воды растворяют 700 г КОН и 150 г KI, отдельно растворяют 10 г NaN 3 в 40 см 3 дистиллированной воды, оба раствора смешивают и доводят объем до 1 дм 3 , если раствор не прозрачен, его отстаивают, а затем сифонируют.

7.5.2.7. Соляная кислота, 0,5 моль/дм 3 раствор.

40 см 3 концентрированной соляной кислоты (d = 1,19) добавляют к 500 см 3 дистиллированной воды и доводят объем до 1 дм 3 .

7.5.2.8. Гидроксид натрия, 0,5 моль/дм 3 раствор.

Навеску 20 г гидроксида натрия растворяют в дистиллированной воде и доводят объем до 1 дм 3 .

7.5.3.1. Раствор хлорида (сульфата) марганца.

210 г MnCl 2 ·4Н2O, или 260 г MnSO 4 × 5Н2O, или 290 г MnSO 4 × 7H 2 O растворяют в 300 — 350 см 3 дистиллированной воды, фильтруют в мерную колбу вместимостью 500 см 3 и доливают дистиллированной водой до метки на колбе. Хранят в плотно закрытой склянке.

7.5.3.2. Щелочной раствор йодида калия (или натрия).

15 г KI (или 18 г NaI × 2Н2O) растворяют в 20 см 3 , а 50 г NaOH — в 50 см 3 дистиллированной воды. Полученные растворы смешивают в мерной колбе вместимостью 100 см 3 и доводят объем дистиллированной водой до метки на колбе. При наличии мути раствор фильтруют. Хранят в склянке из темного стекла с плотной резиновой пробкой.

340 см 3 концентрированной соляной кислоты добавляют к 170 см 3 дистиллированной воды.

Вместо раствора соляной кислоты можно использовать раствор серной кислоты (1:4). Для его приготовления 100 см 3 концентрированной серной кислоты осторожно при перемешивании добавляют к 400 см 3 дистиллированной воды.

Проверку чистоты растворов соли марганца, йодида калия (или натрия), соляной или серной кислоты и их очистку осуществляют, как описано в п. 7.6.

7.5.3.4. Раствор тиосульфата натрия с концентрацией 0,02 моль/дм 3 эквивалента.

При использовании стандарт-титра его растворяют в дистиллированной воде в мерной колбе вместимостью 500 см 3 , затем отбирают 50 см 3 полученного раствора, переносят в мерную колбу вместимостью 500 см 3 и доводят объем дистиллированной воды до метки.

Для приготовления раствора из навески 2,5 г Na 2 S 2 O 3 × 5Н2O переносят в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде и доводят объем раствора до метки на колбе. В качестве консерванта к полученному раствору добавляют 3 см 3 хлороформа.

Перед определением точной концентрации раствор выдерживают не менее 5 суток. Хранят в склянке из темного стекла, закрытой пробкой с вставленным в нее сифоном с бюреткой и хлоркальциевой трубкой, заполненной гранулированным КОН или NaOH .

Точную концентрацию раствора тиосульфата натрия определяют по п. 7.7 не реже 1 раза в неделю.

7.5.3.5. Фторид калия, 40 %-ный раствор.

40 г фторида калия растворяют в 60 см 3 дистиллированной воды. Хранят в полиэтиленовой посуде.

7.5.3.6. Смешанный раствор сульфата и гипохлорита натрия.

50 г сульфата натрия растворяют в 160 см 3 дистиллированной воды и добавляют такое количество раствора гипохлорита натрия, чтобы смешанный раствор содержал около 0,3 % активного хлора. Раствор хранят в темной склянке в холодильнике не более 1 месяца.

При отсутствии готового раствора гипохлорита натрия его готовят из хлорной извести и карбоната натрия следующим образом: 35 г Na 2 СО3 растворяют в 85 см 3 дистиллированной воды, к 50 г хлорной извести добавляют 85 см 3 дистиллированной воды, тщательно размешивают, добавляют весь раствор карбоната натрия и вновь перемешивают, при этом масса загустевает, затем начинает разжижаться. Массу фильтруют через фильтр «синяя лента» на воронке Бюхнера. Полученный раствор гипохлорита натрия хранят в склянке из темного стекла в холодильнике.

Для определения содержания активного хлора в растворе гипохлорита натрия в коническую колбу вместимостью 250 см 3 вносят 50 см 3 дистиллированной воды, 1 см 3 раствора гипохлорита, 1 г сухого KI, 10 см 3 раствора соляной кислоты (2:1), тщательно перемешивают, выдерживают 5 минут в темном месте и титруют стандартным раствором тиосульфата натрия до появления светло-желтого окрашивания, затем после добавления 1 см 3 раствора крахмала — до полного обесцвечивания.

Концентрацию активного хлора вычисляют по формуле:

где Сах концентрация активного хлора, %;

СТ — концентрация тиосульфата натрия, моль/дм 3 эквивалента;

V Т — объем раствора тиосульфата натрия, пошедший на титрование гипохлорита натрия, см 3 .

7.5.3.7. Смешанный раствор сульфата натрия и роданида калия.

50 г сульфата натрия и 2 г роданида калия растворяют в 200 см 3 дистиллированной воды.

7.5.3.8. Сульфаминовая кислота, 40 %-ный раствор.

4 г сульфаминовой кислоты растворяют в 10 см 3 дистиллированной воды. Хранят в холодильнике.

Для проверки чистоты йодида калия 1 г KI растворяют в 100 см 3 свежепрокипяченной и охлажденной до комнатной температуры дистиллированной воды, приливают 10 см 3 раствора соляной кислоты (2:1) и 1 см 3 раствора крахмала. Если в течение 5 минут голубая окраска не появляется, реактив пригоден для использования. В противном случае йодид калия должен быть очищен от свободного йода.

Для этого 30 — 40 г KI помещают в воронку Бюхнера и промывают при перемешивании охлажденным до 3 — 5 °С этиловым спиртом до появления бесцветной порции последнего. Промытый КI сушат в темноте между листами фильтровальной бумаги в течение суток. Хранят в плотно закрытой склянке из темного стекла. Проверку чистоты и очистку NaJ проводят аналогичным образом.

7.6.2. Раствор хлорида (сульфата) марганца.

К 100 см 3 свежепрокипяченной и охлажденной дистиллированной воды добавляют 1 см 3 раствора соли марганца, 0,2 г сухого йодида катая (проверенного на чистоту), 5 см 3 раствора соляной кислоты и 1 см 3 раствора крахмала. Отсутствие через 10 мин синей окраски указывает на чистоту реактива. В противном случае для очистки раствора на каждые 100 см 3 его добавляют около 1 г безводного карбоната натрия, хорошо перемешивают, отстаивают в течение суток, а затем фильтруют.

Читайте также:  Анализ воды в реке томь

К 50 см 3 дистиллированной воды добавляют 1 см 3 раствора крахмала, 1 г сухого чистого йодида калия и 10 см 3 раствора соляной (или серной) кислоты. Если в течение 5 мин не появится синяя окраска, кислота может быть использована в анализе, в противном случае следует заменить исходный реактив.

В колбу для титрования вносят 80 — 90 см 3 дистиллированной воды, 10 см 3 стандартного раствора бихромата калия, добавляют 1 г сухого KI и 10 см 3 раствора соляной кислоты. Раствор перемешивают, выдерживают 5 мин в темном месте и титруют раствором тиосульфата натрия до появления слабожелтой окраски. Затем добавляют 1 см 3 раствора крахмала и продолжают титрование до исчезновения синей окраски.

Повторяют титрование и, если расхождение между величинами объемов титранта не более 0,05 см 3 , за результат принимают их среднее значение. В противном случае повторяют титрование до получения результатов, отличающихся не более чем на 0,05 см 3 .

Точную концентрацию раствора тиосульфата натрия находят по формуле:

где С т — концентрация раствора тиосульфата натрия, моль/дм 3 эквивалента;

С д — концентрация раствора бихромата калия, моль/дм 3 эквивалента;

VT — объем раствора тиосульфата натрия, пошедший на титрование, см 3 ;

V д — объем раствора дихромата калия, взятый для титрования, см 3 .

7.8.1. Перед определением БПК в натуральной пробе воду тщательно перемешивают. Таким образом, предотвращают ошибку, вызванную изменением физических свойств грубодисперсных примесей или выпадением некоторых растворенных веществ в период между отбором пробы и ее обработкой.

7.8.2. Кислые или щелочные исследуемые воды нейтрализуют приготовленными растворами соляной кислоты или гидроксида натрия (до рН 7,0 — 9,0).

К пробе сточных вод прибавляют рассчитанное количество щелочи или кислоты. Требуемое количество определяют титрованием аликвотной части пробы соответствующим раствором.

7.8.3. При определении БПК очищенной сточной воды, подвергавшейся обработке хлором или хлорной известью, предварительно удаляют избыток активного хлора. При содержании хлора не более 0,5 мг/дм 3 воде дают постоять 1 — 2 часа.

Воды, содержащие активный хлор более 0,5 мг/дм 3 , перед определением обрабатывают сульфитом натрия, количество которого определяют титрованием. К 100 см 3 пробы добавляют 10 см 3 разбавленной серной кислоты, 10 см 3 раствора йодистого калия и титруют раствором сульфита натрия с применением раствора крахмала в качестве индикатора (п. 7.5.2).

К пробе для определения БПК добавляют эквивалентное количество раствора сульфита натрия, рассчитанное по результату титрования. Если проба содержит активный хлор, указанную обработку повторяют. Если активный хлор полностью устранен, то пробу используют для определения БПК.

7.8.4. Если анализу подвергается сточная вода, содержащая нитриты (промышленные сточные воды или воды после биохимической очистки), то перед определением БПК нитриты разрушают, добавляя щелочной раствор йодида калия с азидом натрия. Контролируют разрушение нитритов визуально по исчезновению слаборозового окрашивания или с помощью фотоколориметра.

7.8.5. Пробы, содержащие большое количество водорослей или планктона, перед анализом фильтруют через мельничный газ (шелковое сито № 19 — 25). Результаты определения БПК в этих водах будут сомнительными.

Основные условия для получения достоверных результатов биохимического потребления кислорода — инкубация пробы при постоянной температуре 20 °С без доступа воздуха и света.

Кроме основных условий при определении необходимо соблюдать следующие правила:

проба должна быть насыщена вначале опыта кислородом (около 8 мг/дм 3 при температуре 20 °С);

потребление кислорода во время инкубационного периода должно быть около 50 % (минимальное потребление 2 мг/дм 3 );

остаточная концентрация кислорода после срока инкубации должна быть не менее 3 мг/дм 3 .

Относительно чистые речные и очищенные сточные воды с содержанием БПК5 до 5 мг/дм 3 можно исследовать без разбавления.

Исследуемую воду наливают в лаборатории в бутыль не более чем на 2/3 объема, устанавливают температуру воды 20 °С (нагреванием на водяной бане или охлаждением) и сильно встряхивают для насыщения кислородом до 8 мг/дм 3 . После этого сифоном исследуемой водой заполняют, слегка переполняя, необходимое количество кислородных колб. При определении БПК5 наполняется шесть колб, при определении БПКполн. — шестнадцать. Предварительно каждую колбу ополаскивают приблизительно 30 см 3 пробы. Наполненные кислородные колбы закрывают притертой пробкой так, чтобы внутри не оставалось пузырьков воздуха. В двух кислородных колбах тотчас же (не более 15 мин) определяют кислород.

Остальные колбы с испытуемой водой помещают в термостат. Можно применять специальные колбы, снабженные притертыми стеклянными колпачками. В последние наливают испытуемую воду, и они служат водяным затвором. Кислородные колбы хранят при температуре 20 °С в темноте в течение необходимого времени инкубации, (при определении БПК5 в течение 5 суток, а при определении БПКполн. — до появления в пробе нитритов 0,1 мг/дм 3 ).

Для анализа пробы на нитриты можно наполнять испытуемой водой дополнительные склянки объемом 25 см 3 и инкубировать их в тех же условиях. Через 2, 5, 7, 10, 15, 20 и 25 суток от начала инкубации вынимают из термостата по две колбы с испытуемой водой, определяют в них растворенный кислород и содержание нитритов.

В расчете используют результат содержания растворенного кислорода в той колбе, где остаточное содержание растворенного кислорода после срока инкубации не менее 3 мг/дм 3 и потреблено около 50 % кислорода. Если это условие выполняется в обеих колбах, вычисляют средний результат из двух колб.

Для загрязненных речных и сточных вод с БПК5 выше 6 мг/дм 3 требуется предварительное разбавление пробы.

Определение производят в разбавленной пробе по разности содержания кислорода до и после инкубации в стандартных условиях.

Для разбавления пробы применяют искусственно приготовленную разбавляющую воду (п. 7.5).

При приготовлении разбавлений температура исследуемой пробы должна соответствовать температуре 18 — 20 ° С.

Для расчета необходимых разбавлений пробы следует ожидаемое содержание БПК в пробе разделить на 4 — 5 (поскольку в воде после инкубации при правильном разбавлении должно остаться 4 — 5 мг/дм 3 кислорода). Если нельзя предположить ожидаемое БПК, необходимое разбавление рассчитывается по результатам определения бихроматной окисляемости (ХПК). Условно принимают биохимическое потребление кислорода 50 % ХПК, а поскольку в воде после инкубации должно остаться 4 — 5 мг/дм 3 кислорода, вычисленное значение (ХПК : 2) делят на 4 или 5. Полученный результат показывает, во сколько раз надо разбавить анализируемую воду.

Пробы, для которых нельзя примерно рассчитать величину БПК, берут в двух и более разбавлениях. Результаты, полученные при анализе проб с различным разбавлением, не должны быть одинаковыми. Наиболее достоверным является результат определения, при котором израсходовано около 50 % первоначально содержащегося кислорода.

При определении БПК в воде, содержащей большое количество промышленных сточных вод, могут возрастать значения БПК с увеличением степени разведения. В этих случаях берут максимальное значение БПК, которое получено при наибольшем разведении.

В мерную колбу вместимостью 1 дм 3 наливают хорошо перемешанную испытуемую жидкость, отбирают пипеткой определенный объем и вносят в другую колбу (цилиндром отмеряются объемы больше 50 см 3 ). Затем доливают до метки разбавляющей водой и хорошо перемешивают; полученную смесь сифоном, опущенным до дна колбы, наливают в шесть (если определяется БПК5) или 16 (если определяется БПКполн.) кислородные колбы объемом 250 см 3 , закрывают пробкой, следя за тем, чтобы внутри не осталось пузырьков воздуха. Затем оставшейся смесью заполняют колпачки от колб и, наклонив колбу, вставляют их в колпачки с водой, вытесняя из них воду, чтобы не осталось пузырьков воздуха. Для каждого разбавления заполняют две колбы.

В первых двух кислородных колбах немедленно определяют кислород. Все остальные колбы (4 при определении БПК5 и 10 — 14 при определении БПКполн.) помещают в термостат при 20 °С для инкубации.

Через 2, 5, 7, 10, 15, 20 и 25 суток от начала инкубации вынимают из термостата по две колбы с испытуемой водой, определяют в них растворенный кислород и содержание нитритов. Нитриты определяют в воде, налитой в колпачок колбы, который снимают так же, как надевали.

Если в пробе начался процесс нитрификации, (что определяют по образованию нитритов в концентрации, превышающей 0,1 мг/дм 3 ) определение БПК полное считают законченным. При появлении на пятые сутки следов нитритов следующее определение проводят через 5 — 8 суток. При отсутствии в лаборатории колб с пришлифованными стеклянными колпачками для контроля процесса нитрификации в термостат можно ставить дополнительно наполненные испытуемой и разбавляющей водой 12 неградуированных склянок объемом 25 см 3 и в них определять содержание нитритов по истечению установленного срока инкубации. Наиболее точным считается определение БПК в пробах, где нитрификация только началась.

где X — величина БПК n , мг/дм 3 кислорода;

Сх1 — содержание растворенного кислорода до инкубации, мг/дм 3 ;

Сх2 — то же, после инкубации, мг/дм 3 .

где X — величина БПК, мг O 2 /дм 3 ;

Сх1 — содержание растворенного кислорода в исследуемой воде до инкубации, мг/дм 3 ;

Сх2 — то же, после инкубации, мг/дм 3 ;

Сy 1 — содержание растворенного кислорода в разбавляющей воде до инкубации, мг/дм 3 ;

Сy 2 — то же, после инкубации, мг/дм 3 ;

для которых выполняется следующее условие:

где r — предел повторяемости, значения которого приведены в таблицах 3 и 4.

Значения пределов повторяемости при определении растворенного
кислорода йодометрическим методом (Р = 0,95)

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r, %

Значения пределов повторяемости при определении растворенного
кислорода амперометрическим методом с БПК-тестером (Р = 0,95)

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r, %

При невыполнении условия (1) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6.

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблицах 5 и 6.

Значения пределов воспроизводимости при определении растворенного
кислорода йодометрическим методом (Р = 0,95)

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

Значения пределов воспроизводимости при определении растворенного
кислорода амперометрическим методом с БПК-тестером (Р = 0,95)

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6.

10.1. Определение содержания растворенного кислорода в диапазоне от 0,1 до 15,0 мг/дм 3 йодометрическим методом

Принцип метода. Йодометрический метод определения концентрации растворенного кислорода основан на его реакции с гидроксидом марганца (II) и определении образовавшихся более окисленных соединений марганца последующим йодометрическим титрованием. Реактивы и приготовление необходимых растворов по п. 3 и п. 7.5.3.

Определение растворенного кислорода в пробах на БПК, при отсутствии в исследуемой воде восстановителей.

Вынув из колбы с исследуемой водой (объем 250 см 3 ) притертую пробку, фиксируют растворенный кислород, для чего в колбу вводят отдельными пипетками 2 см 3 раствора хлорида (сульфата) марганца и 2 см 3 щелочного раствора йодида калия. Пипетку погружают каждый раз до половины колбы и по мере выливания раствора поднимают вверх. Затем быстро закрывают колбу стеклянной пробкой таким образом, чтобы в ней не оставалось пузырьков воздуха и содержимое тщательно перемешивают 15 — 20-кратным переворачиванием колбы до равномерного распределения осадка в воде. Из колбы при добавлении реактивов выливается 4 см 3 испытуемой воды, на эту потерю при расчете вводят соответствующую поправку.

Колбы с зафиксированными пробами помещают в темное место для отстаивания (не менее 10 мин и не более 24 ч).

После того, как отстоявшийся осадок будет занимать менее половины высоты колбы, к пробе приливают 10 см 3 раствора соляной кислоты (раствор 2:1), или 4 см 3 раствора серной кислоты (п. 7.5.3.3) *) , погружая при этом гашетку до осадка (не взмучивать) и медленно поднимая ее вверх по мере опорожнения. Вытеснение из колбы части прозрачной жидкости для анализа значения не имеет.

Колбу закрывают пробкой и содержимое тщательно перемешивают.

Для титрования используют весь объем воды в калиброванной склянке БПК *) , (пипетку предварительно ополаскивают этим раствором), переносят его в колбу для титрования и титруют стандартным раствором тиосульфата натрия (если предполагаются, что содержание кислорода менее 3 мг/дм 3 — из микробюретки) до тех пор, пока он не станет светло-желтым.

*) Внесены дополнения и изменения согласно протокола № 14 заседания НТК ГУАК Госкомэкологии России от 03.12.98 г. и протокола № 23 заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

Затем прибавляют 1 см 3 свежеприготовленного раствора крахмала и продолжают титрование до исчезновения синей окраски.

Обработка результатов измерений.

Массовую концентрацию растворенного в воде кислорода находят по формуле:

где Сх — массовая концентрация растворенного кислорода в анализируемой пробе воды, мг/дм 3 ;

Ct — концентрация раствора тиосульфата натрия, моль/дм 3 эквивалента;

Vt — объем раствора тиосульфата натрия, пошедший на титрование, см 3 ;

V — вместимость кислородной колбы, см 3 ;

V 1 — суммарный объем растворов хлорида марганца и йодида калия, добавленных в колбу при фиксации растворенного кислорода, см 3 ;

8,0 — масса миллиграмм — эквивалента кислорода, мг.

Определение растворенного кислорода в пробах на БПК n в присутствии в исследуемой воде восстановителей.

В присутствии восстановителей последовательность анализа изменяется. В колбу с исследуемой водой добавляют 1 см 3 раствора соляной кислоты и 1 см 3 смешанного раствора гипохлорита и сульфата натрия. Колбу закрывают пробкой, перемешивают и оставляют в темном месте. Через 30 минут для устранения избытка непрореагировавшего гипохлорита добавляют 2 см 3 смешанного раствора роданида калия и сульфата натрия.

Пробу перемешивают и через 10 минут выполняют фиксацию и определение кислорода.

При содержании в анализируемой воде более 1 мг/дм 3 железа в пробу перед добавлением раствора кислоты следует внести 1 см 3 раствора фторида калия. Добавление всех растворов в колбу с пробой осуществляют, погружая пипетку примерно до половины колбы и поднимая ее вверх по мере выливания раствора. В этом случае при определении содержания кислорода вычитают из емкости колбы не 4 см 3 , а сумму объемов всех прибавленных реактивов.

10.2. Определение содержания растворенного кислорода в диапазоне от 0,1 мг/дм 3 до 10,0 мг/дм 3 амперометрическим методом

Принцип метода. Действие преобразователя концентрации кислорода основано на электрохимическом восстановлении кислорода, диффундирующего на его катод через селективнопропускающую мембрану (мембрана непроницаема для воды и растворенных веществ, но пропускает кислород, а также некоторое количество других газов).

Генерируемый при этом электрический ток пропорционален концентрации кислорода в анализируемой воде. Показания стрелки прибора соответствуют массовой концентрации кислорода в анализируемой воде.

Изменения растворимости кислорода при различных температурах и атмосферном давлении пересчитывается по таблицам. Некоторые приборы компенсируют изменения растворимости кислорода в зависимости от температуры и атмосферного давления автоматически.

Для измерения растворенного кислорода при определении БПК пригодны различные модификации БПК-тестеров и оксиметров, позволяющих воспроизводить метрологические характеристики, приведенные в табл. 2.

Выполнение измерений. Выполняя измерение следует руководствоваться инструкцией по эксплуатации прибора.

При использовании БПК-тестера для инкубирования проб исследуемой воды используются кислородные колбы с тефлоновыми прокладками в крышках и переливную вставку, входящие в комплект. Переливная вставка обеспечивает сбор переливающейся из колбы воды при измерениях растворенного кислорода.

При использовании оксиметров любой марки требуется подобрать кислородные колбы с притертыми пробками, в горлышко которых свободно входит электрохимический датчик кислорода и чашки Петри, которые применяются как переливные подставки.

Кислородную колбу с исследуемой пробой открывают, одевают на нее переливную вставку (если она прикладывается к комплекту) или ставят колбу на чистую чашку Петри, опускают в колбу магнитный стержень в стеклянном корпусе, ставят чашку Петри с кислородной колбой на магнитную мешалку и обеспечивают скорость вращения стержня указанную в инструкции, но не менее 5 см/сек. Вставляют в горло колбы электрохимический датчик кислорода и через 3 минуты записывают показания прибора. Результаты выражаются в мг О2/дм 3 с точностью до первого десятичного знака.

После того, как измерение кислорода произведено, датчик кислорода вынимают из кислородной колбы, снимают переливную вставку и из нее или из чашки Петри пипеткой отбирается перелившаяся в процессе измерения исследуемая вода и ею дополняется кислородная колба доверху без пузырей воздуха (если колбу нельзя наполнить доверху перелившейся исследуемой водой, то можно добавлять несколько капель стерильной дистиллированной воды), после чего колба закрывается крышкой и ставится в термостат для дальнейшей инкубации.

Повторное измерение концентрации кислорода в одной и той же колбе повышает достоверность измерений БПК n и позволяет уменьшить количество инкубируемых кислородных колб.

Результат анализа X ср в документах, предусматривающих его использование, может быть представлен в виде: Хср ± D , Р = 0,95,

где D — показатель точности методики.

Значение D рассчитывают по формуле: D = 0,01 × d × Хср.

Значение d приведено в таблице 1 и 2.

Допустимо результат анализа в документах, выдаваемых лабораторией, представлять в виде: Хср± D л , Р = 0,95, при условии D л D ,

где Хср— результат анализа, полученный в соответствии с прописью методики;

± D л — значение характеристики погрешности результатов анализа, установленное при реализации методики в лаборатории, и обеспечиваемое контролем стабильности результатов анализа.

Примечание. При представлении результата анализа в документах, выдаваемых лабораторией, указывают:

— количество результатов параллельных определений, использованных для расчета результата анализа;

— способ определения результата анализа (среднее арифметическое значение или медиана результатов параллельных определений).

Контроль качества результатов анализа при реализации методики в лаборатории предусматривает:

— оперативный контроль процедуры анализа (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);

— контроль стабильности результатов анализа (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

12.1.1. Этот вид контроля предназначен для выявления несоответствия условий выполнения текущих измерений требованиям МВИ.

Оперативный контроль измерительной процедуры применяется в случае получения сомнительных результатов КХА (например, при грубом несоответствии значений ХПК и БПК пробы), а также периодически для проверки разбавляющей воды, чистоты применяемых посуды и реактивов, микробной затравки и самого метода анализа.

12.1.2. Средствами оперативного контроля являются ГСО глюкозоглютаминовой кислоты или приготовленный раствор глюкозоглютаминовой кислоты.

Для приготовления раствора необходимо использовать обезвоженную D (+) глюкозу и L (-) глютаминовую кислоту, для чего эти вещества высушивают в сушильном шкафу при температуре 103 — 105 °С в течение 1 часа. Затем 75 мг глюкозы и 75 мг глютаминовой кислоты растворяют в 0,3 дм 3 дистиллированной воды, перемешивают и доводят до 0,5 дм 3 . Раствор не хранится.

12.1.3. При проведении оперативного контроля 5 см 3 глюкозоглютаминовой смеси доводят до 1 дм 3 разбавляющей водой (п. 8.5.1) *) и проводят определение БПК5 в этой пробе в точном соответствии с прописью методики.

Результат измеренного БПК5 умножается па коэффициент разбавления 100, т.к. анализируемая концентрация глюкозоглютаминовой смеси составляет 150 мг/дм 3 *) . Если результат анализа БПК5 контрольной пробы составляет 205 ± 25 мг/дм 3 , считают условия выполнения измерений соответствующими требованиям МВИ.

*) Внесены дополнения и изменения согласно протокола № 14 заседания НТК ГУАК Госкомэкологии России от 03.12.98 г. и протокола № 23 заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры Кк с нормативом контроля К.

Результат контрольной процедуры Кк рассчитывают по формуле:

где C ср — результат анализа массовой концентрации БПК в образце для контроля — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 9.3;

С — аттестованное значение образца для контроля.

Норматив контроля К рассчитывают по формуле

где ± D л — характеристика погрешности результатов анализа, соответствующая аттестованному значению образца для контроля.

Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: D л = 0,84 × D , с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной при выполнении условия:

При невыполнении условия (2) контрольную процедуру повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Периодичность оперативного контроля процедуры анализа, а также реализуемые процедуры контроля стабильности результатов анализа регламентируют в Руководстве по качеству лаборатории.

источник